
Model: A variant of Dekker's algorithm for mutual exclusionCesar RodriguezType: P/T Netsincecesar.rodriguez@lsv.ens-cachan.frOrigin: AcademicMCC 2013

This form is a summary description of the model entitled "A variant of Dekker's algorithm for mutual exclusion" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

A Place-Transition net representing a variant of the Dekker's mutual exclusion algorithm for N > 2 processes. Each process has three states, **p0**, **p1**, and **p3**. **p0** is initial. From there, the process executes **try** and raises its **flag**, reaching **p1**. In **p1**, if at least one of the other process has a high **flag**, it **withdraws** its intent and goes back to **p0**. In **p1**, it **enters** the critical section if all other process' **flag** is zero. From **p3**, the process can only **exit** the critical section.

In March 2020, Pierre Bouvier and Hubert Garavel provided a decomposition of all instances of this model into networks of communicating automata. Each network is expressed as a Nested-Unit Petri Net (NUPN) that can be found, for each instance, in the "toolspecific" section of the corresponding PNML file.

Graphical representation for N = 2

References

https://code.google.com/p/cunf/source/browse/tools/mkdekker.py

Scaling parameter

Parameter name	Parameter description	Chosen parameter values	
N	Number of processes	10, 15, 20, 50, 100, 200	

Size of the model

Parameter	Number of	Number of	Number of	Number of	HWB code
	places	transitions	arcs	units	
N	5N	$N^2 + 2N$	$O(N^2)$?	1-?-?
N = 10	50	120	820	23	1-22-35
N = 15	75	255	1830	32	1-31-49
N = 20	100	440	3240	42	1-41-65
N = 50	250	2600	20100	102	1-101-156
N = 100	500	10200	80200	203	1-202-308
N = 200	1000	40400	320400	402	1-401-608

Structural properties

ordinary — all arcs have multiplicity one
simple free choice — all transitions sharing a common input place have no other input place $\ldots \ldots \ldots $ (a)
extended free choice — all transitions sharing a common input place have the same input places $\dots $ (b)
state machine — every transition has exactly one input place and exactly one output place $\ldots \ldots \ldots \ldots $ (c)
marked graph — every place has exactly one input transition and exactly one output transition $\ldots \ldots \overset{\checkmark}{}^{(d)}$
$connected$ — there is an undirected path between every two nodes (places or transitions) \checkmark (e)
strongly connected — there is a directed path between every two nodes (places or transitions) ✓ ^(f)
source place(s) — one or more places have no input transitions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $ (g)
sink place(s) — one or more places have no output transitions $\dots $ (h)
source transition(s) — one or more transitions have no input places \ldots X ⁽ⁱ⁾
sink transitions(s) — one or more transitions have no output places \ldots (j)
loop-free — no transition has an input place that is also an output place $\dots $ (k)
conservative — for each transition, the number of input arcs equals the number of output arcs $\dots \dots \dots$
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs $\dots (m)$
nested units — places are structured into hierarchically nested sequential units $^{(n)}$

Behavioural properties

${f safe}$ — in every reachable marking, there is no more than one token on a place \ldots	/ (o)
dead place(s) — one or more places have no token in any reachable marking \ldots	(p)
dead transition(s) — one or more transitions cannot fire from any reachable marking?	
deadlock — there exists a reachable marking from which no transition can be fired	K (r)
reversible — from every reachable marking, there is a transition path going back to the initial marking	

^(a) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

^(b) transitions "enter_2" and "try_0" share a common input place "flag_0_0", but only the former transition has input place "flag_0_1".

 $^{^{(}c)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

^(d) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽e) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽f) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

 $^{^{(}g)}$ stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200). (h) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽i) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200). (i) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽i) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽k) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽¹⁾ stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽m) stated by CÆSAR.BDD version 1.7 on all 6 instances (10, 15, 20, 50, 100, and 200).

⁽ⁿ⁾the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

^(o) stated by CÆSAR.BDD version 3.3 on all 6 instances (10, 15, 20, 50, 100, and 200).

^(p) stated by CÆSAR.BDD version 3.3 on all 6 instances (10, 15, 20, 50, 100, and 200).

^(q) stated by CÆSAR.BDD version 3.3 to be false on 4 instance(s) out of 6, and unknown on the remaining 2 instance(s).

^(r) stated by CÆSAR.BDD version 2.0 to be false on 4 instance(s) out of 6, and unknown on the remaining 4 instance(s); confirmed at MCC'2014 by Tapaal, GreatSPN, and Lola on the 2, 3, and 4 smallest instances, respectively.

live — for every transition t, from every reachable marking, one can reach a marking in which t can fire?

Size of the marking graphs

Parameter	Number of reach-	Number of tran-	Max. number of	Max. number of
	able markings	sition firings	tokens per place	tokens per marking
N = 10	6144 ^(s)	$171530^{(t)}$	1 ^(u)	20 ^(v)
N = 15	$278528^{(w)}$	$1.6835E + 7^{(x)}$	1 ^(y)	$30^{(z)}$
N = 20	$1.1534E + 7^{(aa)}$	$1.2164E + 9^{(ab)}$	$1^{(ac)}$	$40^{(ad)}$
N = 50	$2.9273E+16^{(ae)}$?	$1^{(af)}$	$100^{(ag)}$
N = 100	6.4650E + 31 (ah)	?	$1^{(ai)}$	200 ^(aj)
N = 200	$1.6230E + 62^{(ak)}$?	$1^{(al)}$	400 ^(am)

Other properties

Mutual exclusion is guaranted: no reachable marking covers any two places p3/i, p3/j with $i \neq j$ and $i, j \in \{1, ..., N\}$. Unfair runs are however possible.

^(x) computed at MCC'2014 by Marcie.

^(z) number of initial tokens, because the net is conservative.

 $^{\rm (ab)}$ computed at MCC'2014 by Marcie.

^(s) computed at MCC'2013 by ITS-Tools, Marcie, Neco, and PNXDD; confirmed by CÆSAR.BDD version 1.8; confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal.

^(t) computed at MCC'2014 by Marcie.

 $^{^{\}rm (u)}$ confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.

^(v) number of initial tokens, because the net is conservative.

^(w) computed at MCC'2013 by ITS-Tools, Marcie, Neco, and PNXDD; confirmed by CÆSAR.BDD version 1.8; confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal.

 $^{^{\}rm (y)}$ confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, and Tapaal.

^(aa) computed at MCC'2013 by Marcie, Neco, and PNXDD; confirmed by CÆSAR.BDD version 1.8; confirmed at MCC'2014 by GreatSPN, Marcie, PNMC, and PNXDD.

^(ac) confirmed at MCC'2014 by GreatSPN, Marcie, and PNMC.

^(ad) number of initial tokens, because the net is conservative.

^(ae) computed at MCC'2014 by PNMC; confirmed by CÆSAR.BDD version 3.3.

^(af) computed at MCC'2014 by PNMC.

 $^{^{(}ag)}$ number of initial tokens, because the net is conservative.

^(ah) computed at MCC'2014 by PNMC.

^(ai) computed at MCC'2014 by PNMC.

^(aj) number of initial tokens, because the net is conservative.

^(ak) computed at MCC'2014 by PNMC.

^(al) computed at MCC'2014 by PNMC.

^(am) number of initial tokens, because the net is conservative.