About the Execution of ITS-Tools for Diffusion2D-PT-D10N100
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
336.312 | 10930.00 | 21049.00 | 137.30 | TFFFFFTTFFFFTFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2022-input.r060-tall-165254772400723.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2022-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool itstools
Input is Diffusion2D-PT-D10N100, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r060-tall-165254772400723
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 520K
-rw-r--r-- 1 mcc users 11K Apr 30 04:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 105K Apr 30 04:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.2K Apr 30 04:53 CTLFireability.txt
-rw-r--r-- 1 mcc users 38K Apr 30 04:53 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 10 09:33 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.3K May 10 09:33 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.3K May 9 07:37 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K May 9 07:37 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.6K May 9 07:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K May 9 07:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 9 07:37 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 9 07:37 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 10 09:33 equiv_col
-rw-r--r-- 1 mcc users 8 May 10 09:33 instance
-rw-r--r-- 1 mcc users 6 May 10 09:33 iscolored
-rw-r--r-- 1 mcc users 255K May 10 09:33 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-00
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-01
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-02
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-03
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-04
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-05
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-06
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-07
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-08
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-09
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-10
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-11
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-12
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-13
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-14
FORMULA_NAME Diffusion2D-PT-D10N100-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1652642413571
Running Version 202205111006
[2022-05-15 19:20:14] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -spotpath, /home/mcc/BenchKit/bin//..//ltlfilt, -z3path, /home/mcc/BenchKit/bin//..//z3/bin/z3, -yices2path, /home/mcc/BenchKit/bin//..//yices/bin/yices, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2022-05-15 19:20:14] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2022-05-15 19:20:14] [INFO ] Load time of PNML (sax parser for PT used): 106 ms
[2022-05-15 19:20:14] [INFO ] Transformed 100 places.
[2022-05-15 19:20:14] [INFO ] Transformed 684 transitions.
[2022-05-15 19:20:14] [INFO ] Parsed PT model containing 100 places and 684 transitions in 211 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 9 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 1 formulas.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-00 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-15 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 39 out of 100 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Applied a total of 0 rules in 23 ms. Remains 100 /100 variables (removed 0) and now considering 684/684 (removed 0) transitions.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:15] [INFO ] Computed 1 place invariants in 30 ms
[2022-05-15 19:20:15] [INFO ] Implicit Places using invariants in 141 ms returned []
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:15] [INFO ] Computed 1 place invariants in 5 ms
[2022-05-15 19:20:15] [INFO ] Implicit Places using invariants and state equation in 162 ms returned []
Implicit Place search using SMT with State Equation took 328 ms to find 0 implicit places.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:15] [INFO ] Computed 1 place invariants in 4 ms
[2022-05-15 19:20:15] [INFO ] Dead Transitions using invariants and state equation in 296 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 100/100 places, 684/684 transitions.
Support contains 39 out of 100 places after structural reductions.
[2022-05-15 19:20:15] [INFO ] Flatten gal took : 63 ms
[2022-05-15 19:20:15] [INFO ] Flatten gal took : 26 ms
[2022-05-15 19:20:16] [INFO ] Input system was already deterministic with 684 transitions.
Incomplete random walk after 10006 steps, including 2 resets, run finished after 67 ms. (steps per millisecond=149 ) properties (out of 29) seen :22
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 24 ms. (steps per millisecond=416 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 21 ms. (steps per millisecond=476 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 16 ms. (steps per millisecond=625 ) properties (out of 7) seen :1
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 14 ms. (steps per millisecond=714 ) properties (out of 6) seen :3
Running SMT prover for 3 properties.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:16] [INFO ] Computed 1 place invariants in 4 ms
[2022-05-15 19:20:16] [INFO ] After 51ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:3
[2022-05-15 19:20:16] [INFO ] [Nat]Absence check using 1 positive place invariants in 1 ms returned sat
[2022-05-15 19:20:16] [INFO ] After 145ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :3
[2022-05-15 19:20:16] [INFO ] After 253ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :3
Attempting to minimize the solution found.
Minimization took 92 ms.
[2022-05-15 19:20:16] [INFO ] After 396ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :3
Finished Parikh walk after 521 steps, including 0 resets, run visited all 3 properties in 17 ms. (steps per millisecond=30 )
Parikh walk visited 3 properties in 19 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-14 FALSE TECHNIQUES REACHABILITY_KNOWLEDGE
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-08 FALSE TECHNIQUES REACHABILITY_KNOWLEDGE
Computed a total of 0 stabilizing places and 0 stable transitions
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((F(G(p0))||X(F(G(((F(p1)&&!p0)||p1))))))'
Support contains 2 out of 100 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Graph (trivial) has 652 edges and 100 vertex of which 98 / 100 are part of one of the 1 SCC in 3 ms
Free SCC test removed 97 places
Ensure Unique test removed 679 transitions
Reduce isomorphic transitions removed 679 transitions.
