This form is a summary description of the model entitled "Permutation admissibility in multistage interconnection networks" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P / T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

The model describes a 8×84 stages shuffle-exchange network. In order to ease readability, the net components are grouped in columns similar to the way the switches are arranged in stages. Thus, whole net is represented as a cascade of columns alternating in type of the components being either place or transition. Transitions occur column-wise from the leftmost to the rightmost and in columns from the topmost to the bottommost. It can be easily seen that no token can visit a place more than once. Direction of the arcs indicates the flow of tokens through the net.
Here, we consider the scaling parameter N as a multiplier for the initial marking in places $\mathbf{i n}\langle x\rangle$ and $\mathbf{c} 5$. The figure shows the model when $N=1$.

input is $0 . .7$;
$\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \mathrm{n} 4, \mathrm{n} 5, \mathrm{n} 6, \mathrm{n} 7, \mathrm{n} 8$ in input;

$$
\text { Graphical representation for } N=1
$$

References

R. Bashirov, F. Kordon, and H. Lort. Exploiting colored Petri nets to decide on permutation admissibility. Acta Informatica, 46(1):43-55, February 2009.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
N	Multiplier for the marking of places $\operatorname{in}\langle x\rangle$ and $\mathbf{c 5}$	$1,2,5,10,20,50$

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

number of places:	40
number of transitions:	16
number of arcs:	83

Structural properties

ordinary - all arcs have multiplicity one x
simple free choice - all transitions sharing a common input place have no other input place \boldsymbol{X} (a)
extended free choice - all transitions sharing a common input place have the same input places \boldsymbol{X} (b)
state machine - every transition has exactly one input place and exactly one output place (c)
marked graph - every place has exactly one input transition and exactly one output transition (d)
connected - there is an undirected path between every two nodes (places or transitions) (e)
strongly connected - there is a directed path between every two nodes (places or transitions) $\boldsymbol{X}(\mathrm{f})$
source place(s) - one or more places have no input transitions (g)
sink place(s) - one or more places have no output transitions (h)
source transition(s) - one or more transitions have no input places \boldsymbol{X} (i)
sink transitions(s) - one or more transitions have no output places $\boldsymbol{X}(\mathrm{j})$
loop-free - no transition has an input place that is also an output place (k)
conservative - for each transition, the number of input arcs equals the number of output arcs $\boldsymbol{X}(1)$
subconservative - for each transition, the number of input arcs equals or exceeds the number of output arcs (m)
nested units - places are structured into hierarchically nested sequential units ${ }^{(\mathrm{n})}$ x

Behavioural properties

dead place(s) - one or more places have no token in any reachable marking?
dead transition(s) - one or more transitions cannot fire from any reachable marking ?
deadlock - there exists a reachable marking from which no transition can be fired (p)
reversible - from every reachable marking, there is a transition path going back to the initial marking X
live - for every transition t, from every reachable marking, one can reach a marking in which t can fire ?

[^0]
Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max. number of tokens per marking
$N=1$	$52537^{(\mathrm{q})}$	$54600^{(\mathrm{r})}$	$1^{(\mathrm{s})}$	$9^{(\mathrm{t})}$
$N=2$	$?$	$?$	$?$	$18^{(\mathrm{u})}$
$N=5$	$?$	$?$	$?$	$45^{(\mathrm{v})}$
$N=10$	$?$	$?$	$?$	$90^{(\mathrm{w})}$
$N=20$	$?$	$?$	$?$	$180^{(\mathrm{x})}$
$N=50$	$?$	$?$	$?$	$450^{(\mathrm{y})}$

[^1]
[^0]: (a) the net is not ordinary in all its 6 instances $(1,2,5,10,20$, and 50$)$.
 (b) the net is not ordinary in all its 6 instances (1, 2, 5, 10, 20, and 50).
 (c) the net is not ordinary in all its 6 instances $(1,2,5,10,20$, and 50).
 (d) the net is not ordinary in all its 6 instances (1, 2, 5, 10, 20, and 50).
 ${ }^{(e)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($1,2,5,10,20$, and 50).
 ${ }^{(f)}$ from place "aux16_0" one cannot reach place "in4_6".
 (g) there exist 9 source places, e.g., place "in4_6".
 ${ }^{(h)}$ there exist 64 sink places, e.g., place "out7_1".
 ${ }^{(i)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($1,2,5,10,20$, and 50).
 ${ }^{(j)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($1,2,5,10,20$, and 50).
 ${ }^{(k)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($1,2,5,10,20$, and 50).
 ${ }^{(1)}$ stated by PNML2NUPN 3.1.0 on all 6 instances ($1,2,5,10,20$, and 50).
 (m) stated by PNML2NUPN 3.1 .0 on all 6 instances (1, 2, 5, 10, 20, and 50).
 ${ }^{(n)}$ the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
 ${ }^{(\mathrm{o})}$ in the initial marking, some places have several tokens (the number of which depends on N).
 ${ }^{(p)}$ confirmed at MCC'2014 by Helena on all 6 colored instances, and by Lola and Tapaal on all $6 \mathrm{P} / \mathrm{T}$ instances.

[^1]: (q) Computed by Alpina, and ITS-Tools at MCC'2013; confirmed at MCC'2014 by Helena on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, and Tapaal on the P/T net instance.
 ${ }^{(r)}$ computed at MCC'2014 by Helena on the colored net instance, and by Marcie on the P/T net instance.
 ${ }^{(s)}$ computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal on the P/T net instance.
 ${ }^{(t)}$ number of initial tokens, because the net is sub-conservative; confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal on the P/T net instance.
 (u) number of initial tokens, because the net is sub-conservative.
 (v) number of initial tokens, because the net is sub-conservative.
 ${ }^{(w)}$ number of initial tokens, because the net is sub-conservative.
 ${ }^{(x)}$ number of initial tokens, because the net is sub-conservative.
 ${ }^{(y)}$ number of initial tokens, because the net is sub-conservative.

