fond
Model Checking Contest 2022
12th edition, Bergen, Norway, June 21, 2022
Execution of r258-tall-165303545600356
Last Updated
Jun 22, 2022

About the Execution of ITS-Tools for Sudoku-PT-BN16

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
3103.115 455242.00 558729.00 4043.10 FTFTFTFFFFTFFFFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2022-input.r258-tall-165303545600356.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2022-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool itstools
Input is Sudoku-PT-BN16, examination is LTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r258-tall-165303545600356
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 38M
-rw-r--r-- 1 mcc users 912K Apr 30 12:23 CTLCardinality.txt
-rw-r--r-- 1 mcc users 3.8M Apr 30 12:23 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.4M Apr 30 11:48 CTLFireability.txt
-rw-r--r-- 1 mcc users 14M Apr 30 11:48 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 10 09:34 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K May 10 09:34 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 635K May 9 09:13 LTLCardinality.txt
-rw-r--r-- 1 mcc users 2.0M May 9 09:13 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3M May 9 09:13 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.4M May 9 09:13 LTLFireability.xml
-rw-r--r-- 1 mcc users 200K May 9 09:13 UpperBounds.txt
-rw-r--r-- 1 mcc users 481K May 9 09:13 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 10 09:34 equiv_col
-rw-r--r-- 1 mcc users 5 May 10 09:34 instance
-rw-r--r-- 1 mcc users 6 May 10 09:34 iscolored
-rw-r--r-- 1 mcc users 2.7M May 10 09:34 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-00
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-01
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-02
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-03
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-04
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-05
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-06
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-07
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-08
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-09
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-10
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-11
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-12
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-13
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-14
FORMULA_NAME Sudoku-PT-BN16-LTLFireability-15

=== Now, execution of the tool begins

BK_START 1653122692874

Running Version 202205111006
[2022-05-21 08:44:54] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLFireability, -spotpath, /home/mcc/BenchKit/bin//..//ltlfilt, -z3path, /home/mcc/BenchKit/bin//..//z3/bin/z3, -yices2path, /home/mcc/BenchKit/bin//..//yices/bin/yices, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2022-05-21 08:44:54] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2022-05-21 08:44:54] [INFO ] Load time of PNML (sax parser for PT used): 365 ms
[2022-05-21 08:44:54] [INFO ] Transformed 5120 places.
[2022-05-21 08:44:54] [INFO ] Transformed 4096 transitions.
[2022-05-21 08:44:54] [INFO ] Parsed PT model containing 5120 places and 4096 transitions in 499 ms.
Parsed 16 properties from file /home/mcc/execution/LTLFireability.xml in 255 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 2 formulas.
FORMULA Sudoku-PT-BN16-LTLFireability-14 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-BN16-LTLFireability-15 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-BN16-LTLFireability-00 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 1024 out of 5120 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5120/5120 places, 4096/4096 transitions.
Reduce places removed 4096 places and 0 transitions.
Iterating post reduction 0 with 4096 rules applied. Total rules applied 4096 place count 1024 transition count 4096
Applied a total of 4096 rules in 90 ms. Remains 1024 /5120 variables (removed 4096) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:45:22] [INFO ] Computed 168 place invariants in 1054 ms
[2022-05-21 08:45:22] [INFO ] Implicit Places using invariants in 1384 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:45:23] [INFO ] Computed 168 place invariants in 622 ms
[2022-05-21 08:45:24] [INFO ] Implicit Places using invariants and state equation in 1690 ms returned []
Implicit Place search using SMT with State Equation took 3103 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:45:24] [INFO ] Computed 168 place invariants in 622 ms
[2022-05-21 08:45:26] [INFO ] Dead Transitions using invariants and state equation in 2222 ms found 0 transitions.
Starting structural reductions in LTL mode, iteration 1 : 1024/5120 places, 4096/4096 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/5120 places, 4096/4096 transitions.
Support contains 1024 out of 1024 places after structural reductions.
[2022-05-21 08:45:29] [INFO ] Flatten gal took : 1106 ms
[2022-05-21 08:45:40] [INFO ] Flatten gal took : 1768 ms
[2022-05-21 08:45:51] [INFO ] Input system was already deterministic with 4096 transitions.
Finished random walk after 212 steps, including 0 resets, run visited all 14 properties in 122 ms. (steps per millisecond=1 )
FORMULA Sudoku-PT-BN16-LTLFireability-02 FALSE TECHNIQUES REACHABILITY_KNOWLEDGE
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((G((F(p0)&&(p0 U p0)))||X(p0)))'
Support contains 1024 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 9 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:46:03] [INFO ] Computed 168 place invariants in 625 ms
[2022-05-21 08:46:03] [INFO ] Implicit Places using invariants in 822 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:46:04] [INFO ] Computed 168 place invariants in 615 ms
[2022-05-21 08:46:05] [INFO ] Implicit Places using invariants and state equation in 1647 ms returned []
Implicit Place search using SMT with State Equation took 2472 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:46:05] [INFO ] Computed 168 place invariants in 621 ms
[2022-05-21 08:46:07] [INFO ] Dead Transitions using invariants and state equation in 2180 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 196 ms :[(NOT p0), (NOT p0), true]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-01 automaton TGBA Formula[mat=[[{ cond=(NOT p0), acceptance={} source=0 dest: 2}], [{ cond=true, acceptance={} source=1 dest: 0}], [{ cond=true, acceptance={0} source=2 dest: 2}]], initial=1, aps=[p0:(OR (AND (GEQ s97 1) (GEQ s321 1) (GEQ s609 1) (GEQ s785 1)) (AND (GEQ s185 1) (GEQ s409 1) (GEQ s693 1) (GEQ s857 1)) (AND (GEQ s119 1) (GEQ s327 1) (...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Product exploration timeout after 18000 steps with 9000 reset in 10002 ms.
Product exploration timeout after 17970 steps with 8985 reset in 10002 ms.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Solver returned unknown.
Knowledge obtained : [p0, (X p0), (F (G (NOT p0)))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge :(X p0)
Knowledge based reduction with 3 factoid took 82 ms. Reduced automaton from 3 states, 3 edges and 1 AP to 1 states, 0 edges and 0 AP.
FORMULA Sudoku-PT-BN16-LTLFireability-01 TRUE TECHNIQUES KNOWLEDGE
Treatment of property Sudoku-PT-BN16-LTLFireability-01 finished in 30163 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(F((!((p0 U !p0) U p0)||(G(p0)&&p0))))'
Support contains 1024 out of 1024 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 34 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:46:33] [INFO ] Computed 168 place invariants in 629 ms
[2022-05-21 08:46:33] [INFO ] Implicit Places using invariants in 836 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:46:34] [INFO ] Computed 168 place invariants in 622 ms
[2022-05-21 08:46:35] [INFO ] Implicit Places using invariants and state equation in 1617 ms returned []
Implicit Place search using SMT with State Equation took 2457 ms to find 0 implicit places.
[2022-05-21 08:46:35] [INFO ] Redundant transitions in 277 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:46:36] [INFO ] Computed 168 place invariants in 634 ms
[2022-05-21 08:46:37] [INFO ] Dead Transitions using invariants and state equation in 2185 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 38 ms :[false]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-03 automaton TGBA Formula[mat=[[{ cond=(NOT p0), acceptance={0} source=0 dest: 0}, { cond=p0, acceptance={1} source=0 dest: 0}]], initial=0, aps=[p0:(OR (AND (GEQ s97 1) (GEQ s321 1) (GEQ s609 1) (GEQ s785 1)) (AND (GEQ s185 1) (GEQ s409 1) (GEQ s693 1) (GEQ s857 1)) (AND (GEQ s119 1) (GEQ s327 1) (...], nbAcceptance=2, properties=[trans-labels, explicit-labels, trans-acc, colored, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-invariant], stateDesc=[null][true]]
Product exploration timeout after 29650 steps with 140 reset in 10004 ms.
