This form is a summary description of the model entitled "DoubleExponent" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

 $\stackrel{\mathrm{since}}{\mathrm{MCC}}$ 2018

Description

The model illustrates difference between weak, strong, and exact Petri net computers [1]. The generated for parameter k net [2] counts 2^{2^k} as a strong computer after Richard J. Lipton [3]. Well-structured net programs of Javier Esparaa [4] have been encoded by Petri nets. The following marking belongs to the reachability space: $finINC_k = 1$; $x_0 = 2$, $y_0 = 2$, $s'_0 = 2$; $x_1 = 4$, $y_1 = 4$, $s'_1 = 4$; ...; $x_k = 2^{2^k}$, $y_k = 2^{2^k}$, $s'_k = 2^{2^k}$. It is the only marking with $finINC_k = 1$. For a given k, the resulting net is composed of a single $Block_0$ and repeated (k - 1) times $Block_i$. $Block_i$ includes subnets INC_{i+1} , $TSTy_i$, $TSTx_i$, DEC_i and variables (places) x_i , x'_i , y_i , y'_i , s_i , s'_i . Connections of neighboring blocks reflect initialization of the next variables x_{i+1} , y_{i+1} , s'_{i+1} and recursive calls of the previous block's $TSTy_{i-1}$, $TSTx_{i-1}$. Models are generated by program [2] which implements technique described in [5].

Graphical representation for k = 2

References

[1] Dmitry Zaitsev, Some Remarks on Petri Net Computers: Weak, Exact, and Strong. Petri Net Newsletter, Volume 85, December 2016, 3-7.

[2] Dmitry Zaitsev, Generator of Petri nets which count double exponent 2^{2^k} after R.J.Lipton and J.Esparza constructs. https://github.com/dazeorgacm/depn

[3] Richard J. Lipton, The Reachability Problem Requires Exponential Space, Technical Report 63, Yale University, 1976. http://www.cs.yale.edu/publications/techreports/tr63.pdf

[4] Javier Esparza, Decidability and Complexity of Petri Net Problems - An Introduction. LNCS 1491, 1996, 374-428. http://www7.in.tum.de/um/bibdb/esparza/course.pdf

[5] Dmitry A. Zaitsev, Ivan D. Zaitsev and Tatiana R. Shmeleva. Infinite Petri Nets: Part 2, Modeling Triangular, Hexagonal, Hypercube and Hypertorus Structures, Complex Systems, 26(4), 2017, 341-371.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
k	k – power of double exponent 2^{2^k} to compute	1,2,3,4,10,20,100,200

Page 1 of 3

Size of the model

Parameter	Number of places	Number of transitions	Number of arcs
k	P = 53(k-1) + 57	T = 50(k-1) + 48	A = 141(k-1) + 135
k = 1	57	48	135
k = 2	110	98	276
k = 3	163	148	417
k = 4	216	198	558
k = 10	534	498	1404
k = 20	1064	998	2814
k = 100	5304	4998	14094
k = 200	10604	9998	28194

Structural properties

ordinary — all arcs have multiplicity one	. 🗸
simple free choice — all transitions sharing a common input place have no other input place	(a)
extended free choice — all transitions sharing a common input place have the same input places \ldots	(b)
state machine — every transition has exactly one input place and exactly one output place	≮ (c)
marked graph — every place has exactly one input transition and exactly one output transition	(d)
connected — there is an undirected path between every two nodes (places or transitions)	🖊 (e)
strongly connected — there is a directed path between every two nodes (places or transitions)	K (f)
source place(s) — one or more places have no input transitions \ldots	/ (g)
$\operatorname{sink} \operatorname{place}(s)$ — one or more places have no output transitions	• (h)
source transition(s) — one or more transitions have no input places \dots	X (i)
$\operatorname{sink} \operatorname{transitions}(\mathbf{s})$ — one or more transitions have no output places	X (j)
loop-free — no transition has an input place that is also an output place	🖊 (k)
conservative — for each transition, the number of input arcs equals the number of output arcs	X (l)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs	(m)
nested units — places are structured into hierarchically nested sequential units $^{(n)}$. X

Behavioural properties

${f safe}-$ in every reachable marking, there is no more than one token on a place \ldots	(o)
dead place(s) — one or more places have no token in any reachable marking	?
dead transition(s) — one or more transitions cannot fire from any reachable marking	. X
deadlock — there exists a reachable marking from which no transition can be fired	. 🗸
reversible — from every reachable marking, there is a transition path going back to the initial marking	. X
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire	. X

^(a) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

(e) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

⁽b) transitions "t10" and "t23" share a common input place "p10", but only the former transition has input place "p16".

⁽c) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

⁽d) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

^(f) from place "p10" one cannot reach place "p1".

⁽g) place "p1" is a source place.

⁽h) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

⁽ⁱ⁾ stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

⁽j) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200). (k) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

⁽¹⁾ stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

⁽m) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

⁽ⁿ⁾the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

^(o) stated by CÆSAR.BDD version 2.7 on all 8 instances (for k = 1, 2, 3, 4, 10, 20, 100, and 200).

Size of the marking graphs

Parameter	Number of reach-	Number of tran-	Max. number of	Max. number of
	able markings	sition mings	tokens per place	tokens per marking
k	?	?	2^{2^k}	$> F, F = 3 \cdot \sum_{i=0}^{k} 2^{2^{i}} + 1$
				(guess: $F + 2k$)
1	149	148	4	21
2	3708	3707	16	71
3	2,385,072	2,385,071	256	841
4	$\geq 27^{(p)}$?	65,536	≥ 8
10	$\geq 27^{(q)}$?	$\approx 1.797693135 \times 10^{308}$	≥ 8
20	$\geq 27^{(\mathbf{r})}$?	$\sim 10^{314,573}$	≥ 8
100	?	?	$\sim 10^{38 \cdot 10^{28}}$	≥ 8
200	?	?	$\sim 10^{482 \cdot 10^{57}}$	≥ 8

Other properties

The net is a Strong Computer of 2^{2^k} and its size is linear in k that proves exponential complexity in space of Petri net reachability problem.

 $^{^{(}p)}$ stated by CÆSAR.BDD version 3.3.

 $^{^{\}rm (q)}$ stated by CÆSAR.BDD version 3.3.

⁽r) stated by CÆSAR.BDD version 3.3.