This form is a summary description of the model entitled "Eisenberg-McGuire" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model. ### Description This PT net models Eisenberg-McGuire's algorithm for N processes mutual exclusion problem. The pseudo code of the algorithm is the following: ``` // variables constant int N := 4; shared enum states {IDLE, WAITING, ACTIVE} flag[N - 1] := { IDLE, ..., IDLE}; shared int turn := 0; int i; // not shared // code for a process p (p in [0..N-1]) 01 loop { 02 repeat { 03 // announce that we need the resource flag[p] := WAITING; 04 // scan processes from the one with the turn up to ourselves. // repeat if necessary until the scan finds all processes idle 05 06 i := turn; 07 08 while(i != p) { if(flag[i] != IDLE) 09 10 i := turn; 11 else 12 i := i + 1 mod N; 13 ^{\prime\prime} now tentatively claim the resource 14 flag[p] := ACTIVE; 15 16 // find the first active process besides ourselves, if any 17 while (i < n and (i == p or flag[i] != ACTIVE)) { 18 19 i := i + 1; 20 // if there were no other active processes, AND if we have the // turn or else whoever has it is idle, then proceed. 21 22 23 Otherwise, repeat the whole sequence. 25 until (i >= n and (turn == p or flag[turn] == IDLE)); 26 \ensuremath{//} claim the turn and proceed 27 turn := p; 28 // critical section 30 // find a process which is not IDLE // (if there are no others, we will find ourselves) 31 i := turn + 1 mod n; 32 while (flag[i] = IDLE) { 33 34 i := i + 1 \mod n; 36 // give the turn to someone that needs it, or keep it 37 turn := i; 38 // we're finished now flag[p] := IDLE; 39 40 } ``` Places are named pXX where XX is a line number in the code. Same for transitions. Exceptions are places modeling shared variables and the critical section. ### References #### Scaling parameter | Parameter name | Parameter description | Chosen parameter values | |----------------|-------------------------------|-------------------------| | N | Number of processes competing | 3, 4, 5, 6, 7, 8, 9, 10 | Model: Eisenberg-McGuire Type: P/T Net Origin: Academic ### Size of the model | Parameter | Number of | Number of | Number of | Number of | HWB code | |-----------|-----------|-------------|-----------|-----------|----------| | | places | transitions | arcs | units | | | N=3 | 117 | 216 | 900 | 10 | 2-8-29 | | N=4 | 196 | 448 | 1952 | 12 | 2-10-37 | | N=5 | 295 | 800 | 3600 | 13 | 1-12-50 | | N=6 | 414 | 1296 | 5976 | 15 | 1-14-58 | | N=7 | 553 | 1960 | 9212 | 17 | 1-16-67 | | N=8 | 712 | 2816 | 13440 | 19 | 1-18-75 | | N=9 | 891 | 3888 | 18792 | 23 | 2-21-90 | | N = 10 | 1090 | 5200 | 25400 | 25 | 2-23-105 | ## Structural properties | ordinary — all arcs have multiplicity one | / | |--|----------| | Biniple fiee cheree and translations entail into a continuor trip at place that enter trip at place in into a trip at place in into a continuor a continuor trip at place in into a continuor trip at continuo | (a) | | creating a continent trip at place true trip at place trip. | (b) | | but | (c) | | marked graph — every place has exactly one input transition and exactly one output transition | (d) | | connected — there is an undirected path between every two nodes (places or transitions) ✓ | (e) | | strongly connected — there is a directed path between every two nodes (places or transitions) | (f) | | source place(s) — one or more places have no input transitions | (g) | | sink place(s) — one or more places have no output transitions | (h) | | source transition(s) — one or more transitions have no input places | (i) | | sink transitions(s) — one or more transitions have no output places | (j) | | loop-free — no transition has an input place that is also an output place | (k) | | conservative — for each transition, the number of input arcs equals the number of output arcs | (1) | | subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs | (m) | | nested units — places are structured into hierarchically nested sequential units (n) | . 