Product exploration timeout after 29370 steps with 139 reset in 10001 ms.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Solver returned unknown.
Knowledge obtained : [p0, (X p0), (F (G (NOT p0)))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge :(F (G (NOT p0)))
Knowledge based reduction with 3 factoid took 89 ms. Reduced automaton from 1 states, 2 edges and 1 AP to 1 states, 0 edges and 0 AP.
FORMULA Sudoku-PT-BN16-LTLFireability-03 TRUE TECHNIQUES KNOWLEDGE
Treatment of property Sudoku-PT-BN16-LTLFireability-03 finished in 31202 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(X(G(p0))))'
Support contains 1024 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 7 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:04] [INFO ] Computed 168 place invariants in 633 ms
[2022-05-21 08:47:04] [INFO ] Implicit Places using invariants in 823 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:05] [INFO ] Computed 168 place invariants in 633 ms
[2022-05-21 08:47:06] [INFO ] Implicit Places using invariants and state equation in 1643 ms returned []
Implicit Place search using SMT with State Equation took 2468 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:07] [INFO ] Computed 168 place invariants in 665 ms
[2022-05-21 08:47:08] [INFO ] Dead Transitions using invariants and state equation in 2170 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 101 ms :[true, (NOT p0), (NOT p0)]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-04 automaton TGBA Formula[mat=[[{ cond=true, acceptance={0} source=0 dest: 0}], [{ cond=true, acceptance={} source=1 dest: 2}], [{ cond=(NOT p0), acceptance={} source=2 dest: 0}, { cond=p0, acceptance={} source=2 dest: 2}]], initial=1, aps=[p0:(AND (OR (LT s97 1) (LT s321 1) (LT s609 1) (LT s785 1)) (OR (LT s185 1) (LT s409 1) (LT s693 1) (LT s857 1)) (OR (LT s119 1) (LT s327 1) (LT s625 1) (...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 3 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-04 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Sudoku-PT-BN16-LTLFireability-04 finished in 4816 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(F(X(((X(X(p0))&&p0) U (p0 U p0)))))'
Support contains 1024 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 9 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:09] [INFO ] Computed 168 place invariants in 658 ms
[2022-05-21 08:47:09] [INFO ] Implicit Places using invariants in 866 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:10] [INFO ] Computed 168 place invariants in 628 ms
[2022-05-21 08:47:11] [INFO ] Implicit Places using invariants and state equation in 1601 ms returned []
Implicit Place search using SMT with State Equation took 2468 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:11] [INFO ] Computed 168 place invariants in 625 ms
[2022-05-21 08:47:13] [INFO ] Dead Transitions using invariants and state equation in 2135 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 80 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-05 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(OR (AND (GEQ s97 1) (GEQ s321 1) (GEQ s609 1) (GEQ s785 1)) (AND (GEQ s185 1) (GEQ s409 1) (GEQ s693 1) (GEQ s857 1)) (AND (GEQ s119 1) (GEQ s327 1) (...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null][false, false]]
Product exploration timeout after 18000 steps with 9000 reset in 10005 ms.
Product exploration timeout after 17970 steps with 8985 reset in 10004 ms.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Solver returned unknown.
Knowledge obtained : [p0, (X p0), (F (G (NOT p0)))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge :(X p0)
Knowledge based reduction with 3 factoid took 84 ms. Reduced automaton from 2 states, 2 edges and 1 AP to 1 states, 0 edges and 0 AP.
FORMULA Sudoku-PT-BN16-LTLFireability-05 TRUE TECHNIQUES KNOWLEDGE
Treatment of property Sudoku-PT-BN16-LTLFireability-05 finished in 30794 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(F(X(G((((F(p0)&&p0) U p0)&&F(p0)&&p0)))))'
Support contains 1024 out of 1024 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 27 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:40] [INFO ] Computed 168 place invariants in 606 ms
[2022-05-21 08:47:40] [INFO ] Implicit Places using invariants in 817 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:41] [INFO ] Computed 168 place invariants in 613 ms
[2022-05-21 08:47:42] [INFO ] Implicit Places using invariants and state equation in 1558 ms returned []
Implicit Place search using SMT with State Equation took 2377 ms to find 0 implicit places.
[2022-05-21 08:47:42] [INFO ] Redundant transitions in 169 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:42] [INFO ] Computed 168 place invariants in 612 ms
[2022-05-21 08:47:44] [INFO ] Dead Transitions using invariants and state equation in 2144 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 44 ms :[(NOT p0)]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-06 automaton TGBA Formula[mat=[[{ cond=p0, acceptance={} source=0 dest: 0}, { cond=(NOT p0), acceptance={0} source=0 dest: 0}]], initial=0, aps=[p0:(OR (AND (GEQ s97 1) (GEQ s321 1) (GEQ s609 1) (GEQ s785 1)) (AND (GEQ s185 1) (GEQ s409 1) (GEQ s693 1) (GEQ s857 1)) (AND (GEQ s119 1) (GEQ s327 1) (...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-invariant], stateDesc=[null][true]]
Stuttering criterion allowed to conclude after 211 steps with 0 reset in 81 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-06 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Sudoku-PT-BN16-LTLFireability-06 finished in 8416 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((X((F(p0)&&G(p0)))&&(G(F(X(!p0)))||F(!p0))))'
Support contains 1024 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 8 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:48] [INFO ] Computed 168 place invariants in 616 ms
[2022-05-21 08:47:48] [INFO ] Implicit Places using invariants in 803 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:49] [INFO ] Computed 168 place invariants in 613 ms
[2022-05-21 08:47:50] [INFO ] Implicit Places using invariants and state equation in 1552 ms returned []
Implicit Place search using SMT with State Equation took 2377 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:51] [INFO ] Computed 168 place invariants in 595 ms
[2022-05-21 08:47:52] [INFO ] Dead Transitions using invariants and state equation in 2020 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 85 ms :[true, (NOT p0), true]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-07 automaton TGBA Formula[mat=[[{ cond=(NOT p0), acceptance={} source=0 dest: 1}, { cond=p0, acceptance={} source=0 dest: 2}], [{ cond=p0, acceptance={} source=1 dest: 1}, { cond=(NOT p0), acceptance={} source=1 dest: 2}], [{ cond=true, acceptance={0} source=2 dest: 2}]], initial=0, aps=[p0:(AND (OR (LT s97 1) (LT s321 1) (LT s609 1) (LT s785 1)) (OR (LT s185 1) (LT s409 1) (LT s693 1) (LT s857 1)) (OR (LT s119 1) (LT s327 1) (LT s625 1) (...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 4 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-07 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Sudoku-PT-BN16-LTLFireability-07 finished in 4587 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((G(p0) U (G(p1) U X((G((G(!p2)||p3)) U p2)))))'
