fond
Model Checking Contest 2022
12th edition, Bergen, Norway, June 21, 2022
Execution of r150-smll-165276998400092
Last Updated
Jun 22, 2022

About the Execution of ITS-Tools for NeoElection-PT-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
385.716 15435.00 33066.00 279.80 FFTTTTFFTTTFTFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2022-input.r150-smll-165276998400092.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2022-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...............
=====================================================================
Generated by BenchKit 2-4028
Executing tool itstools
Input is NeoElection-PT-6, examination is LTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r150-smll-165276998400092
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 16M
-rw-r--r-- 1 mcc users 605K Apr 30 05:08 CTLCardinality.txt
-rw-r--r-- 1 mcc users 1.9M Apr 30 05:08 CTLCardinality.xml
-rw-r--r-- 1 mcc users 605K Apr 30 04:40 CTLFireability.txt
-rw-r--r-- 1 mcc users 2.0M Apr 30 04:40 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 10 09:34 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K May 10 09:34 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 567K May 9 08:20 LTLCardinality.txt
-rw-r--r-- 1 mcc users 1.4M May 9 08:20 LTLCardinality.xml
-rw-r--r-- 1 mcc users 166K May 9 08:20 LTLFireability.txt
-rw-r--r-- 1 mcc users 423K May 9 08:20 LTLFireability.xml
-rw-r--r-- 1 mcc users 57K May 9 08:20 UpperBounds.txt
-rw-r--r-- 1 mcc users 111K May 9 08:20 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 10 09:34 equiv_col
-rw-r--r-- 1 mcc users 2 May 10 09:34 instance
-rw-r--r-- 1 mcc users 6 May 10 09:34 iscolored
-rw-r--r-- 1 mcc users 7.5M May 10 09:34 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-6-LTLFireability-00
FORMULA_NAME NeoElection-PT-6-LTLFireability-01
FORMULA_NAME NeoElection-PT-6-LTLFireability-02
FORMULA_NAME NeoElection-PT-6-LTLFireability-03
FORMULA_NAME NeoElection-PT-6-LTLFireability-04
FORMULA_NAME NeoElection-PT-6-LTLFireability-05
FORMULA_NAME NeoElection-PT-6-LTLFireability-06
FORMULA_NAME NeoElection-PT-6-LTLFireability-07
FORMULA_NAME NeoElection-PT-6-LTLFireability-08
FORMULA_NAME NeoElection-PT-6-LTLFireability-09
FORMULA_NAME NeoElection-PT-6-LTLFireability-10
FORMULA_NAME NeoElection-PT-6-LTLFireability-11
FORMULA_NAME NeoElection-PT-6-LTLFireability-12
FORMULA_NAME NeoElection-PT-6-LTLFireability-13
FORMULA_NAME NeoElection-PT-6-LTLFireability-14
FORMULA_NAME NeoElection-PT-6-LTLFireability-15

=== Now, execution of the tool begins

BK_START 1652945932066

Running Version 202205111006
[2022-05-19 07:38:53] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLFireability, -spotpath, /home/mcc/BenchKit/bin//..//ltlfilt, -z3path, /home/mcc/BenchKit/bin//..//z3/bin/z3, -yices2path, /home/mcc/BenchKit/bin//..//yices/bin/yices, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2022-05-19 07:38:53] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2022-05-19 07:38:54] [INFO ] Load time of PNML (sax parser for PT used): 787 ms
[2022-05-19 07:38:54] [INFO ] Transformed 4830 places.
[2022-05-19 07:38:54] [INFO ] Transformed 8435 transitions.
[2022-05-19 07:38:54] [INFO ] Found NUPN structural information;
[2022-05-19 07:38:54] [INFO ] Completing missing partition info from NUPN : creating a component with [P_crashed_0, P_crashed_1, P_crashed_2, P_crashed_3, P_crashed_4, P_crashed_5, P_crashed_6, P_dead_0, P_dead_1, P_dead_2, P_dead_3, P_dead_4, P_dead_5, P_dead_6, P_electedPrimary_0, P_electedPrimary_1, P_electedPrimary_2, P_electedPrimary_3, P_electedPrimary_4, P_electedPrimary_5, P_electedPrimary_6, P_electedSecondary_0, P_electedSecondary_1, P_electedSecondary_2, P_electedSecondary_3, P_electedSecondary_4, P_electedSecondary_5, P_electedSecondary_6, P_electionFailed_0, P_electionFailed_1, P_electionFailed_2, P_electionFailed_3, P_electionFailed_4, P_electionFailed_5, P_electionFailed_6, P_electionInit_0, P_electionInit_1, P_electionInit_2, P_electionInit_3, P_electionInit_4, P_electionInit_5, P_electionInit_6, P_masterList_0_1_0, P_masterList_0_1_1, P_masterList_0_1_2, P_masterList_0_1_3, P_masterList_0_1_4, P_masterList_0_1_5, P_masterList_0_1_6, P_masterList_0_2_0, P_masterList_0_2_1, P_masterList_0_2_2, P_masterList_0_2_3, P_masterList_0_2_4, P_masterList_0_2_5, P_masterList_0_2_6, P_masterList_0_3_0, P_masterList_0_3_1, P_masterList_0_3_2, P_masterList_0_3_3, P_masterList_0_3_4, P_masterList_0_3_5, P_masterList_0_3_6, P_masterList_0_4_0, P_masterList_0_4_1, P_masterList_0_4_2, P_masterList_0_4_3, P_masterList_0_4_4, P_masterList_0_4_5, P_masterList_0_4_6, P_masterList_0_5_0, P_masterList_0_5_1, P_masterList_0_5_2, P_masterList_0_5_3, P_masterList_0_5_4, P_masterList_0_5_5, P_masterList_0_5_6, P_masterList_0_6_0, P_masterList_0_6_1, P_masterList_0_6_2, P_masterList_0_6_3, P_masterList_0_6_4, P_masterList_0_6_5, P_masterList_0_6_6, P_masterList_1_1_0, P_masterList_1_1_1, P_masterList_1_1_2, P_masterList_1_1_3, P_masterList_1_1_4, P_masterList_1_1_5, P_masterList_1_1_6, P_masterList_1_2_0, P_masterList_1_2_1, P_masterList_1_2_2, P_masterList_1_2_3, P_masterList_1_2_4, P_masterList_1_2_5, P_masterList_1_2_6, P_masterList_1_3_0, P_masterList_1_3_1, P_masterList_1_3_2, P_masterList_1_3_3, P_masterList_1_3_4, P_masterList_1_3_5, P_masterList_1_3_6, P_masterList_1_4_0, P_masterList_1_4_1, P_masterList_1_4_2, P_masterList_1_4_3, P_masterList_1_4_4, P_masterList_1_4_5, P_masterList_1_4_6, P_masterList_1_5_0, P_masterList_1_5_1, P_masterList_1_5_2, P_masterList_1_5_3, P_masterList_1_5_4, P_masterList_1_5_5, P_masterList_1_5_6, P_masterList_1_6_0, P_masterList_1_6_1, P_masterList_1_6_2, P_masterList_1_6_3, P_masterList_1_6_4, P_masterList_1_6_5, P_masterList_1_6_6, P_masterList_2_1_0, P_masterList_2_1_1, P_masterList_2_1_2, P_masterList_2_1_3, P_masterList_2_1_4, P_masterList_2_1_5, P_masterList_2_1_6, P_masterList_2_2_0, P_masterList_2_2_1, P_masterList_2_2_2, P_masterList_2_2_3, P_masterList_2_2_4, P_masterList_2_2_5, P_masterList_2_2_6, P_masterList_2_3_0, P_masterList_2_3_1, P_masterList_2_3_2, P_masterList_2_3_3, P_masterList_2_3_4, P_masterList_2_3_5, P_masterList_2_3_6, P_masterList_2_4_0, P_masterList_2_4_1, P_masterList_2_4_2, P_masterList_2_4_3, P_masterList_2_4_4, P_masterList_2_4_5, P_masterList_2_4_6, P_masterList_2_5_0, P_masterList_2_5_1, P_masterList_2_5_2, P_masterList_2_5_3, P_masterList_2_5_4, P_masterList_2_5_5, P_masterList_2_5_6, P_masterList_2_6_0, P_masterList_2_6_1, P_masterList_2_6_2, P_masterList_2_6_3, P_masterList_2_6_4, P_masterList_2_6_5, P_masterList_2_6_6, P_masterList_3_1_0, P_masterList_3_1_1, P_masterList_3_1_2, P_masterList_3_1_3, P_masterList_3_1_4, P_masterList_3_1_5, P_masterList_3_1_6, P_masterList_3_2_0, P_masterList_3_2_1, P_masterList_3_2_2, P_masterList_3_2_3, P_masterList_3_2_4, P_masterList_3_2_5, P_masterList_3_2_6, P_masterList_3_3_0, P_masterList_3_3_1, P_masterList_3_3_2, P_masterList_3_3_3, P_masterList_3_3_4, P_masterList_3_3_5, P_masterList_3_3_6, P_masterList_3_4_0, P_masterList_3_4_1, P_masterList_3_4_2, P_masterList_3_4_3, P_masterList_3_4_4, P_masterList_3_4_5, P_masterList_3_4_6, P_masterList_3_5_0, P_masterList_3_5_1, P_masterList_3_5_2, P_masterList_3_5_3, P_masterList_3_5_4, P_masterList_3_5_5, P_masterList_3_5_6, P_masterList_3_6_0, P_masterList_3_6_1, P_masterList_3_6_2, P_masterList_3_6_3, P_masterList_3_6_4, P_masterList_3_6_5, P_masterList_3_6_6, P_masterList_4_1_0, P_masterList_4_1_1, P_masterList_4_1_2, P_masterList_4_1_3, P_masterList_4_1_4, P_masterList_4_1_5, P_masterList_4_1_6, P_masterList_4_2_0, P_masterList_4_2_1, P_masterList_4_2_2, P_masterList_4_2_3, P_masterList_4_2_4, P_masterList_4_2_5, P_masterList_4_2_6, P_masterList_4_3_0, P_masterList_4_3_1, P_masterList_4_3_2, P_masterList_4_3_3, P_masterList_4_3_4, P_masterList_4_3_5, P_masterList_4_3_6, P_masterList_4_4_0, P_masterList_4_4_1, P_masterList_4_4_2, P_masterList_4_4_3, P_masterList_4_4_4, P_masterList_4_4_5, P_masterList_4_4_6, P_masterList_4_5_0, P_masterList_4_5_1, P_masterList_4_5_2, P_masterList_4_5_3, P_masterList_4_5_4, P_masterList_4_5_5, P_masterList_4_5_6, P_masterList_4_6_0, P_masterList_4_6_1, P_masterList_4_6_2, P_masterList_4_6_3, P_masterList_4_6_4, P_masterList_4_6_5, P_masterList_4_6_6, P_masterList_5_1_0, P_masterList_5_1_1, P_masterList_5_1_2, P_masterList_5_1_3, P_masterList_5_1_4, P_masterList_5_1_5, P_masterList_5_1_6, P_masterList_5_2_0, P_masterList_5_2_1, P_masterList_5_2_2, P_masterList_5_2_3, P_masterList_5_2_4, P_masterList_5_2_5, P_masterList_5_2_6, P_masterList_5_3_0, P_masterList_5_3_1, P_masterList_5_3_2, P_masterList_5_3_3, P_masterList_5_3_4, P_masterList_5_3_5, P_masterList_5_3_6, P_masterList_5_4_0, P_masterList_5_4_1, P_masterList_5_4_2, P_masterList_5_4_3, P_masterList_5_4_4, P_masterList_5_4_5, P_masterList_5_4_6, P_masterList_5_5_0, P_masterList_5_5_1, P_masterList_5_5_2, P_masterList_5_5_3, P_masterList_5_5_4, P_masterList_5_5_5, P_masterList_5_5_6, P_masterList_5_6_0, P_masterList_5_6_1, P_masterList_5_6_2, P_masterList_5_6_3, P_masterList_5_6_4, P_masterList_5_6_5, P_masterList_5_6_6, P_masterList_6_1_0, P_masterList_6_1_1, P_masterList_6_1_2, P_masterList_6_1_3, P_masterList_6_1_4, P_masterList_6_1_5, P_masterList_6_1_6, P_masterList_6_2_0, P_masterList_6_2_1, P_masterList_6_2_2, P_masterList_6_2_3, P_masterList_6_2_4, P_masterList_6_2_5, P_masterList_6_2_6, P_masterList_6_3_0, P_masterList_6_3_1, P_masterList_6_3_2, P_masterList_6_3_3, P_masterList_6_3_4, P_masterList_6_3_5, P_masterList_6_3_6, P_masterList_6_4_0, P_masterList_6_4_1, P_masterList_6_4_2, P_masterList_6_4_3, P_masterList_6_4_4, P_masterList_6_4_5, P_masterList_6_4_6, P_masterList_6_5_0, P_masterList_6_5_1, P_masterList_6_5_2, P_masterList_6_5_3, P_masterList_6_5_4, P_masterList_6_5_5, P_masterList_6_5_6, P_masterList_6_6_0, P_masterList_6_6_1, P_masterList_6_6_2, P_masterList_6_6_3, P_masterList_6_6_4, P_masterList_6_6_5, P_masterList_6_6_6, P_masterState_0_F_0, P_masterState_0_F_1, P_masterState_0_F_2, P_masterState_0_F_3, P_masterState_0_F_4, P_masterState_0_F_5, P_masterState_0_F_6, P_masterState_0_T_0, P_masterState_0_T_1, P_masterState_0_T_2, P_masterState_0_T_3, P_masterState_0_T_4, P_masterState_0_T_5, P_masterState_0_T_6, P_masterState_1_F_0, P_masterState_1_F_1, P_masterState_1_F_2, P_masterState_1_F_3, P_masterState_1_F_4, P_masterState_1_F_5, P_masterState_1_F_6, P_masterState_1_T_0, P_masterState_1_T_1, P_masterState_1_T_2, P_masterState_1_T_3, P_masterState_1_T_4, P_masterState_1_T_5, P_masterState_1_T_6, P_masterState_2_F_0, P_masterState_2_F_1, P_masterState_2_F_2, P_masterState_2_F_3, P_masterState_2_F_4, P_masterState_2_F_5, P_masterState_2_F_6, P_masterState_2_T_0, P_masterState_2_T_1, P_masterState_2_T_2, P_masterState_2_T_3, P_masterState_2_T_4, P_masterState_2_T_5, P_masterState_2_T_6, P_masterState_3_F_0, P_masterState_3_F_1, P_masterState_3_F_2, P_masterState_3_F_3, P_masterState_3_F_4, P_masterState_3_F_5, P_masterState_3_F_6, P_masterState_3_T_0, P_masterState_3_T_1, P_masterState_3_T_2, P_masterState_3_T_3, P_masterState_3_T_4, P_masterState_3_T_5, P_masterState_3_T_6, P_masterState_4_F_0, P_masterState_4_F_1, P_masterState_4_F_2, P_masterState_4_F_3, P_masterState_4_F_4, P_masterState_4_F_5, P_masterState_4_F_6, P_masterState_4_T_0, P_masterState_4_T_1, P_masterState_4_T_2, P_masterState_4_T_3, P_masterState_4_T_4, P_masterState_4_T_5, P_masterState_4_T_6, P_masterState_5_F_0, P_masterState_5_F_1, P_masterState_5_F_2, P_masterState_5_F_3, P_masterState_5_F_4, P_masterState_5_F_5, P_masterState_5_F_6, P_masterState_5_T_0, P_masterState_5_T_1, P_masterState_5_T_2, P_masterState_5_T_3, P_masterState_5_T_4, P_masterState_5_T_5, P_masterState_5_T_6, P_masterState_6_F_0, P_masterState_6_F_1, P_masterState_6_F_2, P_masterState_6_F_3, P_masterState_6_F_4, P_masterState_6_F_5, P_masterState_6_F_6, P_masterState_6_T_0, P_masterState_6_T_1, P_masterState_6_T_2, P_masterState_6_T_3, P_masterState_6_T_4, P_masterState_6_T_5, P_masterState_6_T_6, P_negotiation_0_0_NONE, P_negotiation_0_0_CO, P_negotiation_0_0_DONE, P_negotiation_0_1_NONE, P_negotiation_0_1_CO, P_negotiation_0_1_DONE, P_negotiation_0_2_NONE, P_negotiation_0_2_CO, P_negotiation_0_2_DONE, P_negotiation_0_3_NONE, P_negotiation_0_3_CO, P_negotiation_0_3_DONE, P_negotiation_0_4_NONE, P_negotiation_0_4_CO, P_negotiation_0_4_DONE, P_negotiation_0_5_NONE, P_negotiation_0_5_CO, P_negotiation_0_5_DONE, P_negotiation_0_6_NONE, P_negotiation_0_6_CO, P_negotiation_0_6_DONE, P_negotiation_1_0_NONE, P_negotiation_1_0_CO, P_negotiation_1_0_DONE, P_negotiation_1_1_NONE, P_negotiation_1_1_CO, P_negotiation_1_1_DONE, P_negotiation_1_2_NONE, P_negotiation_1_2_CO, P_negotiation_1_2_DONE, P_negotiation_1_3_NONE, P_negotiation_1_3_CO, P_negotiation_1_3_DONE, P_negotiation_1_4_NONE, P_negotiation_1_4_CO, P_negotiation_1_4_DONE, P_negotiation_1_5_NONE, P_negotiation_1_5_CO, P_negotiation_1_5_DONE, P_negotiation_1_6_NONE, P_negotiation_1_6_CO, P_negotiation_1_6_DONE, P_negotiation_2_0_NONE, P_negotiation_2_0_CO, P_negotiation_2_0_DONE, P_negotiation_2_1_NONE, P_negotiation_2_1_CO, P_negotiation_2_1_DONE, P_negotiation_2_2_NONE, P_negotiation_2_2_CO, P_negotiation_2_2_DONE, P_negotiation_2_3_NONE, P_negotiation_2_3_CO, P_negotiation_2_3_DONE, P_negotiation_2_4_NONE, P_negotiation_2_4_CO, P_negotiation_2_4_DONE, P_negotiation_2_5_NONE, P_negotiation_2_5_CO, P_negotiation_2_5_DONE, P_negotiation_2_6_NONE, P_negotiation_2_6_CO, P_negotiation_2_6_DONE, P_negotiation_3_0_NONE, P_negotiation_3_0_CO, P_negotiation_3_0_DONE, P_negotiation_3_1_NONE, P_negotiation_3_1_CO, P_negotiation_3_1_DONE, P_negotiation_3_2_NONE, P_negotiation_3_2_CO, P_negotiation_3_2_DONE, P_negotiation_3_3_NONE, P_negotiation_3_3_CO, P_negotiation_3_3_DONE, P_negotiation_3_4_NONE, P_negotiation_3_4_CO, P_negotiation_3_4_DONE, P_negotiation_3_5_NONE, P_negotiation_3_5_CO, P_negotiation_3_5_DONE, P_negotiation_3_6_NONE, P_negotiation_3_6_CO, P_negotiation_3_6_DONE, P_negotiation_4_0_NONE, P_negotiation_4_0_CO, P_negotiation_4_0_DONE, P_negotiation_4_1_NONE, P_negotiation_4_1_CO, P_negotiation_4_1_DONE, P_negotiation_4_2_NONE, P_negotiation_4_2_CO, P_negotiation_4_2_DONE, P_negotiation_4_3_NONE, P_negotiation_4_3_CO, P_negotiation_4_3_DONE, P_negotiation_4_4_NONE, P_negotiation_4_4_CO, P_negotiation_4_4_DONE, P_negotiation_4_5_NONE, P_negotiation_4_5_CO, P_negotiation_4_5_DONE, P_negotiation_4_6_NONE, P_negotiation_4_6_CO, P_negotiation_4_6_DONE, P_negotiation_5_0_NONE, P_negotiation_5_0_CO, P_negotiation_5_0_DONE, P_negotiation_5_1_NONE, P_negotiation_5_1_CO, P_negotiation_5_1_DONE, P_negotiation_5_2_NONE, P_negotiation_5_2_CO, P_negotiation_5_2_DONE, P_negotiation_5_3_NONE, P_negotiation_5_3_CO, P_negotiation_5_3_DONE, P_negotiation_5_4_NONE, P_negotiation_5_4_CO, P_negotiation_5_4_DONE, P_negotiation_5_5_NONE, P_negotiation_5_5_CO, P_negotiation_5_5_DONE, P_negotiation_5_6_NONE, P_negotiation_5_6_CO, P_negotiation_5_6_DONE, P_negotiation_6_0_NONE, P_negotiation_6_0_CO, P_negotiation_6_0_DONE, P_negotiation_6_1_NONE, P_negotiation_6_1_CO, P_negotiation_6_1_DONE, P_negotiation_6_2_NONE, P_negotiation_6_2_CO, P_negotiation_6_2_DONE, P_negotiation_6_3_NONE, P_negotiation_6_3_CO, P_negotiation_6_3_DONE, P_negotiation_6_4_NONE, P_negotiation_6_4_CO, P_negotiation_6_4_DONE, P_negotiation_6_5_NONE, P_negotiation_6_5_CO, P_negotiation_6_5_DONE, P_negotiation_6_6_NONE, P_negotiation_6_6_CO, P_negotiation_6_6_DONE, P_network_0_0_AskP_0, P_network_0_0_AskP_1, P_network_0_0_AskP_2, P_network_0_0_AskP_3, P_network_0_0_AskP_4, P_network_0_0_AskP_5, P_network_0_0_AskP_6, P_network_0_0_AnsP_0, P_network_0_0_AnsP_1, P_network_0_0_AnsP_2, P_network_0_0_AnsP_3, P_network_0_0_AnsP_4, P_network_0_0_AnsP_5, P_network_0_0_AnsP_6, P_network_0_0_RI_0, P_network_0_0_RI_1, P_network_0_0_RI_2, P_network_0_0_RI_3, P_network_0_0_RI_4, P_network_0_0_RI_5, P_network_0_0_RI_6, P_network_0_0_AI_0, P_network_0_0_AI_1, P_network_0_0_AI_2, P_network_0_0_AI_3, P_network_0_0_AI_4, P_network_0_0_AI_5, P_network_0_0_AI_6, P_network_0_0_AnnP_0, P_network_0_0_AnnP_1, P_network_0_0_AnnP_2, P_network_0_0_AnnP_3, P_network_0_0_AnnP_4, P_network_0_0_AnnP_5, P_network_0_0_AnnP_6, P_network_0_0_RP_0, P_network_0_0_RP_1, P_network_0_0_RP_2, P_network_0_0_RP_3, P_network_0_0_RP_4, P_network_0_0_RP_5, P_network_0_0_RP_6, P_network_0_1_AskP_0, P_network_0_1_AskP_1, P_network_0_1_AskP_2, P_network_0_1_AskP_3, P_network_0_1_AskP_4, P_network_0_1_AskP_5, P_network_0_1_AskP_6, P_network_0_1_AnsP_0, P_network_0_1_AnsP_1, P_network_0_1_AnsP_2, P_network_0_1_AnsP_3, P_network_0_1_AnsP_4, P_network_0_1_AnsP_5, P_network_0_1_AnsP_6, P_network_0_1_RI_0, P_network_0_1_RI_1, P_network_0_1_RI_2, P_network_0_1_RI_3, P_network_0_1_RI_4, P_network_0_1_RI_5, P_network_0_1_RI_6, P_network_0_1_AI_0, P_network_0_1_AI_1, P_network_0_1_AI_2, P_network_0_1_AI_3, P_network_0_1_AI_4, P_network_0_1_AI_5, P_network_0_1_AI_6, P_network_0_1_AnnP_0, P_network_0_1_AnnP_1, P_network_0_1_AnnP_2, P_network_0_1_AnnP_3, P_network_0_1_AnnP_4, P_network_0_1_AnnP_5, P_network_0_1_AnnP_6, P_network_0_1_RP_0, P_network_0_1_RP_1, P_network_0_1_RP_2, P_network_0_