> This form is a summary description of the model entitled "Client/Server with Repetitions" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This Petri net models a client/server application with NCLIENTS clients and NSERVERS servers. Communication from clients to servers is not reliable, with requests stored in a buffer of size BUFFERSIZE. Communication from servers to clients are reliable. A client send its message until it receives an answer.
The interesting point is that place RequestBuffer is not 1-bounded. This model can thus be used to assess how model checkers behave for colored non-safe nets.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
n	To set only one parameter, we set a pa- rameter n and compute model parameters with: NCLIENTS $=n^{2}, ~ N S E R V E R S ~$ 2,$n, 4,5,7,10$	
	BUFFERSIZE $=n$	

Size of the model

Structural properties

ordinary - all arcs have multiplicity one $\ddot{\boldsymbol{x}}{ }_{(\mathrm{a})}^{\boldsymbol{x}}$
simple free choice - all transitions sharing a common input place have no other input place
simple free choice - all transitions sharing a common input place have no other input place \boldsymbol{X} (b)
state machine - every transition has exactly one input place and exactly one output place \boldsymbol{X} (c)
marked graph - every place has exactly one input transition and exactly one output transition \boldsymbol{X} (d)
connected - there is an undirected path between every two nodes (places or transitions) (e)
strongly connected - there is a directed path between every two nodes (places or transitions) $\boldsymbol{X}(\mathrm{f})$
source place(s) - one or more places have no input transitions $\boldsymbol{X}(\mathrm{g})$
sink place(s) - one or more places have no output transitions $\boldsymbol{X}(\mathrm{h})$
source transition(s) - one or more transitions have no input places \boldsymbol{X} (i)
sink transitions(s) - one or more transitions have no output places (j)
loop-free - no transition has an input place that is also an output place $\boldsymbol{X}(\mathrm{k})$
conservative - for each transition, the number of input arcs equals the number of output arcs$\boldsymbol{X}(1)$
subconservative - for each transition, the number of input arcs equals or exceeds the number of output arcsnested units - places are structured into hierarchically nested sequential units ${ }^{(\mathrm{n})}$ X

[^0]
Behavioural properties

safe - in every reachable marking, there is no more than one token on a place .. \boldsymbol{X} (o)
dead place(s) - one or more places have no token in any reachable marking .. ${ }^{(p)}$

deadlock - there exists a reachable marking from which no transition can be fired \boldsymbol{V} (r)
reversible - from every reachable marking, there is a transition path going back to the initial marking?
live - for every transition t, from every reachable marking, one can reach a marking in which t can fire?

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max. number of tokens per marking
$n=2$	$7424^{(\mathrm{s})}$	$37088^{(\mathrm{t})}$	$2^{(\mathrm{u})}$	$8^{(\mathrm{v})}$
$n=3$	$1.3408 \mathrm{E}+8^{(\mathrm{w})}$	$1.2939 \mathrm{E}+9^{(\mathrm{x})}$	$3^{(\mathrm{y})}$	$15^{(\mathrm{z})}$
$n=4$	$3.0948 \mathrm{E}+13^{(\mathrm{aa})}$	$?$	$4^{(\mathrm{ab})}$	$24^{(\mathrm{ac})}$
$n=5$	$?$	$?$	$?$	$35^{(\mathrm{ad})}$
$n=7$	$?$	$?$	$?$	$63^{(\mathrm{ae})}$
$n=10$	$?$	$?$	$?$	$120^{(\mathrm{af})}$

[^1]
[^0]: ${ }^{(a)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances $(2,3,4,5,7$, and 10$)$.
 (b) stated by CÆSAR.BDD version 2.6 on all 6 instances ($2,3,4,5,7$, and 10).
 (c) stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10).
 (d) stated by CÆSAR.BDD version 1.7 on all 6 instances $(2,3,4,5,7$, and 10$)$.
 ${ }^{(e)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10).
 ${ }^{(f)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances $(2,3,4,5,7$, and 10$)$.
 (g) stated by CÆSAR.BDD version 1.7 on all 6 instances $(2,3,4,5,7$, and 10$)$.
 ${ }^{(h)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10).
 ${ }^{(i)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10).
 ${ }^{(j)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10); transition "Lose_Request" is a sink transition.
 ${ }^{(k)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10).
 ${ }^{(1)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10).
 (m) stated by CÆSAR.BDD version 1.7 on all 6 instances ($2,3,4,5,7$, and 10).
 ${ }^{(n)}$ the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

[^1]: ${ }^{(o)}$ stated by CÆSAR.BDD version 2.0 on all 6 instances ($2,3,4,5,7$, and 10).
 ${ }^{(p)}$ stated by CÆSAR.BDD version 3.3 to be false on 3 instance(s) out of 6 , and unknown on the remaining 3 instance(s).
 (q) stated by CÆSAR.BDD version 2.0 to be false on 2 instance(s) out of 6 , and unknown on the remaining 4 instance(s).
 ${ }^{(r)}$ confirmed at MCC'2014 by Helena on all 6 colored instances, and by Lola and Tapaal on all 6 P/T instances.
 ${ }^{(s)}$ computed at MCC'2013 by Alpina and ITS-Tools; confirmed at MCC' 2014 by GreatSPN and Helena on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal on the P/T net instance.
 ${ }^{(t)}$ computed at MCC'2014 by Helena on the colored net instance, and by Marcie on the P/T net instance.
 (u) computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.
 (v) number of initial tokens, because the net is sub-conservative.
 ${ }^{(w)}$ computed at MCC'2013 by Alpina and ITS-Tools; confirmed at MCC'2014 by GreatSPN on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, and Stratagem.
 (x) computed at MCC'2014 by Marcie.
 (y) computed at MCC'2014 by GreatSPN, Marcie, and PNMC.
 (z) number of initial tokens, because the net is sub-conservative.
 ${ }^{(a a)}$ computed at MCC'2014 by GreatSPN on the colored net instance, and by PNMC on the P/T net instance.
 (ab) computed at MCC' 2014 by PNMC.
 (ac) number of initial tokens, because the net is sub-conservative.
 (ad) number of initial tokens, because the net is sub-conservative.
 (ae) number of initial tokens, because the net is sub-conservative.
 ${ }^{(a f)}$ number of initial tokens, because the net is sub-conservative.