Applied a total of 1 rules in 8 ms. Remains 3 /100 variables (removed 97) and now considering 5/684 (removed 679) transitions.
// Phase 1: matrix 5 rows 3 cols
[2022-05-15 19:20:17] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:17] [INFO ] Implicit Places using invariants in 17 ms returned []
// Phase 1: matrix 5 rows 3 cols
[2022-05-15 19:20:17] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:17] [INFO ] Implicit Places using invariants and state equation in 15 ms returned []
Implicit Place search using SMT with State Equation took 34 ms to find 0 implicit places.
[2022-05-15 19:20:17] [INFO ] Redundant transitions in 0 ms returned []
// Phase 1: matrix 5 rows 3 cols
[2022-05-15 19:20:17] [INFO ] Computed 1 place invariants in 1 ms
[2022-05-15 19:20:17] [INFO ] Dead Transitions using invariants and state equation in 20 ms found 0 transitions.
Starting structural reductions in SI_LTL mode, iteration 1 : 3/100 places, 5/684 transitions.
Finished structural reductions, in 1 iterations. Remains : 3/100 places, 5/684 transitions.
Stuttering acceptance computed with spot in 275 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-01 automaton TGBA Formula[mat=[[{ cond=(AND p0 p1), acceptance={} source=0 dest: 0}, { cond=(NOT p0), acceptance={0} source=0 dest: 0}, { cond=(AND p0 (NOT p1)), acceptance={1} source=0 dest: 0}, { cond=(AND (NOT p0) (NOT p1)), acceptance={} source=0 dest: 1}], [{ cond=(AND p0 (NOT p1)), acceptance={1} source=1 dest: 1}, { cond=(AND (NOT p0) (NOT p1)), acceptance={0, 1} source=1 dest: 1}]], initial=0, aps=[p0:(GT 1 s0), p1:(LEQ 2 s1)], nbAcceptance=2, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-invariant], stateDesc=[null, null][true, true]]
Stuttering criterion allowed to conclude after 3 steps with 0 reset in 2 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-01 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-01 finished in 406 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((X((X(p0) U X(p1))) U X(X(p2))))'
Support contains 6 out of 100 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Applied a total of 0 rules in 16 ms. Remains 100 /100 variables (removed 0) and now considering 684/684 (removed 0) transitions.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:17] [INFO ] Computed 1 place invariants in 4 ms
[2022-05-15 19:20:17] [INFO ] Implicit Places using invariants in 31 ms returned []
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:17] [INFO ] Computed 1 place invariants in 10 ms
[2022-05-15 19:20:17] [INFO ] Implicit Places using invariants and state equation in 141 ms returned []
Implicit Place search using SMT with State Equation took 174 ms to find 0 implicit places.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:17] [INFO ] Computed 1 place invariants in 17 ms
[2022-05-15 19:20:17] [INFO ] Dead Transitions using invariants and state equation in 230 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 100/100 places, 684/684 transitions.
Stuttering acceptance computed with spot in 181 ms :[(NOT p2), (NOT p2), (NOT p2), true, (NOT p1)]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-02 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=true, acceptance={} source=1 dest: 2}], [{ cond=(OR (AND (NOT p2) p1) (AND (NOT p2) p0)), acceptance={} source=2 dest: 2}, { cond=(AND (NOT p2) (NOT p1) (NOT p0)), acceptance={} source=2 dest: 3}, { cond=(AND (NOT p2) (NOT p1) p0), acceptance={} source=2 dest: 4}], [{ cond=true, acceptance={} source=3 dest: 3}], [{ cond=(AND (NOT p1) (NOT p0)), acceptance={} source=4 dest: 3}, { cond=(AND (NOT p1) p0), acceptance={} source=4 dest: 4}]], initial=0, aps=[p2:(LEQ s88 s55), p1:(LEQ s76 s33), p0:(LEQ s12 s60)], nbAcceptance=0, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null, null, null, null][false, false, false, false, false]]
Product exploration explored 100000 steps with 33131 reset in 298 ms.