1_RP_3, P_network_0_1_RP_4, P_network_0_1_RP_5, P_network_0_1_RP_6, P_network_0_2_AskP_0, P_network_0_2_AskP_1, P_network_0_2_AskP_2, P_network_0_2_AskP_3, P_network_0_2_AskP_4, P_network_0_2_AskP_5, P_network_0_2_AskP_6, P_network_0_2_AnsP_0, P_network_0_2_AnsP_1, P_network_0_2_AnsP_2, P_network_0_2_AnsP_3, P_network_0_2_AnsP_4, P_network_0_2_AnsP_5, P_network_0_2_AnsP_6, P_network_0_2_RI_0, P_network_0_2_RI_1, P_network_0_2_RI_2, P_network_0_2_RI_3, P_network_0_2_RI_4, P_network_0_2_RI_5, P_network_0_2_RI_6, P_network_0_2_AI_0, P_network_0_2_AI_1, P_network_0_2_AI_2, P_network_0_2_AI_3, P_network_0_2_AI_4, P_network_0_2_AI_5, P_network_0_2_AI_6, P_network_0_2_AnnP_0, P_network_0_2_AnnP_1, P_network_0_2_AnnP_2, P_network_0_2_AnnP_3, P_network_0_2_AnnP_4, P_network_0_2_AnnP_5, P_network_0_2_AnnP_6, P_network_0_2_RP_0, P_network_0_2_RP_1, P_network_0_2_RP_2, P_network_0_2_RP_3, P_network_0_2_RP_4, P_network_0_2_RP_5, P_network_0_2_RP_6, P_network_0_3_AskP_0, P_network_0_3_AskP_1, P_network_0_3_AskP_2, P_network_0_3_AskP_3, P_network_0_3_AskP_4, P_network_0_3_AskP_5, P_network_0_3_AskP_6, P_network_0_3_AnsP_0, P_network_0_3_AnsP_1, P_network_0_3_AnsP_2, P_network_0_3_AnsP_3, P_network_0_3_AnsP_4, P_network_0_3_AnsP_5, P_network_0_3_AnsP_6, P_network_0_3_RI_0, P_network_0_3_RI_1, P_network_0_3_RI_2, P_network_0_3_RI_3, P_network_0_3_RI_4, P_network_0_3_RI_5, P_network_0_3_RI_6, P_network_0_3_AI_0, P_network_0_3_AI_1, P_network_0_3_AI_2, P_network_0_3_AI_3, P_network_0_3_AI_4, P_network_0_3_AI_5, P_network_0_3_AI_6, P_network_0_3_AnnP_0, P_network_0_3_AnnP_1, P_network_0_3_AnnP_2, P_network_0_3_AnnP_3, P_network_0_3_AnnP_4, P_network_0_3_AnnP_5, P_network_0_3_AnnP_6, P_network_0_3_RP_0, P_network_0_3_RP_1, P_network_0_3_RP_2, P_network_0_3_RP_3, P_network_0_3_RP_4, P_network_0_3_RP_5, P_network_0_3_RP_6, P_network_0_4_AskP_0, P_network_0_4_AskP_1, P_network_0_4_AskP_2, P_network_0_4_AskP_3, P_network_0_4_AskP_4, P_network_0_4_AskP_5, P_network_0_4_AskP_6, P_network_0_4_AnsP_0, P_network_0_4_AnsP_1, P_network_0_4_AnsP_2, P_network_0_4_AnsP_3, P_network_0_4_AnsP_4, P_network_0_4_AnsP_5, P_network_0_4_AnsP_6, P_network_0_4_RI_0, P_network_0_4_RI_1, P_network_0_4_RI_2, P_network_0_4_RI_3, P_network_0_4_RI_4, P_network_0_4_RI_5, P_network_0_4_RI_6, P_network_0_4_AI_0, P_network_0_4_AI_1, P_network_0_4_AI_2, P_network_0_4_AI_3, P_network_0_4_AI_4, P_network_0_4_AI_5, P_network_0_4_AI_6, P_network_0_4_AnnP_0, P_network_0_4_AnnP_1, P_network_0_4_AnnP_2, P_network_0_4_AnnP_3, P_network_0_4_AnnP_4, P_network_0_4_AnnP_5, P_network_0_4_AnnP_6, P_network_0_4_RP_0, P_network_0_4_RP_1, P_network_0_4_RP_2, P_network_0_4_RP_3, P_network_0_4_RP_4, P_network_0_4_RP_5, P_network_0_4_RP_6, P_network_0_5_AskP_0, P_network_0_5_AskP_1, P_network_0_5_AskP_2, P_network_0_5_AskP_3, P_network_0_5_AskP_4, P_network_0_5_AskP_5, P_network_0_5_AskP_6, P_network_0_5_AnsP_0, P_network_0_5_AnsP_1, P_network_0_5_AnsP_2, P_network_0_5_AnsP_3, P_network_0_5_AnsP_4, P_network_0_5_AnsP_5, P_network_0_5_AnsP_6, P_network_0_5_RI_0, P_network_0_5_RI_1, P_network_0_5_RI_2, P_network_0_5_RI_3, P_network_0_5_RI_4, P_network_0_5_RI_5, P_network_0_5_RI_6, P_network_0_5_AI_0, P_network_0_5_AI_1, P_network_0_5_AI_2, P_network_0_5_AI_3, P_network_0_5_AI_4, P_network_0_5_AI_5, P_network_0_5_AI_6, P_network_0_5_AnnP_0, P_network_0_5_AnnP_1, P_network_0_5_AnnP_2, P_network_0_5_AnnP_3, P_network_0_5_AnnP_4, P_network_0_5_AnnP_5, P_network_0_5_AnnP_6, P_network_0_5_RP_0, P_network_0_5_RP_1, P_network_0_5_RP_2, P_network_0_5_RP_3, P_network_0_5_RP_4, P_network_0_5_RP_5, P_network_0_5_RP_6, P_network_0_6_AskP_0, P_network_0_6_AskP_1, P_network_0_6_AskP_2, P_network_0_6_AskP_3, P_network_0_6_AskP_4, P_network_0_6_AskP_5, P_network_0_6_AskP_6, P_network_0_6_AnsP_0, P_network_0_6_AnsP_1, P_network_0_6_AnsP_2, P_network_0_6_AnsP_3, P_network_0_6_AnsP_4, P_network_0_6_AnsP_5, P_network_0_6_AnsP_6, P_network_0_6_RI_0, P_network_0_6_RI_1, P_network_0_6_RI_2, P_network_0_6_RI_3, P_network_0_6_RI_4, P_network_0_6_RI_5, P_network_0_6_RI_6, P_network_0_6_AI_0, P_network_0_6_AI_1, P_network_0_6_AI_2, P_network_0_6_AI_3, P_network_0_6_AI_4, P_network_0_6_AI_5, P_network_0_6_AI_6, P_network_0_6_AnnP_0, P_network_0_6_AnnP_1, P_network_0_6_AnnP_2, P_network_0_6_AnnP_3, P_network_0_6_AnnP_4, P_network_0_6_AnnP_5, P_network_0_6_AnnP_6, P_network_0_6_RP_0, P_network_0_6_RP_1, P_network_0_6_RP_2, P_network_0_6_RP_3, P_network_0_6_RP_4, P_network_0_6_RP_5, P_network_0_6_RP_6, P_network_1_0_AskP_0, P_network_1_0_AskP_1, P_network_1_0_AskP_2, P_network_1_0_AskP_3, P_network_1_0_AskP_4, P_network_1_0_AskP_5, P_network_1_0_AskP_6, P_network_1_0_AnsP_0, P_network_1_0_AnsP_1, P_network_1_0_AnsP_2, P_network_1_0_AnsP_3, P_network_1_0_AnsP_4, P_network_1_0_AnsP_5, P_network_1_0_AnsP_6, P_network_1_0_RI_0, P_network_1_0_RI_1, P_network_1_0_RI_2, P_network_1_0_RI_3, P_network_1_0_RI_4, P_network_1_0_RI_5, P_network_1_0_RI_6, P_network_1_0_AI_0, P_network_1_0_AI_1, P_network_1_0_AI_2, P_network_1_0_AI_3, P_network_1_0_AI_4, P_network_1_0_AI_5, P_network_1_0_AI_6, P_network_1_0_AnnP_0, P_network_1_0_AnnP_1, P_network_1_0_AnnP_2, P_network_1_0_AnnP_3, P_network_1_0_AnnP_4, P_network_1_0_AnnP_5, P_network_1_0_AnnP_6, P_network_1_0_RP_0, P_network_1_0_RP_1, P_network_1_0_RP_2, P_network_1_0_RP_3, P_network_1_0_RP_4, P_network_1_0_RP_5, P_network_1_0_RP_6, P_network_1_1_AskP_0, P_network_1_1_AskP_1, P_network_1_1_AskP_2, P_network_1_1_AskP_3, P_network_1_1_AskP_4, P_network_1_1_AskP_5, P_network_1_1_AskP_6, P_network_1_1_AnsP_0, P_network_1_1_AnsP_1, P_network_1_1_AnsP_2, P_network_1_1_AnsP_3, P_network_1_1_AnsP_4, P_network_1_1_AnsP_5, P_network_1_1_AnsP_6, P_network_1_1_RI_0, P_network_1_1_RI_1, P_network_1_1_RI_2, P_network_1_1_RI_3, P_network_1_1_RI_4, P_network_1_1_RI_5, P_network_1_1_RI_6, P_network_1_1_AI_0, P_network_1_1_AI_1, P_network_1_1_AI_2, P_network_1_1_AI_3, P_network_1_1_AI_4, P_network_1_1_AI_5, P_network_1_1_AI_6, P_network_1_1_AnnP_0, P_network_1_1_AnnP_1, P_network_1_1_AnnP_2, P_network_1_1_AnnP_3, P_network_1_1_AnnP_4, P_network_1_1_AnnP_5, P_network_1_1_AnnP_6, P_network_1_1_RP_0, P_network_1_1_RP_1, P_network_1_1_RP_2, P_network_1_1_RP_3, P_network_1_1_RP_4, P_network_1_1_RP_5, P_network_1_1_RP_6, P_network_1_2_AskP_0, P_network_1_2_AskP_1, P_network_1_2_AskP_2, P_network_1_2_AskP_3, P_network_1_2_AskP_4, P_network_1_2_AskP_5, P_network_1_2_AskP_6, P_network_1_2_AnsP_0, P_network_1_2_AnsP_1, P_network_1_2_AnsP_2, P_network_1_2_AnsP_3, P_network_1_2_AnsP_4, P_network_1_2_AnsP_5, P_network_1_2_AnsP_6, P_network_1_2_RI_0, P_network_1_2_RI_1, P_network_1_2_RI_2, P_network_1_2_RI_3, P_network_1_2_RI_4, P_network_1_2_RI_5, P_network_1_2_RI_6, P_network_1_2_AI_0, P_network_1_2_AI_1, P_network_1_2_AI_2, P_network_1_2_AI_3, P_network_1_2_AI_4, P_network_1_2_AI_5, P_network_1_2_AI_6, P_network_1_2_AnnP_0, P_network_1_2_AnnP_1, P_network_1_2_AnnP_2, P_network_1_2_AnnP_3, P_network_1_2_AnnP_4, P_network_1_2_AnnP_5, P_network_1_2_AnnP_6, P_network_1_2_RP_0, P_network_1_2_RP_1, P_network_1_2_RP_2, P_network_1_2_RP_3, P_network_1_2_RP_4, P_network_1_2_RP_5, P_network_1_2_RP_6, P_network_1_3_AskP_0, P_network_1_3_AskP_1, P_network_1_3_AskP_2, P_network_1_3_AskP_3, P_network_1_3_AskP_4, P_network_1_3_AskP_5, P_network_1_3_AskP_6, P_network_1_3_AnsP_0, P_network_1_3_AnsP_1, P_network_1_3_AnsP_2, P_network_1_3_AnsP_3, P_network_1_3_AnsP_4, P_network_1_3_AnsP_5, P_network_1_3_AnsP_6, P_network_1_3_RI_0, P_network_1_3_RI_1, P_network_1_3_RI_2, P_network_1_3_RI_3, P_network_1_3_RI_4, P_network_1_3_RI_5, P_network_1_3_RI_6, P_network_1_3_AI_0, P_network_1_3_AI_1, P_network_1_3_AI_2, P_network_1_3_AI_3, P_network_1_3_AI_4, P_network_1_3_AI_5, P_network_1_3_AI_6, P_network_1_3_AnnP_0, P_network_1_3_AnnP_1, P_network_1_3_AnnP_2, P_network_1_3_AnnP_3, P_network_1_3_AnnP_4, P_network_1_3_AnnP_5, P_network_1_3_AnnP_6, P_network_1_3_RP_0, P_network_1_3_RP_1, P_network_1_3_RP_2, P_network_1_3_RP_3, P_network_1_3_RP_4, P_network_1_3_RP_5, P_network_1_3_RP_6, P_network_1_4_AskP_0, P_network_1_4_AskP_1, P_network_1_4_AskP_2, P_network_1_4_AskP_3, P_network_1_4_AskP_4, P_network_1_4_AskP_5, P_network_1_4_AskP_6, P_network_1_4_AnsP_0, P_network_1_4_AnsP_1, P_network_1_4_AnsP_2, P_network_1_4_AnsP_3, P_network_1_4_AnsP_4, P_network_1_4_AnsP_5, P_network_1_4_AnsP_6, P_network_1_4_RI_0, P_network_1_4_RI_1, P_network_1_4_RI_2, P_network_1_4_RI_3, P_network_1_4_RI_4, P_network_1_4_RI_5, P_network_1_4_RI_6, P_network_1_4_AI_0, P_network_1_4_AI_1, P_network_1_4_AI_2, P_network_1_4_AI_3, P_network_1_4_AI_4, P_network_1_4_AI_5, P_network_1_4_AI_6, P_network_1_4_AnnP_0, P_network_1_4_AnnP_1, P_network_1_4_AnnP_2, P_network_1_4_AnnP_3, P_network_1_4_AnnP_4, P_network_1_4_AnnP_5, P_network_1_4_AnnP_6, P_network_1_4_RP_0, P_network_1_4_RP_1, P_network_1_4_RP_2, P_network_1_4_RP_3, P_network_1_4_RP_4, P_network_1_4_RP_5, P_network_1_4_RP_6, P_network_1_5_AskP_0, P_network_1_5_AskP_1, P_network_1_5_AskP_2, P_network_1_5_AskP_3, P_network_1_5_AskP_4, P_network_1_5_AskP_5, P_network_1_5_AskP_6, P_network_1_5_AnsP_0, P_network_1_5_AnsP_1, P_network_1_5_AnsP_2, P_network_1_5_AnsP_3, P_network_1_5_AnsP_4, P_network_1_5_AnsP_5, P_network_1_5_AnsP_6, P_network_1_5_RI_0, P_network_1_5_RI_1, P_network_1_5_RI_2, P_network_1_5_RI_3, P_network_1_5_RI_4, P_network_1_5_RI_5, P_network_1_5_RI_6, P_network_1_5_AI_0, P_network_1_5_AI_1, P_network_1_5_AI_2, P_network_1_5_AI_3, P_network_1_5_AI_4, P_network_1_5_AI_5, P_network_1_5_AI_6, P_network_1_5_AnnP_0, P_network_1_5_AnnP_1, P_network_1_5_AnnP_2, P_network_1_5_AnnP_3, P_network_1_5_AnnP_4, P_network_1_5_AnnP_5, P_network_1_5_AnnP_6, P_network_1_5_RP_0, P_network_1_5_RP_1, P_network_1_5_RP_2, P_network_1_5_RP_3, P_network_1_5_RP_4, P_network_1_5_RP_5, P_network_1_5_RP_6, P_network_1_6_AskP_0, P_network_1_6_AskP_1, P_network_1_6_AskP_2, P_network_1_6_AskP_3, P_network_1_6_AskP_4, P_network_1_6_AskP_5, P_network_1_6_AskP_6, P_network_1_6_AnsP_0, P_network_1_6_AnsP_1, P_network_1_6_AnsP_2, P_network_1_6_AnsP_3, P_network_1_6_AnsP_4, P_network_1_6_AnsP_5, P_network_1_6_AnsP_6, P_network_1_6_RI_0, P_network_1_6_RI_1, P_network_1_6_RI_2, P_network_1_6_RI_3, P_network_1_6_RI_4, P_network_1_6_RI_5, P_network_1_6_RI_6, P_network_1_6_AI_0, P_network_1_6_AI_1, P_network_1_6_AI_2, P_network_1_6_AI_3, P_network_1_6_AI_4, P_network_1_6_AI_5, P_network_1_6_AI_6, P_network_1_6_AnnP_0, P_network_1_6_AnnP_1, P_network_1_6_AnnP_2, P_network_1_6_AnnP_3, P_network_1_6_AnnP_4, P_network_1_6_AnnP_5, P_network_1_6_AnnP_6, P_network_1_6_RP_0, P_network_1_6_RP_1, P_network_1_6_RP_2, P_network_1_6_RP_3, P_network_1_6_RP_4, P_network_1_6_RP_5, P_network_1_6_RP_6, P_network_2_0_AskP_0, P_network_2_0_AskP_1, P_network_2_0_AskP_2, P_network_2_0_AskP_3, P_network_2_0_AskP_4, P_network_2_0_AskP_5, P_network_2_0_AskP_6, P_network_2_0_AnsP_0, P_network_2_0_AnsP_1, P_network_2_0_AnsP_2, P_network_2_0_AnsP_3, P_network_2_0_AnsP_4, P_network_2_0_AnsP_5, P_network_2_0_AnsP_6, P_network_2_0_RI_0, P_network_2_0_RI_1, P_network_2_0_RI_2, P_network_2_0_RI_3, P_network_2_0_RI_4, P_network_2_0_RI_5, P_network_2_0_RI_6, P_network_2_0_AI_0, P_network_2_0_AI_1, P_network_2_0_AI_2, P_network_2_0_AI_3, P_network_2_0_AI_4, P_network_2_0_AI_5, P_network_2_0_AI_6, P_network_2_0_AnnP_0, P_network_2_0_AnnP_1, P_network_2_0_AnnP_2, P_network_2_0_AnnP_3, P_network_2_0_AnnP_4, P_network_2_0_AnnP_5, P_network_2_0_AnnP_6, P_network_2_0_RP_0, P_network_2_0_RP_1, P_network_2_0_RP_2, P_network_2_0_RP_3, P_network_2_0_RP_4, P_network_2_0_RP_5, P_network_2_0_RP_6, P_network_2_1_AskP_0, P_network_2_1_AskP_1, P_network_2_1_AskP_2, P_network_2_1_AskP_3, P_network_2_1_AskP_4, P_network_2_1_AskP_5, P_network_2_1_AskP_6, P_network_2_1_AnsP_0, P_network_2_1_AnsP_1, P_network_2_1_AnsP_2, P_network_2_1_AnsP_3, P_network_2_1_AnsP_4, P_network_2_1_AnsP_5, P_network_2_1_AnsP_6, P_network_2_1_RI_0, P_network_2_1_RI_1, P_network_2_1_RI_2, P_network_2_1_RI_3, P_network_2_1_RI_4, P_network_2_1_RI_5, P_network_2_1_RI_6, P_network_2_1_AI_0, P_network_2_1_AI_1, P_network_2_1_AI_2, P_network_2_1_AI_3, P_network_2_1_AI_4, P_network_2_1_AI_5, P_network_2_1_AI_6, P_network_2_1_AnnP_0, P_network_2_1_AnnP_1, P_network_2_1_AnnP_2, P_network_2_1_AnnP_3, P_network_2_1_AnnP_4, P_network_2_1_AnnP_5, P_network_2_1_AnnP_6, P_network_2_1_RP_0, P_network_2_1_RP_1, P_network_2_1_RP_2, P_network_2_1_RP_3, P_network_2_1_RP_4, P_network_2_1_RP_5, P_network_2_1_RP_6, P_network_2_2_AskP_0, P_network_2_2_AskP_1, P_network_2_2_AskP_2, P_network_2_2_AskP_3, P_network_2_2_AskP_4, P_network_2_2_AskP_5, P_network_2_2_AskP_6, P_network_2_2_AnsP_0, P_network_2_2_AnsP_1, P_network_2_2_AnsP_2, P_network_2_2_AnsP_3, P_network_2_2_AnsP_4, P_network_2_2_AnsP_5, P_network_2_2_AnsP_6, P_network_2_2_RI_0, P_network_2_2_RI_1, P_network_2_2_RI_2, P_network_2_2_RI_3, P_network_2_2_RI_4, P_network_2_2_RI_5, P_network_2_2_RI_6, P_network_2_2_AI_0, P_network_2_2_AI_1, P_network_2_2_AI_2, P_network_2_2_AI_3, P_network_2_2_AI_4, P_network_2_2_AI_5, P_network_2_2_AI_6, P_network_2_2_AnnP_0, P_network_2_2_AnnP_1, P_network_2_2_AnnP_2, P_network_2_2_AnnP_3, P_network_2_2_AnnP_4, P_network_2_2_AnnP_5, P_network_2_2_AnnP_6, P_network_2_2_RP_0, P_network_2_2_RP_1, P_network_2_2_RP_2, P_network_2_2_RP_3, P_network_2_2_RP_4, P_network_2_2_RP_5, P_network_2_2_RP_6, P_network_2_3_AskP_0, P_network_2_3_AskP_1, P_network_2_3_AskP_2, P_network_2_3_AskP_3, P_network_2_3_AskP_4, P_network_2_3_AskP_5, P_network_2_3_AskP_6, P_network_2_3_AnsP_0, P_network_2_3_AnsP_1, P_network_2_3_AnsP_2, P_network_2_3_AnsP_3, P_network_2_3_AnsP_4, P_network_2_3_AnsP_5, P_network_2_3_AnsP_6, P_network_2_3_RI_0, P_network_2_3_RI_1, P_network_2_3_RI_2, P_network_2_3_RI_3, P_network_2_3_RI_4, P_network_2_3_RI_5, P_network_2_3_RI_6, P_network_2_3_AI_0, P_network_2_3_AI_1, P_network_2_3_AI_2, P_network_2_3_AI_3, P_network_2_3_AI_4, P_network_2_3_AI_5, P_network_2_3_AI_6, P_network_2_3_AnnP_0, P_network_2_3_AnnP_1, P_network_2_3_AnnP_2, P_network_2_3_AnnP_3, P_network_2_3_AnnP_4, P_network_2_3_AnnP_5, P_network_2_3_AnnP_6, P_network_2_3_RP_0, P_network_2_3_RP_1, P_network_2_3_RP_2, P_network_2_3_RP_3, P_network_2_3_RP_4, P_network_2_3_RP_5, P_network_2_3_RP_6, P_network_2_4_AskP_0, P_network_2_4_AskP_1, P_network_2_4_AskP_2, P_network_2_4_AskP_3, P_network_2_4_AskP_4, P_network_2_4_AskP_5, P_network_2_4_AskP_6, P_network_2_4_AnsP_0, P_network_2_4_AnsP_1, P_network_2_4_AnsP_2, P_network_2_4_AnsP_3, P_network_2_4_AnsP_4, P_network_2_4_AnsP_5, P_network_2_4_AnsP_6, P_network_2_4_RI_0, P_network_2_4_RI_1, P_network_2_4_RI_2, P_network_2_4_RI_3, P_network_2_4_RI_4, P_network_2_4_RI_5, P_network_2_4_RI_6, P_network_2_4_AI_0, P_network_2_4_AI_1, P_network_2_4_AI_2, P_network_2_4_AI_3, P_network_2_4_AI_4, P_network_2_4_AI_5, P_network_2_4_AI_6, P_network_2_4_AnnP_0, P_network_2_4_AnnP_1, P_network_2_4_AnnP_2, P_network_2_4_AnnP_3, P_network_2_4_AnnP_4, P_network_2_4_AnnP_5, P_network_2_4_AnnP_6, P_network_2_4_RP_0, P_network_2_4_RP_1, P_network_2_4_RP_2, P_network_2_4_RP_3, P_network_2_4_RP_4, P_network_2_4_RP_5, P_network_2_4_RP_6, P_network_2_5_AskP_0, P_network_2_5_AskP_1, P_network_2_5_AskP_2, P_network_2_5_AskP_3, P_network_2_5_AskP_4, P_network_2_5_AskP_5, P_network_2_5_AskP_6, P_network_2_5_AnsP_0, P_network_2_5_AnsP_1, P_network_2_5_AnsP_2, P_network_2_5_AnsP_3, P_network_2_5_AnsP_4, P_network_2_5_AnsP_5, P_network_2_5_AnsP_6, P_network_2_5_RI_0, P_network_2_5_RI_1, P_network_2_5_RI_2, P_network_2_5_RI_3, P_network_2_5_RI_4, P_network_2_5_RI_5, P_network_2_5_RI_6, P_network_2_5_AI_0, P_network_2_5_AI_1, P_network_2_5_AI_2, P_network_2_5_AI_3, P_network_2_5_AI_4, P_network_2_5_AI_5, P_network_2_5_AI_6, P_network_2_5_AnnP_0, P_network_2_5_AnnP_1, P_network_2_5_AnnP_2, P_network_2_5_AnnP_3, P_network_2_5_AnnP_4, P_network_2_5_AnnP_5, P_network_2_5_AnnP_6, P_network_2_5_RP_0, P_network_2_5_RP_1, P_network_2_5_RP_2, P_network_2_5_RP_3, P_network_2_5_RP_4, P_network_2_5_RP_5, P_network_2_5_RP_6, P_network_2_6_AskP_0, P_network_2_6_AskP_1, P_network_2_6_AskP_2, P_network_2_6_AskP_3, P_network_2_6_AskP_4, P_network_2_6_AskP_5, P_network_2_6_AskP_6, P_network_2_6_AnsP_0, P_network_2_6_AnsP_1, P_network_2_6_AnsP_2, P_network_2_6_AnsP_3, P_network_2_6_AnsP_4, P_network_2_6_AnsP_5, P_network_2_6_AnsP_6, P_network_2_6_RI_0, P_network_2_6_RI_1, P_network_2_6_RI_2, P_network_2_6_RI_3, P_network_2_6_RI_4, P_network_2_6_RI_5, P_network_2_6_RI_6, P_network_2_6_AI_0, P_network_2_6_AI_1, P_network_2_6_AI_2, P_network_2_6_AI_3, P_network_2_6_AI_4, P_network_2_6_AI_5, P_network_2_6_AI_6, P_network_2_6_AnnP_0, P_network_2_6_AnnP_1, P_network_2_6_AnnP_2, P_network_2_6_AnnP_3, P_network_2_6_AnnP_4, P_network_2_6_AnnP_5, P_network_2_6_AnnP_6, P_network_2_6_RP_0, P_network_2_6_RP_1, P_network_2_6_RP_2, P_network_2_6_RP_3, P_network_2_6_RP_4, P_network_2_6_RP_5, P_network_2_6_RP_6, P_network_3_0_AskP_0, P_network_3_0_AskP_1, P_network_3_0_AskP_2, P_network_3_0_AskP_3, P_network_3_0_AskP_4, P_network_3_0_AskP_5, P_network_3_0_AskP_6, P_network_3_0_AnsP_0, P_network_3_0_AnsP_1, P_network_3_0_AnsP_2, P_network_3_0_AnsP_3, P_network_3_0_AnsP_4, P_network_3_0_AnsP_5, P_network_3_0_AnsP_6, P_network