Support contains 16 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 266 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:53] [INFO ] Computed 168 place invariants in 606 ms
[2022-05-21 08:47:54] [INFO ] Implicit Places using invariants in 1923 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:47:55] [INFO ] Computed 168 place invariants in 603 ms
[2022-05-21 08:48:01] [INFO ] Implicit Places using invariants and state equation in 6186 ms returned []
Implicit Place search using SMT with State Equation took 8115 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:48:01] [INFO ] Computed 168 place invariants in 628 ms
[2022-05-21 08:48:03] [INFO ] Dead Transitions using invariants and state equation in 2040 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 770 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-08 automaton TGBA Formula[mat=[[{ cond=(AND (NOT p1) (NOT p0)), acceptance={} source=0 dest: 1}, { cond=(AND (NOT p1) p0), acceptance={} source=0 dest: 2}, { cond=p0, acceptance={} source=0 dest: 3}, { cond=(AND p1 (NOT p0)), acceptance={} source=0 dest: 4}, { cond=(AND p1 p0), acceptance={} source=0 dest: 5}], [{ cond=(NOT p2), acceptance={0} source=1 dest: 1}, { cond=(AND (NOT p2) (NOT p3)), acceptance={} source=1 dest: 6}, { cond=(AND (NOT p2) p3), acceptance={} source=1 dest: 7}], [{ cond=(AND p1 (NOT p0) (NOT p2)), acceptance={} source=2 dest: 1}, { cond=(AND p1 p0 (NOT p2)), acceptance={} source=2 dest: 2}, { cond=(AND (NOT p0) (NOT p2) (NOT p3)), acceptance={} source=2 dest: 6}, { cond=(AND (NOT p0) (NOT p2) p3), acceptance={} source=2 dest: 7}, { cond=(AND p0 (NOT p2) (NOT p3)), acceptance={} source=2 dest: 9}, { cond=(AND p0 (NOT p2) p3), acceptance={} source=2 dest: 10}], [{ cond=(AND (NOT p1) (NOT p0) (NOT p2)), acceptance={} source=3 dest: 1}, { cond=(AND (NOT p1) p0 (NOT p2)), acceptance={} source=3 dest: 2}, { cond=(AND p0 (NOT p2)), acceptance={0} source=3 dest: 3}, { cond=(AND p1 (NOT p0) (NOT p2)), acceptance={} source=3 dest: 4}, { cond=(AND p1 p0 (NOT p2)), acceptance={} source=3 dest: 5}], [{ cond=(AND (NOT p1) (NOT p2)), acceptance={} source=4 dest: 1}, { cond=(AND p1 (NOT p2)), acceptance={0} source=4 dest: 4}, { cond=(AND (NOT p1) (NOT p2) (NOT p3)), acceptance={} source=4 dest: 6}, { cond=(AND (NOT p1) (NOT p2) p3), acceptance={} source=4 dest: 7}, { cond=(AND p1 (NOT p2) (NOT p3)), acceptance={} source=4 dest: 11}, { cond=(AND p1 (NOT p2) p3), acceptance={} source=4 dest: 12}], [{ cond=(AND (NOT p1) (NOT p0) (NOT p2) (NOT p3)), acceptance={} source=5 dest: 6}, { cond=(AND (NOT p1) (NOT p0) (NOT p2) p3), acceptance={} source=5 dest: 7}, { cond=(AND (NOT p1) p0 (NOT p2) (NOT p3)), acceptance={} source=5 dest: 9}, { cond=(AND (NOT p1) p0 (NOT p2) p3), acceptance={} source=5 dest: 10}, { cond=(AND p1 (NOT p0) (NOT p2) (NOT p3)), acceptance={} source=5 dest: 11}, { cond=(AND p1 (NOT p0) (NOT p2) p3), acceptance={} source=5 dest: 12}, { cond=(AND p1 p0 (NOT p2) (NOT p3)), acceptance={} source=5 dest: 13}, { cond=(AND p1 p0 (NOT p2) p3), acceptance={} source=5 dest: 14}], [{ cond=(NOT p2), acceptance={} source=6 dest: 6}, { cond=p2, acceptance={} source=6 dest: 8}], [{ cond=(AND (NOT p2) (NOT p3)), acceptance={} source=7 dest: 6}, { cond=p3, acceptance={} source=7 dest: 7}, { cond=(AND p2 (NOT p3)), acceptance={} source=7 dest: 8}], [{ cond=true, acceptance={0} source=8 dest: 8}], [{ cond=(AND (NOT p0) (NOT p2)), acceptance={} source=9 dest: 6}, { cond=(AND (NOT p0) p2), acceptance={} source=9 dest: 8}, { cond=(AND p0 (NOT p2)), acceptance={} source=9 dest: 9}, { cond=(AND p0 p2), acceptance={} source=9 dest: 15}], [{ cond=(AND (NOT p0) (NOT p2) (NOT p3)), acceptance={} source=10 dest: 6}, { cond=(AND (NOT p0) p3), acceptance={} source=10 dest: 7}, { cond=(AND (NOT p0) p2 (NOT p3)), acceptance={} source=10 dest: 8}, { cond=(AND p0 (NOT p2) (NOT p3)), acceptance={} source=10 dest: 9}, { cond=(AND p0 p3), acceptance={} source=10 dest: 10}, { cond=(AND p0 p2 (NOT p3)), acceptance={} source=10 dest: 15}], [{ cond=(AND (NOT p1) (NOT p2)), acceptance={} source=11 dest: 6}, { cond=(AND (NOT p1) p2), acceptance={} source=11 dest: 8}, { cond=(AND p1 (NOT p2)), acceptance={} source=11 dest: 11}, { cond=(AND p1 p2), acceptance={} source=11 dest: 16}], [{ cond=(AND (NOT p1) (NOT p2) (NOT p3)), acceptance={} source=12 dest: 6}, { cond=(AND (NOT p1) p3), acceptance={} source=12 dest: 7}, { cond=(AND (NOT p1) p2 (NOT p3)), acceptance={} source=12 dest: 8}, { cond=(AND p1 (NOT p2) (NOT p3)), acceptance={} source=12 dest: 11}, { cond=(AND p1 p3), acceptance={} source=12 dest: 12}, { cond=(AND p1 p2 (NOT p3)), acceptance={} source=12 dest: 16}], [{ cond=(AND (NOT p1) (NOT p0) (NOT p2)), acceptance={} source=13 dest: 6}, { cond=(AND (NOT p1) (NOT p0) p2), acceptance={} source=13 dest: 8}, { cond=(AND (NOT p1) p0 (NOT p2)), acceptance={} source=13 dest: 9}, { cond=(AND p1 (NOT p0) (NOT p2)), acceptance={} source=13 dest: 11}, { cond=(AND p1 p0 (NOT p2)), acceptance={} source=13 dest: 13}, { cond=(AND (NOT p1) p0 p2), acceptance={} source=13 dest: 15}, { cond=(AND p1 (NOT p0) p2), acceptance={} source=13 dest: 16}, { cond=(AND p1 p0 p2), acceptance={} source=13 dest: 17}], [{ cond=(AND (NOT p1) (NOT p0) (NOT p2) (NOT p3)), acceptance={} source=14 dest: 6}, { cond=(AND (NOT p1) (NOT p0) p3), acceptance={} source=14 dest: 7}, { cond=(AND (NOT p1) (NOT p0) p2 (NOT p3)), acceptance={} source=14 dest: 8}, { cond=(AND (NOT p1) p0 (NOT p2) (NOT p3)), acceptance={} source=14 dest: 9}, { cond=(AND (NOT p1) p0 p3), acceptance={} source=14 dest: 10}, { cond=(AND p1 (NOT p0) (NOT p2) (NOT p3)), acceptance={} source=14 dest: 11}, { cond=(AND p1 (NOT p0) p3), acceptance={} source=14 dest: 12}, { cond=(AND p1 p0 (NOT p2) (NOT p3)), acceptance={} source=14 dest: 13}, { cond=(AND p1 p0 p3), acceptance={} source=14 dest: 14}, { cond=(AND (NOT p1) p0 p2 (NOT p3)), acceptance={} source=14 dest: 15}, { cond=(AND p1 (NOT p0) p2 (NOT p3)), acceptance={} source=14 dest: 16}, { cond=(AND p1 p0 p2 (NOT p3)), acceptance={} source=14 dest: 17}], [{ cond=(NOT p0), acceptance={} source=15 dest: 8}, { cond=p0, acceptance={} source=15 dest: 15}], [{ cond=(NOT p1), acceptance={} source=16 dest: 8}, { cond=p1, acceptance={} source=16 dest: 16}], [{ cond=(AND (NOT p1) (NOT p0)), acceptance={} source=17 dest: 8}, { cond=(AND (NOT p1) p0), acceptance={} source=17 dest: 15}, { cond=(AND p1 (NOT p0)), acceptance={} source=17 dest: 16}, { cond=(AND p1 p0), acceptance={} source=17 dest: 17}]], initial=0, aps=[p1:(AND (GEQ s227 1) (GEQ s499 1) (GEQ s750 1) (GEQ s995 1)), p0:(AND (GEQ s4 1) (GEQ s260 1) (GEQ s515 1) (GEQ s820 1)), p2:(AND (GEQ s10 1) (GEQ s314 1)...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-sensitive], stateDesc=[null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null][false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false]]
Product exploration timeout after 24110 steps with 4842 reset in 10004 ms.