Stack based approach found an accepted trace after 9436 steps with 3125 reset with depth 4 and stack size 4 in 22 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-02 FALSE TECHNIQUES STACK_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-02 finished in 946 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(F(!(X(((G(F(p0))||p0) U p1)) U p0))))'
Support contains 3 out of 100 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Graph (trivial) has 658 edges and 100 vertex of which 97 / 100 are part of one of the 1 SCC in 1 ms
Free SCC test removed 96 places
Ensure Unique test removed 677 transitions
Reduce isomorphic transitions removed 677 transitions.
Applied a total of 1 rules in 3 ms. Remains 4 /100 variables (removed 96) and now considering 7/684 (removed 677) transitions.
// Phase 1: matrix 7 rows 4 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:18] [INFO ] Implicit Places using invariants in 19 ms returned []
// Phase 1: matrix 7 rows 4 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 1 ms
[2022-05-15 19:20:18] [INFO ] Implicit Places using invariants and state equation in 24 ms returned []
Implicit Place search using SMT with State Equation took 44 ms to find 0 implicit places.
[2022-05-15 19:20:18] [INFO ] Redundant transitions in 0 ms returned []
// Phase 1: matrix 7 rows 4 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 1 ms
[2022-05-15 19:20:18] [INFO ] Dead Transitions using invariants and state equation in 19 ms found 0 transitions.
Starting structural reductions in SI_LTL mode, iteration 1 : 4/100 places, 7/684 transitions.
Finished structural reductions, in 1 iterations. Remains : 4/100 places, 7/684 transitions.
Stuttering acceptance computed with spot in 244 ms :[p0, p0, (AND p0 p1), (AND p0 p1), (AND p0 p1), p0]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-03 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 0}, { cond=p0, acceptance={} source=0 dest: 1}, { cond=(NOT p0), acceptance={} source=0 dest: 2}], [{ cond=p0, acceptance={0, 1} source=1 dest: 1}, { cond=(NOT p0), acceptance={0, 1} source=1 dest: 2}], [{ cond=(AND p0 p1), acceptance={0, 1} source=2 dest: 1}, { cond=(AND (NOT p0) p1), acceptance={0} source=2 dest: 2}, { cond=(AND (NOT p0) (NOT p1)), acceptance={} source=2 dest: 3}, { cond=(AND p0 (NOT p1)), acceptance={1} source=2 dest: 4}], [{ cond=(AND (NOT p0) (NOT p1)), acceptance={} source=3 dest: 3}, { cond=(AND p0 (NOT p1)), acceptance={0} source=3 dest: 3}, { cond=(AND (NOT p0) p1), acceptance={1} source=3 dest: 3}, { cond=(AND p0 p1), acceptance={0, 1} source=3 dest: 5}], [{ cond=(AND p0 p1), acceptance={0, 1} source=4 dest: 1}, { cond=(AND (NOT p0) p1), acceptance={0, 1} source=4 dest: 2}, { cond=(AND (NOT p0) (NOT p1)), acceptance={} source=4 dest: 3}, { cond=(AND p0 (NOT p1)), acceptance={1} source=4 dest: 4}], [{ cond=(NOT p0), acceptance={1} source=5 dest: 3}, { cond=p0, acceptance={0, 1} source=5 dest: 5}]], initial=0, aps=[p0:(LEQ s0 s2), p1:(LEQ 1 s1)], nbAcceptance=2, properties=[trans-labels, explicit-labels, trans-acc, complete, no-univ-branch, stutter-invariant], stateDesc=[null, null, null, null, null, null][true, true, true, true, true, true]]
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 0 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-03 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-03 finished in 339 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(X(F((!(p0 U p1)&&!p0)))))'
Support contains 4 out of 100 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Graph (trivial) has 632 edges and 100 vertex of which 96 / 100 are part of one of the 1 SCC in 1 ms
Free SCC test removed 95 places
Ensure Unique test removed 675 transitions
Reduce isomorphic transitions removed 675 transitions.
Applied a total of 1 rules in 4 ms. Remains 5 /100 variables (removed 95) and now considering 9/684 (removed 675) transitions.
// Phase 1: matrix 9 rows 5 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 1 ms
[2022-05-15 19:20:18] [INFO ] Implicit Places using invariants in 21 ms returned []
// Phase 1: matrix 9 rows 5 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:18] [INFO ] Implicit Places using invariants and state equation in 20 ms returned []
Implicit Place search using SMT with State Equation took 43 ms to find 0 implicit places.
[2022-05-15 19:20:18] [INFO ] Redundant transitions in 0 ms returned []
// Phase 1: matrix 9 rows 5 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:18] [INFO ] Dead Transitions using invariants and state equation in 18 ms found 0 transitions.