_3_0_RI_0, P_network_3_0_RI_1, P_network_3_0_RI_2, P_network_3_0_RI_3, P_network_3_0_RI_4, P_network_3_0_RI_5, P_network_3_0_RI_6, P_network_3_0_AI_0, P_network_3_0_AI_1, P_network_3_0_AI_2, P_network_3_0_AI_3, P_network_3_0_AI_4, P_network_3_0_AI_5, P_network_3_0_AI_6, P_network_3_0_AnnP_0, P_network_3_0_AnnP_1, P_network_3_0_AnnP_2, P_network_3_0_AnnP_3, P_network_3_0_AnnP_4, P_network_3_0_AnnP_5, P_network_3_0_AnnP_6, P_network_3_0_RP_0, P_network_3_0_RP_1, P_network_3_0_RP_2, P_network_3_0_RP_3, P_network_3_0_RP_4, P_network_3_0_RP_5, P_network_3_0_RP_6, P_network_3_1_AskP_0, P_network_3_1_AskP_1, P_network_3_1_AskP_2, P_network_3_1_AskP_3, P_network_3_1_AskP_4, P_network_3_1_AskP_5, P_network_3_1_AskP_6, P_network_3_1_AnsP_0, P_network_3_1_AnsP_1, P_network_3_1_AnsP_2, P_network_3_1_AnsP_3, P_network_3_1_AnsP_4, P_network_3_1_AnsP_5, P_network_3_1_AnsP_6, P_network_3_1_RI_0, P_network_3_1_RI_1, P_network_3_1_RI_2, P_network_3_1_RI_3, P_network_3_1_RI_4, P_network_3_1_RI_5, P_network_3_1_RI_6, P_network_3_1_AI_0, P_network_3_1_AI_1, P_network_3_1_AI_2, P_network_3_1_AI_3, P_network_3_1_AI_4, P_network_3_1_AI_5, P_network_3_1_AI_6, P_network_3_1_AnnP_0, P_network_3_1_AnnP_1, P_network_3_1_AnnP_2, P_network_3_1_AnnP_3, P_network_3_1_AnnP_4, P_network_3_1_AnnP_5, P_network_3_1_AnnP_6, P_network_3_1_RP_0, P_network_3_1_RP_1, P_network_3_1_RP_2, P_network_3_1_RP_3, P_network_3_1_RP_4, P_network_3_1_RP_5, P_network_3_1_RP_6, P_network_3_2_AskP_0, P_network_3_2_AskP_1, P_network_3_2_AskP_2, P_network_3_2_AskP_3, P_network_3_2_AskP_4, P_network_3_2_AskP_5, P_network_3_2_AskP_6, P_network_3_2_AnsP_0, P_network_3_2_AnsP_1, P_network_3_2_AnsP_2, P_network_3_2_AnsP_3, P_network_3_2_AnsP_4, P_network_3_2_AnsP_5, P_network_3_2_AnsP_6, P_network_3_2_RI_0, P_network_3_2_RI_1, P_network_3_2_RI_2, P_network_3_2_RI_3, P_network_3_2_RI_4, P_network_3_2_RI_5, P_network_3_2_RI_6, P_network_3_2_AI_0, P_network_3_2_AI_1, P_network_3_2_AI_2, P_network_3_2_AI_3, P_network_3_2_AI_4, P_network_3_2_AI_5, P_network_3_2_AI_6, P_network_3_2_AnnP_0, P_network_3_2_AnnP_1, P_network_3_2_AnnP_2, P_network_3_2_AnnP_3, P_network_3_2_AnnP_4, P_network_3_2_AnnP_5, P_network_3_2_AnnP_6, P_network_3_2_RP_0, P_network_3_2_RP_1, P_network_3_2_RP_2, P_network_3_2_RP_3, P_network_3_2_RP_4, P_network_3_2_RP_5, P_network_3_2_RP_6, P_network_3_3_AskP_0, P_network_3_3_AskP_1, P_network_3_3_AskP_2, P_network_3_3_AskP_3, P_network_3_3_AskP_4, P_network_3_3_AskP_5, P_network_3_3_AskP_6, P_network_3_3_AnsP_0, P_network_3_3_AnsP_1, P_network_3_3_AnsP_2, P_network_3_3_AnsP_3, P_network_3_3_AnsP_4, P_network_3_3_AnsP_5, P_network_3_3_AnsP_6, P_network_3_3_RI_0, P_network_3_3_RI_1, P_network_3_3_RI_2, P_network_3_3_RI_3, P_network_3_3_RI_4, P_network_3_3_RI_5, P_network_3_3_RI_6, P_network_3_3_AI_0, P_network_3_3_AI_1, P_network_3_3_AI_2, P_network_3_3_AI_3, P_network_3_3_AI_4, P_network_3_3_AI_5, P_network_3_3_AI_6, P_network_3_3_AnnP_0, P_network_3_3_AnnP_1, P_network_3_3_AnnP_2, P_network_3_3_AnnP_3, P_network_3_3_AnnP_4, P_network_3_3_AnnP_5, P_network_3_3_AnnP_6, P_network_3_3_RP_0, P_network_3_3_RP_1, P_network_3_3_RP_2, P_network_3_3_RP_3, P_network_3_3_RP_4, P_network_3_3_RP_5, P_network_3_3_RP_6, P_network_3_4_AskP_0, P_network_3_4_AskP_1, P_network_3_4_AskP_2, P_network_3_4_AskP_3, P_network_3_4_AskP_4, P_network_3_4_AskP_5, P_network_3_4_AskP_6, P_network_3_4_AnsP_0, P_network_3_4_AnsP_1, P_network_3_4_AnsP_2, P_network_3_4_AnsP_3, P_network_3_4_AnsP_4, P_network_3_4_AnsP_5, P_network_3_4_AnsP_6, P_network_3_4_RI_0, P_network_3_4_RI_1, P_network_3_4_RI_2, P_network_3_4_RI_3, P_network_3_4_RI_4, P_network_3_4_RI_5, P_network_3_4_RI_6, P_network_3_4_AI_0, P_network_3_4_AI_1, P_network_3_4_AI_2, P_network_3_4_AI_3, P_network_3_4_AI_4, P_network_3_4_AI_5, P_network_3_4_AI_6, P_network_3_4_AnnP_0, P_network_3_4_AnnP_1, P_network_3_4_AnnP_2, P_network_3_4_AnnP_3, P_network_3_4_AnnP_4, P_network_3_4_AnnP_5, P_network_3_4_AnnP_6, P_network_3_4_RP_0, P_network_3_4_RP_1, P_network_3_4_RP_2, P_network_3_4_RP_3, P_network_3_4_RP_4, P_network_3_4_RP_5, P_network_3_4_RP_6, P_network_3_5_AskP_0, P_network_3_5_AskP_1, P_network_3_5_AskP_2, P_network_3_5_AskP_3, P_network_3_5_AskP_4, P_network_3_5_AskP_5, P_network_3_5_AskP_6, P_network_3_5_AnsP_0, P_network_3_5_AnsP_1, P_network_3_5_AnsP_2, P_network_3_5_AnsP_3, P_network_3_5_AnsP_4, P_network_3_5_AnsP_5, P_network_3_5_AnsP_6, P_network_3_5_RI_0, P_network_3_5_RI_1, P_network_3_5_RI_2, P_network_3_5_RI_3, P_network_3_5_RI_4, P_network_3_5_RI_5, P_network_3_5_RI_6, P_network_3_5_AI_0, P_network_3_5_AI_1, P_network_3_5_AI_2, P_network_3_5_AI_3, P_network_3_5_AI_4, P_network_3_5_AI_5, P_network_3_5_AI_6, P_network_3_5_AnnP_0, P_network_3_5_AnnP_1, P_network_3_5_AnnP_2, P_network_3_5_AnnP_3, P_network_3_5_AnnP_4, P_network_3_5_AnnP_5, P_network_3_5_AnnP_6, P_network_3_5_RP_0, P_network_3_5_RP_1, P_network_3_5_RP_2, P_network_3_5_RP_3, P_network_3_5_RP_4, P_network_3_5_RP_5, P_network_3_5_RP_6, P_network_3_6_AskP_0, P_network_3_6_AskP_1, P_network_3_6_AskP_2, P_network_3_6_AskP_3, P_network_3_6_AskP_4, P_network_3_6_AskP_5, P_network_3_6_AskP_6, P_network_3_6_AnsP_0, P_network_3_6_AnsP_1, P_network_3_6_AnsP_2, P_network_3_6_AnsP_3, P_network_3_6_AnsP_4, P_network_3_6_AnsP_5, P_network_3_6_AnsP_6, P_network_3_6_RI_0, P_network_3_6_RI_1, P_network_3_6_RI_2, P_network_3_6_RI_3, P_network_3_6_RI_4, P_network_3_6_RI_5, P_network_3_6_RI_6, P_network_3_6_AI_0, P_network_3_6_AI_1, P_network_3_6_AI_2, P_network_3_6_AI_3, P_network_3_6_AI_4, P_network_3_6_AI_5, P_network_3_6_AI_6, P_network_3_6_AnnP_0, P_network_3_6_AnnP_1, P_network_3_6_AnnP_2, P_network_3_6_AnnP_3, P_network_3_6_AnnP_4, P_network_3_6_AnnP_5, P_network_3_6_AnnP_6, P_network_3_6_RP_0, P_network_3_6_RP_1, P_network_3_6_RP_2, P_network_3_6_RP_3, P_network_3_6_RP_4, P_network_3_6_RP_5, P_network_3_6_RP_6, P_network_4_0_AskP_0, P_network_4_0_AskP_1, P_network_4_0_AskP_2, P_network_4_0_AskP_3, P_network_4_0_AskP_4, P_network_4_0_AskP_5, P_network_4_0_AskP_6, P_network_4_0_AnsP_0, P_network_4_0_AnsP_1, P_network_4_0_AnsP_2, P_network_4_0_AnsP_3, P_network_4_0_AnsP_4, P_network_4_0_AnsP_5, P_network_4_0_AnsP_6, P_network_4_0_RI_0, P_network_4_0_RI_1, P_network_4_0_RI_2, P_network_4_0_RI_3, P_network_4_0_RI_4, P_network_4_0_RI_5, P_network_4_0_RI_6, P_network_4_0_AI_0, P_network_4_0_AI_1, P_network_4_0_AI_2, P_network_4_0_AI_3, P_network_4_0_AI_4, P_network_4_0_AI_5, P_network_4_0_AI_6, P_network_4_0_AnnP_0, P_network_4_0_AnnP_1, P_network_4_0_AnnP_2, P_network_4_0_AnnP_3, P_network_4_0_AnnP_4, P_network_4_0_AnnP_5, P_network_4_0_AnnP_6, P_network_4_0_RP_0, P_network_4_0_RP_1, P_network_4_0_RP_2, P_network_4_0_RP_3, P_network_4_0_RP_4, P_network_4_0_RP_5, P_network_4_0_RP_6, P_network_4_1_AskP_0, P_network_4_1_AskP_1, P_network_4_1_AskP_2, P_network_4_1_AskP_3, P_network_4_1_AskP_4, P_network_4_1_AskP_5, P_network_4_1_AskP_6, P_network_4_1_AnsP_0, P_network_4_1_AnsP_1, P_network_4_1_AnsP_2, P_network_4_1_AnsP_3, P_network_4_1_AnsP_4, P_network_4_1_AnsP_5, P_network_4_1_AnsP_6, P_network_4_1_RI_0, P_network_4_1_RI_1, P_network_4_1_RI_2, P_network_4_1_RI_3, P_network_4_1_RI_4, P_network_4_1_RI_5, P_network_4_1_RI_6, P_network_4_1_AI_0, P_network_4_1_AI_1, P_network_4_1_AI_2, P_network_4_1_AI_3, P_network_4_1_AI_4, P_network_4_1_AI_5, P_network_4_1_AI_6, P_network_4_1_AnnP_0, P_network_4_1_AnnP_1, P_network_4_1_AnnP_2, P_network_4_1_AnnP_3, P_network_4_1_AnnP_4, P_network_4_1_AnnP_5, P_network_4_1_AnnP_6, P_network_4_1_RP_0, P_network_4_1_RP_1, P_network_4_1_RP_2, P_network_4_1_RP_3, P_network_4_1_RP_4, P_network_4_1_RP_5, P_network_4_1_RP_6, P_network_4_2_AskP_0, P_network_4_2_AskP_1, P_network_4_2_AskP_2, P_network_4_2_AskP_3, P_network_4_2_AskP_4, P_network_4_2_AskP_5, P_network_4_2_AskP_6, P_network_4_2_AnsP_0, P_network_4_2_AnsP_1, P_network_4_2_AnsP_2, P_network_4_2_AnsP_3, P_network_4_2_AnsP_4, P_network_4_2_AnsP_5, P_network_4_2_AnsP_6, P_network_4_2_RI_0, P_network_4_2_RI_1, P_network_4_2_RI_2, P_network_4_2_RI_3, P_network_4_2_RI_4, P_network_4_2_RI_5, P_network_4_2_RI_6, P_network_4_2_AI_0, P_network_4_2_AI_1, P_network_4_2_AI_2, P_network_4_2_AI_3, P_network_4_2_AI_4, P_network_4_2_AI_5, P_network_4_2_AI_6, P_network_4_2_AnnP_0, P_network_4_2_AnnP_1, P_network_4_2_AnnP_2, P_network_4_2_AnnP_3, P_network_4_2_AnnP_4, P_network_4_2_AnnP_5, P_network_4_2_AnnP_6, P_network_4_2_RP_0, P_network_4_2_RP_1, P_network_4_2_RP_2, P_network_4_2_RP_3, P_network_4_2_RP_4, P_network_4_2_RP_5, P_network_4_2_RP_6, P_network_4_3_AskP_0, P_network_4_3_AskP_1, P_network_4_3_AskP_2, P_network_4_3_AskP_3, P_network_4_3_AskP_4, P_network_4_3_AskP_5, P_network_4_3_AskP_6, P_network_4_3_AnsP_0, P_network_4_3_AnsP_1, P_network_4_3_AnsP_2, P_network_4_3_AnsP_3, P_network_4_3_AnsP_4, P_network_4_3_AnsP_5, P_network_4_3_AnsP_6, P_network_4_3_RI_0, P_network_4_3_RI_1, P_network_4_3_RI_2, P_network_4_3_RI_3, P_network_4_3_RI_4, P_network_4_3_RI_5, P_network_4_3_RI_6, P_network_4_3_AI_0, P_network_4_3_AI_1, P_network_4_3_AI_2, P_network_4_3_AI_3, P_network_4_3_AI_4, P_network_4_3_AI_5, P_network_4_3_AI_6, P_network_4_3_AnnP_0, P_network_4_3_AnnP_1, P_network_4_3_AnnP_2, P_network_4_3_AnnP_3, P_network_4_3_AnnP_4, P_network_4_3_AnnP_5, P_network_4_3_AnnP_6, P_network_4_3_RP_0, P_network_4_3_RP_1, P_network_4_3_RP_2, P_network_4_3_RP_3, P_network_4_3_RP_4, P_network_4_3_RP_5, P_network_4_3_RP_6, P_network_4_4_AskP_0, P_network_4_4_AskP_1, P_network_4_4_AskP_2, P_network_4_4_AskP_3, P_network_4_4_AskP_4, P_network_4_4_AskP_5, P_network_4_4_AskP_6, P_network_4_4_AnsP_0, P_network_4_4_AnsP_1, P_network_4_4_AnsP_2, P_network_4_4_AnsP_3, P_network_4_4_AnsP_4, P_network_4_4_AnsP_5, P_network_4_4_AnsP_6, P_network_4_4_RI_0, P_network_4_4_RI_1, P_network_4_4_RI_2, P_network_4_4_RI_3, P_network_4_4_RI_4, P_network_4_4_RI_5, P_network_4_4_RI_6, P_network_4_4_AI_0, P_network_4_4_AI_1, P_network_4_4_AI_2, P_network_4_4_AI_3, P_network_4_4_AI_4, P_network_4_4_AI_5, P_network_4_4_AI_6, P_network_4_4_AnnP_0, P_network_4_4_AnnP_1, P_network_4_4_AnnP_2, P_network_4_4_AnnP_3, P_network_4_4_AnnP_4, P_network_4_4_AnnP_5, P_network_4_4_AnnP_6, P_network_4_4_RP_0, P_network_4_4_RP_1, P_network_4_4_RP_2, P_network_4_4_RP_3, P_network_4_4_RP_4, P_network_4_4_RP_5, P_network_4_4_RP_6, P_network_4_5_AskP_0, P_network_4_5_AskP_1, P_network_4_5_AskP_2, P_network_4_5_AskP_3, P_network_4_5_AskP_4, P_network_4_5_AskP_5, P_network_4_5_AskP_6, P_network_4_5_AnsP_0, P_network_4_5_AnsP_1, P_network_4_5_AnsP_2, P_network_4_5_AnsP_3, P_network_4_5_AnsP_4, P_network_4_5_AnsP_5, P_network_4_5_AnsP_6, P_network_4_5_RI_0, P_network_4_5_RI_1, P_network_4_5_RI_2, P_network_4_5_RI_3, P_network_4_5_RI_4, P_network_4_5_RI_5, P_network_4_5_RI_6, P_network_4_5_AI_0, P_network_4_5_AI_1, P_network_4_5_AI_2, P_network_4_5_AI_3, P_network_4_5_AI_4, P_network_4_5_AI_5, P_network_4_5_AI_6, P_network_4_5_AnnP_0, P_network_4_5_AnnP_1, P_network_4_5_AnnP_2, P_network_4_5_AnnP_3, P_network_4_5_AnnP_4, P_network_4_5_AnnP_5, P_network_4_5_AnnP_6, P_network_4_5_RP_0, P_network_4_5_RP_1, P_network_4_5_RP_2, P_network_4_5_RP_3, P_network_4_5_RP_4, P_network_4_5_RP_5, P_network_4_5_RP_6, P_network_4_6_AskP_0, P_network_4_6_AskP_1, P_network_4_6_AskP_2, P_network_4_6_AskP_3, P_network_4_6_AskP_4, P_network_4_6_AskP_5, P_network_4_6_AskP_6, P_network_4_6_AnsP_0, P_network_4_6_AnsP_1, P_network_4_6_AnsP_2, P_network_4_6_AnsP_3, P_network_4_6_AnsP_4, P_network_4_6_AnsP_5, P_network_4_6_AnsP_6, P_network_4_6_RI_0, P_network_4_6_RI_1, P_network_4_6_RI_2, P_network_4_6_RI_3, P_network_4_6_RI_4, P_network_4_6_RI_5, P_network_4_6_RI_6, P_network_4_6_AI_0, P_network_4_6_AI_1, P_network_4_6_AI_2, P_network_4_6_AI_3, P_network_4_6_AI_4, P_network_4_6_AI_5, P_network_4_6_AI_6, P_network_4_6_AnnP_0, P_network_4_6_AnnP_1, P_network_4_6_AnnP_2, P_network_4_6_AnnP_3, P_network_4_6_AnnP_4, P_network_4_6_AnnP_5, P_network_4_6_AnnP_6, P_network_4_6_RP_0, P_network_4_6_RP_1, P_network_4_6_RP_2, P_network_4_6_RP_3, P_network_4_6_RP_4, P_network_4_6_RP_5, P_network_4_6_RP_6, P_network_5_0_AskP_0, P_network_5_0_AskP_1, P_network_5_0_AskP_2, P_network_5_0_AskP_3, P_network_5_0_AskP_4, P_network_5_0_AskP_5, P_network_5_0_AskP_6, P_network_5_0_AnsP_0, P_network_5_0_AnsP_1, P_network_5_0_AnsP_2, P_network_5_0_AnsP_3, P_network_5_0_AnsP_4, P_network_5_0_AnsP_5, P_network_5_0_AnsP_6, P_network_5_0_RI_0, P_network_5_0_RI_1, P_network_5_0_RI_2, P_network_5_0_RI_3, P_network_5_0_RI_4, P_network_5_0_RI_5, P_network_5_0_RI_6, P_network_5_0_AI_0, P_network_5_0_AI_1, P_network_5_0_AI_2, P_network_5_0_AI_3, P_network_5_0_AI_4, P_network_5_0_AI_5, P_network_5_0_AI_6, P_network_5_0_AnnP_0, P_network_5_0_AnnP_1, P_network_5_0_AnnP_2, P_network_5_0_AnnP_3, P_network_5_0_AnnP_4, P_network_5_0_AnnP_5, P_network_5_0_AnnP_6, P_network_5_0_RP_0, P_network_5_0_RP_1, P_network_5_0_RP_2, P_network_5_0_RP_3, P_network_5_0_RP_4, P_network_5_0_RP_5, P_network_5_0_RP_6, P_network_5_1_AskP_0, P_network_5_1_AskP_1, P_network_5_1_AskP_2, P_network_5_1_AskP_3, P_network_5_1_AskP_4, P_network_5_1_AskP_5, P_network_5_1_AskP_6, P_network_5_1_AnsP_0, P_network_5_1_AnsP_1, P_network_5_1_AnsP_2, P_network_5_1_AnsP_3, P_network_5_1_AnsP_4, P_network_5_1_AnsP_5, P_network_5_1_AnsP_6, P_network_5_1_RI_0, P_network_5_1_RI_1, P_network_5_1_RI_2, P_network_5_1_RI_3, P_network_5_1_RI_4, P_network_5_1_RI_5, P_network_5_1_RI_6, P_network_5_1_AI_0, P_network_5_1_AI_1, P_network_5_1_AI_2, P_network_5_1_AI_3, P_network_5_1_AI_4, P_network_5_1_AI_5, P_network_5_1_AI_6, P_network_5_1_AnnP_0, P_network_5_1_AnnP_1, P_network_5_1_AnnP_2, P_network_5_1_AnnP_3, P_network_5_1_AnnP_4, P_network_5_1_AnnP_5, P_network_5_1_AnnP_6, P_network_5_1_RP_0, P_network_5_1_RP_1, P_network_5_1_RP_2, P_network_5_1_RP_3, P_network_5_1_RP_4, P_network_5_1_RP_5, P_network_5_1_RP_6, P_network_5_2_AskP_0, P_network_5_2_AskP_1, P_network_5_2_AskP_2, P_network_5_2_AskP_3, P_network_5_2_AskP_4, P_network_5_2_AskP_5, P_network_5_2_AskP_6, P_network_5_2_AnsP_0, P_network_5_2_AnsP_1, P_network_5_2_AnsP_2, P_network_5_2_AnsP_3, P_network_5_2_AnsP_4, P_network_5_2_AnsP_5, P_network_5_2_AnsP_6, P_network_5_2_RI_0, P_network_5_2_RI_1, P_network_5_2_RI_2, P_network_5_2_RI_3, P_network_5_2_RI_4, P_network_5_2_RI_5, P_network_5_2_RI_6, P_network_5_2_AI_0, P_network_5_2_AI_1, P_network_5_2_AI_2, P_network_5_2_AI_3, P_network_5_2_AI_4, P_network_5_2_AI_5, P_network_5_2_AI_6, P_network_5_2_AnnP_0, P_network_5_2_AnnP_1, P_network_5_2_AnnP_2, P_network_5_2_AnnP_3, P_network_5_2_AnnP_4, P_network_5_2_AnnP_5, P_network_5_2_AnnP_6, P_network_5_2_RP_0, P_network_5_2_RP_1, P_network_5_2_RP_2, P_network_5_2_RP_3, P_network_5_2_RP_4, P_network_5_2_RP_5, P_network_5_2_RP_6, P_network_5_3_AskP_0, P_network_5_3_AskP_1, P_network_5_3_AskP_2, P_network_5_3_AskP_3, P_network_5_3_AskP_4, P_network_5_3_AskP_5, P_network_5_3_AskP_6, P_network_5_3_AnsP_0, P_network_5_3_AnsP_1, P_network_5_3_AnsP_2, P_network_5_3_AnsP_3, P_network_5_3_AnsP_4, P_network_5_3_AnsP_5, P_network_5_3_AnsP_6, P_network_5_3_RI_0, P_network_5_3_RI_1, P_network_5_3_RI_2, P_network_5_3_RI_3, P_network_5_3_RI_4, P_network_5_3_RI_5, P_network_5_3_RI_6, P_network_5_3_AI_0, P_network_5_3_AI_1, P_network_5_3_AI_2, P_network_5_3_AI_3, P_network_5_3_AI_4, P_network_5_3_AI_5, P_network_5_3_AI_6, P_network_5_3_AnnP_0, P_network_5_3_AnnP_1, P_network_5_3_AnnP_2, P_network_5_3_AnnP_3, P_network_5_3_AnnP_4, P_network_5_3_AnnP_5, P_network_5_3_AnnP_6, P_network_5_3_RP_0, P_network_5_3_RP_1, P_network_5_3_RP_2, P_network_5_3_RP_3, P_network_5_3_RP_4, P_network_5_3_RP_5, P_network_5_3_RP_6, P_network_5_4_AskP_0, P_network_5_4_AskP_1, P_network_5_4_AskP_2, P_network_5_4_AskP_3, P_network_5_4_AskP_4, P_network_5_4_AskP_5, P_network_5_4_AskP_6, P_network_5_4_AnsP_0, P_network_5_4_AnsP_1, P_network_5_4_AnsP_2, P_network_5_4_AnsP_3, P_network_5_4_AnsP_4, P_network_5_4_AnsP_5, P_network_5_4_AnsP_6, P_network_5_4_RI_0, P_network_5_4_RI_1, P_network_5_4_RI_2, P_network_5_4_RI_3, P_network_5_4_RI_4, P_network_5_4_RI_5, P_network_5_4_RI_6, P_network_5_4_AI_0, P_network_5_4_AI_1, P_network_5_4_AI_2, P_network_5_4_AI_3, P_network_5_4_AI_4, P_network_5_4_AI_5, P_network_5_4_AI_6, P_network_5_4_AnnP_0, P_network_5_4_AnnP_1, P_network_5_4_AnnP_2, P_network_5_4_AnnP_3, P_network_5_4_AnnP_4, P_network_5_4_AnnP_5, P_network_5_4_AnnP_6, P_network_5_4_RP_0, P_network_5_4_RP_1, P_network_5_4_RP_2, P_network_5_4_RP_3, P_network_5_4_RP_4, P_network_5_4_RP_5, P_network_5_4_RP_6, P_network_5_5_AskP_0, P_network_5_5_AskP_1, P_network_5_5_AskP_2, P_network_5_5_AskP_3, P_network_5_5_AskP_4, P_network_5_5_AskP_5, P_network_5_5_AskP_6, P_network_5_5_AnsP_0, P_network_5_5_AnsP_1, P_network_5_5_AnsP_2, P_network_5_5_AnsP_3, P_network_5_5_AnsP_4, P_network_5_5_AnsP_5, P_network_5_5_AnsP_6, P_network_5_5_RI_0, P_network_5_5_RI_1, P_network_5_5_RI_2, P_network_5_5_RI_3, P_network_5_5_RI_4, P_network_5_5_RI_5, P_network_5_5_RI_6, P_network_5_5_AI_0, P_network_5_5_AI_1, P_network_5_5_AI_2, P_network_5_5_AI_3, P_network_5_5_AI_4, P_network_5_5_AI_5, P_network_5_5_AI_6, P_network_5_5_AnnP_0, P_network_5_5_AnnP_1, P_network_5_5_AnnP_2, P_network_5_5_AnnP_3, P_network_5_5_AnnP_4, P_