Model: DLCshifumi Type: P/T Net Origin: Academic This form is a summary description of the model entitled "DLCshifumi" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model. ## Description The DLC compiler [2,3,4] has been developed to automatically generate a distributed implementation of a concurrent system described using the LNT language. The implementation generated by DLC consists of processes (in the C language) executing in parallel and connected with POSIX sockets. These processes synchronize together and communicate using a distributed protocol for value-passing multiway rendezvous. Besides generating a distributed implementation, the DLC compiler can also produce an LNT model of this implementation by combining the source LNT description of the system with the protocol itself [1]. This implementation model can then be used to check the correctness of the distributed implementation using the CADP toolbox. This collection of P/T nets was obtained by using DLC to generate implementation models to various instances of the "rock-paper-scissor" game (also known as shifumi). This game can be extended to $N \geq 2$ players who interact using 2 among N rendezvous. Each generated LNT model was translated automatically to LOTOS, and then to an interpreted Petri net using the CADP toolbox. Finally, a P/T net was obtained by stripping out all data-related information (variables, types, assignments, guards, etc.) from the interpreted Petri net, leading to a NUPN (Nested-Unit Petri Net) model translated to PNML using the CÆSAR.BDD tool. Each instance of the model is parameterized by the number N of players. Each instance is also parameterized by its version V, which specifies how the NUPN has been produced from the LOTOS specification. V is either equal to "a" if the NUPN has been generated after applying all the structural and data-flow optimizations of the CÆSAR compiler for LOTOS, or to "b" if the NUPN has been generated before these optimizations. #### References - [1] Hugues Evrard and Frédéric Lang. Formal Verification of Distributed Branching Multiway Synchronization Protocols. Proceedings of the IFIP Joint International Conference on Formal Techniques for Distributed Systems (FORTE/FMOODS'2013), Florence, Italy. LNCS 7892, pages 146-160, Springer, 2013. Available from https://hal.inria.fr/hal-00818788. - [2] Hugues Evrard and Frédéric Lang. Automatic Distributed Code Generation from Formal Models of Asynchronous Concurrent Processes. Proceedings of the 23rd Euromicro International Conference on Parallel, Distributed and Network-based Processing, Special Session on Formal Approaches to Parallel and Distributed Systems (PDP/4PAD'2015), Turku, Finland. IEEE, 2015. Available from https://hal.inria.fr/hal-01086522. - [3] Hugues Evrard. *DLC: Compiling a Concurrent System Formal Specification to a Distributed Implementation*. Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'2016), Eindhoven, Netherlands. Springer, 2016. - [4] http://hevrard.org/DLC #### Scaling parameter | Parameter name | Parameter description | Chosen parameter values | | |----------------|---|-------------------------------------|--| | (N,V) | N is the number of players and V is the version defined above | $\{2, 3, 4, 5, 6\} \times \{a, b\}$ | | # ${ m MCC}^{ m since}_{ m 2016}$ #### Size of the model | Parameter | Number of | Number of | Number of | Number of | HWB code | |--------------|-----------|-------------|-----------|-----------|--------------| | | places | transitions | arcs | units | | | N=2, V=a | 188 | 888 | 3166 | 80 | 2-79-116 | | N=2, V=b | 2483 | 3183 | 7756 | 157 | 63-79-445 | | N=3, V=a | 544 | 3097 | 11545 | 283 | 2-282-370 | | N=3, V=b | 7058 | 9611 | 24573 | 563 | 241-282-1535 | | N=4, V=a | 1178 | 7504 | 28610 | 692 | 2-691-854 | | N=4, V=b | 15015 | 21341 | 56284 | 1381 | 613-691-3691 | | N = 5, V = a | 2162 | 14865 | 57457 | 1379 | 2-1378-1640 | | N = 5, V = b | 27146 | 39849 | 107425 | 2755 | 1251-1378- | | | | | | | 7273 | | N=6, V=a | 3568 | 25936 | 101182 | 2416 | 2-2415-2800 | | N=6, V=b | 44243 | 66611 | 182532 | 4829 | 2227-2415- | | | | | | | 12641 | # Structural properties | ordinary — all arcs have multiplicity one | | |---|--------------| | simple free choice — all transitions sharing a common input place have no other input