Starting structural reductions in SI_LTL mode, iteration 1 : 5/100 places, 9/684 transitions.
Finished structural reductions, in 1 iterations. Remains : 5/100 places, 9/684 transitions.
Stuttering acceptance computed with spot in 91 ms :[(OR p0 p1), (OR p1 p0)]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-04 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 0}, { cond=(OR p0 p1), acceptance={} source=0 dest: 1}], [{ cond=(OR p0 p1), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(GT s1 s2), p1:(LEQ s3 s0)], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-invariant], stateDesc=[null, null][true, true]]
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-04 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-04 finished in 186 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G(F(p0)))'
Support contains 1 out of 100 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Graph (trivial) has 674 edges and 100 vertex of which 99 / 100 are part of one of the 1 SCC in 1 ms
Free SCC test removed 98 places
Ensure Unique test removed 681 transitions
Reduce isomorphic transitions removed 681 transitions.
Applied a total of 1 rules in 3 ms. Remains 2 /100 variables (removed 98) and now considering 3/684 (removed 681) transitions.
// Phase 1: matrix 3 rows 2 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:18] [INFO ] Implicit Places using invariants in 31 ms returned []
// Phase 1: matrix 3 rows 2 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:18] [INFO ] Implicit Places using invariants and state equation in 17 ms returned []
Implicit Place search using SMT with State Equation took 50 ms to find 0 implicit places.
[2022-05-15 19:20:18] [INFO ] Redundant transitions in 0 ms returned []
// Phase 1: matrix 3 rows 2 cols
[2022-05-15 19:20:18] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:18] [INFO ] Dead Transitions using invariants and state equation in 24 ms found 0 transitions.
Starting structural reductions in SI_LTL mode, iteration 1 : 2/100 places, 3/684 transitions.
Finished structural reductions, in 1 iterations. Remains : 2/100 places, 3/684 transitions.
Stuttering acceptance computed with spot in 113 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-05 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 0}, { cond=(NOT p0), acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(GT 2 s0)], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-invariant, very-weak, weak, inherently-weak], stateDesc=[null, null][true, true]]
Stuttering criterion allowed to conclude after 4 steps with 0 reset in 1 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-05 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-05 finished in 234 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X((F((G(p0)&&p1)) U p2)))'
Support contains 9 out of 100 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Applied a total of 0 rules in 8 ms. Remains 100 /100 variables (removed 0) and now considering 684/684 (removed 0) transitions.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:19] [INFO ] Computed 1 place invariants in 7 ms
[2022-05-15 19:20:19] [INFO ] Implicit Places using invariants in 40 ms returned []
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:19] [INFO ] Computed 1 place invariants in 3 ms
[2022-05-15 19:20:19] [INFO ] Implicit Places using invariants and state equation in 107 ms returned []
Implicit Place search using SMT with State Equation took 148 ms to find 0 implicit places.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:19] [INFO ] Computed 1 place invariants in 3 ms
[2022-05-15 19:20:19] [INFO ] Dead Transitions using invariants and state equation in 205 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 100/100 places, 684/684 transitions.
Stuttering acceptance computed with spot in 154 ms :[(NOT p2), (NOT p2), (OR (NOT p0) (NOT p1)), (NOT p0)]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-06 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=(NOT p2), acceptance={0} source=1 dest: 1}, { cond=(OR (AND (NOT p2) (NOT p1)) (AND (NOT p2) (NOT p0))), acceptance={} source=1 dest: 2}, { cond=(AND (NOT p2) p1 p0), acceptance={} source=1 dest: 3}], [{ cond=(OR (NOT p1) (NOT p0)), acceptance={0} source=2 dest: 2}, { cond=(AND p1 p0), acceptance={} source=2 dest: 3}], [{ cond=(NOT p0), acceptance={0} source=3 dest: 2}, { cond=p0, acceptance={} source=3 dest: 3}]], initial=0, aps=[p2:(OR (LEQ 1 s49) (LEQ s37 s28)), p1:(LEQ s16 s46), p0:(AND (LEQ s15 s29) (LEQ s45 s93))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-sensitive], stateDesc=[null, null, null, null][false, false, false, false]]
Product exploration explored 100000 steps with 50000 reset in 174 ms.