network_5_5_AnnP_5, P_network_5_5_AnnP_6, P_network_5_5_RP_0, P_network_5_5_RP_1, P_network_5_5_RP_2, P_network_5_5_RP_3, P_network_5_5_RP_4, P_network_5_5_RP_5, P_network_5_5_RP_6, P_network_5_6_AskP_0, P_network_5_6_AskP_1, P_network_5_6_AskP_2, P_network_5_6_AskP_3, P_network_5_6_AskP_4, P_network_5_6_AskP_5, P_network_5_6_AskP_6, P_network_5_6_AnsP_0, P_network_5_6_AnsP_1, P_network_5_6_AnsP_2, P_network_5_6_AnsP_3, P_network_5_6_AnsP_4, P_network_5_6_AnsP_5, P_network_5_6_AnsP_6, P_network_5_6_RI_0, P_network_5_6_RI_1, P_network_5_6_RI_2, P_network_5_6_RI_3, P_network_5_6_RI_4, P_network_5_6_RI_5, P_network_5_6_RI_6, P_network_5_6_AI_0, P_network_5_6_AI_1, P_network_5_6_AI_2, P_network_5_6_AI_3, P_network_5_6_AI_4, P_network_5_6_AI_5, P_network_5_6_AI_6, P_network_5_6_AnnP_0, P_network_5_6_AnnP_1, P_network_5_6_AnnP_2, P_network_5_6_AnnP_3, P_network_5_6_AnnP_4, P_network_5_6_AnnP_5, P_network_5_6_AnnP_6, P_network_5_6_RP_0, P_network_5_6_RP_1, P_network_5_6_RP_2, P_network_5_6_RP_3, P_network_5_6_RP_4, P_network_5_6_RP_5, P_network_5_6_RP_6, P_network_6_0_AskP_0, P_network_6_0_AskP_1, P_network_6_0_AskP_2, P_network_6_0_AskP_3, P_network_6_0_AskP_4, P_network_6_0_AskP_5, P_network_6_0_AskP_6, P_network_6_0_AnsP_0, P_network_6_0_AnsP_1, P_network_6_0_AnsP_2, P_network_6_0_AnsP_3, P_network_6_0_AnsP_4, P_network_6_0_AnsP_5, P_network_6_0_AnsP_6, P_network_6_0_RI_0, P_network_6_0_RI_1, P_network_6_0_RI_2, P_network_6_0_RI_3, P_network_6_0_RI_4, P_network_6_0_RI_5, P_network_6_0_RI_6, P_network_6_0_AI_0, P_network_6_0_AI_1, P_network_6_0_AI_2, P_network_6_0_AI_3, P_network_6_0_AI_4, P_network_6_0_AI_5, P_network_6_0_AI_6, P_network_6_0_AnnP_0, P_network_6_0_AnnP_1, P_network_6_0_AnnP_2, P_network_6_0_AnnP_3, P_network_6_0_AnnP_4, P_network_6_0_AnnP_5, P_network_6_0_AnnP_6, P_network_6_0_RP_0, P_network_6_0_RP_1, P_network_6_0_RP_2, P_network_6_0_RP_3, P_network_6_0_RP_4, P_network_6_0_RP_5, P_network_6_0_RP_6, P_network_6_1_AskP_0, P_network_6_1_AskP_1, P_network_6_1_AskP_2, P_network_6_1_AskP_3, P_network_6_1_AskP_4, P_network_6_1_AskP_5, P_network_6_1_AskP_6, P_network_6_1_AnsP_0, P_network_6_1_AnsP_1, P_network_6_1_AnsP_2, P_network_6_1_AnsP_3, P_network_6_1_AnsP_4, P_network_6_1_AnsP_5, P_network_6_1_AnsP_6, P_network_6_1_RI_0, P_network_6_1_RI_1, P_network_6_1_RI_2, P_network_6_1_RI_3, P_network_6_1_RI_4, P_network_6_1_RI_5, P_network_6_1_RI_6, P_network_6_1_AI_0, P_network_6_1_AI_1, P_network_6_1_AI_2, P_network_6_1_AI_3, P_network_6_1_AI_4, P_network_6_1_AI_5, P_network_6_1_AI_6, P_network_6_1_AnnP_0, P_network_6_1_AnnP_1, P_network_6_1_AnnP_2, P_network_6_1_AnnP_3, P_network_6_1_AnnP_4, P_network_6_1_AnnP_5, P_network_6_1_AnnP_6, P_network_6_1_RP_0, P_network_6_1_RP_1, P_network_6_1_RP_2, P_network_6_1_RP_3, P_network_6_1_RP_4, P_network_6_1_RP_5, P_network_6_1_RP_6, P_network_6_2_AskP_0, P_network_6_2_AskP_1, P_network_6_2_AskP_2, P_network_6_2_AskP_3, P_network_6_2_AskP_4, P_network_6_2_AskP_5, P_network_6_2_AskP_6, P_network_6_2_AnsP_0, P_network_6_2_AnsP_1, P_network_6_2_AnsP_2, P_network_6_2_AnsP_3, P_network_6_2_AnsP_4, P_network_6_2_AnsP_5, P_network_6_2_AnsP_6, P_network_6_2_RI_0, P_network_6_2_RI_1, P_network_6_2_RI_2, P_network_6_2_RI_3, P_network_6_2_RI_4, P_network_6_2_RI_5, P_network_6_2_RI_6, P_network_6_2_AI_0, P_network_6_2_AI_1, P_network_6_2_AI_2, P_network_6_2_AI_3, P_network_6_2_AI_4, P_network_6_2_AI_5, P_network_6_2_AI_6, P_network_6_2_AnnP_0, P_network_6_2_AnnP_1, P_network_6_2_AnnP_2, P_network_6_2_AnnP_3, P_network_6_2_AnnP_4, P_network_6_2_AnnP_5, P_network_6_2_AnnP_6, P_network_6_2_RP_0, P_network_6_2_RP_1, P_network_6_2_RP_2, P_network_6_2_RP_3, P_network_6_2_RP_4, P_network_6_2_RP_5, P_network_6_2_RP_6, P_network_6_3_AskP_0, P_network_6_3_AskP_1, P_network_6_3_AskP_2, P_network_6_3_AskP_3, P_network_6_3_AskP_4, P_network_6_3_AskP_5, P_network_6_3_AskP_6, P_network_6_3_AnsP_0, P_network_6_3_AnsP_1, P_network_6_3_AnsP_2, P_network_6_3_AnsP_3, P_network_6_3_AnsP_4, P_network_6_3_AnsP_5, P_network_6_3_AnsP_6, P_network_6_3_RI_0, P_network_6_3_RI_1, P_network_6_3_RI_2, P_network_6_3_RI_3, P_network_6_3_RI_4, P_network_6_3_RI_5, P_network_6_3_RI_6, P_network_6_3_AI_0, P_network_6_3_AI_1, P_network_6_3_AI_2, P_network_6_3_AI_3, P_network_6_3_AI_4, P_network_6_3_AI_5, P_network_6_3_AI_6, P_network_6_3_AnnP_0, P_network_6_3_AnnP_1, P_network_6_3_AnnP_2, P_network_6_3_AnnP_3, P_network_6_3_AnnP_4, P_network_6_3_AnnP_5, P_network_6_3_AnnP_6, P_network_6_3_RP_0, P_network_6_3_RP_1, P_network_6_3_RP_2, P_network_6_3_RP_3, P_network_6_3_RP_4, P_network_6_3_RP_5, P_network_6_3_RP_6, P_network_6_4_AskP_0, P_network_6_4_AskP_1, P_network_6_4_AskP_2, P_network_6_4_AskP_3, P_network_6_4_AskP_4, P_network_6_4_AskP_5, P_network_6_4_AskP_6, P_network_6_4_AnsP_0, P_network_6_4_AnsP_1, P_network_6_4_AnsP_2, P_network_6_4_AnsP_3, P_network_6_4_AnsP_4, P_network_6_4_AnsP_5, P_network_6_4_AnsP_6, P_network_6_4_RI_0, P_network_6_4_RI_1, P_network_6_4_RI_2, P_network_6_4_RI_3, P_network_6_4_RI_4, P_network_6_4_RI_5, P_network_6_4_RI_6, P_network_6_4_AI_0, P_network_6_4_AI_1, P_network_6_4_AI_2, P_network_6_4_AI_3, P_network_6_4_AI_4, P_network_6_4_AI_5, P_network_6_4_AI_6, P_network_6_4_AnnP_0, P_network_6_4_AnnP_1, P_network_6_4_AnnP_2, P_network_6_4_AnnP_3, P_network_6_4_AnnP_4, P_network_6_4_AnnP_5, P_network_6_4_AnnP_6, P_network_6_4_RP_0, P_network_6_4_RP_1, P_network_6_4_RP_2, P_network_6_4_RP_3, P_network_6_4_RP_4, P_network_6_4_RP_5, P_network_6_4_RP_6, P_network_6_5_AskP_0, P_network_6_5_AskP_1, P_network_6_5_AskP_2, P_network_6_5_AskP_3, P_network_6_5_AskP_4, P_network_6_5_AskP_5, P_network_6_5_AskP_6, P_network_6_5_AnsP_0, P_network_6_5_AnsP_1, P_network_6_5_AnsP_2, P_network_6_5_AnsP_3, P_network_6_5_AnsP_4, P_network_6_5_AnsP_5, P_network_6_5_AnsP_6, P_network_6_5_RI_0, P_network_6_5_RI_1, P_network_6_5_RI_2, P_network_6_5_RI_3, P_network_6_5_RI_4, P_network_6_5_RI_5, P_network_6_5_RI_6, P_network_6_5_AI_0, P_network_6_5_AI_1, P_network_6_5_AI_2, P_network_6_5_AI_3, P_network_6_5_AI_4, P_network_6_5_AI_5, P_network_6_5_AI_6, P_network_6_5_AnnP_0, P_network_6_5_AnnP_1, P_network_6_5_AnnP_2, P_network_6_5_AnnP_3, P_network_6_5_AnnP_4, P_network_6_5_AnnP_5, P_network_6_5_AnnP_6, P_network_6_5_RP_0, P_network_6_5_RP_1, P_network_6_5_RP_2, P_network_6_5_RP_3, P_network_6_5_RP_4, P_network_6_5_RP_5, P_network_6_5_RP_6, P_network_6_6_AskP_0, P_network_6_6_AskP_1, P_network_6_6_AskP_2, P_network_6_6_AskP_3, P_network_6_6_AskP_4, P_network_6_6_AskP_5, P_network_6_6_AskP_6, P_network_6_6_AnsP_0, P_network_6_6_AnsP_1, P_network_6_6_AnsP_2, P_network_6_6_AnsP_3, P_network_6_6_AnsP_4, P_network_6_6_AnsP_5, P_network_6_6_AnsP_6, P_network_6_6_RI_0, P_network_6_6_RI_1, P_network_6_6_RI_2, P_network_6_6_RI_3, P_network_6_6_RI_4, P_network_6_6_RI_5, P_network_6_6_RI_6, P_network_6_6_AI_0, P_network_6_6_AI_1, P_network_6_6_AI_2, P_network_6_6_AI_3, P_network_6_6_AI_4, P_network_6_6_AI_5, P_network_6_6_AI_6, P_network_6_6_AnnP_0, P_network_6_6_AnnP_1, P_network_6_6_AnnP_2, P_network_6_6_AnnP_3, P_network_6_6_AnnP_4, P_network_6_6_AnnP_5, P_network_6_6_AnnP_6, P_network_6_6_RP_0, P_network_6_6_RP_1, P_network_6_6_RP_2, P_network_6_6_RP_3, P_network_6_6_RP_4, P_network_6_6_RP_5, P_network_6_6_RP_6, P_poll__handlingMessage_0, P_poll__handlingMessage_1, P_poll__handlingMessage_2, P_poll__handlingMessage_3, P_poll__handlingMessage_4, P_poll__handlingMessage_5, P_poll__handlingMessage_6, P_poll__networl_0_0_AskP_0, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_4, P_poll__networl_0_0_AskP_5, P_poll__networl_0_0_AskP_6, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_4, P_poll__networl_0_0_AnsP_5, P_poll__networl_0_0_AnsP_6, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_4, P_poll__networl_0_0_RI_5, P_poll__networl_0_0_RI_6, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_4, P_poll__networl_0_0_AI_5, P_poll__networl_0_0_AI_6, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_4, P_poll__networl_0_0_AnnP_5, P_poll__networl_0_0_AnnP_6, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_4, P_poll__networl_0_0_RP_5, P_poll__networl_0_0_RP_6, P_poll__networl_0_1_AskP_0, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_4, P_poll__networl_0_1_AskP_5, P_poll__networl_0_1_AskP_6, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_4, P_poll__networl_0_1_AnsP_5, P_poll__networl_0_1_AnsP_6, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_4, P_poll__networl_0_1_RI_5, P_poll__networl_0_1_RI_6, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_4, P_poll__networl_0_1_AI_5, P_poll__networl_0_1_AI_6, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_4, P_poll__networl_0_1_AnnP_5, P_poll__networl_0_1_AnnP_6, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_4, P_poll__networl_0_1_RP_5, P_poll__networl_0_1_RP_6, P_poll__networl_0_2_AskP_0, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_4, P_poll__networl_0_2_AskP_5, P_poll__networl_0_2_AskP_6, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_4, P_poll__networl_0_2_AnsP_5, P_poll__networl_0_2_AnsP_6, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_4, P_poll__networl_0_2_RI_5, P_poll__networl_0_2_RI_6, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_4, P_poll__networl_0_2_AI_5, P_poll__networl_0_2_AI_6, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_4, P_poll__networl_0_2_AnnP_5, P_poll__networl_0_2_AnnP_6, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_4, P_poll__networl_0_2_RP_5, P_poll__networl_0_2_RP_6, P_poll__networl_0_3_AskP_0, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_4, P_poll__networl_0_3_AskP_5, P_poll__networl_0_3_AskP_6, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_4, P_poll__networl_0_3_AnsP_5, P_poll__networl_0_3_AnsP_6, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_4, P_poll__networl_0_3_RI_5, P_poll__networl_0_3_RI_6, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_4, P_poll__networl_0_3_AI_5, P_poll__networl_0_3_AI_6, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_4, P_poll__networl_0_3_AnnP_5, P_poll__networl_0_3_AnnP_6, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_4, P_poll__networl_0_3_RP_5, P_poll__networl_0_3_RP_6, P_poll__networl_0_4_AskP_0, P_poll__networl_0_4_AskP_1, P_poll__networl_0_4_AskP_2, P_poll__networl_0_4_AskP_3, P_poll__networl_0_4_AskP_4, P_poll__networl_0_4_AskP_5, P_poll__networl_0_4_AskP_6, P_poll__networl_0_4_AnsP_0, P_poll__networl_0_4_AnsP_1, P_poll__networl_0_4_AnsP_2, P_poll__networl_0_4_AnsP_3, P_poll__networl_0_4_AnsP_4, P_poll__networl_0_4_AnsP_5, P_poll__networl_0_4_AnsP_6, P_poll__networl_0_4_RI_0, P_poll__networl_0_4_RI_1, P_poll__networl_0_4_RI_2, P_poll__networl_0_4_RI_3, P_poll__networl_0_4_RI_4, P_poll__networl_0_4_RI_5, P_poll__networl_0_4_RI_6, P_poll__networl_0_4_AI_0, P_poll__networl_0_4_AI_1, P_poll__networl_0_4_AI_2, P_poll__networl_0_4_AI_3, P_poll__networl_0_4_AI_4, P_poll__networl_0_4_AI_5, P_poll__networl_0_4_AI_6, P_poll__networl_0_4_AnnP_0, P_poll__networl_0_4_AnnP_1, P_poll__networl_0_4_AnnP_2, P_poll__networl_0_4_AnnP_3, P_poll__networl_0_4_AnnP_4, P_poll__networl_0_4_AnnP_5, P_poll__networl_0_4_AnnP_6, P_poll__networl_0_4_RP_0, P_poll__networl_0_4_RP_1, P_poll__networl_0_4_RP_2, P_poll__networl_0_4_RP_3, P_poll__networl_0_4_RP_4, P_poll__networl_0_4_RP_5, P_poll__networl_0_4_RP_6, P_poll__networl_0_5_AskP_0, P_poll__networl_0_5_AskP_1, P_poll__networl_0_5_AskP_2, P_poll__networl_0_5_AskP_3, P_poll__networl_0_5_AskP_4, P_poll__networl_0_5_AskP_5, P_poll__networl_0_5_AskP_6, P_poll__networl_0_5_AnsP_0, P_poll__networl_0_5_AnsP_1, P_poll__networl_0_5_AnsP_2, P_poll__networl_0_5_AnsP_3, P_poll__networl_0_5_AnsP_4, P_poll__networl_0_5_AnsP_5, P_poll__networl_0_5_AnsP_6, P_poll__networl_0_5_RI_0, P_poll__networl_0_5_RI_1, P_poll__networl_0_5_RI_2, P_poll__networl_0_5_RI_3, P_poll__networl_0_5_RI_4, P_poll__networl_0_5_RI_5, P_poll__networl_0_5_RI_6, P_poll__networl_0_5_AI_0, P_poll__networl_0_5_AI_1, P_poll__networl_0_5_AI_2, P_poll__networl_0_5_AI_3, P_poll__networl_0_5_AI_4, P_poll__networl_0_5_AI_5, P_poll__networl_0_5_AI_6, P_poll__networl_0_5_AnnP_0, P_poll__networl_0_5_AnnP_1, P_poll__networl_0_5_AnnP_2, P_poll__networl_0_5_AnnP_3, P_poll__networl_0_5_AnnP_4, P_poll__networl_0_5_AnnP_5, P_poll__networl_0_5_AnnP_6, P_poll__networl_0_5_RP_0, P_poll__networl_0_5_RP_1, P_poll__networl_0_5_RP_2, P_poll__networl_0_5_RP_3, P_poll__networl_0_5_RP_4, P_poll__networl_0_5_RP_5, P_poll__networl_0_5_RP_6, P_poll__networl_0_6_AskP_0, P_poll__networl_0_6_AskP_1, P_poll__networl_0_6_AskP_2, P_poll__networl_0_6_AskP_3, P_poll__networl_0_6_AskP_4, P_poll__networl_0_6_AskP_5, P_poll__networl_0_6_AskP_6, P_poll__networl_0_6_AnsP_0, P_poll__networl_0_6_AnsP_1, P_poll__networl_0_6_AnsP_2, P_poll__networl_0_6_AnsP_3, P_poll__networl_0_6_AnsP_4, P_poll__networl_0_6_AnsP_5, P_poll__networl_0_6_AnsP_6, P_poll__networl_0_6_RI_0, P_poll__networl_0_6_RI_1, P_poll__networl_0_6_RI_2, P_poll__networl_0_6_RI_3, P_poll__networl_0_6_RI_4, P_poll__networl_0_6_RI_5, P_poll__networl_0_6_RI_6, P_poll__networl_0_6_AI_0, P_poll__networl_0_6_AI_1, P_poll__networl_0_6_AI_2, P_poll__networl_0_6_AI_3, P_poll__networl_0_6_AI_4, P_poll__networl_0_6_AI_5, P_poll__networl_0_6_AI_6, P_poll__networl_0_6_AnnP_0, P_poll__networl_0_6_AnnP_1, P_poll__networl_0_6_AnnP_2, P_poll__networl_0_6_AnnP_3, P_poll__networl_0_6_AnnP_4, P_poll__networl_0_6_AnnP_5, P_poll__networl_0_6_AnnP_6, P_poll__networl_0_6_RP_0, P_poll__networl_0_6_RP_1, P_poll__networl_0_6_RP_2, P_poll__networl_0_6_RP_3, P_poll__networl_0_6_RP_4, P_poll__networl_0_6_RP_5, P_poll__networl_0_6_RP_6, P_poll__networl_1_0_AskP_0, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_4, P_poll__networl_1_0_AskP_5, P_poll__networl_1_0_AskP_6, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_4, P_poll__networl_1_0_AnsP_5, P_poll__networl_1_0_AnsP_6, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_4, P_poll__networl_1_0_RI_5, P_poll__networl_1_0_RI_6, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_4, P_poll__networl_1_0_AI_5, P_poll__networl_1_0_AI_6, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_4, P_poll__networl_1_0_AnnP_5, P_poll__networl_1_0_AnnP_6, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_4, P_poll__networl_1_0_RP_5, P_poll__networl_1_0_RP_6, P_poll__networl_1_1_AskP_0, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_4, P_poll__networl_1_1_AskP_5, P_poll__networl_1_1_AskP_6, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_4, P_poll__networl_1_1_AnsP_5, P_poll__networl_1_1_AnsP_6, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_4, P_poll__networl_1_1_RI_5, P_poll__networl_1_1_RI_6, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_4, P_poll__networl_1_1_AI_5, P_poll__networl_1_1_AI_6, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_4, P_poll__networl_1_1_AnnP_5, P_poll__networl_1_1_AnnP_6, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_4, P_poll__networl_1_1_RP_5, P_poll__networl_1_1_RP_6, P_poll__networl_1_2_AskP_0, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_4, P_poll__networl_1_2_AskP_5, P_poll__networl_1_2_AskP_6, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_4, P_poll__networl_1_2_AnsP_5, P_poll__networl_1_2_AnsP_6, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_4, P_poll__networl_1_2_RI_5, P_poll__networl_1_2_RI_6, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_4, P_poll__networl_1_2_AI_5, P_poll__networl_1_2_AI_6, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_4, P_poll__networl_1_2_AnnP_5, P_poll__networl_1_2_AnnP_6, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_4, P_poll__networl_1_2_RP_5, P_poll__networl_1_2_RP_6, P_poll__networl_1_3_AskP_0, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_4, P_poll__networl_1_3_AskP_5, P_poll__networl_1_3_AskP_6, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_4, P_poll__networl_1_3_AnsP_5, P_poll__networl_1_3_AnsP_6, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_4, P_poll__networl_1_3_RI_5, P_poll__networl_1_3_RI_6, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_4, P_poll__networl_1_3_AI_5, P_poll__networl_1_3_AI_6, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_4, P_poll__networl_1_3_AnnP_5, P_poll__networl_1_3_AnnP_6, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_4, P_poll__networl_1_3_RP_5, P_poll__networl_1_3_RP_6, P_poll__networl_1_4_AskP_0, P_poll__networl_1_4_AskP_1, P_poll__networl_1_4_AskP_2, P_poll__networl_1_4_AskP_3, P_poll__networl_1_4_AskP_4, P_poll__networl_1_4_AskP_5, P_poll__networl_1_4_AskP_6, P_poll__networl_1_4_AnsP_0, P_poll__networl_1_4_AnsP_1, P_poll__networl_1_4_AnsP_2, P_poll__networl_1_4_AnsP_3, P_poll__networl_1_4_AnsP_4, P_poll__networl_1_4_AnsP_5, P_poll__networl_1_4_AnsP_6, P_poll__networl_1_4_RI_0, P_poll__networl_1_4_RI_1, P_poll__networl_1_4_RI_2, P_poll__networl_1_4_RI_3, P_poll__networl_1_4_RI_4, P_poll__networl_1_4_RI_5, P_poll__networl_1_4_RI_6, P_poll__networl_1_4_AI_0, P_poll__networl_1_4_AI_1, P_poll__networl_1_4_AI_2, P_poll__networl_1_4_AI_3, P_poll__networl_1_4_AI_4, P_poll__networl_1_4_AI_5, P_poll__networl_1_4_AI_6, P_poll__networl_1_4_AnnP_0, P_poll__networl_1_4_AnnP_1