This form is a summary description of the model entitled "DiscoveryGPU" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model. ## Description This model describes the discovery protocol [1] used to dynamically detect the amount of thread workgroups that can be scheduled at the same time on a given GPU, for a given application. Each workgroup participate in a mutex-protected poll, which is closed once a workgroup is able to re-visit the poll. All workgroups that were able to participate in the poll are thus actually running in parallel on different hardware-level compute-units. As GPUs have non-preemptive scheduling, these discovered workgroups are able to safely participate in blocking synchronisation. This protocol is critical to enable safe inter-workgroup blocking synchronisation, which in turn can provide significant performance improvements in some applications. The discovery protocol was formally specified using the LNT value-passing process calculus and analyzed using the verification tools available in the CADP toolbox. The collection of P/T nets was obtained from the LNT specifications of the protocol. Each LNT specification was translated automatically to LOTOS, and then to an interpreted Petri net using the CADP toolbox. Finally, a P/T net was obtained by stripping out all data-related information (variables, types, assignments, guards, etc.) from the interpreted Petri net, leading to a NUPN (Nested-Unit Petri Net) model translated to PNML using the CÆSAR.BDD tool. Each instance of the model is parameterized by the number N of threads. Each instance is also parameterized by its version V, which specifies how the NUPN has been produced from the LOTOS specification. V is either equal to "a" if the NUPN has been generated after applying all the structural and data-flow optimizations of the CÆSAR compiler for LOTOS, or to "b" if the NUPN has been generated before these optimizations. #### References [1] Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan, and Zvonimir Rakamaric. Portable Interworkgroup Barrier Synchronisation for GPUs. In Proc. of the 31st Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'16), Amsterdam, The Netherlands, November 2016. #### Scaling parameter | Parameter name | Parameter description | Chosen parameter values | |----------------|---|------------------------------| | (N,V) | N is the number of threads and V is the version defined above | $\{6,, 15\} \times \{a, b\}$ | #### Size of the model | Parameter | Number of | Number of | Number of | Number of | HWB code | |---------------|-----------|-------------------|-----------|-------------|----------| | | places | ${f transitions}$ | arcs | ${f units}$ | | | N = 06, V = a | 63 | 85 | 273 | 9 | 2-8-27 | | N = 06, V = b | 184 | 194 | 503 | 15 | 7-8-44 | | N = 07, V = a | 73 | 99 | 318 | 10 | 2-9-31 | | N = 07, V = b | 212 | 224 | 582 | 17 | 8-9-50 | | N = 08, V = a | 83 | 113 | 363 | 11 | 2-10-35 | | N = 08, V = b | 240 | 254 | 661 | 19 | 9-10-56 | | N = 09, V = a | 93 | 127 | 408 | 12 | 2-11-39 | | N = 09, V = b | 268 | 284 | 740 | 21 | 10-11-62 | | N = 10, V = a | 103 | 141 | 453 | 13 | 2-12-43 | | N = 10, V = b | 296 | 314 | 819 | 23 | 11-12-68 | | N = 11, V = a | 113 | 155 | 498 | 14 | 2-13-47 | | N = 11, V = b | 324 | 344 | 898 | 25 | 12-13-74 | | N = 12, V = a | 123 | 169 | 543 | 15 | 2-14-51 | | N = 12, V = b | 352 | 374 | 977 | 27 | 13-14-80 | | N = 13, V = a | 133 | 183 | 588 | 16 | 2-15-55 | | N = 13, V = b | 380 | 404 | 1056 | 29 | 14-15-86 | | N = 14, V = a | 143 | 197 | 633 | 17 | 2-16-59 | | N = 14, V = b | 408 | 434 | 1135 | 31 | 15-16-92 | | N = 15, V = a | 153 | 211 | 678 | 18 | 2-17-63 | | N = 15, V = b | 436 | 464 | 1214 | 33 | 16-17-98 | ### Structural properties | ordinary — all arcs have multiplicity one | | |---|--------------| | simple free choice — all transitions sharing a common input place have no other input place | X (a) | | extended free choice — all transitions sharing a common input place have the same input places | | | state machine — every transition has exactly one input place and exactly one output place | X (c) | | marked graph — every place has exactly one input transition and exactly one output transition | X (d) | | connected — there is an undirected path between every two nodes (places or transitions) | √ (e) | | strongly connected — there is a directed path between every two nodes (places or transitions) | X (f) | | source place(s) — one or more places have no input transitions | | | sink place(s) — one or more places have no output transitions | ? (h) | | source transition(s) — one or more transitions have no input places | X (i) | | sink transitions(s) — one or more transitions have no output places | ? (j) | | loop-free — no transition has an input place that is also an output place | ? (k) | | conservative — for each transition, the number of input arcs equals the number of output arcs | X (1) | | subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs | X (m) | | nested units — places are structured into hierarchically nested sequential units (n) | / | ⁽a) stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). $^{^{\}rm (b)}$ stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of N \times 2 values of V). ⁽c) stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). ⁽d) stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). ⁽e) stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). $^{^{(}f)}$ from place 1 one cannot reach place 0. ⁽g) place 0 is a source place. ⁽h) stated by CÆSAR.BDD version 2.7 to be true on 10 instance(s) out of 20, and false on the remaining 10 instance(s). ⁽i) stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). ⁽i) stated by CÆSAR.BDD version 2.7 to be true on 10 instance(s) out of 20, and false on the remaining 10 instance(s). ⁽k) stated by CESAR.BDD version 2.7 to be true on 10 instance(s) out of 20, and false on the remaining 10 instance(s). ⁽¹⁾ stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). ^(m) stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). ⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php # Hugues Evrard, Alastair Donaldson, and Tyler Sorensen h.evrard@imperial.ac.uk ## Behavioural properties | safe — in every reachable marking, there is no more than one token on a place | / (o) | |--|--------------| | dead place(s) — one or more places have no token in any reachable marking | (p | | dead transition(s) — one or more transitions cannot fire from any reachable marking | | | deadlock — there exists a reachable marking from which no transition can be fired | | | reversible — from every reachable marking, there is a transition path going back to the initial marking | | | live — for every transition t, from every reachable marking, one can reach a marking in which t can fire | | #### Size of the marking graphs | D | Number of reach- | Number of tran- | Max. number of | Max. number of | |---------------|------------------------------------|-----------------|-------------------|--------------------| | Parameter | able markings | sition firings | tokens per place | tokens per marking | | N = 06, V = a | 1.77156e+06 (u) | ? | 1 | 8 | | N = 06, V = b | 6.13871e+09 (v) | ? | 1 | 8 | | N = 07, V = a | $1.94872e + 07^{\text{(w)}}$ | ? | 1 | 9 | | N = 07, V = b | $\geq 1.59038e + 11^{(x)}$ | ? | 1 ^(y) | 9 | | N = 08, V = a | $2.14359e + 08^{(z)}$ | ? | 1 | 10 | | N = 08, V = b | $\geq 4.16622e + 11^{\text{(aa)}}$ | ? | 1 ^(ab) | 10 | | N = 09, V = a | 2.35795e + 09 (ac) | ? | 1 | 11 | | N = 09, V = b | $\geq 1.44163e + 12^{\text{(ad)}}$ | ? | 1 | 11 | | N = 10, V = a | $2.59374e + 10^{\text{(ae)}}$ | ? | 1 | 12 | | N = 10, V = b | $\geq 5.47101e + 12^{\text{(af)}}$ | ? | 1 (ag) | 12 | | N = 11, V = a | 2.85312e+11 (ah) | ? | 1 | 13 | | N = 11, V = b | $\geq 1.61943e + 13^{\text{(ai)}}$ | ? | 1 (aj) | 13 | | N = 12, V = a | $3.13843e + 12^{(ak)}$ | ? | 1 | 14 | | N = 12, V = b | $\geq 3.85496e + 13^{\text{(al)}}$ | ? | 1 (am) | 14 | | N = 13, V = a | 3.45227e+13 ^(an) | ? | 1 | 15 | | N = 13, V = b | $\geq 7.55166e + 13^{\text{(ao)}}$ | ? | 1 ^(ap) | 15 | | N = 14, V = a | $3.7975e + 14^{(aq)}$ | ? | 1 | 16 | | N = 14, V = b | $\geq 1.23851e + 14^{\text{(ar)}}$ | ? | 1 (as) | 16 | | N = 15, V = a | 4.17725e+15 (at) | ? | 1 | 17 | | N = 15, V = b | $\geq 4.73641e + 14^{\text{(au)}}$ | ? | 1 ^(av) | 17 | ``` (o) safe by construction – stated by the CÆSAR compiler. ``` ⁽p) stated by CÆSAR.BDD version 3.3 on all 20 instances (10 values of $N \times 2$ values of V). ⁽q) stated by CÆSAR.BDD version 2.7 on all 20 instances (10 values of $N \times 2$ values of V). ⁽r) stated by CÆSAR.BDD version 2.7 to be true on 11 instance(s) out of 20, and unknown on the remaining 9 instance(s). ⁽s) stated by CÆSAR.BDD version 2.7 to be false on 11 instance(s) out of 20, and unknown on the remaining 9 instance(s). ⁽t) stated by CÆSAR.BDD version 2.7 to be false on 11 instance(s) out of 20, and unknown on the remaining 9 instance(s). ⁽u) stated by CÆSAR.BDD version 2.7. ⁽v) stated by CÆSAR.BDD version 2.7. ⁽w) stated by CÆSAR.BDD version 2.7. ⁽x) stated by CÆSAR.BDD version 2.7. ⁽y) stated by the CÆSAR compiler. ⁽z) stated by CÆSAR.BDD version 2.7. ⁽aa) stated by CÆSAR.BDD version 2.7. ⁽ab) stated by the CÆSAR compiler. $^{^{(}ac)}$ stated by CÆSAR.BDD version 2.7. ⁽ad) stated by CÆSAR.BDD version 2.7. $^{^{\}rm (ae)}$ stated by CÆSAR.BDD version 2.7. ⁽af) stated by CÆSAR.BDD version 2.7. (ag) stated by the CÆSAR compiler. ⁽ah) stated by CÆSAR.BDD version 2.7. ⁽ai) stated by CÆSAR.BDD version 2.7. ⁽aj) stated by the CÆSAR compiler. ⁽ak) stated by CÆSAR.BDD version 2.7. ⁽al) stated by CÆSAR.BDD version 2.7. ⁽am) stated by the CÆSAR compiler. Model: DiscoveryGPU Type: P/T Net Origin: Academic Hugues Evrard, Alastair Donaldson, and Tyler Sorensen h.evrard@imperial.ac.uk MCC 2018 $^{^{\}rm (an)}$ stated by CÆSAR.BDD version 2.7. ⁽ao) stated by CÆSAR.BDD version 2.7. ⁽ap) stated by the CÆSAR compiler. ⁽aq) stated by CÆSAR.BDD version 2.7. ⁽ar) stated by CÆSAR.BDD version 2.7. ⁽as) stated by the CÆSAR compiler. ⁽at) stated by the CÆSAR compiler. (at) stated by CÆSAR.BDD version 2.7. ⁽au) stated by CÆSAR.BDD version 2.7. ⁽av) stated by the CÆSAR compiler.