
Abstract

This form is a summary description of the model entitled "ResIsolation" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P / T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This model contains the description of a System-on-Chip for analyzing the security property of resource isolation. The model is composed of a number of sources (from 8 to 13) and targets (from 1 to 5) connected via a bus. Resource isolation ensures that the information stored in targets is accessed only by authorized sources. Authorization is based on the two notions of security and privilege: access to a target is granted only if the security and privilege of the source are both greater or equal to those of the target.
In this model, any source can request to read and write information from/to any target, which then accepts or rejects the request. Sources with the highest security and privilege may also modify the security and/or privilege of the information stored in the target.
The various instances of this model have been derived from the LNT model presented in [1] by varying the number of sources and targets. Each LNT model was then translated to LOTOS, and then to an interpreted Petri net using the CADP toolbox. Finally, a P/T net was obtained by stripping out all data-related information (variables, types, assignments, guards, etc.) from the interpreted Petri net, leading to a NUPN (Nested-Unit Petri Net) model translated to PNML using the CÆSAR.BDD tool.

References

[1] Philippe Ledent, Radu Mateescu, and Wendelin Serwe. Testing Resource Isolation for System-on-Chip Architectures. In F. Lang and M. Volk (editors), proceedings of the 6th International Workshop on Models for Formal Analysis of Real Systems (MARS 2024), EPTCS 399, 2024, pp. 129-168, doi:10.4204/EPTCS.399.7.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
(N, P)	N is the number of sources and P the num-	$(8,1),(8,2),(8,3),(8,4),(8,5),(9,1),(9,2)$,
	ber of targets	$(9,3),(9,4),(9,5),(10,1),(10,2),(10,3)$,
		$(10,4),(11,1),(11,2),(11,3),(12,1),(12,2)$,
		$(13,1)$

Size of the model

Parameter	Number of places	Number of transitions	Number of arcs	Number or units	HWB code
$(N=8, P=1)$	270	4850	83436	17	$9-9-54$
$(N=8, P=2)$	309	9493	184883	19	$10-10-61$
$(N=8, P=3)$	348	18744	406138	21	$11-11-68$
$(N=8, P=4)$	387	37211	885441	23	$12-12-75$
$(N=8, P=5)$	426	74110	1917704	25	$13-13-82$
$(N=9, P=1)$	299	9484	184865	19	$10-10-60$
$(N=9, P=2)$	338	18735	406120	21	$11-11-67$
$(N=9, P=3)$	377	37202	885423	23	$12-12-74$
$(N=9, P=4)$	416	74101	1917686	25	$13-13-81$
$(N=9, P=5)$	455	147864	4129597	27	$14-14-88$
$(N=10, P=1)$	328	18726	406102	21	$11-11-66$
$(N=10, P=2)$	367	37193	885405	23	$12-12-73$
$(N=10, P=3)$	406	74092	1917668	25	$13-13-80$
$(N=10, P=4)$	445	147855	4129579	27	$14-14-87$
$(N=11, P=1)$	357	37184	885387	23	$12-12-72$
$(N=11, P=2)$	396	74083	1917650	25	$13-13-79$
$(N=11, P=3)$	435	147846	4129561	27	$14-14-86$
$(N=12, P=1)$	386	74074	1917632	25	$13-13-78$
$(N=12, P=2)$	425	147837	4129543	27	$14-14-85$
$(N=13, P=1)$	415	147828	4129525	27	$14-14-84$

Structural properties

[^0]
Behavioural properties

safe - in every reachable marking, there is no more than one token on a place ... $\sqrt{ }$ (o)
dead place(s) - one or more places have no token in any reachable marking ... \boldsymbol{X} (p)
dead transition(s) - one or more transitions cannot fire from any reachable marking \boldsymbol{X} (q)
deadlock - there exists a reachable marking from which no transition can be fired \boldsymbol{V} (r)
reversible - from every reachable marking, there is a transition path going back to the initial marking $\boldsymbol{X}(\mathrm{s})$
live - for every transition t, from every reachable marking, one can reach a marking in which t can fire $\boldsymbol{X}(\mathrm{t})$

