This form is a summary description of the model entitled "Szymanski" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

These models are variants on Szymanski's solution [1] to Lamport mutual exclusion problem.

Variant A example is part of a suite that consists of 46 Petri nets that were used in the evaluation of BFC [2]. They originate from the analysis of concurrent C programs. This particular program comes from [3].

This model was then used as one of the benchmarks for the tool Petrinizer in [4].

The source model has an initial marking $(l_0 \ge 1)$ constraint rather than a single initial marking, this is used in the MCC to scale the model up.

Models found in [5] where converted to PNML thanks to an ITS-Tools [6] library.

References

- 1. B. K. Szymanski. A simple solution to lamport's concurrent programming problem with linear wait. In ICS, pages 621–626. ACM, 1988
- 2. A. Kaiser, D. Kroening, and T. Wahl. Efficient coverability analysis by proof minimization. In CONCUR, volume 7454 of Lecture Notes in Computer Science, pages 500–515. Springer, 2012
- 3. A. Gupta, C. Popeea, and A. Rybalchenko. Threader: A constraint-based verifier for multi-threaded programs. In CAV, volume 6806 of Lecture Notes in Computer Science, pages 412–417. Springer, 2011.
- 4. J. Esparza, R. Ledesma-Garza, R. Majumdar, P. J. Meyer, and F. Niksic. An smt-based approach to coverability analysis. In CAV, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer, 2014
- 5. Klara J. Meyer, Petrinizer repository, https://github.com/meyerphi/petrinizer.
- 6. Y. Thierry-Mieg, Homepage of ITS-tools https://lip6.github.io/ITSTools-web/

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
V, M	V is the variant (A or B) and M is the num-	(a, 2), (a, 4), (a, 6), (a, 8), (a, 10), (a, 12),
	ber of initial tokens in place 10.	(b, 2), (b, 4), (b, 6), (b, 8), (b, 10), (b, 12)

Model: Szymanski Type: P/T Net Origin: Academic

Size of the model

Parameter	Number of places	Number of transitions	Number of arcs
variant a, $M=2$	61	224	900
variant a, $M=4$	61	224	900
variant a, $M=6$	61	224	900
variant a, $M = 8$	61	224	900
variant a, $M = 10$	61	224	900
variant a, $M = 12$	61	224	900
variant b, $M=2$	568	8320	33408
variant b, $M=4$	568	8320	33408
variant b, $M=6$	568	8320	33408
variant b, $M = 8$	568	8320	33408
variant b, $M = 10$	568	8320	33408
variant b, $M = 12$	568	8320	33408

Structural properties

ordinary — all arcs have multiplicity one	
simple free choice — all transitions sharing a common input place have no other input place	. X (a)
extended free choice — all transitions sharing a common input place have the same input places	
state machine — every transition has exactly one input place and exactly one output place	
marked graph — every place has exactly one input transition and exactly one output transition	X (d)
connected — there is an undirected path between every two nodes (places or transitions)	. X (e)
strongly connected — there is a directed path between every two nodes (places or transitions)	. X (f)
source place(s) — one or more places have no input transitions	
sink place(s) — one or more places have no output transitions	. 🖊 (h)
source transition(s) — one or more transitions have no input places	. X (i)
sink transitions(s) — one or more transitions have no output places	. X (j)
loop-free — no transition has an input place that is also an output place	X (k)
conservative — for each transition, the number of input arcs equals the number of output arcs	. X (1)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs	X (m)
nested units — places are structured into hierarchically nested sequential units (n)	X

Behavioural properties

\mathbf{safe} — in every reachable marking, there is no more than one token on a place
dead place(s) — one or more places have no token in any reachable marking
dead transition(s) — one or more transitions cannot fire from any reachable marking

⁽a) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽b) transitions "t0" and "t2" share a common input place "s0", but only the former transition has input place "l0".

 $^{^{\}rm (c)}$ stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽d) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽e) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽f) the net is not connected and, thus, not strongly connected.

⁽g) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽h) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽i) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽j) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽k) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽¹⁾ stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M). (m) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

⁽o) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽p) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

⁽q) stated by CÆSAR.BDD version 3.7 on all 12 instances (2 variants \times 6 values of M).

$\frac{\text{since}}{\text{MCC}}$

deadlock — there exists a reachable marking from which no transition can be fired	?
reversible — from every reachable marking, there is a transition path going back to the initial marking	?
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire	?

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max. number of tokens per marking
variant a, $M=2$?	?	?	≥ 3 ^(r)
variant a, $M=4$?	?	?	≥ 5 (s)
variant a, $M=6$?	?	?	≥ 7 ^(t)
variant a, $M = 8$?	?	?	≥ 9 ^(u)
variant a, $M = 10$?	?	?	≥ 11 ^(v)
variant a, $M = 12$?	?	?	$\geq 13^{({ m w})}$
variant b, $M=2$?	?	?	≥ 3 ^(x)
variant b, $M=4$?	?	?	≥ 5 ^(y)
variant b, $M = 6$?	?	?	≥ 7 ^(z)
variant b, $M = 8$?	?	?	≥ 9 ^(aa)
variant b, $M = 10$?	?	?	≥ 11 ^(ab)
variant b, $M = 12$?	?	?	≥ 13 ^(ac)

 $^{^{(}r)}$ lower bound given by the number of initial tokens.

⁽s) lower bound given by the number of initial tokens.

⁽t) lower bound given by the number of initial tokens.

⁽u) lower bound given by the number of initial tokens.

⁽v) lower bound given by the number of initial tokens.

⁽w) lower bound given by the number of initial tokens.

⁽x) lower bound given by the number of initial tokens.

⁽y) lower bound given by the number of initial tokens.

 $^{^{(}z)}$ lower bound given by the number of initial tokens.

⁽aa) lower bound given by the number of initial tokens. (ab) lower bound given by the number of initial tokens.

⁽ac) lower bound given by the number of initial tokens.