Product exploration explored 100000 steps with 50000 reset in 159 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p2 p1 p0), (X (NOT (AND (NOT p2) p1 p0))), (X p2), (X (NOT (OR (AND (NOT p2) (NOT p1)) (AND (NOT p2) (NOT p0))))), (X (X (NOT (AND (NOT p2) p1 p0)))), (X (X p2)), (X (X (NOT (OR (AND (NOT p2) (NOT p1)) (AND (NOT p2) (NOT p0))))))]
False Knowledge obtained : [(X (X (OR (NOT p1) (NOT p0)))), (X (X (NOT (OR (NOT p1) (NOT p0))))), (X (X (AND p1 p0))), (X (X (NOT (AND p1 p0)))), (X (X (NOT p0))), (X (X p0))]
Property proved to be true thanks to knowledge :(X p2)
Knowledge based reduction with 7 factoid took 261 ms. Reduced automaton from 4 states, 8 edges and 3 AP to 1 states, 0 edges and 0 AP.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-06 TRUE TECHNIQUES KNOWLEDGE
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-06 finished in 1144 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X((X(G(p0))||(X(p1) U p2)||(G(p3)&&p1))))'
Support contains 7 out of 100 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Applied a total of 0 rules in 10 ms. Remains 100 /100 variables (removed 0) and now considering 684/684 (removed 0) transitions.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:20] [INFO ] Computed 1 place invariants in 3 ms
[2022-05-15 19:20:20] [INFO ] Implicit Places using invariants in 26 ms returned []
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:20] [INFO ] Computed 1 place invariants in 2 ms
[2022-05-15 19:20:20] [INFO ] Implicit Places using invariants and state equation in 100 ms returned []
Implicit Place search using SMT with State Equation took 132 ms to find 0 implicit places.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:20] [INFO ] Computed 1 place invariants in 1 ms
[2022-05-15 19:20:20] [INFO ] Dead Transitions using invariants and state equation in 178 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 100/100 places, 684/684 transitions.
Stuttering acceptance computed with spot in 408 ms :[true, (OR (NOT p1) (NOT p2)), (OR (AND (NOT p0) (NOT p1) (NOT p2)) (AND (NOT p0) (NOT p2) (NOT p3))), (OR (AND (NOT p0) (NOT p1) (NOT p2)) (AND (NOT p0) (NOT p2) (NOT p3))), (NOT p0), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p3)), (OR (AND (NOT p0) (NOT p1) (NOT p3)) (AND (NOT p0) (NOT p2) (NOT p3))), (NOT p3), (OR (AND (NOT p1) (NOT p3)) (AND (NOT p2) (NOT p3)))]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-07 automaton TGBA Formula[mat=[[{ cond=true, acceptance={0} source=0 dest: 0}], [{ cond=(NOT p1), acceptance={0} source=1 dest: 0}, { cond=(AND (NOT p2) p1), acceptance={0} source=1 dest: 1}], [{ cond=true, acceptance={} source=2 dest: 3}], [{ cond=(OR (AND (NOT p2) (NOT p1)) (AND (NOT p2) (NOT p3))), acceptance={} source=3 dest: 5}, { cond=(AND (NOT p2) p1 p3), acceptance={} source=3 dest: 7}], [{ cond=(NOT p0), acceptance={} source=4 dest: 0}, { cond=p0, acceptance={} source=4 dest: 4}], [{ cond=(AND (NOT p1) (NOT p0)), acceptance={} source=5 dest: 0}, { cond=(AND (NOT p2) p1 (NOT p0)), acceptance={} source=5 dest: 1}, { cond=(AND (NOT p1) p0), acceptance={} source=5 dest: 4}, { cond=(AND (NOT p2) p1 p0), acceptance={} source=5 dest: 5}], [{ cond=(AND (NOT p3) (NOT p0)), acceptance={} source=6 dest: 0}, { cond=(AND (NOT p3) p0), acceptance={} source=6 dest: 4}, { cond=(AND p3 p0), acceptance={} source=6 dest: 6}, { cond=(AND p3 (NOT p0)), acceptance={} source=6 dest: 8}], [{ cond=(AND (NOT p1) (NOT p3) (NOT p0)), acceptance={} source=7 dest: 0}, { cond=(AND (NOT p2) p1 (NOT p3) (NOT p0)), acceptance={} source=7 dest: 1}, { cond=(AND (NOT p1) (NOT p3) p0), acceptance={} source=7 dest: 4}, { cond=(AND (NOT p2) p1 (NOT p3) p0), acceptance={} source=7 dest: 5}, { cond=(AND (NOT p1) p3 p0), acceptance={} source=7 dest: 6}, { cond=(AND (NOT p2) p1 p3 p0), acceptance={} source=7 dest: 7}, { cond=(AND (NOT p1) p3 (NOT p0)), acceptance={} source=7 dest: 8}, { cond=(AND (NOT p2) p1 p3 (NOT p0)), acceptance={} source=7 dest: 9}], [{ cond=(NOT p3), acceptance={} source=8 dest: 0}, { cond=p3, acceptance={} source=8 dest: 8}], [{ cond=(AND (NOT p1) (NOT p3)), acceptance={} source=9 dest: 0}, { cond=(AND (NOT p2) p1 (NOT p3)), acceptance={} source=9 dest: 1}, { cond=(AND (NOT p1) p3), acceptance={} source=9 dest: 8}, { cond=(AND (NOT p2) p1 p3), acceptance={} source=9 dest: 9}]], initial=2, aps=[p1:(LEQ 2 s23), p2:(LEQ s22 s51), p3:(GT s21 s30), p0:(LEQ s47 s58)], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null, null, null, null, null, null, null, null, null][false, false, false, false, false, false, false, false, false, false]]
Product exploration explored 100000 steps with 50000 reset in 150 ms.
