This form is a summary description of the model entitled "HypercubeCommunicationGrid" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

Hypercube communication grid model [1,2] is composed of nodes which represent data communication equipment (DCE) implementing packet forwarding based on store-and-forward principle. Each DCE has ports, situated on facets of a unit size hypercube, which work in full-duplex mode. Data terminal equipment (DTE) is attached on the hypercube borders. Each DTE receives and sends packets.

Remind that, a d-dimension hypercube has $2 \cdot d$ facets each represents a (d-1)-dimension hypercube.

DCE index $(i_1, i_2, ..., i_d)$, where $1 \le i_j \le k$, $1 \le j \le d$, reflects its location within hypercube. Port index (r, n) consists of dimension number $1 \le r \le d$, a facet is perpendicular to, and direction number $1 \le n \le 2$, where n = 1 represents the direction to the origin of coordinates and n = 2 represents the direction to infinity.

DCE model contains an internal buffer represented with $2 \cdot d + 1$ places: the avaliable buffer size and buffer sections for storing packets forwarded to the corresponding ports.

Each of $2 \cdot d$ DCE ports has two tracts: input and output. Memory of a tract is represented with two places – the tract buffer and the tract buffer available capacity (usually equat to unit). An output tract work is modeled by a single transition taking a packet from the corresponding section of the internal buffer and putting it into the tract buffer. An input tract work is modeled by $2 \cdot d - 1$ transitions forwarding arrived packet from the tract buffer to the corresponding section of the internal buffer except of the arrival port number.

A hypercube is composed via meging tract places of neighbor DCE which has a common facet: input tract of one DCE with output tract of the other DCE and vice versa.

On the borders, which constitute $2 \cdot d$ hypercubes of dimension d - 1, DTE models are attached. A simple DTE model is represented with a single transition that receives a packet from a neighbor DCE output tract and sends a packet into the neighbor DCE input tract.

For planar case when d = 2, models are described in [1,3] with simplified notation of ports.

References

[1] Zaitsev D.A., Zaitsev I.D., Shmeleva T.R. Infinite Petri Nets as Models of Grids (pp. 187-204). Chapter 19 in Mehdi Khosrow-Pour (Ed.) Encyclopedia of Information Science and Technology, Third Edition (10 Volumes). IGI-Global: USA, 2014.

[2] Zaitsev D.A., Shmeleva T.R. Hypercube communication structures analysis via parametric Petri nets. Proceedings of 24th UK Performance Engineering Workshop (UKPEW 2008), 3-4 July 2008, Department of Computing, Imperial College London, p. 358-371.

[3] Shmeleva T.R., Zaitsev D.A., Zaitsev I.D. Analysis of Square Communication Grids via Infinite Petri Nets. Transactions of Odessa National Academy of Telecommunication, no. 1, 2009, p. 27-35.

[4] A C program that generates k^d hypercube can be downloaded from http://daze.ho.ua/tinaz.zip

 $\stackrel{\mathrm{since}}{\mathrm{MCC}}$

Scaling parameter

Parameter name	Parameter description	Chosen parameter values	
d, k, p, b	d is the number of dimensions;	(d,k) = (3,4), (4,3), (5,3) with $p = k$ and	
	k is the hypercube size of k^d DCE nodes	$b = d \cdot k$	
	and $2 \cdot d \cdot k^{d-1}$ DTE nodes;		
	p is the number of packets in each section		
	of internal buffer;		
	b is the available size of internal buffer;		
	p and b define the initial marking and do		
	not affect the model structure.		

Size of the model

Parameter	meter Number of places		Number of arcs	
(d,k)	$P = 6 \cdot d \cdot k^d + k^d + 4 \cdot d \cdot k^{d-1}$	$T = 4 \cdot d^2 \cdot k^d + 2 \cdot d \cdot k^{d-1}$	$A = 16 \cdot d^2 \cdot k^d + 8 \cdot d \cdot k^{d-1}$	
(d=3, k=4)	1408	2400	9600	
(d=4, k=3)	2457	5400	21600	
(d=5, k=3)	9153	25110	100440	

Structural properties

ordinary — all arcs have multiplicity one	🗸
simple free choice — all transitions sharing a common input place have no other input place	X (a)
extended free choice — all transitions sharing a common input place have the same input places	Х(р)
state machine — every transition has exactly one input place and exactly one output place	X (c)
marked graph — every place has exactly one input transition and exactly one output transition	X (d)
connected — there is an undirected path between every two nodes (places or transitions)	🖌 (e)
strongly connected — there is a directed path between every two nodes (places or transitions)	🖌 (f)
source $place(s)$ — one or more places have no input transitions	X (g)
sink place(s) — one or more places have no output transitions	X (h)
source transition(s) — one or more transitions have no input places	X (i)
sink transitions(s) — one or more transitions have no output places	(j)
loop-free — no transition has an input place that is also an output place	🖌 (k)
conservative — for each transition, the number of input arcs equals the number of output arcs	. 🖌 (l)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs	🖌 (m)
nested units — places are structured into hierarchically nested sequential units ⁽ⁿ⁾	🗡

^(a) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)).

⁽b) stated by CÆSAR.BDD version 2.6 on all 3 instances ((3, 4), (4, 3), (5, 3)).

^(c) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)). ^(d) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)).

⁽e) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)).

⁽f) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)).

⁽g) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)).

^(h) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)).

⁽i) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3,4), (4,3), (5,3)).

^(j) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3,4), (4,3), (5,3)).

^(k) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3,4), (4,3), (5,3)).

⁽¹⁾ stated by CÆSAR.BDD version 2.2 on all 3 instances ((3,4), (4,3), (5,3)).

⁽m) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3,4), (4,3), (5,3)).

⁽ⁿ⁾the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

Behavioural properties

${f safe}-$ in every reachable marking, there is no more than one token on a place \ldots	K (0	,)
$\operatorname{dead} \operatorname{place}(s)$ — one or more places have no token in any reachable marking \ldots	••••	?
dead transition(s) — one or more transitions cannot fire from any reachable marking	×	<
deadlock — there exists a reachable marking from which no transition can be fired	K (p)
reversible — from every reachable marking, there is a transition path going back to the initial marking	X	(
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire	X	(

 $\stackrel{\mathrm{since}}{\mathrm{MCC}}$ 2015

Size of the marking graphs

Parameter	Number of reach- able markings	Number of tran- sition firings	Max. number of tokens per place	Max. number of tokens per marking
(d=3, k=4)	?	?	?	$2784^{(q)}$
(d=4, k=3)	?	?	?	$3780^{(r)}$
(d=5, k=3)	?	?	?	$14175^{(s)}$

Other properties

Model is $2 \cdot d \cdot p + b$ bounded — the sum of tokens in DCE internal buffer places. Model is P/T-invariant for any natural k as proven in [1,2]

^(o) stated by CÆSAR.BDD version 2.2 on all 3 instances ((3, 4), (4, 3), (5, 3)).

^(p) proven in [1,2]; checked by the Tina http://www.laas.fr/tina tool version 3.3.0 as well as other behavioural properties for small values of parameters d, k.

 $^{^{\}rm (q)}$ number of initial tokens, because the net is conservative.

^(r) number of initial tokens, because the net is conservative.

^(s) number of initial tokens, because the net is conservative.