This form is a summary description of the model entitled "Murphy" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P / T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This model is a variation of a benchmark used in [1] to compare the performances of tools for checking reachability problems. We propose a parametric version of the example given in [1] using $X+1$ different copies of the same component (see the figure below), arranged into a ring, with successive components connected through transition C. Also, our model is bounded, whereas the initial example was not. In our case, the size of the state space is controlled by the initial marking of place p_{1}, denoted Y, which is the second scaling parameter of our model.
We called this model Murphy because it was built from a combination of several elements that are supposed to challenge methods for checking reachability formulas. So Murphy was built with the hope that everything that can go wrong will go wrong. The main component of Murphy is the result of the composition of two nets, connected through place p_{4}. The first net is the component already used with the PGCD model (places p_{0}, p_{1}, p_{2}). The second net (places p_{3}, p_{4}, p_{5}) includes a dead transition (D) that will never be enabled, although the state equation ensures at least one possibility of firing it.

Graphical representation of the main subcomponent in Murphy-COL-DXNY

References

1. Amat, N., Dal Zilio, S., \& Hujsa, T. (2022). Property directed reachability for generalized Petri nets. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
(X, Y)	X controls the number of different copies	$(1,10), \quad(2,50), \quad(2,100), \quad(3,50), \quad(4,25)$,
	of the basic Murphy component, whereas Y	$(4,50)$
	defines the initial marking of place p_{1}	

Size of the colored net model

number of places:	6
number of transitions:	7
number of arcs:	27

Size of the derived P / T model instances

Parameter	Number of places	Number of transitions	Number of arcs
(X, Y)	$6 \mathrm{X}+6$	$7 \mathrm{X}+7$	$27 \mathrm{X}+27$

Structural properties

ordinary - all arcs have multiplicity one x
simple free choice - all transitions sharing a common input place have no other input place $\boldsymbol{X}(\mathrm{a})$
extended free choice - all transitions sharing a common input place have the same input places \boldsymbol{X} (b) \boldsymbol{X} (b)
state machine - every transition has exactly one input place and exactly one output place \boldsymbol{X} (c)
marked graph - every place has exactly one input transition and exactly one output transition \boldsymbol{X} (d)
connected - there is an undirected path between every two nodes (places or transitions)(e)
strongly connected - there is a directed path between every two nodes (places or transitions) (f)
source place(s) - one or more places have no input transitions $\boldsymbol{X}(\mathrm{g})$
sink place(s) - one or more places have no output transitions $\boldsymbol{X}(\mathrm{h})$
source transition(s) - one or more transitions have no input places $\boldsymbol{X}(\mathrm{i})$
sink transitions(s) - one or more transitions have no output places $\boldsymbol{X}(\mathrm{j})$
loop-free - no transition has an input place that is also an output place $\boldsymbol{X}(\mathrm{k})$
conservative - for each transition, the number of input arcs equals the number of output arcs $\boldsymbol{X}(1)$
subconservative - for each transition, the number of input arcs equals or exceeds the number of output arcs \boldsymbol{X} (m)
nested units - places are structured into hierarchically nested sequential units ${ }^{(\mathrm{n})}$ x

Behavioural properties

safe - in every reachable marking, there is no more than one token on a place ... \boldsymbol{X} (o) dead place(s) - one or more places have no token in any reachable marking
dead transition(s) - one or more transitions cannot fire from any reachable marking
deadlock - there exists a reachable marking from which no transition can be fired
reversible - from every reachable marking, there is a transition path going back to the initial marking
(a) the net is not ordinary.
(b) the net is not ordinary.
(c) the net is not ordinary.
(d) the net is not ordinary.
${ }^{(e)}$ stated by CÆSAR.BDD version 3.7 on all 6 instances.
${ }^{(f)}$ stated by CÆSAR.BDD version 3.7 on all 6 instances.
${ }^{(\mathrm{g})}$ stated by CÆSAR.BDD version 3.7 on all 6 instances.
${ }^{(h)}$ stated by CÆSAR.BDD version 3.7 on all 6 instances.
${ }^{(i)}$ stated by CÆSAR.BDD version 3.7 on all 6 instances.
${ }^{(j)}$ stated by CÆSAR.BDD version 3.7 on all 6 instances.
${ }^{(k)}$ stated by CÆSAR.BDD version 3.7 on all 6 instances.
${ }^{(1)}$ stated by PNML2NUPN 3.2 .0 on all 6 instances.
(m) stated by PNML2NUPN 3.2 .0 on all 6 instances.
${ }^{(n)}$ the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
(o) the initial marking is not safe since place p_{5} has 3 tokens in the initial marking.
(p) the only places places that are not marked in the initial marking are p_{3} and p_{4}. We can mark these places by firing transition F which is enabled initially.
(q) the model was built so that transition D is dead. Checked by TINA version 3.7 .0 on January 2023 on all the proposed instances.
${ }^{(r)}$ checked by TINA version 3.7 .0 on January 2023 on all the proposed instances.
(s) we have been able to check that $(1,10)$ is reversible, and so are other small instances. We conjecture that the same is true on all instances.
live - for every transition t, from every reachable marking, one can reach a marking in which t can fire

