This form is a summary description of the model entitled "FunctionPointer" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model. # Description This example is part of a suite that consists of 46 Petri nets that were used in the evaluation of BFC [1]. They originate from the analysis of concurrent C programs. This example is built from a program using several basic language features and the pthread library. This model was then used as one of the benchmarks for the tool Petrinizer in [2]. The source model has an initial marking ($l_0 \ge 1$) constraint rather than a single initial marking, this is used in the MCC to scale the model up. Models found in [3] where converted to PNML thanks to an ITS-Tools [4] library. ### References - 1. A. Kaiser, D. Kroening, and T. Wahl. Efficient coverability analysis by proof minimization. In CONCUR, volume 7454 of Lecture Notes in Computer Science, pages 500–515. Springer, 2012. - 2. J. Esparza, R. Ledesma-Garza, R. Majumdar, P. J. Meyer, and F. Niksic. An smt-based approach to coverability analysis. In CAV, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer, 2014 - 3. Klara J. Meyer, Petrinizer repository, https://github.com/meyerphi/petrinizer. - 4. Y. Thierry-Mieg, Homepage of ITS-tools https://lip6.github.io/ITSTools-web/ #### Scaling parameter | Parameter name | Parameter description | Chosen parameter values | | |----------------|---|---------------------------------------|--| | V, M | V is the variant of the model (A, B or C), | ${a,b,c} \times {2,4,8,16,32,64,128}$ | | | | and M is the number of tokens in place 10 | | | Model: FunctionPointer Type: P/T Net Origin: Academic #### Size of the model | Parameter | Number of places | Number of transitions | Number of arcs | |------------------|------------------|-----------------------|----------------| | Variant a, M=2 | 40 | 70 | 284 | | Variant a, M=4 | 40 | 70 | 284 | | Variant a, M=8 | 40 | 70 | 284 | | Variant a, M=16 | 40 | 70 | 284 | | Variant a, M=32 | 40 | 70 | 284 | | Variant a, M=64 | 40 | 70 | 284 | | Variant a, M=128 | 40 | 70 | 284 | | Variant b, M=2 | 306 | 840 | 3392 | | Variant b, M=4 | 306 | 840 | 3392 | | Variant b, M=8 | 306 | 840 | 3392 | | Variant b, M=16 | 306 | 840 | 3392 | | Variant b, M=32 | 306 | 840 | 3392 | | Variant b, M=64 | 306 | 840 | 3392 | | Variant b, M=128 | 306 | 840 | 3392 | | Variant c, M=2 | 2826 | 8960 | 36096 | | Variant c, M=4 | 2826 | 8960 | 36096 | | Variant c, M=8 | 2826 | 8960 | 36096 | | Variant c, M=16 | 2826 | 8960 | 36096 | | Variant c, M=32 | 2826 | 8960 | 36096 | | Variant c, M=64 | 2826 | 8960 | 36096 | | Variant c, M=128 | 2826 | 8960 | 36096 | ### Structural properties ``` ordinary — all arcs have multiplicity one source place(s) — one or more places have no input transitions ✓ (g) \textbf{loop-free} - \textit{no transition has an input place that is also an output place} \hspace{0.1in} \boldsymbol{\cancel{K}}^{(k)} subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs X (m) nested units — places are structured into hierarchically nested sequential units (n) ``` ⁽a) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽b) transitions "t0" and "t2" share a common input place "s0", but only the former transition has input place "l0". ⁽c) stated by CÆSAR, BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽d) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽e) 2 places are not connected to place "s0", e.g., place "s6". ⁽f) the net is not connected and, thus, not strongly connected. ⁽g) stated by CESAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽h) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽i) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽j) stated by CESAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽k) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). (1) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽m) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php # $\mathbf{MCC}^{\mathrm{since}}$ # Behavioural properties | safe — in every reachable marking, there is no more than one token on a place | X (o | ,) | |---|-------------|----| | dead place(s) — one or more places have no token in any reachable marking | / (p | (، | | dead transition(s) — one or more transitions cannot fire from any reachable marking | | | | deadlock — there exists a reachable marking from which no transition can be fired | | | | reversible — from every reachable marking, there is a transition path going back to the initial marking | | ? | | ${f live}$ — for every transition t , from every reachable marking, one can reach a marking in which t can fire | | ? | ## Size of the marking graphs | Parameter | Number of reach- | Number of tran- | Max. number of | Max. number of | |------------------|------------------|-----------------|------------------|---------------------------| | | able markings | sition firings | tokens per place | tokens per marking | | Variant a, M=2 | ? | ? | ? | $\geq 3^{(r)}$ | | Variant a, M=4 | ? | ? | ? | ≥ 5 ^(s) | | Variant a, M=8 | ? | ? | ? | ≥ 9 ^(t) | | Variant a, M=16 | ? | ? | ? | ≥ 17 ^(u) | | Variant a, M=32 | ? | ? | ? | ≥ 33 ^(v) | | Variant a, M=64 | ? | ? | ? | ≥ 65 ^(w) | | Variant a, M=128 | ? | ? | ? | ≥ 129 ^(x) | | Variant b, M=2 | ? | ? | ? | ≥ 3 ^(y) | | Variant b, M=4 | ? | ? | ? | $\geq 5^{(\mathbf{z})}$ | | Variant b, M=8 | ? | ? | ? | $\geq 9^{(\mathrm{aa})}$ | | Variant b, M=16 | ? | ? | ? | ≥ 17 ^(ab) | | Variant b, M=32 | ? | ? | ? | $\geq 33^{\rm (ac)}$ | | Variant b, M=64 | ? | ? | ? | $\geq 65^{\mathrm{(ad)}}$ | | Variant b, M=128 | ? | ? | ? | ≥ 129 ^(ae) | | Variant c, M=2 | ? | ? | ? | $\geq 3^{(af)}$ | | Variant c, M=4 | ? | ? | ? | ≥ 5 ^(ag) | | Variant c, M=8 | ? | ? | ? | ≥ 9 (ah) | | Variant c, M=16 | ? | ? | ? | ≥ 17 ^(ai) | | Variant c, M=32 | ? | ? | ? | ≥ 33 ^(aj) | | Variant c, M=64 | ? | ? | ? | ≥ 65 ^(ak) | | Variant c, M=128 | ? | ? | ? | $\geq 129^{({\rm al})}$ | ⁽o) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽p) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). ⁽q) stated by CÆSAR.BDD version 3.7 on all 21 instances (3 variants \times 7 values of M). $^{^{(}r)}$ lower bound given by the number of initial tokens. ⁽s) lower bound given by the number of initial tokens. ⁽t) lower bound given by the number of initial tokens. ⁽u) lower bound given by the number of initial tokens. ⁽v) lower bound given by the number of initial tokens. ⁽w) lower bound given by the number of initial tokens. ⁽x) lower bound given by the number of initial tokens. (y) lower bound given by the number of initial tokens. ⁽z) lower bound given by the number of initial tokens. ⁽aa) lower bound given by the number of initial tokens. ⁽ab) lower bound given by the number of initial tokens. ⁽ac) lower bound given by the number of initial tokens. ⁽ad) lower bound given by the number of initial tokens. ⁽ae) lower bound given by the number of initial tokens. ⁽af) lower bound given by the number of initial tokens. ⁽ag) lower bound given by the number of initial tokens. ⁽ah) lower bound given by the number of initial tokens. ⁽ai) lower bound given by the number of initial tokens. (aj) lower bound given by the number of initial tokens. ⁽ak) lower bound given by the number of initial tokens. Model: FunctionPointer Type: P/T Net Origin: Academic ${ m MCC}^{ m since}_{ m 2022}$ $\begin{array}{c} {\rm Y.\ Thierry-Mieg} \\ {\rm yann.thierry-mieg@lip6.fr} \end{array}$ ⁽al) lower bound given by the number of initial tokens.