Product exploration timeout after 24560 steps with 5078 reset in 10223 ms.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(AND p1 p0 p2 p3), (X (NOT (AND (NOT p1) (NOT p0) (NOT p2) p3))), (X (NOT (AND (NOT p1) (NOT p2) p3))), (X (NOT (AND (NOT p1) p0 (NOT p2) p3))), (X (NOT (AND p1 (NOT p0) (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p0) (NOT p2) (NOT p3)))), (X (NOT (AND p1 p0 (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) (NOT p0) (NOT p2)))), (X (NOT (AND (NOT p1) p0 (NOT p2)))), (X (NOT (AND p1 (NOT p2) (NOT p3)))), (X (NOT (AND p0 (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) (NOT p2)))), (X (NOT (AND (NOT p1) (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) (NOT p0) (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) p0 (NOT p2) (NOT p3)))), (F (G (NOT p1))), (F (G (NOT p0))), (F (G (NOT p2))), (F (G (NOT p3)))]
False Knowledge obtained : [(X (AND p1 (NOT p2))), (X (NOT (AND p1 (NOT p2)))), (X (AND p1 (NOT p0) (NOT p2) p3)), (X (NOT (AND p1 (NOT p0) (NOT p2) p3))), (X (AND (NOT p0) (NOT p2) p3)), (X (NOT (AND (NOT p0) (NOT p2) p3))), (X (AND p0 (NOT p2) p3)), (X (NOT (AND p0 (NOT p2) p3))), (X (AND p0 (NOT p2))), (X (NOT (AND p0 (NOT p2)))), (X (NOT p2)), (X p2), (X (AND p1 (NOT p2) p3)), (X (NOT (AND p1 (NOT p2) p3))), (X (AND p1 p0 (NOT p2))), (X (NOT (AND p1 p0 (NOT p2)))), (X (AND (NOT p2) p3)), (X (NOT (AND (NOT p2) p3))), (X (AND p1 p0 (NOT p2) p3)), (X (NOT (AND p1 p0 (NOT p2) p3))), (X (AND p1 (NOT p0) (NOT p2))), (X (NOT (AND p1 (NOT p0) (NOT p2))))]
Knowledge based reduction with 20 factoid took 2072 ms. Reduced automaton from 18 states, 87 edges and 4 AP to 18 states, 84 edges and 4 AP.
Stuttering acceptance computed with spot in 612 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Finished random walk after 3002 steps, including 14 resets, run visited all 59 properties in 1042 ms. (steps per millisecond=2 )
Knowledge obtained : [(AND p1 p0 p2 p3), (X (NOT (AND (NOT p1) (NOT p0) (NOT p2) p3))), (X (NOT (AND (NOT p1) (NOT p2) p3))), (X (NOT (AND (NOT p1) p0 (NOT p2) p3))), (X (NOT (AND p1 (NOT p0) (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p0) (NOT p2) (NOT p3)))), (X (NOT (AND p1 p0 (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) (NOT p0) (NOT p2)))), (X (NOT (AND (NOT p1) p0 (NOT p2)))), (X (NOT (AND p1 (NOT p2) (NOT p3)))), (X (NOT (AND p0 (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) (NOT p2)))), (X (NOT (AND (NOT p1) (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) (NOT p0) (NOT p2) (NOT p3)))), (X (NOT (AND (NOT p1) p0 (NOT p2) (NOT p3)))), (F (G (NOT p1))), (F (G (NOT p0))), (F (G (NOT p2))), (F (G (NOT p3)))]
False Knowledge obtained : [(X (AND p1 (NOT p2))), (X (NOT (AND p1 (NOT p2)))), (X (AND p1 (NOT p0) (NOT p2) p3)), (X (NOT (AND p1 (NOT p0) (NOT p2) p3))), (X (AND (NOT p0) (NOT p2) p3)), (X (NOT (AND (NOT p0) (NOT p2) p3))), (X (AND p0 (NOT p2) p3)), (X (NOT (AND p0 (NOT p2) p3))), (X (AND p0 (NOT p2))), (X (NOT (AND p0 (NOT p2)))), (X (NOT p2)), (X p2), (X (AND p1 (NOT p2) p3)), (X (NOT (AND p1 (NOT p2) p3))), (X (AND p1 p0 (NOT p2))), (X (NOT (AND p1 p0 (NOT p2)))), (X (AND (NOT p2) p3)), (X (NOT (AND (NOT p2) p3))), (X (AND p1 p0 (NOT p2) p3)), (X (NOT (AND p1 p0 (NOT p2) p3))), (X (AND p1 (NOT p0) (NOT p2))), (X (NOT (AND p1 (NOT p0) (NOT p2)))), (F (NOT p3)), (F (AND (NOT p2) p3 p0 p1)), (F (AND (NOT p2) (NOT p3) p0 p1)), (F (AND (NOT p2) p3 (NOT p0) p1)), (F (AND p2 (NOT p0))), (F (AND (NOT p2) (NOT p0))), (F (AND p2 (NOT p3))), (F (AND (NOT p2) (NOT p3) (NOT p0) p1)), (F (AND (NOT p2) p3 p0 (NOT p1))), (F (AND (NOT p2) (NOT p3) p0 (NOT p1))), (F (AND (NOT p2) p3 p0)), (F (AND (NOT p2) (NOT p3) p0)), (F (AND (NOT p2) (NOT p0) (NOT p1))), (F (AND p3 (NOT p1))), (F (NOT (AND p2 p1))), (F (AND p2 (NOT p1))), (F (AND p2 (NOT p3) p0)), (F (NOT (AND p3 p1))), (F (AND p2 (NOT p3) (NOT p1))), (F (NOT (AND p3 p0))), (F (AND p2 (NOT p3) (NOT p0))), (F (AND p3 (NOT p0))), (F (NOT (AND p2 p0))), (F (AND p3 (NOT p0) p1)), (F (AND (NOT p2) p0 p1)), (F (AND p3 p0 (NOT p1))), (F (AND (NOT p2) (NOT p0) p1)), (F (AND p2 (NOT p3) (NOT p0) (NOT p1))), (F (AND (NOT p2) p3 (NOT p0))), (F (AND p3 (NOT p0) (NOT p1))), (F (AND (NOT p2) (NOT p3) (NOT p0))), (F (NOT p2)), (F (AND (NOT p2) p3)), (F (NOT (AND p3 p0 p1))), (F (AND (NOT p2) (NOT p3))), (F (AND p2 (NOT p3) p1)), (F (NOT (AND p2 p0 p1))), (F (AND p2 (NOT p0) p1)), (F (AND p2 p0 (NOT p1))), (F (AND p2 (NOT p0) (NOT p1))), (F (AND (NOT p2) p3 (NOT p1))), (F (NOT (AND p0 p1))), (F (AND (NOT p2) (NOT p3) (NOT p1))), (F (AND (NOT p0) p1)), (F (AND (NOT p2) p1)), (F (AND p0 (NOT p1))), (F (AND (NOT p2) (NOT p1))), (F (AND (NOT p2) p3 (NOT p0) (NOT p1))), (F (AND (NOT p2) (NOT p3) (NOT p0) (NOT p1))), (F (AND (NOT p2) p3 p1)), (F (AND (NOT p2) (NOT p3) p1)), (F (AND p2 (NOT p3) (NOT p0) p1)), (F (AND p2 (NOT p3) p0 (NOT p1))), (F (AND (NOT p0) (NOT p1))), (F (AND (NOT p2) p0)), (F (NOT p1)), (F (AND (NOT p2) p0 (NOT p1))), (F (NOT p0)), (F (AND p2 (NOT p3) p0 p1))]
Knowledge based reduction with 20 factoid took 3515 ms. Reduced automaton from 18 states, 84 edges and 4 AP to 18 states, 84 edges and 4 AP.
