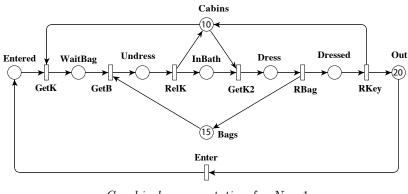
Fabrice Kordon

 $\stackrel{\mathrm{since}}{\mathrm{MCC}}$

Description


In this classical example, the director of a swimming pool has established a protocol to use the pool. The protocol is described as follows:

- S_1 A user gets into the building and gets a key for a cabin,
- S_2 He then ask for a bag to put his clothes on and then uses the cabin to undress and get his swimming suit,
- S_3 He then return the key and can enjoy the swimming pool,
- S_4 He gets out the swimming pool and ask for the key of a new cabin,

one per model instance) giving a set of properties to be checked on the model.

- S_5 He dresses again, and then give back his bag,
- $S_6\,$ He gives back the key of the cabin and then leaves the building.

The system has a scaling parameter N from which the numbers of cabins, bags, and persons in the swimming pool are deduced. For a given value N, we consider $N \times 10$ cabins, $N \times 15$ bags and $N \times 20$ persons.

Graphical representation for N = 1

Scaling parameter

Parameter name	Parameter description	Chosen parameter values	
N	N, a parameter from which the numbers of cabins, bags, and persons in the pool are deduced. ^(a) .	N = 1, N = 2, N = 3, N = 4, N = 5, N = 6, N = 7, N = 8, N = 9, N = 10	

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

number of places:9number of transitions:7number of arcs:20

^(a) These parameters affect the initial marking and thus do not impact the size of the model.

Structural properties

ordinary — all arcs have multiplicity one
extended free choice — all transitions sharing a common input place have the same input places $X^{(c)}$
state machine — every transition has exactly one input place and exactly one output place $\dots \dots \dots$
marked graph — every place has exactly one input transition and exactly one output transition $\ldots \ldots \ldots $ (e)
connected — there is an undirected path between every two nodes (places or transitions)
strongly connected — there is a directed path between every two nodes (places or transitions)
source place(s) — one or more places have no input transitions $\dots $ (h)
sink place(s) — one or more places have no output transitions $\ldots $ \checkmark (i)
source transition(s) — one or more transitions have no input places $\ldots $
sink transitions(s) — one or more transitions have no output places $\ldots \ldots \ldots$
loop-free — no transition has an input place that is also an output place $\dots \dots \dots$
conservative — for each transition, the number of input arcs equals the number of output arcs (m)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs $\dots X^{(n)}$
nested units — places are structured into hierarchically nested sequential units ^(o)

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place
dead place(s) — one or more places have no token in any reachable marking $\ldots \ldots \ldots \ldots \ldots $ (q)
dead transition(s) — one or more transitions cannot fire from any reachable marking $\dots \dots \dots$
deadlock — there exists a reachable marking from which no transition can be fired
reversible — from every reachable marking, there is a transition path going back to the initial marking $\dots \dots \dots \dots \checkmark \checkmark$ (s)
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire?

^(b) 2 arcs are not simple free choice, e.g., the arc from place "Cabins" (which has 2 outgoing transitions) to transition "GetK" (which has 2 input places).

⁽c) transitions "GetK" and "GetK2" share a common input place "Cabins", but only the former transition has input place "Entered".

 $^{^{\}rm (d)}$ 6 transitions are not of a state machine, e.g., transition "GetK".

^(e) place "Cabins" is not of a marked graph.

^(f) stated by CÆSAR.BDD version 2.2 on all 10 instances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

 $^{^{(}g)}$ stated by CÆSAR.BDD version 2.2 on all 10 instances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

^(h) stated by CÆSAR.BDD version 2.2 on all 10 instances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

⁽ⁱ⁾ stated by CÆSAR.BDD version 2.2 on all 10 instances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). ^(j) stated by CÆSAR.BDD version 2.2 on all 10 instances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

⁽k) stated by CÆSAR.BDD version 2.2 on all 10 instances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

⁽¹⁾ stated by CÆSAR.BDD version 2.2 on all 10 instances (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

⁽m) 6 transitions are not conservative, e.g., transition "GetK".

⁽n) 3 transitions are not subconservative, e.g., transition "GetK".

⁽⁰⁾the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

^(p) By construction of the model (The initial marking is not safe)..

^(q) stated by CÆSAR.BDD version 3.3 on all 10 instances (1,2,3,4,5,6,7,8,9,10).

^(r) If there are more bags than cabins only.

 $^{^{\}rm (s)}$ If there are more bags than cabins only..

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max. number of tokens per marking
N = 1	89 621 ^(t)	450 003 ^(u)	?	$\geq 45^{(v)}$
N = 2	3 408 031 ^(w)	19 929 811 ^(x)	?	$\geq 90^{(y)}$
N = 3	?	?	?	$\geq 135^{(z)}$
N = 4	?	?	?	$\geq 180^{(aa)}$
N = 5	?	?	?	$\geq 225^{(ab)}$
N = 6	?	?	?	$\geq 270^{(\mathrm{ac})}$
N = 7	?	?	?	$\geq 315^{(\mathrm{ad})}$
N = 8	?	?	?	$\geq 360^{(\mathrm{ae})}$
N = 9	?	?	?	$\geq 405^{(af)}$
N = 10	?	?	?	$\geq 450^{(ag)}$

Other properties

If the number of bags is greater than the number of cabins, this model does not exhibit any deadlock. Otherwise, there is a deadlock.

- $^{(x)}$ computed by PROD in December 2014.
- (y) lower bound given by the number of initial tokens.
- ^(z) lower bound given by the number of initial tokens. ^(aa) lower bound given by the number of initial tokens.

- ^(ac) lower bound given by the number of initial tokens.
- ^(ad) lower bound given by the number of initial tokens.
- (ae) lower bound given by the number of initial tokens.
- $^{\rm (af)}$ lower bound given by the number of initial tokens. $^{\rm (ag)}$ lower bound given by the number of initial tokens.

^(t) computed by PROD in December 2014.

^(u) computed by PROD in December 2014.

 $^{^{(}v)}$ lower bound given by the number of initial tokens.

 $^{^{(}w)}$ computed by PROD in December 2014.

⁽ab) lower bound given by the number of initial tokens.