, P_poll__networl_1_4_AnnP_2, P_poll__networl_1_4_AnnP_3, P_poll__networl_1_4_AnnP_4, P_poll__networl_1_4_AnnP_5, P_poll__networl_1_4_AnnP_6, P_poll__networl_1_4_RP_0, P_poll__networl_1_4_RP_1, P_poll__networl_1_4_RP_2, P_poll__networl_1_4_RP_3, P_poll__networl_1_4_RP_4, P_poll__networl_1_4_RP_5, P_poll__networl_1_4_RP_6, P_poll__networl_1_5_AskP_0, P_poll__networl_1_5_AskP_1, P_poll__networl_1_5_AskP_2, P_poll__networl_1_5_AskP_3, P_poll__networl_1_5_AskP_4, P_poll__networl_1_5_AskP_5, P_poll__networl_1_5_AskP_6, P_poll__networl_1_5_AnsP_0, P_poll__networl_1_5_AnsP_1, P_poll__networl_1_5_AnsP_2, P_poll__networl_1_5_AnsP_3, P_poll__networl_1_5_AnsP_4, P_poll__networl_1_5_AnsP_5, P_poll__networl_1_5_AnsP_6, P_poll__networl_1_5_RI_0, P_poll__networl_1_5_RI_1, P_poll__networl_1_5_RI_2, P_poll__networl_1_5_RI_3, P_poll__networl_1_5_RI_4, P_poll__networl_1_5_RI_5, P_poll__networl_1_5_RI_6, P_poll__networl_1_5_AI_0, P_poll__networl_1_5_AI_1, P_poll__networl_1_5_AI_2, P_poll__networl_1_5_AI_3, P_poll__networl_1_5_AI_4, P_poll__networl_1_5_AI_5, P_poll__networl_1_5_AI_6, P_poll__networl_1_5_AnnP_0, P_poll__networl_1_5_AnnP_1, P_poll__networl_1_5_AnnP_2, P_poll__networl_1_5_AnnP_3, P_poll__networl_1_5_AnnP_4, P_poll__networl_1_5_AnnP_5, P_poll__networl_1_5_AnnP_6, P_poll__networl_1_5_RP_0, P_poll__networl_1_5_RP_1, P_poll__networl_1_5_RP_2, P_poll__networl_1_5_RP_3, P_poll__networl_1_5_RP_4, P_poll__networl_1_5_RP_5, P_poll__networl_1_5_RP_6, P_poll__networl_1_6_AskP_0, P_poll__networl_1_6_AskP_1, P_poll__networl_1_6_AskP_2, P_poll__networl_1_6_AskP_3, P_poll__networl_1_6_AskP_4, P_poll__networl_1_6_AskP_5, P_poll__networl_1_6_AskP_6, P_poll__networl_1_6_AnsP_0, P_poll__networl_1_6_AnsP_1, P_poll__networl_1_6_AnsP_2, P_poll__networl_1_6_AnsP_3, P_poll__networl_1_6_AnsP_4, P_poll__networl_1_6_AnsP_5, P_poll__networl_1_6_AnsP_6, P_poll__networl_1_6_RI_0, P_poll__networl_1_6_RI_1, P_poll__networl_1_6_RI_2, P_poll__networl_1_6_RI_3, P_poll__networl_1_6_RI_4, P_poll__networl_1_6_RI_5, P_poll__networl_1_6_RI_6, P_poll__networl_1_6_AI_0, P_poll__networl_1_6_AI_1, P_poll__networl_1_6_AI_2, P_poll__networl_1_6_AI_3, P_poll__networl_1_6_AI_4, P_poll__networl_1_6_AI_5, P_poll__networl_1_6_AI_6, P_poll__networl_1_6_AnnP_0, P_poll__networl_1_6_AnnP_1, P_poll__networl_1_6_AnnP_2, P_poll__networl_1_6_AnnP_3, P_poll__networl_1_6_AnnP_4, P_poll__networl_1_6_AnnP_5, P_poll__networl_1_6_AnnP_6, P_poll__networl_1_6_RP_0, P_poll__networl_1_6_RP_1, P_poll__networl_1_6_RP_2, P_poll__networl_1_6_RP_3, P_poll__networl_1_6_RP_4, P_poll__networl_1_6_RP_5, P_poll__networl_1_6_RP_6, P_poll__networl_2_0_AskP_0, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_4, P_poll__networl_2_0_AskP_5, P_poll__networl_2_0_AskP_6, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_4, P_poll__networl_2_0_AnsP_5, P_poll__networl_2_0_AnsP_6, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_4, P_poll__networl_2_0_RI_5, P_poll__networl_2_0_RI_6, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_4, P_poll__networl_2_0_AI_5, P_poll__networl_2_0_AI_6, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_4, P_poll__networl_2_0_AnnP_5, P_poll__networl_2_0_AnnP_6, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_4, P_poll__networl_2_0_RP_5, P_poll__networl_2_0_RP_6, P_poll__networl_2_1_AskP_0, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_4, P_poll__networl_2_1_AskP_5, P_poll__networl_2_1_AskP_6, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_4, P_poll__networl_2_1_AnsP_5, P_poll__networl_2_1_AnsP_6, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_4, P_poll__networl_2_1_RI_5, P_poll__networl_2_1_RI_6, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_4, P_poll__networl_2_1_AI_5, P_poll__networl_2_1_AI_6, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_4, P_poll__networl_2_1_AnnP_5, P_poll__networl_2_1_AnnP_6, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_4, P_poll__networl_2_1_RP_5, P_poll__networl_2_1_RP_6, P_poll__networl_2_2_AskP_0, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_4, P_poll__networl_2_2_AskP_5, P_poll__networl_2_2_AskP_6, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_4, P_poll__networl_2_2_AnsP_5, P_poll__networl_2_2_AnsP_6, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_4, P_poll__networl_2_2_RI_5, P_poll__networl_2_2_RI_6, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_4, P_poll__networl_2_2_AI_5, P_poll__networl_2_2_AI_6, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_4, P_poll__networl_2_2_AnnP_5, P_poll__networl_2_2_AnnP_6, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_4, P_poll__networl_2_2_RP_5, P_poll__networl_2_2_RP_6, P_poll__networl_2_3_AskP_0, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_4, P_poll__networl_2_3_AskP_5, P_poll__networl_2_3_AskP_6, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_4, P_poll__networl_2_3_AnsP_5, P_poll__networl_2_3_AnsP_6, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_4, P_poll__networl_2_3_RI_5, P_poll__networl_2_3_RI_6, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_4, P_poll__networl_2_3_AI_5, P_poll__networl_2_3_AI_6, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_4, P_poll__networl_2_3_AnnP_5, P_poll__networl_2_3_AnnP_6, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_4, P_poll__networl_2_3_RP_5, P_poll__networl_2_3_RP_6, P_poll__networl_2_4_AskP_0, P_poll__networl_2_4_AskP_1, P_poll__networl_2_4_AskP_2, P_poll__networl_2_4_AskP_3, P_poll__networl_2_4_AskP_4, P_poll__networl_2_4_AskP_5, P_poll__networl_2_4_AskP_6, P_poll__networl_2_4_AnsP_0, P_poll__networl_2_4_AnsP_1, P_poll__networl_2_4_AnsP_2, P_poll__networl_2_4_AnsP_3, P_poll__networl_2_4_AnsP_4, P_poll__networl_2_4_AnsP_5, P_poll__networl_2_4_AnsP_6, P_poll__networl_2_4_RI_0, P_poll__networl_2_4_RI_1, P_poll__networl_2_4_RI_2, P_poll__networl_2_4_RI_3, P_poll__networl_2_4_RI_4, P_poll__networl_2_4_RI_5, P_poll__networl_2_4_RI_6, P_poll__networl_2_4_AI_0, P_poll__networl_2_4_AI_1, P_poll__networl_2_4_AI_2, P_poll__networl_2_4_AI_3, P_poll__networl_2_4_AI_4, P_poll__networl_2_4_AI_5, P_poll__networl_2_4_AI_6, P_poll__networl_2_4_AnnP_0, P_poll__networl_2_4_AnnP_1, P_poll__networl_2_4_AnnP_2, P_poll__networl_2_4_AnnP_3, P_poll__networl_2_4_AnnP_4, P_poll__networl_2_4_AnnP_5, P_poll__networl_2_4_AnnP_6, P_poll__networl_2_4_RP_0, P_poll__networl_2_4_RP_1, P_poll__networl_2_4_RP_2, P_poll__networl_2_4_RP_3, P_poll__networl_2_4_RP_4, P_poll__networl_2_4_RP_5, P_poll__networl_2_4_RP_6, P_poll__networl_2_5_AskP_0, P_poll__networl_2_5_AskP_1, P_poll__networl_2_5_AskP_2, P_poll__networl_2_5_AskP_3, P_poll__networl_2_5_AskP_4, P_poll__networl_2_5_AskP_5, P_poll__networl_2_5_AskP_6, P_poll__networl_2_5_AnsP_0, P_poll__networl_2_5_AnsP_1, P_poll__networl_2_5_AnsP_2, P_poll__networl_2_5_AnsP_3, P_poll__networl_2_5_AnsP_4, P_poll__networl_2_5_AnsP_5, P_poll__networl_2_5_AnsP_6, P_poll__networl_2_5_RI_0, P_poll__networl_2_5_RI_1, P_poll__networl_2_5_RI_2, P_poll__networl_2_5_RI_3, P_poll__networl_2_5_RI_4, P_poll__networl_2_5_RI_5, P_poll__networl_2_5_RI_6, P_poll__networl_2_5_AI_0, P_poll__networl_2_5_AI_1, P_poll__networl_2_5_AI_2, P_poll__networl_2_5_AI_3, P_poll__networl_2_5_AI_4, P_poll__networl_2_5_AI_5, P_poll__networl_2_5_AI_6, P_poll__networl_2_5_AnnP_0, P_poll__networl_2_5_AnnP_1, P_poll__networl_2_5_AnnP_2, P_poll__networl_2_5_AnnP_3, P_poll__networl_2_5_AnnP_4, P_poll__networl_2_5_AnnP_5, P_poll__networl_2_5_AnnP_6, P_poll__networl_2_5_RP_0, P_poll__networl_2_5_RP_1, P_poll__networl_2_5_RP_2, P_poll__networl_2_5_RP_3, P_poll__networl_2_5_RP_4, P_poll__networl_2_5_RP_5, P_poll__networl_2_5_RP_6, P_poll__networl_2_6_AskP_0, P_poll__networl_2_6_AskP_1, P_poll__networl_2_6_AskP_2, P_poll__networl_2_6_AskP_3, P_poll__networl_2_6_AskP_4, P_poll__networl_2_6_AskP_5, P_poll__networl_2_6_AskP_6, P_poll__networl_2_6_AnsP_0, P_poll__networl_2_6_AnsP_1, P_poll__networl_2_6_AnsP_2, P_poll__networl_2_6_AnsP_3, P_poll__networl_2_6_AnsP_4, P_poll__networl_2_6_AnsP_5, P_poll__networl_2_6_AnsP_6, P_poll__networl_2_6_RI_0, P_poll__networl_2_6_RI_1, P_poll__networl_2_6_RI_2, P_poll__networl_2_6_RI_3, P_poll__networl_2_6_RI_4, P_poll__networl_2_6_RI_5, P_poll__networl_2_6_RI_6, P_poll__networl_2_6_AI_0, P_poll__networl_2_6_AI_1, P_poll__networl_2_6_AI_2, P_poll__networl_2_6_AI_3, P_poll__networl_2_6_AI_4, P_poll__networl_2_6_AI_5, P_poll__networl_2_6_AI_6, P_poll__networl_2_6_AnnP_0, P_poll__networl_2_6_AnnP_1, P_poll__networl_2_6_AnnP_2, P_poll__networl_2_6_AnnP_3, P_poll__networl_2_6_AnnP_4, P_poll__networl_2_6_AnnP_5, P_poll__networl_2_6_AnnP_6, P_poll__networl_2_6_RP_0, P_poll__networl_2_6_RP_1, P_poll__networl_2_6_RP_2, P_poll__networl_2_6_RP_3, P_poll__networl_2_6_RP_4, P_poll__networl_2_6_RP_5, P_poll__networl_2_6_RP_6, P_poll__networl_3_0_AskP_0, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_4, P_poll__networl_3_0_AskP_5, P_poll__networl_3_0_AskP_6, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_4, P_poll__networl_3_0_AnsP_5, P_poll__networl_3_0_AnsP_6, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_4, P_poll__networl_3_0_RI_5, P_poll__networl_3_0_RI_6, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_4, P_poll__networl_3_0_AI_5, P_poll__networl_3_0_AI_6, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_4, P_poll__networl_3_0_AnnP_5, P_poll__networl_3_0_AnnP_6, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_4, P_poll__networl_3_0_RP_5, P_poll__networl_3_0_RP_6, P_poll__networl_3_1_AskP_0, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_4, P_poll__networl_3_1_AskP_5, P_poll__networl_3_1_AskP_6, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_4, P_poll__networl_3_1_AnsP_5, P_poll__networl_3_1_AnsP_6, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_4, P_poll__networl_3_1_RI_5, P_poll__networl_3_1_RI_6, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_4, P_poll__networl_3_1_AI_5, P_poll__networl_3_1_AI_6, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_4, P_poll__networl_3_1_AnnP_5, P_poll__networl_3_1_AnnP_6, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_4, P_poll__networl_3_1_RP_5, P_poll__networl_3_1_RP_6, P_poll__networl_3_2_AskP_0, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_4, P_poll__networl_3_2_AskP_5, P_poll__networl_3_2_AskP_6, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_4, P_poll__networl_3_2_AnsP_5, P_poll__networl_3_2_AnsP_6, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_4, P_poll__networl_3_2_RI_5, P_poll__networl_3_2_RI_6, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_4, P_poll__networl_3_2_AI_5, P_poll__networl_3_2_AI_6, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_4, P_poll__networl_3_2_AnnP_5, P_poll__networl_3_2_AnnP_6, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_4, P_poll__networl_3_2_RP_5, P_poll__networl_3_2_RP_6, P_poll__networl_3_3_AskP_0, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_4, P_poll__networl_3_3_AskP_5, P_poll__networl_3_3_AskP_6, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_4, P_poll__networl_3_3_AnsP_5, P_poll__networl_3_3_AnsP_6, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_4, P_poll__networl_3_3_RI_5, P_poll__networl_3_3_RI_6, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_4, P_poll__networl_3_3_AI_5, P_poll__networl_3_3_AI_6, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_4, P_poll__networl_3_3_AnnP_5, P_poll__networl_3_3_AnnP_6, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_4, P_poll__networl_3_3_RP_5, P_poll__networl_3_3_RP_6, P_poll__networl_3_4_AskP_0, P_poll__networl_3_4_AskP_1, P_poll__networl_3_4_AskP_2, P_poll__networl_3_4_AskP_3, P_poll__networl_3_4_AskP_4, P_poll__networl_3_4_AskP_5, P_poll__networl_3_4_AskP_6, P_poll__networl_3_4_AnsP_0, P_poll__networl_3_4_AnsP_1, P_poll__networl_3_4_AnsP_2, P_poll__networl_3_4_AnsP_3, P_poll__networl_3_4_AnsP_4, P_poll__networl_3_4_AnsP_5, P_poll__networl_3_4_AnsP_6, P_poll__networl_3_4_RI_0, P_poll__networl_3_4_RI_1, P_poll__networl_3_4_RI_2, P_poll__networl_3_4_RI_3, P_poll__networl_3_4_RI_4, P_poll__networl_3_4_RI_5, P_poll__networl_3_4_RI_6, P_poll__networl_3_4_AI_0, P_poll__networl_3_4_AI_1, P_poll__networl_3_4_AI_2, P_poll__networl_3_4_AI_3, P_poll__networl_3_4_AI_4, P_poll__networl_3_4_AI_5, P_poll__networl_3_4_AI_6, P_poll__networl_3_4_AnnP_0, P_poll__networl_3_4_AnnP_1, P_poll__networl_3_4_AnnP_2, P_poll__networl_3_4_AnnP_3, P_poll__networl_3_4_AnnP_4, P_poll__networl_3_4_AnnP_5, P_poll__networl_3_4_AnnP_6, P_poll__networl_3_4_RP_0, P_poll__networl_3_4_RP_1, P_poll__networl_3_4_RP_2, P_poll__networl_3_4_RP_3, P_poll__networl_3_4_RP_4, P_poll__networl_3_4_RP_5, P_poll__networl_3_4_RP_6, P_poll__networl_3_5_AskP_0, P_poll__networl_3_5_AskP_1, P_poll__networl_3_5_AskP_2, P_poll__networl_3_5_AskP_3, P_poll__networl_3_5_AskP_4, P_poll__networl_3_5_AskP_5, P_poll__networl_3_5_AskP_6, P_poll__networl_3_5_AnsP_0, P_poll__networl_3_5_AnsP_1, P_poll__networl_3_5_AnsP_2, P_poll__networl_3_5_AnsP_3, P_poll__networl_3_5_AnsP_4, P_poll__networl_3_5_AnsP_5, P_poll__networl_3_5_AnsP_6, P_poll__networl_3_5_RI_0, P_poll__networl_3_5_RI_1, P_poll__networl_3_5_RI_2, P_poll__networl_3_5_RI_3, P_poll__networl_3_5_RI_4, P_poll__networl_3_5_RI_5, P_poll__networl_3_5_RI_6, P_poll__networl_3_5_AI_0, P_poll__networl_3_5_AI_1, P_poll__networl_3_5_AI_2, P_poll__networl_3_5_AI_3, P_poll__networl_3_5_AI_4, P_poll__networl_3_5_AI_5, P_poll__networl_3_5_AI_6, P_poll__networl_3_5_AnnP_0, P_poll__networl_3_5_AnnP_1, P_poll__networl_3_5_AnnP_2, P_poll__networl_3_5_AnnP_3, P_poll__networl_3_5_AnnP_4, P_poll__networl_3_5_AnnP_5, P_poll__networl_3_5_AnnP_6, P_poll__networl_3_5_RP_0, P_poll__networl_3_5_RP_1, P_poll__networl_3_5_RP_2, P_poll__networl_3_5_RP_3, P_poll__networl_3_5_RP_4, P_poll__networl_3_5_RP_5, P_poll__networl_3_5_RP_6, P_poll__networl_3_6_AskP_0, P_poll__networl_3_6_AskP_1, P_poll__networl_3_6_AskP_2, P_poll__networl_3_6_AskP_3, P_poll__networl_3_6_AskP_4, P_poll__networl_3_6_AskP_5, P_poll__networl_3_6_AskP_6, P_poll__networl_3_6_AnsP_0, P_poll__networl_3_6_AnsP_1, P_poll__networl_3_6_AnsP_2, P_poll__networl_3_6_AnsP_3, P_poll__networl_3_6_AnsP_4, P_poll__networl_3_6_AnsP_5, P_poll__networl_3_6_AnsP_6, P_poll__networl_3_6_RI_0, P_poll__networl_3_6_RI_1, P_poll__networl_3_6_RI_2, P_poll__networl_3_6_RI_3, P_poll__networl_3_6_RI_4, P_poll__networl_3_6_RI_5, P_poll__networl_3_6_RI_6, P_poll__networl_3_6_AI_0, P_poll__networl_3_6_AI_1, P_poll__networl_3_6_AI_2, P_poll__networl_3_6_AI_3, P_poll__networl_3_6_AI_4, P_poll__networl_3_6_AI_5, P_poll__networl_3_6_AI_6, P_poll__networl_3_6_AnnP_0, P_poll__networl_3_6_AnnP_1, P_poll__networl_3_6_AnnP_2, P_poll__networl_3_6_AnnP_3, P_poll__networl_3_6_AnnP_4, P_poll__networl_3_6_AnnP_5, P_poll__networl_3_6_AnnP_6, P_poll__networl_3_6_RP_0, P_poll__networl_3_6_RP_1, P_poll__networl_3_6_RP_2, P_poll__networl_3_6_RP_3, P_poll__networl_3_6_RP_4, P_poll__networl_3_6_RP_5, P_poll__networl_3_6_RP_6, P_poll__networl_4_0_AskP_0, P_poll__networl_4_0_AskP_1, P_poll__networl_4_0_AskP_2, P_poll__networl_4_0_AskP_3, P_poll__networl_4_0_AskP_4, P_poll__networl_4_0_AskP_5, P_poll__networl_4_0_AskP_6, P_poll__networl_4_0_AnsP_0, P_poll__networl_4_0_AnsP_1, P_poll__networl_4_0_AnsP_2, P_poll__networl_4_0_AnsP_3, P_poll__networl_4_0_AnsP_4, P_poll__networl_4_0_AnsP_5, P_poll__networl_4_0_AnsP_6, P_poll__networl_4_0_RI_0, P_poll__networl_4_0_RI_1, P_poll__networl_4_0_RI_2, P_poll__networl_4_0_RI_3, P_poll__networl_4_0_RI_4, P_poll__networl_4_0_RI_5, P_poll__networl_4_0_RI_6, P_poll__networl_4_0_AI_0, P_poll__networl_4_0_AI_1, P_poll__networl_4_0_AI_2, P_poll__networl_4_0_AI_3, P_poll__networl_4_0_AI_4, P_poll__networl_4_0_AI_5, P_poll__networl_4_0_AI_6, P_poll__networl_4_0_AnnP_0, P_poll__networl_4_0_AnnP_1, P_poll__networl_4_0_AnnP_2, P_poll__networl_4_0_AnnP_3, P_poll__networl_4_0_AnnP_4, P_poll__networl_4_0_AnnP_5, P_poll__networl_4_0_AnnP_6, P_poll__networl_4_0_RP_0, P_poll__networl_4_0_RP_1, P_poll__networl_4_0_RP_2, P_poll__networl_4_0_RP_3, P_poll__networl_4_0_RP_4, P_poll__networl_4_0_RP_5, P_poll__networl_4_0_RP_6, P_poll__networl_4_1_AskP_0, P_poll__networl_4_1_AskP_1, P_poll__networl_4_1_AskP_2, P_poll__networl_4_1_AskP_3, P_poll__networl_4_1_AskP_4, P_poll__networl_4_1_AskP_5, P_poll__networl_4_1_AskP_6, P_poll__networl_4_1_AnsP_0, P_poll__networl_4_1_AnsP_1, P_poll__networl_4_1_AnsP_2, P_poll__networl_4_1_AnsP_3, P_poll__networl_4_1_AnsP_4, P_poll__networl_4_1_AnsP_5, P_poll__networl_4_1_AnsP_6, P_poll__networl_4_1_RI_0, P_poll__networl_4_1_RI_1, P_poll__networl_4_1_RI_2, P_poll__networl_4_1_RI_3, P_poll__networl_4_1_RI_4, P_poll__networl_4_1_RI_5, P_poll__networl_4_1_RI_6, P_poll__networl_4_1_AI_0, P_poll__networl_4_1_AI_1, P_poll__networl_4_1_AI_2, P_poll__networl_4_1_AI_3, P_poll__networl_4_1_AI_4, P_poll__networl_4_1_AI_5, P_poll__networl_4_1_AI_6, P_poll__networl_4_1_AnnP_0, P_poll__networl_4_1_AnnP_1, P_poll__networl_4_1_AnnP_2, P_poll__networl_4_1_AnnP_3, P_poll__networl_4_1_AnnP_4, P_poll__networl_4_1_AnnP_5, P_poll__networl_4_1_AnnP_6, P_poll__networl_4_1_RP_0, P_poll__networl_4_1_RP_1, P_poll__networl_4_1_RP_2, P_poll__networl_4_1_RP_3, P_poll__networl_4_1_RP_4, P_poll__networl_4_1_RP_5, P_poll__networl_4_1_RP_6, P_poll__networl_4_2_AskP_0, P_poll__networl_4_2_AskP_1, P_poll__networl_4_2_AskP_2, P_poll__networl_4_2_AskP_3, P_poll__networl_4_2_AskP_4, P_poll__networl_4_2_AskP_5, P_poll__networl_4_2_AskP_6, P_poll__networl_4_2_AnsP_0, P_poll__networl_4_2_AnsP_1, P_poll__networl_4_2_AnsP_2, P_poll__networl_4_2_AnsP_3, P_poll__networl_4_2_AnsP_4, P_poll__networl_4_2_AnsP_5, P_poll__networl_4_2_AnsP_6, P_poll__networl_4_2_RI_0, P_poll__networl_4_2_RI_1, P_poll__networl_4_2_RI_2, P_poll__networl_4_2_RI_3, P_poll__networl_4_2_RI_4, P_poll__networl_4_2_RI_5, P_poll__networl_4_2_RI_6, P_poll__networl_4_2_AI_0, P_poll__networl_4_2_AI_1, P_poll__networl_4_2_AI_2, P_poll__networl_4_2_AI_3, P_poll__networl_4_2_AI_4, P_poll__networl_4_2_AI_5, P_poll__networl_4_2_AI_6, P_poll__networl_4_2_AnnP_0, P_poll__networl_4_2_AnnP_1, P_poll__networl_4_2_AnnP_2, P_poll__networl_4_2_AnnP_3, P_poll__networl_4_2_AnnP_4, P_poll__networl_4_2_AnnP_5, P_poll__networl_4_2_AnnP_6, P_poll__networl_4_2_RP_0, P_poll__networl_4_2_RP_1, P_poll__networl_4_2_RP_2, P_poll__networl_4_2_RP_3, P_poll__networl_4_2_RP_4, P_poll__networl_4_2_RP_5, P_poll__networl_4_2_RP_6, P_poll__networl_4_3_AskP_0, P_poll__networl_4_3_AskP_1, P_poll__networl_4_3_AskP_2, P_poll__networl_4_3_AskP_3, P_poll__networl_4_3_AskP_4, P_poll__networl_4_3_AskP_5, P_poll__networl_4_3_AskP_6, P_poll__networl_4_3_AnsP_0, P_poll__networl_4_3_AnsP_1, P_poll__networl_4_3_AnsP_2, P_poll__networl_4_3_AnsP_3, P_poll__networl_4_3_AnsP_4, P_poll__networl_4_3_AnsP_5, P_poll__networl_4_3_AnsP_6, P_poll__networl_4_3_RI_0, P_poll__networl_4_3_RI_1, P_poll__networl_4_3_RI_2, P_poll__networl_4_3_RI_3, P_poll__networl_4_3_RI_4, P_poll__networl_4_3_RI_5, P_poll__networl_4_3_RI_6, P_poll__networl_4_3_AI_0, P_poll__networl_4_3_AI_1, P_poll__networl_4_3_AI_2, P_poll__networl_4_3_AI_3, P_poll__networl_4_3_AI_4, P_poll__networl_4_3_AI_5, P_poll__networl_4_3_AI_6, P_poll__networl_4_3_AnnP_0, P_poll__networl_4_3_AnnP_1, P_poll__networl_4_3_AnnP_2, P_poll__networl_4_3_AnnP_3, P_poll__networl_4_3_AnnP_4, P_poll__networl_4_3_AnnP_5, P_poll__networl_4_3_AnnP_6, P_poll__networl_4_3_RP_0, P_poll__networl_4_3_RP_1, P_poll__networl_4_3_RP_2, P_poll__networl_4_3_RP_3, P_poll__networl_4_3_RP_4, P_poll__networl_4_3_RP_5, P_poll__networl_4_3_RP_6, P_poll__networl_4_4_AskP_0, P_poll__networl_4_4_AskP_1, P_poll__networl_4_4_AskP_2, P_poll__networl_4_4_AskP_3, P_poll__networl_4_4_AskP_4, P_poll__networl_4_4_AskP_5, P_poll__networl_4_4_AskP_6, P_poll__networl_4_4_AnsP_0, P_poll__networl_4_4_AnsP_1, P_poll__networl_4_4_AnsP_2, P_poll__networl_4_4_AnsP_3, P_poll__networl_4_4_AnsP_4, P_poll__networl_4_4_AnsP_5, P_poll__networl_4_4_AnsP_6, P_poll__networl_4_4_RI_0, P_poll__networl_4_4_RI_1, P_poll__networl_4_4_RI_2, P_poll__networl_4_4_RI_3, P_poll__networl_4_4_RI_4, P_poll__networl_4_4_RI_5, P_poll__networl_4_4_RI_6, P_poll__networl_4_4_AI_0, P_poll__networl_4_4_AI_1, P_poll__networl_4_4_AI_2, P_poll__networl_4_4_AI_3, P_poll__networl_4_4_AI_4, P_poll__networl_4_4_AI_5, P_poll__networl_4_4_AI_6, P_poll__networl_4_4_AnnP_0, P_poll__networl_4_4_AnnP_1, P_poll__networl_4_4_AnnP_2, P_poll__networl_4_4_AnnP_3, P_poll__networl_4_4_AnnP_4, P_poll__networl_4_4_AnnP_5, P_poll__networl_4_4_AnnP_6, P_poll__networl_4_4_RP_0, P_poll__networl_4_4_RP_1, P_poll__networl_4_4_RP_2, P_poll__networl_4_4_RP_3, P_poll__networl_4_4_RP_4, P_poll__networl_4_4_RP_5, P_poll__networl_4_4_RP_6, P_poll__networl_4_5_AskP_0, P_poll__networl_4_5_AskP_1, P_poll__networl_4_5_AskP_2, P_poll__networl_4_5_AskP_3, P_poll__networl_4_5_AskP_4, P_poll__networl_4_5_AskP_5, P_poll__networl_4_5_AskP_6, P_poll__networl_4_5_AnsP_0, P_poll__networl_4_5_AnsP_1, P_poll__networl_4_5_AnsP_2, P_poll__networl_4_5_AnsP_3, P_poll__networl_4_5_AnsP_4, P_poll__networl_4_5_AnsP_5, P_poll__networl_4_5_AnsP_6, P_poll__networl_4_5_RI_0, P_poll__networl_4_5_RI_1, P_poll__networl_4_5_RI_2, P_poll__networl_4_5_RI_3, P_poll__networl_4_5_RI_4, P_poll__networl_4_5_RI_5, P_poll__networl_4_5_RI_6, P_poll__networl_4_5_AI_0, P_poll__networl_4_5_AI_1, P_poll__networl_4_5_AI_2, P_poll__networl_4_5_AI_3, P_poll__networl_4_5_AI_4, P_poll__networl_4_5_AI_5, P_poll__networl_4_5_AI_6, P_poll__networl_4_5_AnnP_0, P_poll__networl_4_5_AnnP_1, P_poll__networl_4_5_AnnP_2, P_poll__networl_4_5_AnnP_3, P_poll__networl_4_5_AnnP_4, P_poll__networl_4_5_AnnP_5, P_poll__networl_4_5_AnnP_6, P_poll__networl_4_5_RP_0, P_poll__networl_4_5_RP_1, P_poll__networl_4_5_RP_2, P_poll__networl_4_5_RP_3, P_poll__networl_4_5_RP_4, P_poll__networl_4_5_RP_5, P_poll__networl_4_5_RP_6, P_poll__networl_4_6_AskP_0, P_poll__networl_4_6_AskP_1, P_poll__networl_4_6_AskP_2, P_poll__networl_4_6_AskP_3, P_poll__networl_4_6_AskP_4, P_poll__networl_4_6_AskP_5, P_poll__networl_4_6_AskP_6, P_poll__networl_4_6_AnsP_0, P_poll__networl_4_6_AnsP_1, P_poll__networl_4_6_AnsP_2, P_poll__networl_4_6_AnsP_3, P_poll__networl_4_6_AnsP_4, P_poll__networl_4_6_AnsP_5, P_poll__networl_4_6_AnsP_6, P_poll__networl_4_6_RI_0, P_poll__networl_4_6_RI_1, P_poll__networl_4_6_RI_2, P_poll__networl_4_6_RI_3, P_poll__networl_4_6_RI_4, P_poll__networl_4_6_RI_5, P_poll__networl_4_6_RI_6, P_poll__networl_4_6_AI_0, P_poll__networl_4_6_AI_1, P_poll__networl_4_6_AI_2, P_poll__networl_4_6_AI_3, P_poll__networl_4_6_AI_4, P_poll__networl_4_6_AI_5, P_poll__networl_4_6_AI_6, P_poll__networl_4_6_AnnP_0, P_poll__networl_4_6_AnnP_1, P_poll__networl_4_6_AnnP_2, P_poll__networl_4_6_AnnP_3, P_poll__networl_4_6_AnnP_4, P_poll__networl_4_6_AnnP_5, P_poll__networl_4_6_AnnP_6, P_poll__networl_4_6_RP_0, P_poll__networl_4_6_RP_1, P_poll__networl_4_6_RP_2, P_poll__networl_4_6_RP_3, P_poll__networl_4_6_RP_4, P_poll__networl_4_6_RP_5, P_poll__networl_4_6_RP_6, P_poll__networl_5_0_AskP_0, P_poll__networl_5_0_AskP_1, P_poll__networl_5_0_AskP_2, P_poll__networl_5_0_AskP_3, P_poll__networl_5_0_AskP_4, P_poll__networl_5_0_AskP_5, P_poll__networl_5_0_AskP_6, P_poll__networl_5_0_AnsP_0, P_poll__networl_5_0_AnsP_1, P_poll__networl_5_0_AnsP_2, P_poll__networl_5_0_AnsP_3, P_poll__networl_5_0_AnsP_4, P_poll__networl_5_0_AnsP_5, P_poll__networl_5_0_AnsP_6, P_poll__networl_5_0_RI_0, P_poll__networl_5_0_RI_1, P_poll__networl_5_0_RI_2, P_poll__networl_5_0_RI_3, P_poll__networl_5_0_RI_4, P_poll__networl_5_0_RI_5, P_poll__networl_5_0_RI_6, P_poll__networl_5_0_AI_0, P_poll__networl_5_0_AI_1, P_poll__networl_5_0_AI_2, P_poll__networl_5_0_AI_3, P_poll__networl_5_0_AI_4, P_poll__networl_5_0_AI_5, P_poll__networl_5_0_AI_6, P_poll__networl_5_0_AnnP_0, P_poll__networl_5_0_AnnP_1, P_poll__networl_5_0_AnnP_2, P_poll__networl_5_0_AnnP_3, P_poll__networl_5_0_AnnP_4, P_poll__networl_5_0_AnnP_5, P_poll__networl_5_0_AnnP_6, P_poll__networl_5_0_RP_0, P_poll__networl_5_0_RP_1, P_poll__networl_5_0_RP_2, P_poll__networl_5_0_RP_3, P_poll__networl_5_0_RP_4, P_poll__networl_5_0_RP_5, P_poll__networl_5_0_RP_6, P_poll__networl_5_1_AskP_0, P_poll__networl_5_1_AskP_1, P_poll__networl_5_1_AskP_2, P_poll__networl_5_1_AskP_3, P_poll__networl_5_1_AskP_4, P_poll__networl_5_1_AskP_5, P_poll__networl_5_1_AskP_6, P_poll__networl_5_1_AnsP_0, P_poll__networl_5_1_AnsP_1, P_poll__networl_5_1_AnsP_2, P_poll__networl_5_1_AnsP_3, P_poll__networl_5_1_AnsP_4, P_poll__networl_5_1_AnsP_5, P_poll__networl_5_1_AnsP_6, P_poll__networl_5_1_RI_0, P_poll__networl_5_1_RI_1, P_poll__networl_5_1_RI_2, P_poll__networl_5_1_RI_3, P_poll__networl_5_1_RI_4, P_poll__networl_5_1_RI_5, P_poll__networl_5_1_RI_6, P_poll__networl_5_1_AI_0, P_poll__networl_5_1_AI_1, P_poll__networl_5_1_AI_2, P_poll__networl_5_1_AI_3, P_poll__networl_5_1_AI_4, P_poll__networl_5_1_AI_5, P_poll__networl_5_1_AI_6, P_poll__networl_5_1_AnnP_0, P_poll__networl_5_1_AnnP_1, P_poll__networl_5_1_AnnP_2, P_poll__networl_5_1_AnnP_3, P_poll__networl_5_1_AnnP_4, P_poll__networl_5_1_AnnP_5, P_poll__networl_5_1_AnnP_6, P_poll__networl_5_1_RP_0, P_poll__networl_5_1_RP_1, P_poll__networl_5_1_RP_2, P_poll__networl_5_1_RP_3, P_poll__networl_5_1_RP_4, P_poll__networl_5_1_RP_5, P_poll__networl_5_1_RP_6, P_poll__networl_5_2_AskP_0, P_poll__networl_5_2_AskP_1, P_poll__networl_5_2_AskP_2, P_poll__networl_5_2_AskP_3, P_poll__networl_5_2_AskP_4, P_poll__networl_5_2_AskP_5, P_poll__networl_5_2_AskP_6, P_poll__networl_5_2_AnsP_0, P_poll__networl_5_2_AnsP_1, P_poll__networl_5_2_AnsP_2, P_poll__networl_5_2_AnsP_3, P_poll__networl_5_2_AnsP_4, P_poll__networl_5_2_AnsP_5, P_poll__networl_5_2_AnsP_6, P_poll__networl_5_2_RI_0, P_poll__networl_5_2_RI_1, P_poll__networl_5_2_RI_2, P_poll__networl_5_2_RI_3, P_poll__networl_5_2_RI_4, P_poll__networl_5_2_RI_5, P_poll__networl_5_2_RI_6, P_poll__networl_5_2_AI_0, P_poll__networl_5_2_AI_1, P_poll__networl_5_2_AI_2, P_poll__networl_5_2_AI_3, P_poll__networl_5_2_AI_4, P_poll__networl_5_2_AI_5, P_poll__networl_5_2_AI_6, P_poll__networl_5_2_AnnP_0, P_poll__networl_5_2_AnnP_1, P_poll__networl_5_2_AnnP_2, P_poll__networl_5_2_AnnP_3, P_poll__networl_5_2_AnnP_4, P_poll__networl_5_2_AnnP_5, P_poll__networl_5_2_AnnP_6, P_poll__networl_5_2_RP_0, P_poll__networl_5_2_RP_1, P_poll__networl_5_2_RP_2, P_poll__networl_5_2_RP_3, P_poll__networl_5_2_RP_4, P_poll__networl_5_2_RP_5, P_poll__networl_5_2_RP_6, P_poll__networl_5_3_AskP_0, P_poll__networl_5_3_AskP_1, P_poll__networl_5_3_AskP_2, P_poll__networl_5_3_AskP_3, P_poll__networl_5_3_AskP_4, P_poll__networl_5_3_AskP_5, P_poll__networl_5_3_AskP_6, P_poll__networl_5_3_AnsP_0, P_poll__networl_5_3_AnsP_1, P_poll__networl_5_3_AnsP_2, P_poll__networl_5_3_AnsP_3, P_poll__networl_5_3_AnsP_4, P_poll__networl_5_3_AnsP_5, P_poll__networl_5_3_AnsP_6, P_poll__networl_5_3_RI_0, P_poll__networl_5_3_RI_1, P_poll__networl_5_3_RI_2, P_poll__networl_5_3_RI_3, P_poll__networl_5_3_RI_4, P_poll__networl_5_3_RI_5, P_poll__networl_5_3_RI_6, P_poll__networl_5_3_AI_0, P_poll__networl_5_3_AI_1, P_poll__networl_5_3_AI_2, P_poll__networl_5_3_AI_3, P_poll__networl_5_3_AI_4, P_poll__networl_5_3_AI_5, P_poll__networl_5_3_AI_6, P_poll__networl_5_3_AnnP_0, P_poll__networl_5_3_AnnP_1, P_poll__networl_5_3_AnnP_2, P_poll__networl_5_3_AnnP_3, P_poll__networl_5_3_AnnP_4, P_poll__networl_5_3_AnnP_5, P_poll__networl_5_3_AnnP_6, P_poll__networl_5_3_RP_0, P_poll__networl_5_3_RP_1, P_poll__networl_5_3_RP_2, P_poll__networl_5_3_RP_3, P_poll__networl_5_3_RP_4, P_poll__networl_5_3_RP_5, P_poll__networl_5_3_RP_6, P_poll__networl_5_4_AskP_0, P_poll__networl_5_4_AskP_1, P_poll__networl_5_4_AskP_2, P_poll__networl_5_4_AskP_3, P_poll__networl_5_4_AskP_4, P_poll__networl_5_4_AskP_5, P_poll__networl_5_4_AskP_6, P_poll__networl_5_4_AnsP_0, P_poll__networl_5_4_AnsP_1, P_poll__networl_5_4_AnsP_2, P_poll__networl_5_4_AnsP_3, P_poll__networl_5_4_AnsP_4, P_poll__networl_5_4_AnsP_5, P_poll__networl_5_4_AnsP_6, P_poll__networl_5_4_RI_0, P_poll__networl_5_4_RI_1, P_poll__networl_5_4_RI_2, P_poll__networl_5_4_RI_3, P_poll__networl_5_4_RI_4, P_poll__networl_5_4_RI_5, P_poll__networl_5_4_RI_6, P_poll__networl_5_4_AI_0, P_poll__networl_5_4_AI_1, P_poll__networl_5_4_AI_2, P_poll__networl_5_4_AI_3, P_poll__networl_5_4_AI_4, P_poll__networl_5_4_AI_5, P_poll__networl_5_4_AI_6, P_poll__networl_5_4_AnnP_0, P_poll__networl_5_4_AnnP_1, P_poll__networl_5_4_AnnP_2, P_poll__networl_5_4_AnnP_3, P_poll__networl_5_4_AnnP_4, P_poll__networl_5_4_AnnP_5, P_poll__networl_5_4_AnnP_6, P_poll__networl_5_4_RP_0, P_poll__networl_5_4_RP_1, P_poll__networl_5_4_RP_2, P_poll__networl_5_4_RP_3, P_poll__networl_5_4_RP_4, P_poll__networl_5_4_RP_5, P_poll__networl_5_4_RP_6, P_poll__networl_5_5_AskP_0, P_poll__networl_5_5_AskP_1, P_poll__networl_5_5_AskP_2, P_poll__networl_5_5_AskP_3, P_poll__networl_5_5_AskP_4, P_poll__networl_5_5_AskP_5, P_poll__networl_5_5_AskP_6, P_poll__networl_5_5_AnsP_0, P_poll__networl_5_5_AnsP_1, P_poll__networl_5_5_AnsP_2, P_poll__networl_5_5_AnsP_3, P_poll__networl_5_5_AnsP_4, P_poll__networl_5_5_AnsP_5, P_poll__networl_5_5_AnsP_6, P_poll__networl_5_5_RI_0, P_poll__networl_5_5_RI_1, P_poll__networl_5_5_RI_2, P_poll__networl_5_5_RI_3, P_poll__networl_5_5_RI_4, P_poll__networl_5_5_RI_5, P_poll__networl_5_5_RI_6, P_poll__networl_5_5_AI_0, P_poll__networl_5_5_AI_1, P_poll__networl_5_5_AI_2, P_poll__networl_5_5_AI_3, P_poll__networl_5_5_AI_4, P_poll__networl_5_5_AI_5, P_poll__networl_5_5_AI_6, P_poll__networl_5_5_AnnP_0, P_poll__networl_5_5_AnnP_1, P_poll__networl_5_5_AnnP_2, P_poll__networl_5_5_AnnP_3, P_poll__networl_5_5_AnnP_4, P_poll__networl_5_5_AnnP_5, P_poll__networl_5_5_AnnP_6, P_poll__networl_5_5_RP_0, P_poll__networl_5_5_RP_1, P_poll__networl_5_5_RP_2, P_poll__networl_5_5_RP_3, P_poll__networl_5_5_RP_4, P_poll__networl_5_5_RP_5, P_poll__networl_5_5_RP_6, P_poll__networl_5_6_AskP_0, P_poll__networl_5_6_AskP_1, P_poll__networl_5_6_AskP_2, P_poll__networl_5_6_AskP_3, P_poll__networl_5_6_AskP_4, P_poll__networl_5_6_AskP_5, P_poll__networl_5_6_AskP_6, P_poll__networl_5_6_AnsP_0, P_poll__networl_5_6_AnsP_1, P_poll__networl_5_6_AnsP_2, P_poll__networl_5_6_AnsP_3, P_poll__networl_5_6_AnsP_4, P_poll__networl_5_6_AnsP_5, P_poll__networl_5_6_AnsP_6, P_poll__networl_5_6_RI_0, P_poll__networl_5_6_RI_1, P_poll__networl_5_6_RI_2, P_poll__networl_5_6_RI_3, P_poll__networl_5_6_RI_4, P_poll__networl_5_6_RI_5, P_poll__networl_5_6_RI_6, P_poll__networl_5_6_AI_0, P_poll__networl_5_6_AI_1, P_poll__networl_5_6_AI_2, P_poll__networl_5_6_AI_3, P_poll__networl_5_6_AI_4, P_poll__networl_5_6_AI_5, P_poll__networl_5_6_AI_6, P_poll__networl_5_6_AnnP_0, P_poll__networl_5_6_AnnP_1, P_poll__networl_5_6_AnnP_2, P_poll__networl_5_6_AnnP_3, P_poll__networl_5_6_AnnP_4, P_poll__networl_5_6_AnnP_5, P_poll__networl_5_6_AnnP_6, P_poll__networl_5_6_RP_0, P_poll__networl_5_6_RP_1, P_poll__networl_5_6_RP_2, P_poll__networl_5_6_RP_3, P_poll__networl_5_6_RP_4, P_poll__networl_5_6_RP_5, P_poll__networl_5_6_RP_6, P_poll__networl_6_0_AskP_0, P_poll__networl_6_0_AskP_1, P_poll__networl_6_0_AskP_2, P_poll__networl_6_0_AskP_3, P_poll__networl_6_0_AskP_4, P_poll__networl_6_0_AskP_5, P_poll__networl_6_0_AskP_6, P_poll__networl_6_0_AnsP_0, P_poll__networl_6_0_AnsP_1, P_poll__networl_6_0_AnsP_2, P_poll__networl_6_0_AnsP_3, P_poll__networl_6_0_AnsP_4, P_poll__networl_6_0_AnsP_5, P_poll__networl_6_0_AnsP_6, P_poll__networl_6_0_RI_0, P_poll__networl_6_0_RI_1, P_poll__networl_6_0_RI_2, P_poll__networl_6_0_RI_3, P_poll__networl_6_0_RI_4, P_poll__networl_6_0_RI_5, P_poll__networl_6_0_RI_6, P_poll__networl_6_0_AI_0, P_poll__networl_6_0_AI_1, P_poll__networl_6_0_AI_2, P_poll__networl_6_0_AI_3, P_poll__networl_6_0_AI_4, P_poll__networl_6_0_AI_5, P_poll__networl_6_0_AI_6, P_poll__networl_6_0_AnnP_0, P_poll__networl_6_0_AnnP_1, P_poll__networl_6_0_AnnP_2, P_poll__networl_6_0_AnnP_3, P_poll__networl_6_0_AnnP_4, P_poll__networl_6_0_AnnP_5, P_poll__networl_6_0_AnnP_6, P_poll__networl_6_0_RP_0, P_poll__networl_6_0_RP_1, P_poll__networl_6_0_RP_2, P_poll__networl_6_0_RP_3, P_poll__networl_6_0_RP_4, P_poll__networl_6_0_RP_5, P_poll__networl_6_0_RP_6, P_poll__networl_6_1_AskP_0, P_poll__networl_6_1_AskP_1, P_poll__networl_6_1_AskP_2, P_poll__networl_6_1_AskP_3, P_poll__networl_6_1_AskP_4, P_poll__networl_6_1_AskP_5, P_poll__networl_6_1_AskP_6, P_poll__networl_6_1_AnsP_0, P_poll__networl_6_1_AnsP_1, P_poll__networl_6_1_AnsP_2, P_poll__networl_6_1_AnsP_3, P_poll__networl_6_1_AnsP_4, P_poll__networl_6_1_AnsP_5, P_poll__networl_6_1_AnsP_6, P_poll__networl_6_1_RI_0, P_poll__networl_6_1_RI_1, P_poll__networl_6_1_RI_2, P_poll__networl_6_1_RI_3, P_poll__networl_6_1_RI_4, P_poll__networl_6_1_RI_5, P_poll__networl_6_1_RI_6, P_poll__networl_6_1_AI_0, P_poll__networl_6_1_AI_1, P_poll__networl_6_1_AI_2, P_poll__networl_6_1_AI_3, P_poll__networl_6_1_AI_4, P_poll__networl_6_1_AI_5, P_poll__networl_6_1_AI_6, P_poll__networl_6_1_AnnP_0, P_poll__networl_6_1_AnnP_1, P_poll__networl_6_1_AnnP_2, P_poll__networl_6_1_AnnP_3, P_poll__networl_6_1_AnnP_4, P_poll__networl_6_1_AnnP_5, P_poll__networl_6_1_AnnP_6, P_poll__networl_6_1_RP_0, P_poll__networl_6_1_RP_1, P_poll__networl_6_1_RP_2, P_poll__networl_6_1_RP_3, P_poll__networl_6_1_RP_4, P_poll__networl_6_1_RP_5, P_poll__networl_6_1_RP_6, P_poll__networl_6_2_AskP_0, P_poll__networl_6_2_AskP_1, P_poll__networl_6_2_AskP_2, P_poll__networl_6_2_AskP_3, P_poll__networl_6_2_AskP_4, P_poll__networl_6_2_AskP_5, P_poll__networl_6_2_AskP_6, P_poll__networl_6_2_AnsP_0, P_poll__networl_6_2_AnsP_1, P_poll__networl_6_2_AnsP_2, P_poll__networl_6_2_AnsP_3, P_poll__networl_6_2_AnsP_4, P_poll__networl_6_2_AnsP_5, P_poll__networl_6_2_AnsP_6, P_poll__networl_6_2_RI_0, P_poll__networl_6_2_RI_1, P_poll__networl_6_2_RI_2, P_poll__networl_6_2_RI_3, P_poll__networl_6_2_RI_4, P_poll__networl_6_2_RI_5, P_poll__networl_6_2_RI_6, P_poll__networl_6_2_AI_0, P_poll__networl_6_2_AI_1, P_poll__networl_6_2_AI_2, P_poll__networl_6_2_AI_3, P_poll__networl_6_2_AI_4, P_poll__networl_6_2_AI_5, P_poll__networl_6_2_AI_6, P_poll__networl_6_2_AnnP_0, P_poll__networl_6_2_AnnP_1, P_poll__networl_6_2_AnnP_2, P_poll__networl_6_2_AnnP_3, P_poll__networl_6_2_AnnP_4, P_poll__networl_6_2_AnnP_5, P_poll__networl_6_2_AnnP_6, P_poll__networl_6_2_RP_0, P_poll__networl_6_2_RP_1, P_poll__networl_6_2_RP_2, P_poll__networl_6_2_RP_3, P_poll__networl_6_2_RP_4, P_poll__networl_6_2_RP_5, P_poll__networl_6_2_RP_6, P_poll__networl_6_3_AskP_0, P_poll__networl_6_3_AskP_1, P_poll__networl_6_3_AskP_2, P_poll__networl_6_3_AskP_3, P_poll__networl_6_3_AskP_4, P_poll__networl_6_3_AskP_5, P_poll__networl_6_3_AskP_6, P_poll__networl_6_3_AnsP_0, P_poll__networl_6_3_AnsP_1, P_poll__networl_6_3_AnsP_2, P_poll__networl_6_3_AnsP_3, P_poll__networl_6_3_AnsP_4, P_poll__networl_6_3_AnsP_5, P_poll__networl_6_3_AnsP_6, P_poll__networl_6_3_RI_0, P_poll__networl_6_3_RI_1, P_poll__networl_6_3_RI_2, P_poll__networl_6_3_RI_3, P_poll__networl_6_3_RI_4, P_poll__networl_6_3_RI_5, P_poll__networl_6_3_RI_6, P_poll__networl_6_3_AI_0, P_poll__networl_6_3_AI_1, P_poll__networl_6_3_AI_2, P_poll__networl_6_3_AI_3, P_poll__networl_6_3_AI_4, P_poll__networl_6_3_AI_5, P_poll__networl_6_3_AI_6, P_poll__networl_6_3_AnnP_0, P_poll__networl_6_3_AnnP_1, P_poll__networl_6_3_AnnP_2, P_poll__networl_6_3_AnnP_3, P_poll__networl_6_3_AnnP_4, P_poll__networl_6_3_AnnP_5, P_poll__networl_6_3_AnnP_6, P_poll__networl_6_3_RP_0, P_poll__networl_6_3_RP_1, P_poll__networl_6_3_RP_2, P_poll__networl_6_3_RP_3, P_poll__networl_6_3_RP_4, P_poll__networl_6_3_RP_5, P_poll__networl_6_3_RP_6, P_poll__networl_6_4_AskP_0, P_poll__networl_6_4_AskP_1, P_poll__networl_6_4_AskP_2, P_poll__networl_6_4_AskP_3, P_poll__networl_6_4_AskP_4, P_poll__networl_6_4_AskP_5, P_poll__networl_6_4_AskP_6, P_poll__networl_6_4_AnsP_0, P_poll__networl_6_4_AnsP_1, P_poll__networl_6_4_AnsP_2, P_poll__networl_6_4_AnsP_3, P_poll__networl_6_4_AnsP_4, P_poll__networl_6_4_AnsP_5, P_poll__networl_6_4_AnsP_6, P_poll__networl_6_4_RI_0, P_poll__networl_6_4_RI_1, P_poll__networl_6_4_RI_2, P_poll__networl_6_4_RI_3, P_poll__networl_6_4_RI_4, P_poll__networl_6_4_RI_5, P_poll__networl_6_4_RI_6, P_poll__networl_6_4_AI_0, P_poll__networl_6_4_AI_1, P_poll__networl_6_4_AI_2, P_poll__networl_6_4_AI_3, P_poll__networl_6_4_AI_4, P_poll__networl_6_4_AI_5, P_poll__networl_6_4_AI_6, P_poll__networl_6_4_AnnP_0, P_poll__networl_6_4_AnnP_1, P_poll__networl_6_4_AnnP_2, P_poll__networl_6_4_AnnP_3, P_poll__networl_6_4_AnnP_4, P_poll__networl_6_4_AnnP_5, P_poll__networl_6_4_AnnP_6, P_poll__networl_6_4_RP_0, P_poll__networl_6_4_RP_1, P_poll__networl_6_4_RP_2, P_poll__networl_6_4_RP_3, P_poll__networl_6_4_RP_4, P_poll__networl_6_4_RP_5, P_poll__networl_6_4_RP_6, P_poll__networl_6_5_AskP_0, P_poll__networl_6_5_AskP_1, P_poll__networl_6_5_AskP_2, P_poll__networl_6_5_AskP_3, P_poll__networl_6_5_AskP_4, P_poll__networl_6_5_AskP_5, P_poll__networl_6_5_AskP_6, P_poll__networl_6_5_AnsP_0, P_poll__networl_6_5_AnsP_1, P_poll__networl_6_5_AnsP_2, P_poll__networl_6_5_AnsP_3, P_poll__networl_6_5_AnsP_4, P_poll__networl_6_5_AnsP_5, P_poll__networl_6_5_AnsP_6, P_poll__networl_6_5_RI_0, P_poll__networl_6_5_RI_1, P_poll__networl_6_5_RI_2, P_poll__networl_6_5_RI_3, P_poll__networl_6_5_RI_4, P_poll__networl_6_5_RI_5, P_poll__networl_6_5_RI_6, P_poll__networl_6_5_AI_0, P_poll__networl_6_5_AI_1, P_poll__networl_6_5_AI_2, P_poll__networl_6_5_AI_3, P_poll__networl_6_5_AI_4, P_poll__networl_6_5_AI_5, P_poll__networl_6_5_AI_6, P_poll__networl_6_5_AnnP_0, P_poll__networl_6_5_AnnP_1, P_poll__networl_6_5_AnnP_2, P_poll__networl_6_5_AnnP_3, P_poll__networl_6_5_AnnP_4, P_poll__networl_6_5_AnnP_5, P_poll__networl_6_5_AnnP_6, P_poll__networl_6_5_RP_0, P_poll__networl_6_5_RP_1, P_poll__networl_6_5_RP_2, P_poll__networl_6_5_RP_3, P_poll__networl_6_5_RP_4, P_poll__networl_6_5_RP_5, P_poll__networl_6_5_RP_6, P_poll__networl_6_6_AskP_0, P_poll__networl_6_6_AskP_1, P_poll__networl_6_6_AskP_2, P_poll__networl_6_6_AskP_3, P_poll__networl_6_6_AskP_4, P_poll__networl_6_6_AskP_5, P_poll__networl_6_6_AskP_6, P_poll__networl_6_6_AnsP_0, P_poll__networl_6_6_AnsP_1, P_poll__networl_6_6_AnsP_2, P_poll__networl_6_6_AnsP_3, P_poll__networl_6_6_AnsP_4, P_poll__networl_6_6_AnsP_5, P_poll__networl_6_6_AnsP_6, P_poll__networl_6_6_RI_0, P_poll__networl_6_6_RI_1, P_poll__networl_6_6_RI_2, P_poll__networl_6_6_RI_3, P_poll__networl_6_6_RI_4, P_poll__networl_6_6_RI_5, P_poll__networl_6_6_RI_6, P_poll__networl_6_6_AI_0, P_poll__networl_6_6_AI_1, P_poll__networl_6_6_AI_2, P_poll__networl_6_6_AI_3, P_poll__networl_6_6_AI_4, P_poll__networl_6_6_AI_5, P_poll__networl_6_6_AI_6, P_poll__networl_6_6_AnnP_0, P_poll__networl_6_6_AnnP_1, P_poll__networl_6_6_AnnP_2, P_poll__networl_6_6_AnnP_3, P_poll__networl_6_6_AnnP_4, P_poll__networl_6_6_AnnP_5, P_poll__networl_6_6_AnnP_6, P_poll__networl_6_6_RP_0, P_poll__networl_6_6_RP_1, P_poll__networl_6_6_RP_2, P_poll__networl_6_6_RP_3, P_poll__networl_6_6_RP_4, P_poll__networl_6_6_RP_5, P_poll__networl_6_6_RP_6, P_poll__pollEnd_0, P_poll__pollEnd_1, P_poll__pollEnd_2, P_poll__pollEnd_3, P_poll__pollEnd_4, P_poll__pollEnd_5, P_poll__pollEnd_6, P_poll__waitingMessage_0, P_poll__waitingMessage_1, P_poll__waitingMessage_2, P_poll__waitingMessage_3, P_poll__waitingMessage_4, P_poll__waitingMessage_5, P_poll__waitingMessage_6, P_polling_0, P_polling_1, P_polling_2, P_polling_3, P_polling_4, P_polling_5, P_polling_6, P_sendAnnPs__broadcasting_0_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_4, P_sendAnnPs__broadcasting_0_5, P_sendAnnPs__broadcasting_0_6, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_4, P_sendAnnPs__broadcasting_1_5, P_sendAnnPs__broadcasting_1_6, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_4, P_sendAnnPs__broadcasting_2_5, P_sendAnnPs__broadcasting_2_6, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_4, P_sendAnnPs__broadcasting_3_5, P_sendAnnPs__broadcasting_3_6, P_sendAnnPs__broadcasting_4_1, P_sendAnnPs__broadcasting_4_2, P_sendAnnPs__broadcasting_4_3, P_sendAnnPs__broadcasting_4_4, P_sendAnnPs__broadcasting_4_5, P_sendAnnPs__broadcasting_4_6, P_sendAnnPs__broadcasting_5_1, P_sendAnnPs__broadcasting_5_2, P_sendAnnPs__broadcasting_5_3, P_sendAnnPs__broadcasting_5_4, P_sendAnnPs__broadcasting_5_5, P_sendAnnPs__broadcasting_5_6, P_sendAnnPs__broadcasting_6_1, P_sendAnnPs__broadcasting_6_2, P_sendAnnPs__broadcasting_6_3, P_sendAnnPs__broadcasting_6_4, P_sendAnnPs__broadcasting_6_5, P_sendAnnPs__broadcasting_6_6, P_stage_0_NEG, P_stage_0_PRIM, P_stage_0_SEC, P_stage_1_NEG, P_stage_1_PRIM, P_stage_1_SEC, P_stage_2_NEG, P_stage_2_PRIM, P_stage_2_SEC, P_stage_3_NEG, P_stage_3_PRIM, P_stage_3_SEC, P_stage_4_NEG, P_stage_4_PRIM, P_stage_4_SEC, P_stage_5_NEG, P_stage_5_PRIM, P_stage_5_SEC, P_stage_6_NEG, P_stage_6_PRIM, P_stage_6_SEC, P_startNeg__broadcasting_0_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_4, P_startNeg__broadcasting_0_5, P_startNeg__broadcasting_0_6, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_4, P_startNeg__broadcasting_1_5, P_startNeg__broadcasting_1_6, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_4, P_startNeg__broadcasting_2_5, P_startNeg__broadcasting_2_6, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_4, P_startNeg__broadcasting_3_5, P_startNeg__broadcasting_3_6, P_startNeg__broadcasting_4_1, P_startNeg__broadcasting_4_2, P_startNeg__broadcasting_4_3, P_startNeg__broadcasting_4_4, P_startNeg__broadcasting_4_5, P_startNeg__broadcasting_4_6, P_startNeg__broadcasting_5_1, P_startNeg__broadcasting_5_2, P_startNeg__broadcasting_5_3, P_startNeg__broadcasting_5_4, P_startNeg__broadcasting_5_5, P_startNeg__broadcasting_5_6, P_startNeg__broadcasting_6_1, P_startNeg__broadcasting_6_2, P_startNeg__broadcasting_6_3, P_startNeg__broadcasting_6_4, P_startNeg__broadcasting_6_5, P_startNeg__broadcasting_6_6]
[2022-05-19 07:38:54] [INFO ] Parsed PT model containing 4830 places and 8435 transitions in 1020 ms.
Parsed 16 properties from file /home/mcc/execution/LTLFireability.xml in 61 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 1 formulas.
Deduced a syphon composed of 4507 places in 34 ms
Reduce places removed 4537 places and 8041 transitions.
Reduce places removed 13 places and 0 transitions.
Initial state reduction rules removed 2 formulas.
FORMULA NeoElection-PT-6-LTLFireability-02 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-03 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-04 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-08 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-09 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-14 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-15 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-LTLFireability-01 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 104 out of 280 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 280/280 places, 394/394 transitions.
Reduce places removed 30 places and 0 transitions.
Iterating post reduction 0 with 30 rules applied. Total rules applied 30 place count 250 transition count 394
Discarding 49 places :
Symmetric choice reduction at 1 with 49 rule applications. Total rules 79 place count 201 transition count 179
Iterating global reduction 1 with 49 rules applied. Total rules applied 128 place count 201 transition count 179
Applied a total of 128 rules in 41 ms. Remains 201 /280 variables (removed 79) and now considering 179/394 (removed 215) transitions.
[2022-05-19 07:38:55] [INFO ] Flow matrix only has 154 transitions (discarded 25 similar events)
// Phase 1: matrix 154 rows 201 cols
[2022-05-19 07:38:55] [INFO ] Computed 47 place invariants in 31 ms
[2022-05-19 07:38:55] [INFO ] Implicit Places using invariants in 528 ms returned [17, 23, 29, 35, 41, 47]
Discarding 6 places :
Implicit Place search using SMT only with invariants took 576 ms to find 6 implicit places.
Starting structural reductions in LTL mode, iteration 1 : 195/280 places, 179/394 transitions.
Applied a total of 0 rules in 5 ms. Remains 195 /195 variables (removed 0) and now considering 179/179 (removed 0) transitions.
Finished structural reductions, in 2 iterations. Remains : 195/280 places, 179/394 transitions.
Support contains 104 out of 195 places after structural reductions.
[2022-05-19 07:38:56] [INFO ] Flatten gal took : 93 ms
[2022-05-19 07:38:56] [INFO ] Initial state reduction rules for LTL removed 1 formulas.
FORMULA NeoElection-PT-6-LTLFireability-13 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2022-05-19 07:38:56] [INFO ] Flatten gal took : 52 ms
[2022-05-19 07:38:56] [INFO ] Input system was already deterministic with 179 transitions.
Finished random walk after 290 steps, including 0 resets, run visited all 7 properties in 76 ms. (steps per millisecond=3 )
Computed a total of 195 stabilizing places and 179 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 195 transition count 179
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X(G(p0)))'
Support contains 60 out of 195 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 195/195 places, 179/179 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 194 transition count 178
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 194 transition count 178
Applied a total of 2 rules in 27 ms. Remains 194 /195 variables (removed 1) and now considering 178/179 (removed 1) transitions.
[2022-05-19 07:38:56] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:38:56] [INFO ] Computed 41 place invariants in 5 ms
[2022-05-19 07:38:57] [INFO ] Implicit Places using invariants in 259 ms returned []
[2022-05-19 07:38:57] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:38:57] [INFO ] Computed 41 place invariants in 3 ms
[2022-05-19 07:38:57] [INFO ] State equation strengthened by 5 read => feed constraints.
[2022-05-19 07:38:57] [INFO ] Implicit Places using invariants and state equation in 376 ms returned []
Implicit Place search using SMT with State Equation took 638 ms to find 0 implicit places.
[2022-05-19 07:38:57] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:38:57] [INFO ] Computed 41 place invariants in 2 ms
[2022-05-19 07:38:57] [INFO ] Dead Transitions using invariants and state equation in 228 ms found 0 transitions.
Starting structural reductions in LTL mode, iteration 1 : 194/195 places, 178/179 transitions.
Finished structural reductions, in 1 iterations. Remains : 194/195 places, 178/179 transitions.
Stuttering acceptance computed with spot in 302 ms :[true, (NOT p0), (NOT p0)]
Running random walk in product with property : NeoElection-PT-6-LTLFireability-00 automaton TGBA Formula[mat=[[{ cond=true, acceptance={0} source=0 dest: 0}], [{ cond=true, acceptance={} source=1 dest: 2}], [{ cond=(NOT p0), acceptance={} source=2 dest: 0}, { cond=p0, acceptance={} source=2 dest: 2}]], initial=1, aps=[p0:(AND (OR (EQ s28 0) (EQ s176 0)) (OR (EQ s39 0) (EQ s187 0)) (OR (EQ s44 0) (EQ s192 0)) (OR (EQ s37 0) (EQ s185 0)) (OR (EQ s30 0) (EQ s178 0)) (OR (E...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 3 ms.
FORMULA NeoElection-PT-6-LTLFireability-00 FALSE TECHNIQUES STUTTER_TEST
Treatment of property NeoElection-PT-6-LTLFireability-00 finished in 1300 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X(p0))'
Support contains 60 out of 195 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 195/195 places, 179/179 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 194 transition count 178
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 194 transition count 178
Applied a total of 2 rules in 21 ms. Remains 194 /195 variables (removed 1) and now considering 178/179 (removed 1) transitions.
[2022-05-19 07:38:58] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:38:58] [INFO ] Computed 41 place invariants in 2 ms
[2022-05-19 07:38:58] [INFO ] Implicit Places using invariants in 198 ms returned []
[2022-05-19 07:38:58] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:38:58] [INFO ] Computed 41 place invariants in 1 ms
[2022-05-19 07:38:58] [INFO ] State equation strengthened by 5 read => feed constraints.
[2022-05-19 07:38:58] [INFO ] Implicit Places using invariants and state equation in 308 ms returned []
Implicit Place search using SMT with State Equation took 510 ms to find 0 implicit places.
[2022-05-19 07:38:58] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:38:58] [INFO ] Computed 41 place invariants in 1 ms
[2022-05-19 07:38:58] [INFO ] Dead Transitions using invariants and state equation in 212 ms found 0 transitions.
Starting structural reductions in LTL mode, iteration 1 : 194/195 places, 178/179 transitions.
Finished structural reductions, in 1 iterations. Remains : 194/195 places, 178/179 transitions.
Stuttering acceptance computed with spot in 87 ms :[(NOT p0), (NOT p0), true]
Running random walk in product with property : NeoElection-PT-6-LTLFireability-05 automaton TGBA Formula[mat=[[{ cond=(NOT p0), acceptance={} source=0 dest: 2}], [{ cond=true, acceptance={} source=1 dest: 0}], [{ cond=true, acceptance={0} source=2 dest: 2}]], initial=1, aps=[p0:(OR (AND (EQ s28 1) (EQ s176 1)) (AND (EQ s39 1) (EQ s187 1)) (AND (EQ s44 1) (EQ s192 1)) (AND (EQ s37 1) (EQ s185 1)) (AND (EQ s30 1) (EQ s178 1)) (A...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Product exploration explored 100000 steps with 50000 reset in 819 ms.
Product exploration explored 100000 steps with 50000 reset in 484 ms.
Computed a total of 194 stabilizing places and 178 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 194 transition count 178
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(NOT p0), (X p0), true, (F (G (NOT p0)))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge :(X p0)
Knowledge based reduction with 4 factoid took 93 ms. Reduced automaton from 3 states, 3 edges and 1 AP to 1 states, 0 edges and 0 AP.
FORMULA NeoElection-PT-6-LTLFireability-05 TRUE TECHNIQUES KNOWLEDGE
Treatment of property NeoElection-PT-6-LTLFireability-05 finished in 2379 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(X(p0)))'
Support contains 36 out of 195 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 195/195 places, 179/179 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 194 transition count 178
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 194 transition count 178
Applied a total of 2 rules in 14 ms. Remains 194 /195 variables (removed 1) and now considering 178/179 (removed 1) transitions.
[2022-05-19 07:39:00] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:39:00] [INFO ] Computed 41 place invariants in 1 ms
[2022-05-19 07:39:00] [INFO ] Implicit Places using invariants in 149 ms returned [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]
Discarding 30 places :
Implicit Place search using SMT only with invariants took 153 ms to find 30 implicit places.
Starting structural reductions in LTL mode, iteration 1 : 164/195 places, 178/179 transitions.
Applied a total of 0 rules in 3 ms. Remains 164 /164 variables (removed 0) and now considering 178/178 (removed 0) transitions.
Finished structural reductions, in 2 iterations. Remains : 164/195 places, 178/179 transitions.
Stuttering acceptance computed with spot in 158 ms :[true, (NOT p0), (NOT p0)]
Running random walk in product with property : NeoElection-PT-6-LTLFireability-06 automaton TGBA Formula[mat=[[{ cond=true, acceptance={0} source=0 dest: 0}], [{ cond=true, acceptance={} source=1 dest: 2}], [{ cond=(NOT p0), acceptance={} source=2 dest: 0}, { cond=p0, acceptance={} source=2 dest: 2}]], initial=1, aps=[p0:(OR (AND (EQ s37 1) (EQ s117 1)) (AND (EQ s94 1) (EQ s120 1)) (AND (EQ s81 1) (EQ s119 1)) (AND (EQ s105 1) (EQ s121 1)) (AND (EQ s27 1) (EQ s116 1)) (...], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 0 ms.