place | | | extended free choice — all transitions sharing a common input place have the same input places | X (b) | | state machine — every transition has exactly one input place and exactly one output place | X (c) | | marked graph — every place has exactly one input transition and exactly one output transition | X (d) | | connected — there is an undirected path between every two nodes (places or transitions) | √ (e) | | strongly connected — there is a directed path between every two nodes (places or transitions) | X (f) | | source place(s) — one or more places have no input transitions | ✓ (g) | | sink place(s) — one or more places have no output transitions | X (h) | | source transition(s) — one or more transitions have no input places | X (i) | | sink transitions(s) — one or more transitions have no output places | X (j) | | loop-free — no transition has an input place that is also an output place | ? (k) | | conservative — for each transition, the number of input arcs equals the number of output arcs | X (1) | | subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs | X (m) | | nested units — places are structured into hierarchically nested sequential units (n) | / | # Behavioural properties | safe — in every reachable marking, there is no more than one token on a place | . 🗸 (o) | |---|---------| | dead place(s) — one or more places have no token in any reachable marking | ? (p) | | dead transition(s) — one or more transitions cannot fire from any reachable marking | ? (q) | ⁽a) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽b) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽c) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽d) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽e) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). $^{^{(}f)}$ from place 1 one cannot reach place 0. ⁽g) place 0 is a source place. ⁽h) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽i) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽j) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽k) stated by CÆSAR.BDD version 2.6 to be true on 5 instance(s) out of 10, and false on the remaining 5 instance(s). ⁽¹⁾ stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽m) stated by CÆSAR.BDD version 2.6 on all 10 instances (5 values of $N \times 2$ values of V). ⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php ⁽o) safe by construction – stated by the CÆSAR compiler. ⁽p) stated by CÆSAR.BDD version 3.3 to be false on 5 instance(s) out of 10, and unknown on the remaining 5 instance(s). ⁽q) stated by CÆSAR.BDD version 3.3 to be false on 5 instance(s) out of 10, and unknown on the remaining 5 instance(s). # ${ m MCC}_2{ m 2016}$ Hugues Evrard and Frédéric Lang hugues@hevrard.org | deadlock — there exists a reachable marking from which no transition can be fired | .? (r) | |--|--------| | reversible — from every reachable marking, there is a transition path going back to the initial marking | | | live — for every transition t. from every reachable marking, one can reach a marking in which t can fire | ? | ### Size of the marking graphs | Parameter | Number of reach-
able markings | Number of tran-
sition firings | Max. number of tokens per place | Max. number of tokens per marking | |--------------|-----------------------------------|-----------------------------------|---------------------------------|-----------------------------------| | N=2, V=a | 4.74756e+14 (s) | ? | 1 | 79 | | N=2, V=b | ? | ? | 1 ^(t) | 79 | | N = 3, V = a | 9.09544e+35 (u) | ? | 1 | 282 | | N=3, V=b | ? | ? | 1 ^(v) | 282 | | N = 4, V = a | 2.41187e+67 (w) | ? | 1 | 691 | | N=4, V=b | ? | ? | 1 (x) | 691 | | N = 5, V = a | 8.85236e+108 ^(y) | ? | 1 | 1378 | | N = 5, V = b | ? | ? | 1 ^(z) | 1378 | | N = 6, V = a | ? | ? | 1 ^(aa) | 2415 | | N = 6, V = b | ? | ? | 1 ^(ab) | 2415 | ⁽r) stated by CÆSAR.BDD version 2.6 to be false on 5 instance(s) out of 10, and unknown on the remaining 5 instance(s). ⁽s) stated by CÆSAR.BDD version 2.6. ⁽t) stated by the CÆSAR compiler. ⁽u) stated by CÆSAR.BDD version 2.6. ⁽v) stated by the CÆSAR compiler. ⁽w) stated by CÆSAR.BDD version 2.6. ⁽x) stated by the CÆSAR compiler. ⁽y) stated by CÆSAR.BDD version 3.3. ⁽z) stated by the CÆSAR compiler. ⁽aa) stated by the CÆSAR compiler. ⁽ab) stated by the CÆSAR compiler.