Stuttering acceptance computed with spot in 633 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 621 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Support contains 16 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 163 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:48:34] [INFO ] Computed 168 place invariants in 632 ms
[2022-05-21 08:48:35] [INFO ] Implicit Places using invariants in 1938 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:48:36] [INFO ] Computed 168 place invariants in 624 ms
[2022-05-21 08:48:40] [INFO ] Implicit Places using invariants and state equation in 5370 ms returned []
Implicit Place search using SMT with State Equation took 7311 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:48:41] [INFO ] Computed 168 place invariants in 602 ms
[2022-05-21 08:48:42] [INFO ] Dead Transitions using invariants and state equation in 1994 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(AND p2 p3 p0 p1), (X (NOT (AND (NOT p2) (NOT p3) p0 p1))), (X (NOT (AND (NOT p2) p3 p0 (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p3) p0 (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p3) (NOT p0) (NOT p1)))), (X (NOT (AND (NOT p2) p0 (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p0) (NOT p1)))), (X (NOT (AND (NOT p2) p3 (NOT p0) (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p3) (NOT p0) p1))), (F (G (NOT p2))), (F (G (NOT p3))), (F (G (NOT p0))), (F (G (NOT p1)))]
False Knowledge obtained : [(X (AND (NOT p2) (NOT p0) p1)), (X (NOT (AND (NOT p2) (NOT p0) p1))), (X (AND (NOT p2) p0 p1)), (X (NOT (AND (NOT p2) p0 p1))), (X (AND (NOT p2) p3 (NOT p0) p1)), (X (NOT (AND (NOT p2) p3 (NOT p0) p1))), (X (AND (NOT p2) p0)), (X (NOT (AND (NOT p2) p0))), (X (AND (NOT p2) p3 p0 p1)), (X (NOT (AND (NOT p2) p3 p0 p1)))]
Knowledge based reduction with 13 factoid took 1234 ms. Reduced automaton from 18 states, 84 edges and 4 AP to 18 states, 84 edges and 4 AP.
Stuttering acceptance computed with spot in 634 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Finished random walk after 2970 steps, including 14 resets, run visited all 59 properties in 1044 ms. (steps per millisecond=2 )
Knowledge obtained : [(AND p2 p3 p0 p1), (X (NOT (AND (NOT p2) (NOT p3) p0 p1))), (X (NOT (AND (NOT p2) p3 p0 (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p3) p0 (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p3) (NOT p0) (NOT p1)))), (X (NOT (AND (NOT p2) p0 (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p0) (NOT p1)))), (X (NOT (AND (NOT p2) p3 (NOT p0) (NOT p1)))), (X (NOT (AND (NOT p2) (NOT p3) (NOT p0) p1))), (F (G (NOT p2))), (F (G (NOT p3))), (F (G (NOT p0))), (F (G (NOT p1)))]
False Knowledge obtained : [(X (AND (NOT p2) (NOT p0) p1)), (X (NOT (AND (NOT p2) (NOT p0) p1))), (X (AND (NOT p2) p0 p1)), (X (NOT (AND (NOT p2) p0 p1))), (X (AND (NOT p2) p3 (NOT p0) p1)), (X (NOT (AND (NOT p2) p3 (NOT p0) p1))), (X (AND (NOT p2) p0)), (X (NOT (AND (NOT p2) p0))), (X (AND (NOT p2) p3 p0 p1)), (X (NOT (AND (NOT p2) p3 p0 p1))), (F (NOT p3)), (F (AND (NOT p2) p1 p3 p0)), (F (AND (NOT p2) p1 (NOT p3) p0)), (F (AND (NOT p2) p1 p3 (NOT p0))), (F (AND p2 (NOT p0))), (F (AND (NOT p2) (NOT p0))), (F (AND p2 (NOT p3))), (F (AND (NOT p2) p1 (NOT p3) (NOT p0))), (F (AND (NOT p2) (NOT p1) p3 p0)), (F (AND (NOT p2) (NOT p1) (NOT p3) p0)), (F (AND (NOT p2) p3 p0)), (F (AND (NOT p2) (NOT p3) p0)), (F (AND (NOT p2) (NOT p1) (NOT p0))), (F (AND (NOT p1) p3)), (F (NOT (AND p2 p1))), (F (AND p2 (NOT p1))), (F (AND p2 (NOT p3) p0)), (F (NOT (AND p1 p3))), (F (AND p2 (NOT p1) (NOT p3))), (F (NOT (AND p3 p0))), (F (AND p2 (NOT p3) (NOT p0))), (F (AND p3 (NOT p0))), (F (NOT (AND p2 p0))), (F (AND p1 p3 (NOT p0))), (F (AND (NOT p2) p1 p0)), (F (AND (NOT p1) p3 p0)), (F (AND (NOT p2) p1 (NOT p0))), (F (AND p2 (NOT p1) (NOT p3) (NOT p0))), (F (AND (NOT p2) p3 (NOT p0))), (F (AND (NOT p1) p3 (NOT p0))), (F (AND (NOT p2) (NOT p3) (NOT p0))), (F (NOT p2)), (F (AND (NOT p2) p3)), (F (NOT (AND p1 p3 p0))), (F (AND (NOT p2) (NOT p3))), (F (AND p2 p1 (NOT p3))), (F (NOT (AND p2 p1 p0))), (F (AND p2 p1 (NOT p0))), (F (AND p2 (NOT p1) p0)), (F (AND p2 (NOT p1) (NOT p0))), (F (AND (NOT p2) (NOT p1) p3)), (F (NOT (AND p1 p0))), (F (AND (NOT p2) (NOT p1) (NOT p3))), (F (AND p1 (NOT p0))), (F (AND (NOT p2) p1)), (F (AND (NOT p1) p0)), (F (AND (NOT p2) (NOT p1))), (F (AND (NOT p2) (NOT p1) p3 (NOT p0))), (F (AND (NOT p2) (NOT p1) (NOT p3) (NOT p0))), (F (AND (NOT p2) p1 p3)), (F (AND (NOT p2) p1 (NOT p3))), (F (AND p2 p1 (NOT p3) (NOT p0))), (F (AND p2 (NOT p1) (NOT p3) p0)), (F (AND (NOT p1) (NOT p0))), (F (AND (NOT p2) p0)), (F (NOT p1)), (F (AND (NOT p2) (NOT p1) p0)), (F (NOT p0)), (F (AND p2 p1 (NOT p3) p0))]
Knowledge based reduction with 13 factoid took 3111 ms. Reduced automaton from 18 states, 84 edges and 4 AP to 18 states, 84 edges and 4 AP.
Stuttering acceptance computed with spot in 635 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 619 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 1031 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Product exploration timeout after 23320 steps with 5453 reset in 10003 ms.
Product exploration timeout after 25160 steps with 4019 reset in 10003 ms.