Product exploration explored 100000 steps with 50000 reset in 150 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND (NOT p1) p2 (NOT p3) p0), (X (NOT (AND (NOT p2) p1 p3))), (X (NOT (OR (AND (NOT p2) (NOT p1)) (AND (NOT p2) (NOT p3))))), (X (X (NOT (AND (NOT p2) p1 (NOT p3) p0)))), (X (X (NOT (AND (NOT p2) p1 p3 p0)))), (X (X (NOT (AND (NOT p1) p3 (NOT p0))))), (X (X (NOT (AND (NOT p2) p1 (NOT p0))))), (X (X (NOT (AND (NOT p2) p1 (NOT p3) (NOT p0))))), (X (X (NOT (AND (NOT p1) p3 p0)))), (X (X (NOT (AND (NOT p2) p1 p0)))), (X (X (NOT (AND (NOT p2) p1 p3 (NOT p0)))))]
False Knowledge obtained : [(X (X (AND (NOT p1) p0))), (X (X (NOT (AND (NOT p1) p0)))), (X (X (AND (NOT p1) (NOT p3) (NOT p0)))), (X (X (NOT (AND (NOT p1) (NOT p3) (NOT p0))))), (X (X (AND (NOT p1) (NOT p0)))), (X (X (NOT (AND (NOT p1) (NOT p0))))), (X (X (AND (NOT p1) (NOT p3) p0))), (X (X (NOT (AND (NOT p1) (NOT p3) p0))))]
Property proved to be true thanks to knowledge :(X (NOT (OR (AND (NOT p2) (NOT p1)) (AND (NOT p2) (NOT p3)))))
Knowledge based reduction with 11 factoid took 359 ms. Reduced automaton from 10 states, 30 edges and 4 AP to 1 states, 0 edges and 0 AP.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-07 TRUE TECHNIQUES KNOWLEDGE
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-07 finished in 1427 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!((F(p0) U G(p1)))'
Support contains 3 out of 100 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Graph (trivial) has 636 edges and 100 vertex of which 97 / 100 are part of one of the 1 SCC in 1 ms
Free SCC test removed 96 places
Ensure Unique test removed 677 transitions
Reduce isomorphic transitions removed 677 transitions.
Applied a total of 1 rules in 4 ms. Remains 4 /100 variables (removed 96) and now considering 7/684 (removed 677) transitions.
// Phase 1: matrix 7 rows 4 cols
[2022-05-15 19:20:21] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:21] [INFO ] Implicit Places using invariants in 19 ms returned []
// Phase 1: matrix 7 rows 4 cols
[2022-05-15 19:20:21] [INFO ] Computed 1 place invariants in 0 ms
[2022-05-15 19:20:21] [INFO ] Implicit Places using invariants and state equation in 24 ms returned []
Implicit Place search using SMT with State Equation took 47 ms to find 0 implicit places.
[2022-05-15 19:20:21] [INFO ] Redundant transitions in 0 ms returned []
// Phase 1: matrix 7 rows 4 cols
[2022-05-15 19:20:21] [INFO ] Computed 1 place invariants in 1 ms
[2022-05-15 19:20:21] [INFO ] Dead Transitions using invariants and state equation in 16 ms found 0 transitions.
Starting structural reductions in SI_LTL mode, iteration 1 : 4/100 places, 7/684 transitions.