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max.number of tokens per marking $(X=1, Y=10)$$\| 39780^{(\mathrm{u})}$
$267984^{(\mathrm{v})}$	$21^{(\mathrm{w})}$	$50^{(\mathrm{x})}$		
$(X=2, Y=50)$	$41538421296^{(\mathrm{y})}$	$475243407792^{(\mathrm{z})}$	$151^{(\mathrm{aa})}$	$315^{(\mathrm{ab})}$
$(X=2, Y=100)$	$1207044185616^{(\mathrm{ac})}$	$14135173542432^{(\mathrm{ad})}$	$301^{(\mathrm{ae})}$	$615^{(\mathrm{af})}$
$(X=3, Y=50)$	$5.4071 \mathrm{E}+14^{(\mathrm{ag})}$	$8.2295 \mathrm{E}+15^{(\mathrm{ah})}$	$201^{(\mathrm{ai})}$	$420^{(\mathrm{aj})}$
$(X=4, Y=25)$	$2.0012 \mathrm{E}+16^{(\mathrm{ak})}$	$3.6279 \mathrm{E}+17^{(\mathrm{al})}$	$130^{(\mathrm{am})}$	$275^{(\mathrm{an})}$
$(X=4, Y=50)$	$?$	$?$	$?$	$\geq 275^{(\mathrm{ao})}$

Other properties

By construction, place p_{2} should always be marked and transition D should be dead. This can be expressed by the following two invariants.

$$
\mathrm{INV}_{\mathrm{s}}: \mathrm{AG}\left(p_{2} \geq 1\right) \quad \text { and } \quad \mathrm{INV}_{\mathrm{t}}: \mathrm{AG} \neg \text { is_fireable }(D)
$$

[^0]
[^0]: ${ }^{(t)}$ transition D is dead in all the instances. Checked by TINA version 3.7.0 on January 2023.
 (u) computed by TINA version 3.7.0 on January 2023.
 (v) computed by TINA version 3.7.0 on January 2023.
 ${ }^{(\mathrm{w})}$ computed by TINA version 3.7.0 on January 2023.
 (x) computed by TINA version 3.7.0 on January 2023.
 (y) computed by TINA version 3.7.0 on January 2023.
 (z) computed by TINA version 3.7.0 on January 2023.
 (aa) computed by TINA version 3.7.0 on January 2023.
 (ab) computed by TINA version 3.7.0 on January 2023.
 (ac) computed by TINA version 3.7.0 on January 2023.
 (ad) computed by TINA version 3.7.0 on January 2023.
 (ae) computed by TINA version 3.7.0 on January 2023.
 (af) computed by TINA version 3.7.0 on January 2023.
 (ag) computed by TINA version 3.7.0 on January 2023. The exact value is 540710084330928.
 (ah) computed by TINA version 3.7.0 on January 2023. The exact value is 8229559032648576.
 (ai) computed by TINA version 3.7.0 on January 2023.
 (aj) computed by TINA version 3.7.0 on January 2023.
 (ak) computed by TINA version 3.7.0 on January 2023. The exact value is 20012606308670976.
 (al) computed by TINA version 3.7.0 on January 2023. The exact value is 362794818098718720 .
 (am) computed by TINA version 3.7.0 on January 2023.
 (an) computed by TINA version 3.7.0 on January 2023.
 (ao) lower bound given by the number of initial tokens.