Applying partial POR strategy [false, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true]
Stuttering acceptance computed with spot in 623 ms :[(NOT p2), (NOT p2), (AND (NOT p0) p1 (NOT p2)), (NOT p2), (NOT p2), false, p2, (AND p2 (NOT p3)), true, (AND p2 (NOT p0)), (AND p2 (NOT p3) (NOT p0)), (AND p2 (NOT p1)), (AND p2 (NOT p3) (NOT p1)), (AND p2 (NOT p0) (NOT p1)), (AND p2 (NOT p3) (NOT p0) (NOT p1)), (NOT p0), (NOT p1), (AND (NOT p0) (NOT p1))]
Support contains 16 out of 1024 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 314 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
[2022-05-21 08:49:13] [INFO ] Redundant transitions in 217 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:49:14] [INFO ] Computed 168 place invariants in 636 ms
[2022-05-21 08:49:15] [INFO ] Dead Transitions using invariants and state equation in 2088 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Product exploration timeout after 24940 steps with 4934 reset in 10131 ms.
Product exploration timeout after 23940 steps with 5262 reset in 10001 ms.
Built C files in :
/tmp/ltsmin7742974843118549341
[2022-05-21 08:49:35] [INFO ] Built C files in 57ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin7742974843118549341
Running compilation step : cd /tmp/ltsmin7742974843118549341;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin7742974843118549341;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin7742974843118549341;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner$1.run(LTSminRunner.java:94)
at java.base/java.lang.Thread.run(Thread.java:829)
Support contains 16 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 153 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:49:39] [INFO ] Computed 168 place invariants in 608 ms
[2022-05-21 08:49:40] [INFO ] Implicit Places using invariants in 1958 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:49:41] [INFO ] Computed 168 place invariants in 609 ms
[2022-05-21 08:49:46] [INFO ] Implicit Places using invariants and state equation in 5398 ms returned []
Implicit Place search using SMT with State Equation took 7373 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:49:47] [INFO ] Computed 168 place invariants in 605 ms
[2022-05-21 08:49:48] [INFO ] Dead Transitions using invariants and state equation in 2111 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Built C files in :
/tmp/ltsmin17131652193277542291
[2022-05-21 08:49:48] [INFO ] Built C files in 44ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin17131652193277542291
Running compilation step : cd /tmp/ltsmin17131652193277542291;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin17131652193277542291;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin17131652193277542291;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner$1.run(LTSminRunner.java:94)
at java.base/java.lang.Thread.run(Thread.java:829)
[2022-05-21 08:49:54] [INFO ] Flatten gal took : 186 ms
[2022-05-21 08:49:54] [INFO ] Flatten gal took : 211 ms
[2022-05-21 08:49:54] [INFO ] Time to serialize gal into /tmp/LTL6318047692156023901.gal : 125 ms
[2022-05-21 08:49:54] [INFO ] Time to serialize properties into /tmp/LTL7196504515354118410.ltl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202205111006/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL6318047692156023901.gal' '-t' 'CGAL' '-LTL' '/tmp/LTL7196504515354118410.ltl' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'

its-ltl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202205111006/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/LTL6318047...266
Read 1 LTL properties
Checking formula 0 : !(((G("(((Rows_0_4>=1)&&(Regions_0_4>=1))&&((Cells_0_3>=1)&&(Columns_3_4>=1)))"))U((G("(((Rows_14_3>=1)&&(Regions_15_3>=1))&&((Cells_1...446
Formula 0 simplified : !(G"(((Rows_0_4>=1)&&(Regions_0_4>=1))&&((Cells_0_3>=1)&&(Columns_3_4>=1)))" U (G"(((Rows_14_3>=1)&&(Regions_15_3>=1))&&((Cells_14_1...431
Detected timeout of ITS tools.
[2022-05-21 08:50:10] [INFO ] Flatten gal took : 173 ms
[2022-05-21 08:50:10] [INFO ] Applying decomposition
[2022-05-21 08:50:10] [INFO ] Flatten gal took : 177 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202205111006/bin/convert-linux64' '-i' '/tmp/graph2834039052522856818.txt' '-o' '/tmp/graph2834039052522856818.bin' '-w' '/tmp/graph2834039052522856818.weights'
Built communities with : '/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202205111006/bin/louvain-linux64' '/tmp/graph2834039052522856818.bin' '-l' '-1' '-v' '-w' '/tmp/graph2834039052522856818.weights' '-q' '0' '-e' '0.001'
[2022-05-21 08:50:10] [INFO ] Decomposing Gal with order
[2022-05-21 08:50:10] [INFO ] Rewriting arrays to variables to allow decomposition.
[2022-05-21 08:50:11] [INFO ] Removed a total of 15360 redundant transitions.
[2022-05-21 08:50:11] [INFO ] Flatten gal took : 436 ms
[2022-05-21 08:50:11] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 34 ms.
[2022-05-21 08:50:11] [INFO ] Time to serialize gal into /tmp/LTL7130849153273175444.gal : 23 ms
[2022-05-21 08:50:11] [INFO ] Time to serialize properties into /tmp/LTL17745350835466029991.ltl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202205111006/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL7130849153273175444.gal' '-t' 'CGAL' '-LTL' '/tmp/LTL17745350835466029991.ltl' '-c' '-stutter-deadlock'

its-ltl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202205111006/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/LTL7130849...246
Read 1 LTL properties
Checking formula 0 : !(((G("(((u4.Rows_0_4>=1)&&(u260.Regions_0_4>=1))&&((u515.Cells_0_3>=1)&&(u820.Columns_3_4>=1)))"))U((G("(((u227.Rows_14_3>=1)&&(u499....544
Formula 0 simplified : !(G"(((u4.Rows_0_4>=1)&&(u260.Regions_0_4>=1))&&((u515.Cells_0_3>=1)&&(u820.Columns_3_4>=1)))" U (G"(((u227.Rows_14_3>=1)&&(u499.Reg...529
Detected timeout of ITS tools.
Built C files in :
/tmp/ltsmin7581991326878981308
[2022-05-21 08:50:26] [INFO ] Built C files in 60ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin7581991326878981308
Running compilation step : cd /tmp/ltsmin7581991326878981308;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin7581991326878981308;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin7581991326878981308;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner$1.run(LTSminRunner.java:94)
at java.base/java.lang.Thread.run(Thread.java:829)
Treatment of property Sudoku-PT-BN16-LTLFireability-08 finished in 157009 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(F(((F(p1)&&p0)||p2)))))'
Support contains 12 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 135 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:50:30] [INFO ] Computed 168 place invariants in 609 ms
[2022-05-21 08:50:31] [INFO ] Implicit Places using invariants in 2154 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:50:32] [INFO ] Computed 168 place invariants in 610 ms
[2022-05-21 08:50:37] [INFO ] Implicit Places using invariants and state equation in 5097 ms returned []
Implicit Place search using SMT with State Equation took 7265 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:50:37] [INFO ] Computed 168 place invariants in 622 ms
[2022-05-21 08:50:39] [INFO ] Dead Transitions using invariants and state equation in 2080 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 117 ms :[(OR (AND (NOT p0) (NOT p2)) (AND (NOT p1) (NOT p2))), (AND (NOT p2) (NOT p1)), (OR (AND (NOT p0) (NOT p2)) (AND (NOT p1) (NOT p2))), (OR (AND (NOT p0) (NOT p2)) (AND (NOT p1) (NOT p2)))]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-09 automaton TGBA Formula[mat=[[{ cond=(AND (NOT p2) (NOT p0)), acceptance={0} source=0 dest: 0}, { cond=(AND (NOT p2) p0 (NOT p1)), acceptance={0} source=0 dest: 1}], [{ cond=(AND (NOT p2) (NOT p1)), acceptance={0} source=1 dest: 1}], [{ cond=true, acceptance={} source=2 dest: 3}], [{ cond=true, acceptance={} source=3 dest: 0}]], initial=2, aps=[p2:(AND (GEQ s2 1) (GEQ s274 1) (GEQ s518 1) (GEQ s866 1) (GEQ s218 1) (GEQ s506 1) (GEQ s735 1) (GEQ s1018 1)), p0:(AND (GEQ s2 1) (GEQ s274 1) (GEQ s518...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null, null, null][false, false, false, false]]
Stuttering criterion allowed to conclude after 223 steps with 2 reset in 79 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-09 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Sudoku-PT-BN16-LTLFireability-09 finished in 9707 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(F(p0))'
Support contains 4 out of 1024 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 151 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:50:40] [INFO ] Computed 168 place invariants in 612 ms
[2022-05-21 08:50:41] [INFO ] Implicit Places using invariants in 1910 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:50:42] [INFO ] Computed 168 place invariants in 616 ms
[2022-05-21 08:50:46] [INFO ] Implicit Places using invariants and state equation in 4887 ms returned []
Implicit Place search using SMT with State Equation took 6801 ms to find 0 implicit places.