Finished structural reductions, in 1 iterations. Remains : 4/100 places, 7/684 transitions.
Stuttering acceptance computed with spot in 51 ms :[(NOT p1), (NOT p0)]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-09 automaton TGBA Formula[mat=[[{ cond=p1, acceptance={} source=0 dest: 0}, { cond=(NOT p1), acceptance={0} source=0 dest: 0}, { cond=(AND (NOT p1) (NOT p0)), acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p1:(OR (LEQ s2 s0) (LEQ 3 s1)), p0:(LEQ s2 s0)], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-invariant], stateDesc=[null, null][true, true]]
Stuttering criterion allowed to conclude after 456 steps with 0 reset in 2 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-09 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-09 finished in 140 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(X((X((G(p0)&&p0))&&F(!p0))))'
Support contains 1 out of 100 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Applied a total of 0 rules in 12 ms. Remains 100 /100 variables (removed 0) and now considering 684/684 (removed 0) transitions.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:21] [INFO ] Computed 1 place invariants in 3 ms
[2022-05-15 19:20:21] [INFO ] Implicit Places using invariants in 36 ms returned []
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:21] [INFO ] Computed 1 place invariants in 4 ms
[2022-05-15 19:20:21] [INFO ] Implicit Places using invariants and state equation in 107 ms returned []
Implicit Place search using SMT with State Equation took 144 ms to find 0 implicit places.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:22] [INFO ] Computed 1 place invariants in 6 ms
[2022-05-15 19:20:22] [INFO ] Dead Transitions using invariants and state equation in 199 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 100/100 places, 684/684 transitions.
Stuttering acceptance computed with spot in 172 ms :[true, true, (NOT p0), true]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-10 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={} source=1 dest: 2}, { cond=p0, acceptance={} source=1 dest: 3}], [{ cond=p0, acceptance={} source=2 dest: 2}, { cond=(NOT p0), acceptance={} source=2 dest: 3}], [{ cond=true, acceptance={0} source=3 dest: 3}]], initial=0, aps=[p0:(LEQ 1 s94)], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null, null, null][false, false, false, false]]
Entered a terminal (fully accepting) state of product in 2 steps with 0 reset in 0 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-10 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-10 finished in 545 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(F(X(((!G(p0) U X(p1))&&F(p2)))))'
Support contains 4 out of 100 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Applied a total of 0 rules in 3 ms. Remains 100 /100 variables (removed 0) and now considering 684/684 (removed 0) transitions.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:22] [INFO ] Computed 1 place invariants in 6 ms
[2022-05-15 19:20:22] [INFO ] Implicit Places using invariants in 34 ms returned []
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:22] [INFO ] Computed 1 place invariants in 5 ms
[2022-05-15 19:20:22] [INFO ] Implicit Places using invariants and state equation in 122 ms returned []
Implicit Place search using SMT with State Equation took 158 ms to find 0 implicit places.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:22] [INFO ] Computed 1 place invariants in 2 ms
[2022-05-15 19:20:22] [INFO ] Dead Transitions using invariants and state equation in 189 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 100/100 places, 684/684 transitions.
Stuttering acceptance computed with spot in 246 ms :[(OR (NOT p2) (NOT p1)), (OR (NOT p2) (NOT p1)), (NOT p1), (NOT p2), (AND (NOT p2) p0 (NOT p1)), (AND (NOT p2) p0)]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-12 automaton TGBA Formula[mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=true, acceptance={} source=1 dest: 2}, { cond=(NOT p2), acceptance={} source=1 dest: 3}, { cond=(AND p0 p2), acceptance={} source=1 dest: 4}], [{ cond=(NOT p1), acceptance={} source=2 dest: 2}, { cond=(AND p0 (NOT p1)), acceptance={} source=2 dest: 4}], [{ cond=(NOT p2), acceptance={} source=3 dest: 3}], [{ cond=(AND p0 (NOT p2) (NOT p1)), acceptance={} source=4 dest: 5}], [{ cond=(AND p0 (NOT p2)), acceptance={} source=5 dest: 5}]], initial=0, aps=[p2:(LEQ s36 s79), p0:(LEQ 1 s71), p1:(GT 1 s11)], nbAcceptance=0, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-sensitive, very-weak, weak, inherently-weak], stateDesc=[null, null, null, null, null, null][false, false, false, false, false, false]]
Product exploration explored 100000 steps with 33333 reset in 154 ms.
