
This form is a summary description of the model entitled "Client/Server with Repetitions" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This Petri net models a client/server application with NCLIENTS clients and NSERVERS servers. Communication from clients to servers is not reliable, with requests stored in a buffer of size BUFFERSIZE. Communication from servers to clients are reliable. A client send its message until it receives an answer.

The interesting point is that place RequestBuffer is not 1-bounded. This model can thus be used to assess how model checkers behave for colored non-safe nets.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
n	To set only one parameter, we set a parameter n and compute model parameters with: NCLIENTS= n^2 , NSERVERS= n , BUFFERSIZE= n	2, 3, 4, 5, 7, 10

Size of the model

Parameter Number of places		Number of transitions	Number of arcs	
(NCLIENTS,	1 + 3*NCLIENTS	3*NCLIENTS +	7*NCLIENTS +	
NSERVERS, BUFFER-	+ NSERVERS +	2*NCLIENTS*NSERVERS	8*NCLIENTS+NSERVERS	
SIZE)	NCLIENTS*NSERVERS			
n	$n^3 + 3n^2 + n + 1$	$2n^3 + 3n^2$	$8n^3 + 7n^2$	
n=2	23	28	92	
n=3	58	81	279	
n=4	117	176	624	
n=5	206	325	1175	
n=7	498	833	3087	
n = 10	1311	2300	8700	

Structural properties

```
ordinary — all arcs have multiplicity one

simple free choice — all transitions sharing a common input place have no other input place

extended free choice — all transitions sharing a common input place have the same input places

**X* (a)

extended free choice — all transitions sharing a common input place have the same input places

**X* (b)

state machine — every transition has exactly one input place and exactly one output place

**M* (c)

marked graph — every place has exactly one input transition and exactly one output transition

**X* (d)

connected — there is an undirected path between every two nodes (places or transitions)

**X* (e)

strongly connected — there is a directed path between every two nodes (places or transitions)

**X* (g)

source place(s) — one or more places have no input transitions

**X* (s)

sink place(s) — one or more places have no output transitions

**X* (h)

source transition(s) — one or more transitions have no input places

**X* (i)

sink transitions(s) — one or more transitions have no output places

**X* (i)

loop-free — no transition has an input place that is also an output place

conservative — for each transition, the number of input arcs equals the number of output arcs

**X* (l)

subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs

**X* (l)

subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs

**X* (l)

subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs

**X* (l)

subconservative — for each transition hierarchically nested sequential units (n)

**X* (n)
```

⁽a) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽b) stated by CÆSAR.BDD version 2.6 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽c) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽d) stated by CESAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽e) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽f) stated by CESAR BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽f) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽g) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽h) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽i) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽j) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10); transition "Lose_Request" is a sink transition.

⁽k) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽¹⁾ stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽m) stated by CÆSAR.BDD version 1.7 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place	(o)
dead place(s) — one or more places have no token in any reachable marking	? (p)
dead transition(s) — one or more transitions cannot fire from any reachable marking	
deadlock — there exists a reachable marking from which no transition can be fired	
reversible — from every reachable marking, there is a transition path going back to the initial marking	
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire	

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max. number of tokens per marking
n=2	7424 ^(s)	37 088 ^(t)	2 (u)	8 (v)
n=3	1.3408E+8 (w)	$1.2939E + 9^{(x)}$	3 (y)	15 ^(z)
n=4	$3.0948E+13^{(aa)}$?	4 (ab)	24 ^(ac)
n=5	?	?	?	35 (ad)
n=7	?	?	?	63 ^(ae)
n = 10	?	?	?	120 ^(af)

⁽o) stated by CÆSAR.BDD version 2.0 on all 6 instances (2, 3, 4, 5, 7, and 10).

⁽p) stated by CÆSAR.BDD version 3.3 to be false on 3 instance(s) out of 6, and unknown on the remaining 3 instance(s).

⁽q) stated by CESAR.BDD version 2.0 to be false on 2 instance(s) out of 6, and unknown on the remaining 4 instance(s).

 $^{^{(}r)}$ confirmed at MCC'2014 by Helena on all 6 colored instances, and by Lola and Tapaal on all 6 P/T instances.

⁽s) computed at MCC'2013 by Alpina and ITS-Tools; confirmed at MCC'2014 by GreatSPN and Helena on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal on the P/T net instance.

⁽t) computed at MCC'2014 by Helena on the colored net instance, and by Marcie on the P/T net instance.

⁽u) computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.

⁽v) number of initial tokens, because the net is sub-conservative.

⁽w) computed at MCC'2013 by Alpina and ITS-Tools; confirmed at MCC'2014 by GreatSPN on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, and Stratagem.

 $^{^{(\}mathrm{x})}$ computed at MCC'2014 by Marcie.

 $^{^{\}rm (y)}$ computed at MCC'2014 by GreatSPN, Marcie, and PNMC.

 $^{^{\}rm (z)}$ number of initial tokens, because the net is sub-conservative.

⁽aa) computed at MCC'2014 by GreatSPN on the colored net instance, and by PNMC on the P/T net instance.

⁽ab) computed at MCC'2014 by PNMC.

⁽ac) number of initial tokens, because the net is sub-conservative.

 $^{^{}m (ad)}$ number of initial tokens, because the net is sub-conservative.

⁽ae) number of initial tokens, because the net is sub-conservative.

⁽af) number of initial tokens, because the net is sub-conservative.