[2022-05-21 08:50:46] [INFO ] Redundant transitions in 215 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:50:47] [INFO ] Computed 168 place invariants in 621 ms
[2022-05-21 08:50:48] [INFO ] Dead Transitions using invariants and state equation in 2022 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 26 ms :[(NOT p0)]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-10 automaton TGBA Formula[mat=[[{ cond=(NOT p0), acceptance={0} source=0 dest: 0}]], initial=0, aps=[p0:(OR (LT s98 1) (LT s322 1) (LT s608 1) (LT s770 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, colored, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-invariant, very-weak, weak, inherently-weak], stateDesc=[null][true]]
Product exploration timeout after 15670 steps with 266 reset in 10001 ms.
Product exploration timeout after 15350 steps with 276 reset in 10007 ms.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(NOT p0), (F (G p0))]
False Knowledge obtained : [(X (NOT p0)), (X p0)]
Property proved to be true thanks to knowledge :(F (G p0))
Knowledge based reduction with 2 factoid took 67 ms. Reduced automaton from 1 states, 1 edges and 1 AP to 1 states, 0 edges and 0 AP.
FORMULA Sudoku-PT-BN16-LTLFireability-10 TRUE TECHNIQUES KNOWLEDGE
Treatment of property Sudoku-PT-BN16-LTLFireability-10 finished in 30181 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(F((G(F(p0))||p1))))'
Support contains 8 out of 1024 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 150 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:10] [INFO ] Computed 168 place invariants in 602 ms
[2022-05-21 08:51:11] [INFO ] Implicit Places using invariants in 1941 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:12] [INFO ] Computed 168 place invariants in 609 ms
[2022-05-21 08:51:16] [INFO ] Implicit Places using invariants and state equation in 4836 ms returned []
Implicit Place search using SMT with State Equation took 6780 ms to find 0 implicit places.
[2022-05-21 08:51:16] [INFO ] Redundant transitions in 214 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:17] [INFO ] Computed 168 place invariants in 606 ms
[2022-05-21 08:51:18] [INFO ] Dead Transitions using invariants and state equation in 2008 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 68 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-11 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 0}, { cond=(AND (NOT p0) (NOT p1)), acceptance={} source=0 dest: 1}], [{ cond=(AND (NOT p0) (NOT p1)), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(AND (GEQ s135 1) (GEQ s407 1) (GEQ s647 1) (GEQ s887 1)), p1:(AND (GEQ s13 1) (GEQ s301 1) (GEQ s522 1) (GEQ s941 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-invariant, very-weak, weak, inherently-weak], stateDesc=[null, null][true, true]]
Stuttering criterion allowed to conclude after 212 steps with 0 reset in 73 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-11 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Sudoku-PT-BN16-LTLFireability-11 finished in 9322 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X(G(p0)))'
Support contains 4 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 141 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:19] [INFO ] Computed 168 place invariants in 612 ms
[2022-05-21 08:51:20] [INFO ] Implicit Places using invariants in 1942 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:21] [INFO ] Computed 168 place invariants in 605 ms
[2022-05-21 08:51:26] [INFO ] Implicit Places using invariants and state equation in 5200 ms returned []
Implicit Place search using SMT with State Equation took 7148 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:26] [INFO ] Computed 168 place invariants in 617 ms
[2022-05-21 08:51:28] [INFO ] Dead Transitions using invariants and state equation in 2015 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 81 ms :[true, (NOT p0), (NOT p0)]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-12 automaton TGBA Formula[mat=[[{ cond=true, acceptance={0} source=0 dest: 0}], [{ cond=true, acceptance={} source=1 dest: 2}], [{ cond=(NOT p0), acceptance={} source=2 dest: 0}, { cond=p0, acceptance={} source=2 dest: 2}]], initial=1, aps=[p0:(OR (LT s81 1) (LT s353 1) (LT s602 1) (LT s929 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 2 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-12 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Sudoku-PT-BN16-LTLFireability-12 finished in 9412 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((F(G(F(!F(X(p0))))) U (p1 U X(X(p1)))))'
Support contains 8 out of 1024 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 142 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:29] [INFO ] Computed 168 place invariants in 619 ms
[2022-05-21 08:51:30] [INFO ] Implicit Places using invariants in 1933 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:30] [INFO ] Computed 168 place invariants in 606 ms
[2022-05-21 08:51:36] [INFO ] Implicit Places using invariants and state equation in 5921 ms returned []
Implicit Place search using SMT with State Equation took 7857 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:51:36] [INFO ] Computed 168 place invariants in 608 ms
[2022-05-21 08:51:38] [INFO ] Dead Transitions using invariants and state equation in 2014 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Stuttering acceptance computed with spot in 220 ms :[(NOT p1), (AND (NOT p1) p0), (NOT p1), (AND (NOT p1) p0), (AND (NOT p1) p0), (NOT p1), p0]
Running random walk in product with property : Sudoku-PT-BN16-LTLFireability-13 automaton TGBA Formula[mat=[[{ cond=(NOT p1), acceptance={} source=0 dest: 1}, { cond=true, acceptance={} source=0 dest: 2}], [{ cond=true, acceptance={} source=1 dest: 3}], [{ cond=(NOT p1), acceptance={} source=2 dest: 4}, { cond=true, acceptance={} source=2 dest: 5}], [{ cond=(NOT p1), acceptance={} source=3 dest: 6}], [{ cond=(NOT p1), acceptance={} source=4 dest: 3}], [{ cond=(NOT p1), acceptance={} source=5 dest: 4}, { cond=(NOT p1), acceptance={0} source=5 dest: 5}], [{ cond=(NOT p0), acceptance={} source=6 dest: 6}, { cond=p0, acceptance={0} source=6 dest: 6}]], initial=0, aps=[p1:(AND (GEQ s246 1) (GEQ s502 1) (GEQ s765 1) (GEQ s982 1)), p0:(AND (GEQ s227 1) (GEQ s499 1) (GEQ s749 1) (GEQ s979 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-sensitive], stateDesc=[null, null, null, null, null, null, null][false, false, false, false, false, false, false]]
Product exploration timeout after 21490 steps with 2659 reset in 10005 ms.
Product exploration timeout after 22410 steps with 2530 reset in 10001 ms.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(AND p1 p0), (F (G (NOT p1))), (F (G (NOT p0)))]
False Knowledge obtained : [(X (NOT p1)), (X p1)]
Knowledge based reduction with 3 factoid took 131 ms. Reduced automaton from 7 states, 11 edges and 2 AP to 3 states, 3 edges and 1 AP.
Stuttering acceptance computed with spot in 76 ms :[(NOT p1), (NOT p1), (NOT p1)]
Finished random walk after 87 steps, including 0 resets, run visited all 1 properties in 59 ms. (steps per millisecond=1 )
Knowledge obtained : [(AND p1 p0), (F (G (NOT p1))), (F (G (NOT p0)))]
False Knowledge obtained : [(X (NOT p1)), (X p1), (F (NOT p1))]
Knowledge based reduction with 3 factoid took 170 ms. Reduced automaton from 3 states, 3 edges and 1 AP to 3 states, 3 edges and 1 AP.