Product exploration explored 100000 steps with 33333 reset in 162 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p2 (NOT p0) p1), (X (NOT (AND p0 p2))), (X p2), (X (X (NOT (AND p0 (NOT p1))))), (X (X p1)), (X (X p2)), (X (X (NOT (AND p0 (NOT p2) (NOT p1)))))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge :(X (X p1))
Knowledge based reduction with 7 factoid took 160 ms. Reduced automaton from 6 states, 9 edges and 3 AP to 1 states, 0 edges and 0 AP.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-12 TRUE TECHNIQUES KNOWLEDGE
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-12 finished in 1114 ms.
Running Spot : cd /home/mcc/execution;'/home/mcc/BenchKit/bin//..//ltl2tgba' '--check=stutter' '--hoaf=tv' '-f' '!(G((F(p0) U G(X(X(X(p1)))))))'
Support contains 3 out of 100 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 100/100 places, 684/684 transitions.
Applied a total of 0 rules in 9 ms. Remains 100 /100 variables (removed 0) and now considering 684/684 (removed 0) transitions.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:23] [INFO ] Computed 1 place invariants in 3 ms
[2022-05-15 19:20:23] [INFO ] Implicit Places using invariants in 30 ms returned []
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:23] [INFO ] Computed 1 place invariants in 2 ms
[2022-05-15 19:20:23] [INFO ] Implicit Places using invariants and state equation in 113 ms returned []
Implicit Place search using SMT with State Equation took 145 ms to find 0 implicit places.
// Phase 1: matrix 684 rows 100 cols
[2022-05-15 19:20:23] [INFO ] Computed 1 place invariants in 4 ms
[2022-05-15 19:20:23] [INFO ] Dead Transitions using invariants and state equation in 199 ms found 0 transitions.
Finished structural reductions, in 1 iterations. Remains : 100/100 places, 684/684 transitions.
Stuttering acceptance computed with spot in 150 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (NOT p1), (NOT p0)]
Running random walk in product with property : Diffusion2D-PT-D10N100-LTLCardinality-13 automaton TGBA Formula[mat=[[{ cond=(NOT p0), acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={} source=1 dest: 2}], [{ cond=(AND (NOT p0) (NOT p1)), acceptance={} source=2 dest: 4}], [{ cond=(NOT p0), acceptance={} source=3 dest: 0}, { cond=p1, acceptance={} source=3 dest: 3}, { cond=(NOT p1), acceptance={0} source=3 dest: 3}], [{ cond=(NOT p0), acceptance={0} source=4 dest: 4}]], initial=3, aps=[p0:(LEQ s48 s88), p1:(LEQ 1 s91)], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-sensitive], stateDesc=[null, null, null, null, null][false, false, false, false, false]]
Product exploration explored 100000 steps with 841 reset in 407 ms.
Stack based approach found an accepted trace after 47 steps with 1 reset with depth 16 and stack size 16 in 1 ms.
FORMULA Diffusion2D-PT-D10N100-LTLCardinality-13 FALSE TECHNIQUES STACK_TEST
Treatment of property Diffusion2D-PT-D10N100-LTLCardinality-13 finished in 930 ms.
All properties solved by simple procedures.
Total runtime 9705 ms.
BK_STOP 1652642424501
--------------------
content from stderr:
+ export LANG=C
+ LANG=C
+ export BINDIR=/home/mcc/BenchKit/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ LTLCardinality = StateSpace ]]
+ /home/mcc/BenchKit/bin//..//runeclipse.sh /home/mcc/execution LTLCardinality -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ export PYTHONPATH=/usr/lib/python3.9/site-packages/
+ PYTHONPATH=/usr/lib/python3.9/site-packages/
+ export LD_LIBRARY_PATH=/usr/local/lib:
+ LD_LIBRARY_PATH=/usr/local/lib:
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202205111006.jar
+ VERSION=202205111006
+ echo 'Running Version 202205111006'
+ /home/mcc/BenchKit/bin//..//itstools/its-tools -data @none -pnfolder /home/mcc/execution -examination LTLCardinality -spotpath /home/mcc/BenchKit/bin//..//ltlfilt -z3path /home/mcc/BenchKit/bin//..//z3/bin/z3 -yices2path /home/mcc/BenchKit/bin//..//yices/bin/yices -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600 -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=@none -Xss128m -Xms40m -Xmx8192m
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Diffusion2D-PT-D10N100"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool itstools"
echo " Input is Diffusion2D-PT-D10N100, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r060-tall-165254772400723"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Diffusion2D-PT-D10N100.tgz
mv Diffusion2D-PT-D10N100 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;