
Abstract

This form is a summary description of the model entitled "Echo Algorithm" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P / T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This file specifies the Echo Algorithm (see [Reisig98]) for grid like networks. Echo is a protocol for propagation of information with feedback in a network. The algorithm operates in an incomplete, but connected bidirectional network of agents. A distinguished agent (initiator), starts the distribution of a message by sending it to all its neighbors. On receiving some first message, every other agent forwards the message to all its neighbors, except the one it received its first message from. Then it awaits messages from all recipients of its forwards (regardless whether these messages had been intended as forwards or acknowledgments) and replies to the agent where it received its first message from. As soon as the initiator receives a message from all its neighbors, the protocol terminates.
In this example, agents are arranged in a hypercube. The network can be scaled in two values: the number of dimensions and the number of agents per dimensions. For instance, a network with two dimensions and three agents per row would consist of $3^{2}=9$ agents while a network with three dimensions and 4 agents per row would consist of $4^{3}=64$ agents.
Regardless of the chosen values for these dimensions, we always connect agents that are immediate neighbors in one of the dimensions of the hypercube. We place the initiator into the center of the cube which means that the number of agents per row should be an odd number.
Unfolded versions of the Echo Algorithm are also provided for a variety of scaling parameters. These nets are given in LoLA low-level format and PNML.

The model is sketched in the figure. The two sorts D and R model the scaling factors dimensions and agents per row, respectively. Messages are modeled as pairs (receiver, sender).
In April 2021, Pierre Bouvier provided a decomposition of all the instances of this model into networks of communicating automata. Each network is expressed as a Nested-Unit Petri Net (NUPN) that can be found, for each instance, in the "toolspecific" section of the corresponding PNML file.

Model: Echo Algorithm
Type: P/T Net
since

References

Wolfgang Reisig. Elements of Distributed Algorithms. Modeling and Analysis with Petri Nets., Springer, 1998.
The original algorithm has been modeled as an algebraic Petri net in LoLA high-level format, see http://service-technology . org/files/lola/lola.pdf

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
(dimensions d, agents per	see description	$(2,9),(2,11),(2,15),(2,19),(3,3),(3,5)$,
row $a)$		$(3,7),(4,3),(5,3)$

Size of the model

Parameter	Number of places	Number of transitions	Number of arcs	Number of units	HWB code
$(d=2, a=9)$	735	570	3220	334	$1-333-523$
$(d=2, a=11)$	1119	874	4996	518	$1-517-794$
$(d=2, a=15)$	2127	1674	9700	1006	$1-1005-1506$
$(d=2, a=19)$	3455	2730	15940	1654	$1-1653-2443$
$(d=3, a=3)$	265	206	1252	136	$1-135-188$
$(d=3, a=5)$	1445	1190	8260	726	$1-725-974$
$(d=3, a=7)$	4209	3518	25540	2108	$1-2107-2792$
$(d=4, a=3)$	1019	850	6340	514	$1-513-682$
$(d=5, a=3)$	3717	3222	28404	1864	$1-1863-2478$

Structural properties

[^0]
MCC 2012

nested units - places are structured into hierarchically nested sequential units ${ }^{(\mathrm{n})}$ \qquad

Behavioural properties

safe - in every reachable marking, there is no more than one token on a place dead place(s) - one or more places have no token in any reachable marking?

dead transition(s) - one or more transitions cannot fire from any reachable marking ?
deadlock - there exists a reachable marking from which no transition can be fired \boldsymbol{V} (o)
reversible - from every reachable marking, there is a transition path going back to the initial marking x
live - for every transition t, from every reachable marking, one can reach a marking in which t can fire .?

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max. number of tokens per marking
$(d=2, a=9)$	$?$	$?$	$1^{(\mathrm{p})}$	$\in[209,333]^{(\mathrm{q})}$
$(d=2, a=11)$	$\geq 5.2673 \mathrm{e}+09^{(\mathrm{r})}$	$?$	$1^{(\mathrm{s})}$	$\in[321,517]^{(\mathrm{t})}$
$(d=2, a=15)$	$\geq 4^{(\mathrm{u})}$	$?$	$1^{(\mathrm{v})}$	$\in[617,1005]^{(\mathrm{w})}$
$(d=2, a=19)$	$?$	$?$	$1^{(\mathrm{x})}$	$\in[1009,1653]^{(\mathrm{y})}$
$(d=3, a=3)$	$\geq 26465^{(\mathrm{z})}$	$?$	$1^{(\mathrm{aa})}$	$\in[83,135]^{(\mathrm{ab})}$
$(d=3, a=5)$	$\geq 2^{(\mathrm{ac})}$	$?$	$1^{(\mathrm{ad})}$	$\in[477,725]^{(\mathrm{ae})}$
$(d=3, a=7)$	$?$	$?$	$1^{(\mathrm{af})}$	$\in[1423,2107]^{(\mathrm{ag})}$
$(d=4, a=3)$	$\geq 4^{(\mathrm{ah})}$	$?$	$1^{(\mathrm{ai})}$	$\in[353,513]^{(\mathrm{aj})}$
$(d=5, a=3)$	$?$	$?$	$1^{(\mathrm{ak})}$	$\in[1379,1863]^{(\mathrm{al})}$

Other properties

The intuitive description of the Echo Algorithm can be modeled as a CTL formula

$$
(\mathbf{A F} \text { "initiator terminated" }) \wedge(\mathbf{A} \neg \text { "initiator terminated" } \mathbf{U} \text { "all other sites accepted" })
$$

This formula is given for the unfolded low-level models.

[^1]
[^0]: ${ }^{(a)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(b)}$ stated by CÆSAR.BDD version 2.6 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(c)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(d)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(e)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(f)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(g)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(h)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(i)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(\mathrm{j})}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(k)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(1)}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.
 ${ }^{(\mathrm{m})}$ stated by CÆSAR.BDD version 1.7 on all 9 instances $((2,9),(2,11),(2,15),(2,19),(3,3),(3,5),(3,7),(4,3)$, and $(5,3))$.

[^1]: ${ }^{(n)}$ the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
 ${ }^{(o)}$ confirmed at MCC'2014 by GreatSPN, Lola, and Tapaal on 9 instances.
 (p) This net is safe.
 (q) upper bound given by the number of leaf units.
 (r) stated by CÆSAR.BDD version 3.5.
 (s) This net is safe.
 (t) upper bound given by the number of leaf units.
 (u) stated by CÆSAR.BDD version 3.5.
 (v) This net is safe.
 (w) upper bound given by the number of leaf units.
 ${ }^{(x)}$ This net is safe.
 (y) upper bound given by the number of leaf units.
 ${ }^{(\mathrm{z})}$ stated by CÆSAR.BDD version 2.0.
 (aa) This net is safe.
 (ab) upper bound given by the number of leaf units.
 (ac) stated by CÆSAR.BDD version 3.3.
 (ad) This net is safe.
 (ae) upper bound given by the number of leaf units.
 ${ }^{(a f)}$ This net is safe.
 (ag) upper bound given by the number of leaf units.
 (ah) stated by CÆSAR.BDD version 2.0.
 ${ }^{(a i)}$ This net is safe.
 (aj) upper bound given by the number of leaf units.
 (ak) This net is safe.
 (al) upper bound given by the number of leaf units.