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max.number of tokens per marking $(N=8, P=1)$$\| 1.12511 \mathrm{e}+09^{(\mathrm{u})}$
$?$	$?$	1	9	
$(N=8, P=2)$	$1.22751 \mathrm{e}+10^{(\mathrm{v})}$	$?$	1	10
$(N=8, P=3)$	$1.34642 \mathrm{e}+11^{(\mathrm{w})}$	$?$	1	11
$(N=8, P=4)$	$1.47929 \mathrm{e}+12^{(\mathrm{x})}$	$?$	1	12
$(N=8, P=5)$	$1.62629 \mathrm{e}+13^{(\mathrm{y})}$	$?$	1	13
$(N=9, P=1)$	$1.11812 \mathrm{e}+10^{(\mathrm{z})}$	$?$	1	11
$(N=9, P=2)$	$1.22431 \mathrm{e}+11^{(\mathrm{aa})}$	$?$	1	12
$(N=9, P=3)$	$1.34476 \mathrm{e}+12^{(\mathrm{ab})}$	$?$	1	13
$(N=9, P=4)$	$1.47835 \mathrm{e}+13^{(\mathrm{ac})}$	$?$	14	
$(N=9, P=5)$	$1.62572 \mathrm{e}+14^{(\mathrm{ad})}$	$?$	11	
$(N=10, P=1)$	$1.11462 \mathrm{e}+11^{(\mathrm{ae})}$	$?$	1	12
$(N=10, P=2)$	$1.22271 \mathrm{e}+12^{(\mathrm{af})}$	$?$	1	13
$(N=10, P=3)$	$1.34394 \mathrm{e}+13^{(\mathrm{ag})}$	$?$	1	14
$(N=10, P=4)$	$1.47788 \mathrm{e}+14^{(\mathrm{ah})}$	$?$	1	12
$(N=11, P=1)$	$1.11287 \mathrm{e}+12^{(\mathrm{ai})}$	$?$	1	14
$(N=11, P=2)$	$1.22191 \mathrm{e}+13^{(\mathrm{aj})}$	$?$	1	13
$(N=11, P=3)$	$1.34352 \mathrm{e}+14^{(\mathrm{ak})}$	$?$	1	14
$(N=12, P=1)$	$1.11199 \mathrm{e}+13^{(\mathrm{al})}$	$?$	1	14
$(N=12, P=2)$	$1.22151 \mathrm{e}+14^{(\mathrm{am})}$	$?$	1	
$(N=13, P=1)$	$1.11155 \mathrm{e}+14^{(\mathrm{an})}$	$?$	1	1

[^1]
[^0]: ${ }^{(a)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(b)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(c)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(d)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(e)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(f)}$ from place 1 one cannot reach place 0 .
 (g) place 0 is a source place.
 ${ }^{(h)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(i)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(j)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(k)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(1)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 (m) stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(n)}$ the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

[^1]: ${ }^{(o)}$ safe by construction - stated by the CÆSAR compiler.
 ${ }^{(p)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(q)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 ${ }^{(r)}$ stated by CÆSAR.BDD version 3.7 on all 20 instances (see the aforementioned pairs (N, P)).
 (s) the marking graph has deadlocks and contains more than one reachable marking.
 ${ }^{(t)}$ the net has at least one transition and its marking graph has deadlocks.
 (u) stated by CÆSAR.BDD version 3.7.
 (v) stated by CÆSAR.BDD version 3.7.
 ${ }^{(\mathrm{w})}$ stated by CÆSAR.BDD version 3.7.
 ${ }^{(\mathrm{x})}$ stated by CÆSAR.BDD version 3.7.
 (y) stated by CÆSAR.BDD version 3.7.
 ${ }^{(z)}$ stated by CÆSAR.BDD version 3.7.
 (aa) stated by CÆSAR.BDD version 3.7.
 (ab) stated by CÆSAR.BDD version 3.7.
 (ac) stated by CÆSAR.BDD version 3.7
 (ad) stated by CÆSAR.BDD version 3.7.
 (ae) stated by CÆSAR.BDD version 3.7.
 (af) stated by CÆSAR.BDD version 3.7.
 (ag) stated by CÆSAR.BDD version 3.7.
 (ah) stated by CÆSAR.BDD version 3.7.
 ${ }^{(a i)}$ stated by CÆSAR.BDD version 3.7.
 ${ }^{(a j)}$ stated by CÆSAR.BDD version 3.7.
 (ak) stated by CÆSAR.BDD version 3.7.
 (al) stated by CÆSAR.BDD version 3.7.