🗸 | #### Behavioural properties | safe — in every reachable marking, there is no more than one token on a place | 0) | |---|-----| | dead place(s) — one or more places have no token in any reachable marking | p) | | dead transition(s) — one or more transitions cannot fire from any reachable marking | | | deadlock — there exists a reachable marking from which no transition can be fired | (r) | | reversible — from every reachable marking, there is a transition path going back to the initial marking | | ⁽a) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). ⁽b) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). ⁽c) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). $^{^{(}d)}$ stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). $^{^{(}e)}$ stated by CÆSAR.BDD version 3.7 on all 8 instances $(3,\,4,\,5,\,6,\,7,\,8,\,9,\,10,\,$ and 11). ⁽f) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). (g) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). ⁽h) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). ⁽i) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). $^{^{(}j)}$ stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). ⁽k) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). ⁽¹⁾ stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). (m) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). ⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php ⁽o) safe by construction – stated by PNML2NUPN 3.2.0. ⁽p) stated by CÆSAR.BDD version 3.7 to be false on 2 instance(s) out of 8, and unknown on the remaining 6 instance(s). ⁽q) stated by CÆSAR.BDD version 3.7 to be false on 2 instance(s) out of 8, and unknown on the remaining 6 instance(s). ⁽r) stated by CÆSAR.BDD version 3.7 to be false on 2 instance(s) out of 8, and unknown on the remaining 6 instance(s). Origin: Academic live — for every transition t, from every reachable marking, one can reach a marking in which t can fire? ### Size of the marking graphs | Parameter | Number of reach- | Number of tran- | Max. number of | Max. number of | |-----------|------------------------------------|-----------------|-------------------|--------------------| | | able markings | sition firings | tokens per place | tokens per marking | | N=3 | 31,265 ^(s) | 93,795 | 1 | 7 ^(t) | | N=4 | 1,762,378 (u) | 7,049,512 | 1 | 9 (v) | | N=5 | 114,106,399 | 570,531,995 | 1 ^(w) | 11 ^(x) | | N=6 | $\geq 7.46519e + 08^{\text{(y)}}$ | ? | 1 ^(z) | 13 ^(aa) | | N=7 | $\geq 1.4107e + 09^{\text{(ab)}}$ | ? | 1 ^(ac) | 15 ^(ad) | | N=8 | $\geq 1.64208e + 10^{\text{(ae)}}$ | ? | 1 (af) | 17 ^(ag) | | N=9 | $\geq 6.6762e + 10^{\text{(ah)}}$ | ? | 1 ^(ai) | 19 ^(aj) | | N = 10 | $\geq 4.96501e + 10^{\text{(ak)}}$ | ? | 1 ^(al) | 21 ^(am) | # Other properties • State property: at each reachable marking, there is at most process in critical section. $$\sum_{i \in \{0..N-1\}} critical_section_i \le 1$$ • LTL property: there infinitely often is a process in critical section. $$[](\langle \rangle (\sum_{i \in \{0..N-1\}} critical_section_i == 1))$$ $^{^{\}rm (s)}$ stated by CÆSAR.BDD version 3.7. ⁽t) number of initial tokens, because the net is conservative. ⁽u) stated by CÆSAR.BDD version 3.7. ⁽v) number of initial tokens, because the net is conservative. ⁽w) stated by PNML2NUPN 3.2.0. $^{^{(}x)}$ number of initial tokens, because the net is conservative. ⁽y) stated by CÆSAR.BDD version 3.7. ⁽z) stated by PNML2NUPN 3.2.0. ⁽aa) number of initial tokens, because the net is conservative. ⁽ab) stated by CÆSAR.BDD version 3.7. ⁽ac) stated by PNML2NUPN 3.2.0. ⁽ad) number of initial tokens, because the net is conservative. ⁽ae) stated by CÆSAR.BDD version 3.7. ⁽af) stated by PNML2NUPN 3.2.0. $^{^{(}ag)}$ number of initial tokens, because the net is conservative. ⁽ah) stated by CÆSAR.BDD version 3.7. $^{^{(}ai)}$ stated by PNML2NUPN 3.2.0. ⁽aj) number of initial tokens, because the net is conservative. ⁽ak) stated by CÆSAR.BDD version 3.7. $^{^{(}al)}$ stated by PNML2NUPN 3.2.0. ⁽am) number of initial tokens, because the net is conservative.