
This form is a summary description of the model entitled "HouseConstruction" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

 $\stackrel{
m since}{
m MCC} 2013$

Description

This model has been extracted from the petriweb.org repository available at http://www.petriweb.org. According to the provided information, the net was designed by J. L. Peterson, from a PERT chart by F. Levy. The PERT chart contains timing information, which is not accurately translated.

The six largest instances have been added in 2019.

Graphical representation for N = 2

References

This model was probably described in: Peterson, James Lyle (1981). *Petri Net Theory and the Modeling of Systems*. Prentice Hall. ISBN 0-13-661983-5. However, this was not checked, the book being unavailable in our library.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values	
N	initial number of tokens on place p2	2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, 32000	

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

number of places:	26
number of transitions:	18
number of arcs:	51

Structural properties

ordinary — all arcs have multiplicity one	. ✓
simple free choice — all transitions sharing a common input place have no other input place $\ldots \ldots \checkmark \checkmark$	(a)
entended nee enoice and management of a comment input place have the same input places	(b)
state machine — every transition has exactly one input place and exactly one output place \ldots	X (c)
$\mathbf{marked \ graph} - every \ place \ has \ exactly \ one \ input \ transition \ and \ exactly \ one \ output \ transition \ \dots\dots\dots\dots$	(d)
connected — there is an undirected path between every two nodes (places or transitions)	/ (e)
strongly connected — there is a directed path between every two nodes (places or transitions)	K (f)
Source place(b) one of more place have no input manentone	(g)
$\operatorname{sink} \operatorname{place}(\mathbf{s})$ — one or more places have no output transitions	(h)
source transition(s) — one or more transitions have no input places \ldots	🗙 (i)
$\operatorname{sink} \operatorname{transitions}(\mathbf{s})$ — one or more transitions have no output places	/ (j)
loop-free — no transition has an input place that is also an output place	/ (k)
conservative — for each transition, the number of input arcs equals the number of output arcs	🗙 (l)
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs	(m)
$nested units - places are structured into hierarchically nested sequential units^{(n)}$	×

^(a) stated by CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000). ^(b) stated by CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000).

⁽c) 11 transitions are not of a state machine, e.g., transition "t3".

⁽d) place "p1" is not of a marked graph.

^(e) stated by CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000). ^(f) from place "p2" one cannot reach place "p1".

^(g) place "p1" is a source place.

^(h) stated by CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000).

⁽ⁱ⁾ stated by CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000).^(j) transition "t18" is a sink transition.

^(k) stated by CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000).

⁽¹⁾ 11 transitions are not conservative, e.g., transition "t3".

 $^{^{(}m)}$ 5 transitions are not subconservative, e.g., transition "t3".

⁽ⁿ⁾the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place
dead place(s) — one or more places have no token in any reachable marking $\dots $
dead transition(s) — one or more transitions cannot fire from any reachable marking $\ldots \ldots \ldots $ (q)
deadlock — there exists a reachable marking from which no transition can be fired
$\mathbf{reversible}$ — from every reachable marking, there is a transition path going back to the initial marking
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire?

Size of the marking graphs

Parameter	Number of reach-	Number of tran-	Max. number of	Max. number of
	able markings	sition firings	tokens per place	tokens per marking
N = 2	$1501^{(s)}$	$4780^{(t)}$	2 ^(u)	12 ^(v)
N = 5	$1.1880E + 6^{(w)}$	$7.1911E + 6^{(x)}$	5 ^(y)	$30^{(z)}$
N = 10	$1.6636E + 9^{(aa)}$	$1.4808E + 10^{(ab)}$	10 ^(ac)	$60^{(ad)}$
N = 20	1.3666E + 13 (ae)	$1.6144E + 14^{(af)}$	$20^{(ag)}$	120 ^(ah)
N = 50	$1.5682E + 19^{(ai)}$?	50 ^(aj)	$300^{(ak)}$
N = 100	?	?	?	$\geq 100^{(al)}$
N = 200	?	?	?	$\geq 200^{({\rm am})}$
N = 500	?	?	?	$\geq 500^{(an)}$
N = 2000	?	?	?	$\geq 2000^{(ao)}$
N = 4000	?	?	?	$\geq 4000^{(ap)}$
N = 8000	?	?	?	$\geq 8000^{(aq)}$
N = 16000	?	?	?	$\geq 16000^{(ar)}$
N = 32000	?	?	?	$\geq 32000^{(as)}$

^(o) in the initial marking, some places have several tokens (the number of which depends on N); confirmed CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000).

^(p) stated by CÆSAR.BDD version 3.3 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000).

^(q) stated by CÆSAR.BDD version 2.8 on all 14 instances (2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 4000, 8000, 16000, and 32000).

 $^{(r)}$ confirmed at MCC'2014 by Lola and Tapaal on 8 instances, and by GreatSPN on 4 instances.

^(s) computed at MCC'2013 by Alpina, ITS-Tools, Marcie, Neco, and PNXDD; confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, PNXDD, Strategem, and Tapaal.

 $^{\rm (t)}$ computed at MCC'2014 by Marcie.

^(u) computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.

 $^{\rm (v)}$ computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.

^(w) computed at MCC'2013 by Alpina, ITS-Tools, Marcie, Neco, and PNXDD; exact value: 1187984; confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal.

^(x) computed at MCC'2014 by Marcie.

^(y) computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.

- ^(z) computed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.
- (aa) computed at MCC'2013 by ITS-Tools, Marcie, and PNXDD; confirmed at MCC'2014 by GreatSPN, Marcie, and PNMC.
- ^(ab) computed at MCC'2014 by Marcie.
- (ac) computed at MCC'2014 by GreatSPN, Marcie, and PNMC.
- (ad) computed at MCC'2014 by GreatSPN, Marcie, and PNMC.
- (ae) computed at MCC'2013 by ITS-Tools, and Marcie; confirmed at MCC'2014 by GreatSPN, Marcie, and PNMC.
- ^(af) computed at MCC'2014 by Marcie.
- (ag) computed at MCC'2014 by GreatSPN, Marcie, and PNMC.
- (ah) computed at MCC'2014 by GreatSPN, Marcie, and PNMC.
- (ai) computed at MCC'2014 by GreatSPN.
- (aj) computed at MCC'2014 by GreatSPN.
- (ak) computed at MCC'2014 by GreatSPN.
- (al) lower bound given by the number of initial tokens.
- (am) lower bound given by the number of initial tokens.
- ^(an) lower bound given by the number of initial tokens. ^(ao) lower bound given by the number of initial tokens.
- (ap) lower bound given by the number of initial tokens.
- ^(aq) lower bound given by the number of initial tokens.
- (ar) lower bound given by the number of initial tokens.
- (as) lower bound given by the number of initial tokens.

 $\stackrel{
m since}{
m MCC} 2013$