This form is a summary description of the model entitled "Permutation admissibility in multistage interconnection networks" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

The model describes a 8×8 4 stages shuffle-exchange network. In order to ease readability, the net components are grouped in columns similar to the way the switches are arranged in stages. Thus, whole net is represented as a cascade of columns alternating in type of the components being either place or transition. Transitions occur column-wise from the leftmost to the rightmost and in columns from the topmost to the bottommost. It can be easily seen that no token can visit a place more than once. Direction of the arcs indicates the flow of tokens through the net.

Here, we consider the scaling parameter N as a multiplier for the initial marking in places $\mathbf{in}\langle x\rangle$ and **c5**. The figure shows the model when N=1.

Graphical representation for N=1

References

R. Bashirov, F. Kordon, and H. Lort. Exploiting colored Petri nets to decide on permutation admissibility. *Acta Informatica*, 46(1):43–55, February 2009.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values	
N	Multiplier for the marking of places $\mathbf{in}\langle x\rangle$	1, 2, 5, 10, 20, 50	
	and c5		

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

number of places: 40 number of transitions: 16 number of arcs: 83

Structural properties

ordinary — all arcs have multiplicity one	X
simple free choice — all transitions sharing a common input place have no other input place	(a)
extended free choice — all transitions sharing a common input place have the same input places	(p)
state machine — every transition has exactly one input place and exactly one output place	(c)
marked graph — every place has exactly one input transition and exactly one output transition	(d)
connected — there is an undirected path between every two nodes (places or transitions) ✓	(e)
strongly connected — there is a directed path between every two nodes (places or transitions)	(f)
source place(s) — one or more places have no input transitions	(g)
sink place(s) — one or more places have no output transitions	
source transition(s) — one or more transitions have no input places	(i)
sink transitions(s) — one or more transitions have no output places	(j)
loop-free — no transition has an input place that is also an output place	(k)
conservative — for each transition, the number of input arcs equals the number of output arcs	(1)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs ✓	m)
nested units — places are structured into hierarchically nested sequential units (n)	X

Behavioural properties

\mathbf{safe} — in every reachable marking, there is no more than one token on a place	
dead place(s) — one or more places have no token in any reachable marking?	
dead transition(s) — one or more transitions cannot fire from any reachable marking?	
deadlock — there exists a reachable marking from which no transition can be fired	
reversible — from every reachable marking, there is a transition path going back to the initial marking	
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire?	

⁽a) the net is not ordinary in all its 6 instances (1, 2, 5, 10, 20, and 50).

⁽b) the net is not ordinary in all its 6 instances (1, 2, 5, 10, 20, and 50).

⁽c) the net is not ordinary in all its 6 instances (1, 2, 5, 10, 20, and 50).

⁽d) the net is not ordinary in all its 6 instances (1, 2, 5, 10, 20, and 50).

⁽e) stated by CÆSAR.BDD version 1.7 on all 6 instances (1, 2, 5, 10, 20, and 50).

 $^{^{\}rm (f)}$ from place "aux16_0" one cannot reach place "in4_6".

⁽g) there exist 9 source places, e.g., place "in4_6".

⁽h) there exist 64 sink places, e.g., place "out7_1".

⁽i) stated by CÆSAR.BDD version 1.7 on all 6 instances (1, 2, 5, 10, 20, and 50).

⁽j) stated by CÆSAR.BDD version 1.7 on all 6 instances (1, 2, 5, 10, 20, and 50).

 $^{^{(}k)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances (1, 2, 5, 10, 20, and 50).

⁽l) stated by PNML2NUPN 3.1.0 on all 6 instances (1, 2, 5, 10, 20, and 50).
(m) stated by PNML2NUPN 3.1.0 on all 6 instances (1, 2, 5, 10, 20, and 50).

⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

 $^{^{(}o)}$ in the initial marking, some places have several tokens (the number of which depends on N).

⁽p) confirmed at MCC'2014 by Helena on all 6 colored instances, and by Lola and Tapaal on all 6 P/T instances.

Size of the marking graphs

Parameter	Number of reach-	Number of tran-	Max. number of	Max. number of
	able markings	sition firings	tokens per place	tokens per marking
N = 1	52 537 ^(q)	54 600 ^(r)	1 ^(s)	9 (t)
N=2	?	?	?	18 ^(u)
N=5	?	?	?	45 ^(v)
N = 10	?	?	?	90 (w)
N = 20	?	?	?	180 ^(x)
N = 50	?	?	?	450 ^(y)

 $^{^{(}q)}$ Computed by Alpina, and ITS-Tools at MCC'2013; confirmed at MCC'2014 by Helena on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, and Tapaal on the P/T net instance.

⁽r) computed at MCC'2014 by Helena on the colored net instance, and by Marcie on the P/T net instance.

⁽s) computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal on the P/T net instance.

⁽t) number of initial tokens, because the net is sub-conservative; confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal on the P/T net instance.

⁽u) number of initial tokens, because the net is sub-conservative.

⁽v) number of initial tokens, because the net is sub-conservative.

 $^{^{\}rm (w)}$ number of initial tokens, because the net is sub-conservative.

 $^{^{(}x)}$ number of initial tokens, because the net is sub-conservative.

⁽y) number of initial tokens, because the net is sub-conservative.