Stuttering acceptance computed with spot in 84 ms :[(NOT p1), (NOT p1), (NOT p1)]
Stuttering acceptance computed with spot in 77 ms :[(NOT p1), (NOT p1), (NOT p1)]
Support contains 4 out of 1024 places. Attempting structural reductions.
Property had overlarge support with respect to TGBA, discarding it for now.
Starting structural reductions in LTL mode, iteration 0 : 1024/1024 places, 4096/4096 transitions.
Applied a total of 0 rules in 135 ms. Remains 1024 /1024 variables (removed 0) and now considering 4096/4096 (removed 0) transitions.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:52:00] [INFO ] Computed 168 place invariants in 596 ms
[2022-05-21 08:52:02] [INFO ] Implicit Places using invariants in 1895 ms returned []
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:52:02] [INFO ] Computed 168 place invariants in 604 ms
[2022-05-21 08:52:07] [INFO ] Implicit Places using invariants and state equation in 5481 ms returned []
Implicit Place search using SMT with State Equation took 7377 ms to find 0 implicit places.
// Phase 1: matrix 4096 rows 1024 cols
[2022-05-21 08:52:08] [INFO ] Computed 168 place invariants in 602 ms
[2022-05-21 08:52:09] [INFO ] Dead Transitions using invariants and state equation in 1992 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 1024/1024 places, 4096/4096 transitions.
Computed a total of 1024 stabilizing places and 4096 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 1024 transition count 4096
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [p1, (F (G (NOT p1)))]
False Knowledge obtained : []
Knowledge based reduction with 2 factoid took 78 ms. Reduced automaton from 3 states, 3 edges and 1 AP to 3 states, 3 edges and 1 AP.
Stuttering acceptance computed with spot in 99 ms :[(NOT p1), (NOT p1), (NOT p1)]
Finished random walk after 42 steps, including 0 resets, run visited all 1 properties in 39 ms. (steps per millisecond=1 )
Knowledge obtained : [p1, (F (G (NOT p1)))]
False Knowledge obtained : [(F (NOT p1))]
Knowledge based reduction with 2 factoid took 104 ms. Reduced automaton from 3 states, 3 edges and 1 AP to 3 states, 3 edges and 1 AP.
Stuttering acceptance computed with spot in 95 ms :[(NOT p1), (NOT p1), (NOT p1)]
Stuttering acceptance computed with spot in 84 ms :[(NOT p1), (NOT p1), (NOT p1)]
Stuttering acceptance computed with spot in 92 ms :[(NOT p1), (NOT p1), (NOT p1)]
Stuttering criterion allowed to conclude after 240 steps with 10 reset in 88 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-13 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Sudoku-PT-BN16-LTLFireability-13 finished in 43063 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((G(p0) U (G(p1) U X((G((G(!p2)||p3)) U p2)))))'
[2022-05-21 08:52:11] [INFO ] Flatten gal took : 212 ms
Using solver Z3 to compute partial order matrices.
Built C files in :
/tmp/ltsmin13304906024463071742
[2022-05-21 08:52:11] [INFO ] Too many transitions (4096) to apply POR reductions. Disabling POR matrices.
[2022-05-21 08:52:11] [INFO ] Applying decomposition
[2022-05-21 08:52:11] [INFO ] Built C files in 88ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin13304906024463071742
Running compilation step : cd /tmp/ltsmin13304906024463071742;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '720' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
[2022-05-21 08:52:12] [INFO ] Flatten gal took : 169 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202205111006/bin/convert-linux64' '-i' '/tmp/graph10150616194874725929.txt' '-o' '/tmp/graph10150616194874725929.bin' '-w' '/tmp/graph10150616194874725929.weights'
Built communities with : '/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202205111006/bin/louvain-linux64' '/tmp/graph10150616194874725929.bin' '-l' '-1' '-v' '-w' '/tmp/graph10150616194874725929.weights' '-q' '0' '-e' '0.001'
[2022-05-21 08:52:12] [INFO ] Decomposing Gal with order
[2022-05-21 08:52:12] [INFO ] Rewriting arrays to variables to allow decomposition.
[2022-05-21 08:52:12] [INFO ] Removed a total of 15360 redundant transitions.
[2022-05-21 08:52:12] [INFO ] Flatten gal took : 254 ms
[2022-05-21 08:52:12] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 36 ms.
[2022-05-21 08:52:12] [INFO ] Time to serialize gal into /tmp/LTLFireability2256019111189780397.gal : 20 ms
[2022-05-21 08:52:12] [INFO ] Time to serialize properties into /tmp/LTLFireability16073938518854935014.ltl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202205111006/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTLFireability2256019111189780397.gal' '-t' 'CGAL' '-LTL' '/tmp/LTLFireability16073938518854935014.ltl' '-c' '-stutter-deadlock'

its-ltl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202205111006/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/LTLFireabi...268
Read 1 LTL properties
Checking formula 0 : !(((G("(((u4.Rows_0_4>=1)&&(u260.Regions_0_4>=1))&&((u515.Cells_0_3>=1)&&(u820.Columns_3_4>=1)))"))U((G("(((u227.Rows_14_3>=1)&&(u499....544
Formula 0 simplified : !(G"(((u4.Rows_0_4>=1)&&(u260.Regions_0_4>=1))&&((u515.Cells_0_3>=1)&&(u820.Columns_3_4>=1)))" U (G"(((u227.Rows_14_3>=1)&&(u499.Reg...529
Compilation finished in 12417 ms.
Running link step : cd /tmp/ltsmin13304906024463071742;'gcc' '-shared' '-o' 'gal.so' 'model.o'
Link finished in 63 ms.
Running LTSmin : cd /tmp/ltsmin13304906024463071742;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '--when' '--ltl' '([]((LTLAPp0==true)) U ([]((LTLAPp1==true)) U X(([](([](!(LTLAPp2==true))||(LTLAPp3==true))) U (LTLAPp2==true)))))' '--buchi-type=spotba'
LTSmin run took 3626 ms.
FORMULA Sudoku-PT-BN16-LTLFireability-08 FALSE TECHNIQUES EXPLICIT LTSMIN SAT_SMT
ITS tools runner thread asked to quit. Dying gracefully.
Total runtime 454006 ms.

BK_STOP 1653123148116

--------------------
content from stderr:

+ export LANG=C
+ LANG=C
+ export BINDIR=/home/mcc/BenchKit/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ LTLFireability = StateSpace ]]
+ /home/mcc/BenchKit/bin//..//runeclipse.sh /home/mcc/execution LTLFireability -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ export PYTHONPATH=/usr/lib/python3.9/site-packages/
+ PYTHONPATH=/usr/lib/python3.9/site-packages/
+ export LD_LIBRARY_PATH=/usr/local/lib:
+ LD_LIBRARY_PATH=/usr/local/lib:
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ ls /home/mcc/BenchKit/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202205111006.jar
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
+ VERSION=202205111006
+ echo 'Running Version 202205111006'
+ /home/mcc/BenchKit/bin//..//itstools/its-tools -data @none -pnfolder /home/mcc/execution -examination LTLFireability -spotpath /home/mcc/BenchKit/bin//..//ltlfilt -z3path /home/mcc/BenchKit/bin//..//z3/bin/z3 -yices2path /home/mcc/BenchKit/bin//..//yices/bin/yices -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600 -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=@none -Xss128m -Xms40m -Xmx8192m

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Sudoku-PT-BN16"
export BK_EXAMINATION="LTLFireability"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool itstools"
echo " Input is Sudoku-PT-BN16, examination is LTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r258-tall-165303545600356"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Sudoku-PT-BN16.tgz
mv Sudoku-PT-BN16 execution
cd execution
if [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "UpperBounds" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] || [ "LTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;