FORMULA NeoElection-PT-6-LTLFireability-06 FALSE TECHNIQUES STUTTER_TEST
Treatment of property NeoElection-PT-6-LTLFireability-06 finished in 344 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(X(p0)))'
Support contains 6 out of 195 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 195/195 places, 179/179 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 194 transition count 178
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 194 transition count 178
Applied a total of 2 rules in 9 ms. Remains 194 /195 variables (removed 1) and now considering 178/179 (removed 1) transitions.
[2022-05-19 07:39:00] [INFO ] Flow matrix only has 153 transitions (discarded 25 similar events)
// Phase 1: matrix 153 rows 194 cols
[2022-05-19 07:39:00] [INFO ] Computed 41 place invariants in 1 ms
[2022-05-19 07:39:00] [INFO ] Implicit Places using invariants in 171 ms returned [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]
Discarding 30 places :
Implicit Place search using SMT only with invariants took 174 ms to find 30 implicit places.
Starting structural reductions in LTL mode, iteration 1 : 164/195 places, 178/179 transitions.
Applied a total of 0 rules in 4 ms. Remains 164 /164 variables (removed 0) and now considering 178/178 (removed 0) transitions.
Finished structural reductions, in 2 iterations. Remains : 164/195 places, 178/179 transitions.
Stuttering acceptance computed with spot in 87 ms :[true, (NOT p0), (NOT p0)]
Running random walk in product with property : NeoElection-PT-6-LTLFireability-07 automaton TGBA Formula[mat=[[{ cond=true, acceptance={0} source=0 dest: 0}], [{ cond=true, acceptance={} source=1 dest: 2}], [{ cond=(NOT p0), acceptance={} source=2 dest: 0}, { cond=p0, acceptance={} source=2 dest: 2}]], initial=1, aps=[p0:(AND (EQ s0 0) (EQ s1 0) (EQ s3 0) (EQ s2 0) (EQ s5 0) (EQ s4 0))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null, null][false, false, false]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 1 ms.
FORMULA NeoElection-PT-6-LTLFireability-07 FALSE TECHNIQUES STUTTER_TEST
Treatment of property NeoElection-PT-6-LTLFireability-07 finished in 288 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(F((X(p1)||p0))))'
Support contains 2 out of 195 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 195/195 places, 179/179 transitions.
Reduce places removed 6 places and 6 transitions.
Ensure Unique test removed 6 places
Drop transitions removed 4 transitions
Trivial Post-agglo rules discarded 4 transitions
Performed 4 trivial Post agglomeration. Transition count delta: 4
Iterating post reduction 0 with 10 rules applied. Total rules applied 10 place count 183 transition count 169
Reduce places removed 4 places and 0 transitions.
Iterating post reduction 1 with 4 rules applied. Total rules applied 14 place count 179 transition count 169
Performed 6 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 6 Pre rules applied. Total rules applied 14 place count 179 transition count 163
Deduced a syphon composed of 6 places in 0 ms
Reduce places removed 6 places and 0 transitions.
Iterating global reduction 2 with 12 rules applied. Total rules applied 26 place count 173 transition count 163
Discarding 1 places :
Symmetric choice reduction at 2 with 1 rule applications. Total rules 27 place count 172 transition count 162
Iterating global reduction 2 with 1 rules applied. Total rules applied 28 place count 172 transition count 162
Performed 1 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 1 Pre rules applied. Total rules applied 28 place count 172 transition count 161
Deduced a syphon composed of 1 places in 0 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 2 with 2 rules applied. Total rules applied 30 place count 171 transition count 161
Reduce places removed 6 places and 6 transitions.
Iterating global reduction 2 with 6 rules applied. Total rules applied 36 place count 165 transition count 155
Ensure Unique test removed 6 places
Iterating post reduction 2 with 6 rules applied. Total rules applied 42 place count 159 transition count 155
Reduce places removed 6 places and 6 transitions.
Iterating global reduction 3 with 6 rules applied. Total rules applied 48 place count 153 transition count 149
Ensure Unique test removed 6 places
Iterating post reduction 3 with 6 rules applied. Total rules applied 54 place count 147 transition count 149
Reduce places removed 6 places and 6 transitions.
Iterating global reduction 4 with 6 rules applied. Total rules applied 60 place count 141 transition count 143
Ensure Unique test removed 6 places
Iterating post reduction 4 with 6 rules applied. Total rules applied 66 place count 135 transition count 143
Reduce places removed 6 places and 6 transitions.
Iterating global reduction 5 with 6 rules applied. Total rules applied 72 place count 129 transition count 137
Ensure Unique test removed 6 places
Iterating post reduction 5 with 6 rules applied. Total rules applied 78 place count 123 transition count 137
Reduce places removed 6 places and 6 transitions.
Iterating global reduction 6 with 6 rules applied. Total rules applied 84 place count 117 transition count 131
Reduce places removed 5 places and 0 transitions.
Graph (complete) has 248 edges and 112 vertex of which 88 are kept as prefixes of interest. Removing 24 places using SCC suffix rule.2 ms
Discarding 24 places :
Also discarding 24 output transitions
Drop transitions removed 24 transitions
Drop transitions removed 14 transitions
Trivial Post-agglo rules discarded 14 transitions
Performed 14 trivial Post agglomeration. Transition count delta: 14
Iterating post reduction 6 with 20 rules applied. Total rules applied 104 place count 88 transition count 93
Reduce places removed 14 places and 0 transitions.
Iterating post reduction 7 with 14 rules applied. Total rules applied 118 place count 74 transition count 93
Performed 7 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 8 with 7 Pre rules applied. Total rules applied 118 place count 74 transition count 86
Deduced a syphon composed of 7 places in 0 ms
Reduce places removed 7 places and 0 transitions.
Iterating global reduction 8 with 14 rules applied. Total rules applied 132 place count 67 transition count 86
Discarding 18 places :
Symmetric choice reduction at 8 with 18 rule applications. Total rules 150 place count 49 transition count 62
Iterating global reduction 8 with 18 rules applied. Total rules applied 168 place count 49 transition count 62
Performed 3 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 8 with 3 Pre rules applied. Total rules applied 168 place count 49 transition count 59
Deduced a syphon composed of 3 places in 0 ms
Reduce places removed 3 places and 0 transitions.
Iterating global reduction 8 with 6 rules applied. Total rules applied 174 place count 46 transition count 59
Discarding 5 places :
Symmetric choice reduction at 8 with 5 rule applications. Total rules 179 place count 41 transition count 52
Iterating global reduction 8 with 5 rules applied. Total rules applied 184 place count 41 transition count 52
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Deduced a syphon composed of 1 places in 0 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 8 with 2 rules applied. Total rules applied 186 place count 40 transition count 51
Applied a total of 186 rules in 111 ms. Remains 40 /195 variables (removed 155) and now considering 51/179 (removed 128) transitions.
[2022-05-19 07:39:01] [INFO ] Flow matrix only has 34 transitions (discarded 17 similar events)
// Phase 1: matrix 34 rows 40 cols
[2022-05-19 07:39:01] [INFO ] Computed 6 place invariants in 0 ms
[2022-05-19 07:39:01] [INFO ] Implicit Places using invariants in 45 ms returned []
[2022-05-19 07:39:01] [INFO ] Flow matrix only has 34 transitions (discarded 17 similar events)
// Phase 1: matrix 34 rows 40 cols
[2022-05-19 07:39:01] [INFO ] Computed 6 place invariants in 0 ms
[2022-05-19 07:39:01] [INFO ] State equation strengthened by 5 read => feed constraints.
[2022-05-19 07:39:01] [INFO ] Implicit Places using invariants and state equation in 63 ms returned []
Implicit Place search using SMT with State Equation took 112 ms to find 0 implicit places.
[2022-05-19 07:39:01] [INFO ] Redundant transitions in 1 ms returned []
[2022-05-19 07:39:01] [INFO ] Flow matrix only has 34 transitions (discarded 17 similar events)
// Phase 1: matrix 34 rows 40 cols
[2022-05-19 07:39:01] [INFO ] Computed 6 place invariants in 8 ms
[2022-05-19 07:39:01] [INFO ] Dead Transitions using invariants and state equation in 58 ms found 0 transitions.
Starting structural reductions in SI_LTL mode, iteration 1 : 40/195 places, 51/179 transitions.
Finished structural reductions, in 1 iterations. Remains : 40/195 places, 51/179 transitions.
Stuttering acceptance computed with spot in 73 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Running random walk in product with property : NeoElection-PT-6-LTLFireability-10 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 0}, { cond=(AND (NOT p0) (NOT p1)), acceptance={} source=0 dest: 1}], [{ cond=(AND (NOT p0) (NOT p1)), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(OR (EQ s20 0) (EQ s38 0)), p1:(OR (EQ s20 0) (EQ s38 0))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-invariant, very-weak, weak, inherently-weak], stateDesc=[null, null][true, true]]
Product exploration explored 100000 steps with 2040 reset in 434 ms.
Product exploration explored 100000 steps with 2078 reset in 301 ms.
Computed a total of 40 stabilizing places and 51 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 40 transition count 51
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(AND p0 p1), (X (NOT (AND (NOT p0) (NOT p1)))), (X (X (NOT (AND (NOT p0) (NOT p1))))), (F (G p0)), (F (G p1))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge :(F (G p0))
Knowledge based reduction with 5 factoid took 109 ms. Reduced automaton from 2 states, 3 edges and 2 AP to 1 states, 0 edges and 0 AP.
FORMULA NeoElection-PT-6-LTLFireability-10 TRUE TECHNIQUES KNOWLEDGE
Treatment of property NeoElection-PT-6-LTLFireability-10 finished in 1278 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X(F(p0)))'
Support contains 1 out of 195 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 195/195 places, 179/179 transitions.
Applied a total of 0 rules in 4 ms. Remains 195 /195 variables (removed 0) and now considering 179/179 (removed 0) transitions.
[2022-05-19 07:39:02] [INFO ] Flow matrix only has 154 transitions (discarded 25 similar events)
// Phase 1: matrix 154 rows 195 cols
[2022-05-19 07:39:02] [INFO ] Computed 41 place invariants in 1 ms
[2022-05-19 07:39:02] [INFO ] Implicit Places using invariants in 193 ms returned [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]
Discarding 30 places :
Implicit Place search using SMT only with invariants took 195 ms to find 30 implicit places.
Starting structural reductions in LTL mode, iteration 1 : 165/195 places, 179/179 transitions.
Applied a total of 0 rules in 3 ms. Remains 165 /165 variables (removed 0) and now considering 179/179 (removed 0) transitions.
Finished structural reductions, in 2 iterations. Remains : 165/195 places, 179/179 transitions.
Stuttering acceptance computed with spot in 70 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : NeoElection-PT-6-LTLFireability-12 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(EQ s159 1)], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null][false, false]]
Product exploration explored 100000 steps with 2550 reset in 180 ms.
Product exploration explored 100000 steps with 2556 reset in 291 ms.
Computed a total of 165 stabilizing places and 179 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 165 transition count 179
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(NOT p0), (X (NOT p0)), (X (X (NOT p0))), (F (G (NOT p0)))]
False Knowledge obtained : []
Knowledge based reduction with 4 factoid took 145 ms. Reduced automaton from 2 states, 2 edges and 1 AP to 1 states, 1 edges and 1 AP.
Stuttering acceptance computed with spot in 34 ms :[(NOT p0)]
Finished random walk after 31 steps, including 0 resets, run visited all 1 properties in 2 ms. (steps per millisecond=15 )
Knowledge obtained : [(NOT p0), (X (NOT p0)), (X (X (NOT p0))), (F (G (NOT p0)))]
False Knowledge obtained : [(F p0)]
Knowledge based reduction with 4 factoid took 170 ms. Reduced automaton from 1 states, 1 edges and 1 AP to 1 states, 1 edges and 1 AP.
Stuttering acceptance computed with spot in 33 ms :[(NOT p0)]
Stuttering acceptance computed with spot in 34 ms :[(NOT p0)]
[2022-05-19 07:39:03] [INFO ] Flow matrix only has 154 transitions (discarded 25 similar events)
// Phase 1: matrix 154 rows 165 cols
[2022-05-19 07:39:03] [INFO ] Computed 11 place invariants in 2 ms
[2022-05-19 07:39:03] [INFO ] [Real]Absence check using 11 positive place invariants in 3 ms returned sat
[2022-05-19 07:39:03] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2022-05-19 07:39:03] [INFO ] [Real]Absence check using state equation in 90 ms returned sat
[2022-05-19 07:39:03] [INFO ] Solution in real domain found non-integer solution.
[2022-05-19 07:39:03] [INFO ] [Nat]Absence check using 11 positive place invariants in 3 ms returned sat
[2022-05-19 07:39:03] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2022-05-19 07:39:04] [INFO ] [Nat]Absence check using state equation in 86 ms returned sat
[2022-05-19 07:39:04] [INFO ] State equation strengthened by 5 read => feed constraints.
[2022-05-19 07:39:04] [INFO ] [Nat]Added 5 Read/Feed constraints in 3 ms returned sat
[2022-05-19 07:39:04] [INFO ] Deduced a trap composed of 9 places in 45 ms of which 3 ms to minimize.
[2022-05-19 07:39:04] [INFO ] Deduced a trap composed of 9 places in 38 ms of which 1 ms to minimize.
[2022-05-19 07:39:04] [INFO ] Trap strengthening (SAT) tested/added 3/2 trap constraints in 132 ms
[2022-05-19 07:39:04] [INFO ] Computed and/alt/rep : 167/358/142 causal constraints (skipped 6 transitions) in 22 ms.
[2022-05-19 07:39:04] [INFO ] Deduced a trap composed of 10 places in 37 ms of which 2 ms to minimize.
[2022-05-19 07:39:04] [INFO ] Deduced a trap composed of 9 places in 33 ms of which 2 ms to minimize.
[2022-05-19 07:39:04] [INFO ] Deduced a trap composed of 8 places in 39 ms of which 7 ms to minimize.
[2022-05-19 07:39:04] [INFO ] Trap strengthening (SAT) tested/added 4/3 trap constraints in 176 ms
[2022-05-19 07:39:04] [INFO ] Added : 116 causal constraints over 24 iterations in 729 ms. Result :sat
Could not prove EG (NOT p0)
Support contains 1 out of 165 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 165/165 places, 179/179 transitions.
Reduce places removed 6 places and 6 transitions.
Drop transitions removed 5 transitions
Trivial Post-agglo rules discarded 5 transitions
Performed 5 trivial Post agglomeration. Transition count delta: 5
Iterating post reduction 0 with 5 rules applied. Total rules applied 5 place count 159 transition count 168
Reduce places removed 5 places and 0 transitions.
Iterating post reduction 1 with 5 rules applied. Total rules applied 10 place count 154 transition count 168
Performed 6 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 6 Pre rules applied. Total rules applied 10 place count 154 transition count 162
Deduced a syphon composed of 6 places in 0 ms
Reduce places removed 6 places and 0 transitions.
Iterating global reduction 2 with 12 rules applied. Total rules applied 22 place count 148 transition count 162
Performed 24 Post agglomeration using F-continuation condition.Transition count delta: 24
Deduced a syphon composed of 24 places in 0 ms
Reduce places removed 24 places and 0 transitions.
Iterating global reduction 2 with 48 rules applied. Total rules applied 70 place count 124 transition count 138
Reduce places removed 6 places and 6 transitions.
Iterating global reduction 2 with 6 rules applied. Total rules applied 76 place count 118 transition count 132
Reduce places removed 5 places and 0 transitions.
Graph (complete) has 250 edges and 113 vertex of which 89 are kept as prefixes of interest. Removing 24 places using SCC suffix rule.1 ms
Discarding 24 places :
Also discarding 24 output transitions
Drop transitions removed 24 transitions
Drop transitions removed 14 transitions
Trivial Post-agglo rules discarded 14 transitions
Performed 14 trivial Post agglomeration. Transition count delta: 14
Iterating post reduction 2 with 20 rules applied. Total rules applied 96 place count 89 transition count 94
Reduce places removed 14 places and 0 transitions.
Iterating post reduction 3 with 14 rules applied. Total rules applied 110 place count 75 transition count 94
Performed 8 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 4 with 8 Pre rules applied. Total rules applied 110 place count 75 transition count 86
Deduced a syphon composed of 8 places in 0 ms
Reduce places removed 8 places and 0 transitions.
Iterating global reduction 4 with 16 rules applied. Total rules applied 126 place count 67 transition count 86
Discarding 16 places :
Symmetric choice reduction at 4 with 16 rule applications. Total rules 142 place count 51 transition count 64
Iterating global reduction 4 with 16 rules applied. Total rules applied 158 place count 51 transition count 64
Discarding 3 places :
Symmetric choice reduction at 4 with 3 rule applications. Total rules 161 place count 48 transition count 61
Iterating global reduction 4 with 3 rules applied. Total rules applied 164 place count 48 transition count 61
Performed 3 Post agglomeration using F-continuation condition.Transition count delta: 3
Deduced a syphon composed of 3 places in 0 ms
Reduce places removed 3 places and 0 transitions.
Iterating global reduction 4 with 6 rules applied. Total rules applied 170 place count 45 transition count 58
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 4 with 1 rules applied. Total rules applied 171 place count 44 transition count 57
Applied a total of 171 rules in 39 ms. Remains 44 /165 variables (removed 121) and now considering 57/179 (removed 122) transitions.
[2022-05-19 07:39:04] [INFO ] Flow matrix only has 38 transitions (discarded 19 similar events)
// Phase 1: matrix 38 rows 44 cols
[2022-05-19 07:39:04] [INFO ] Computed 6 place invariants in 1 ms
[2022-05-19 07:39:05] [INFO ] Implicit Places using invariants in 76 ms returned []
[2022-05-19 07:39:05] [INFO ] Flow matrix only has 38 transitions (discarded 19 similar events)
// Phase 1: matrix 38 rows 44 cols
[2022-05-19 07:39:05] [INFO ] Computed 6 place invariants in 0 ms
[2022-05-19 07:39:05] [INFO ] State equation strengthened by 18 read => feed constraints.
[2022-05-19 07:39:05] [INFO ] Implicit Places using invariants and state equation in 107 ms returned []
Implicit Place search using SMT with State Equation took 186 ms to find 0 implicit places.
[2022-05-19 07:39:05] [INFO ] Redundant transitions in 1 ms returned []
[2022-05-19 07:39:05] [INFO ] Flow matrix only has 38 transitions (discarded 19 similar events)
// Phase 1: matrix 38 rows 44 cols
[2022-05-19 07:39:05] [INFO ] Computed 6 place invariants in 1 ms
[2022-05-19 07:39:05] [INFO ] Dead Transitions using invariants and state equation in 57 ms found 0 transitions.
Starting structural reductions in SI_LTL mode, iteration 1 : 44/165 places, 57/179 transitions.
Finished structural reductions, in 1 iterations. Remains : 44/165 places, 57/179 transitions.
Computed a total of 44 stabilizing places and 57 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 44 transition count 57
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(NOT p0), (F (G (NOT p0)))]
False Knowledge obtained : [(X (NOT p0)), (X p0), (X (X (NOT p0))), (X (X p0))]
Knowledge based reduction with 2 factoid took 151 ms. Reduced automaton from 1 states, 1 edges and 1 AP to 1 states, 1 edges and 1 AP.
Stuttering acceptance computed with spot in 34 ms :[(NOT p0)]
Finished random walk after 22 steps, including 0 resets, run visited all 1 properties in 2 ms. (steps per millisecond=11 )
Knowledge obtained : [(NOT p0), (F (G (NOT p0)))]
False Knowledge obtained : [(X (NOT p0)), (X p0), (X (X (NOT p0))), (X (X p0)), (F p0)]
Knowledge based reduction with 2 factoid took 323 ms. Reduced automaton from 1 states, 1 edges and 1 AP to 1 states, 1 edges and 1 AP.
Stuttering acceptance computed with spot in 33 ms :[(NOT p0)]
Stuttering acceptance computed with spot in 32 ms :[(NOT p0)]
[2022-05-19 07:39:05] [INFO ] Flow matrix only has 38 transitions (discarded 19 similar events)
// Phase 1: matrix 38 rows 44 cols
[2022-05-19 07:39:05] [INFO ] Computed 6 place invariants in 0 ms
[2022-05-19 07:39:05] [INFO ] [Real]Absence check using 6 positive place invariants in 2 ms returned sat
[2022-05-19 07:39:05] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2022-05-19 07:39:05] [INFO ] [Real]Absence check using state equation in 22 ms returned sat
[2022-05-19 07:39:05] [INFO ] Solution in real domain found non-integer solution.
[2022-05-19 07:39:05] [INFO ] [Nat]Absence check using 6 positive place invariants in 2 ms returned sat
[2022-05-19 07:39:05] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2022-05-19 07:39:05] [INFO ] [Nat]Absence check using state equation in 22 ms returned sat
[2022-05-19 07:39:05] [INFO ] State equation strengthened by 18 read => feed constraints.
[2022-05-19 07:39:05] [INFO ] [Nat]Added 18 Read/Feed constraints in 4 ms returned sat
[2022-05-19 07:39:05] [INFO ] Computed and/alt/rep : 24/43/19 causal constraints (skipped 0 transitions) in 4 ms.
[2022-05-19 07:39:05] [INFO ] Added : 3 causal constraints over 1 iterations in 14 ms. Result :sat
Could not prove EG (NOT p0)
Stuttering acceptance computed with spot in 34 ms :[(NOT p0)]
Product exploration explored 100000 steps with 7822 reset in 225 ms.
Product exploration explored 100000 steps with 7787 reset in 245 ms.
Built C files in :
/tmp/ltsmin8893602324165570781
[2022-05-19 07:39:06] [INFO ] Computing symmetric may disable matrix : 57 transitions.
[2022-05-19 07:39:06] [INFO ] Computation of Complete disable matrix. took 2 ms. Total solver calls (SAT/UNSAT): 0(0/0)
[2022-05-19 07:39:06] [INFO ] Computing symmetric may enable matrix : 57 transitions.
[2022-05-19 07:39:06] [INFO ] Computation of Complete enable matrix. took 1 ms. Total solver calls (SAT/UNSAT): 0(0/0)
[2022-05-19 07:39:06] [INFO ] Computing Do-Not-Accords matrix : 57 transitions.
[2022-05-19 07:39:06] [INFO ] Computation of Completed DNA matrix. took 0 ms. Total solver calls (SAT/UNSAT): 0(0/0)
[2022-05-19 07:39:06] [INFO ] Built C files in 23ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin8893602324165570781
Running compilation step : cd /tmp/ltsmin8893602324165570781;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
Compilation finished in 382 ms.
Running link step : cd /tmp/ltsmin8893602324165570781;'gcc' '-shared' '-o' 'gal.so' 'model.o'
Link finished in 46 ms.
Running LTSmin : cd /tmp/ltsmin8893602324165570781;'/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202205111006/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '-p' '--pins-guards' '--when' '--hoa' '/tmp/stateBased6014459841803890014.hoa' '--buchi-type=spotba'
LTSmin run took 111 ms.
FORMULA NeoElection-PT-6-LTLFireability-12 TRUE TECHNIQUES PARTIAL_ORDER EXPLICIT LTSMIN SAT_SMT
Treatment of property NeoElection-PT-6-LTLFireability-12 finished in 4827 ms.
All properties solved by simple procedures.
Total runtime 13323 ms.

BK_STOP 1652945947501

--------------------
content from stderr:

+ export LANG=C
+ LANG=C
+ export BINDIR=/home/mcc/BenchKit/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ LTLFireability = StateSpace ]]
+ /home/mcc/BenchKit/bin//..//runeclipse.sh /home/mcc/execution LTLFireability -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ export PYTHONPATH=/usr/lib/python3.9/site-packages/
+ PYTHONPATH=/usr/lib/python3.9/site-packages/
+ export LD_LIBRARY_PATH=/usr/local/lib:
+ LD_LIBRARY_PATH=/usr/local/lib:
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202205111006.jar
+ VERSION=202205111006
+ echo 'Running Version 202205111006'
+ /home/mcc/BenchKit/bin//..//itstools/its-tools -data @none -pnfolder /home/mcc/execution -examination LTLFireability -spotpath /home/mcc/BenchKit/bin//..//ltlfilt -z3path /home/mcc/BenchKit/bin//..//z3/bin/z3 -yices2path /home/mcc/BenchKit/bin//..//yices/bin/yices -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600 -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=@none -Xss128m -Xms40m -Xmx8192m

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-6"
export BK_EXAMINATION="LTLFireability"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool itstools"
echo " Input is NeoElection-PT-6, examination is LTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r150-smll-165276998400092"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-6.tgz
mv NeoElection-PT-6 execution
cd execution
if [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "UpperBounds" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] || [ "LTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;