This form is a summary description of the model entitled "TwoPhaseLocking" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P / T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

The model simulates a problematic condition where a badly-designed process violates the two phase locking (2PL) protocol rules. A process performing 2 PL follows two phases: an acquisition phase, where resource can be obtained, and a release phase, where all resources must be released. Re-acquiring resources during the release phase is a 2PL protocol violation. 2PL, together with fixed-order resource acquisition, ensures deadlock avoidance.
In the Petri net model, a client process first acquires a resource of type A and one of type B. It then releases A, thus starting the release phase. However, after this first step, the process reacquires a new resource of type A, violating the 2 PL rules. The process that releases both B and A. If the number of concurrently running Clients $n C$ is equal or less than the sum of the resources $n A+n B$, a deadlock condition may form. The model is parametric in $n C$, the number of clients. For each value of $n C$, two model versions are proposed: Version N has $n C=2 \cdot n A=2 \cdot(n B-1)$, resulting in no deadlocks; Version D has $n C=2 \cdot n A=2 \cdot n B$, generating deadlock states.

Graphical representation for $n C=10$ (version D). Version N would have $n B=6$.

References

Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman (1987): Concurrency Control and Recovery in Database Systems, Addison Wesley Publishing Company, ISBN 0-201-10715-5.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
N	Number of client processes.	$4,10,20,50,100,200,500,1000,2000$,
		5000,10000

Size of the model

Although the model is parameterized, its size does not depend on parameter values.

number of places:	8
number of transitions:	6
number of arcs:	18

Structural properties

ordinary - all arcs have multiplicity one $\ddot{\boldsymbol{x}}$ (a)
simple free choice - all transitions sharing a common input place have no other input place
simple free choice - all transitions sharing a common input place have no other input place
$\boldsymbol{X}(\mathrm{b})$
$\boldsymbol{X}(\mathrm{b})$
extended free choice - all transitions sharing a common input place have the same input places
extended free choice - all transitions sharing a common input place have the same input places
\boldsymbol{X} (c)
\boldsymbol{X} (c)
marked graph - every place has exactly one input transition and exactly one output transition \boldsymbol{X} (d)
connected - there is an undirected path between every two nodes (places or transitions) (e)
strongly connected - there is a directed path between every two nodes (places or transitions) (f)
source place(s) - one or more places have no input transitions \boldsymbol{X} (g)
sink place(s) - one or more places have no output transitions \boldsymbol{X} (h)
source transition(s) - one or more transitions have no input places $\boldsymbol{X}(\mathrm{i})$
sink transitions(s) - one or more transitions have no output places $\boldsymbol{X}(\mathrm{j})$
loop-free - no transition has an input place that is also an output place (k)
conservative - for each transition, the number of input arcs equals the number of output arcs $\boldsymbol{X}(1)$
subconservative - for each transition, the number of input arcs equals or exceeds the number of output arcs (m)
nested units - places are structured into hierarchically nested sequential units ${ }^{(\mathrm{n})}$ x

Behavioural properties

dead place(s) - one or more places have no token in any reachable marking .. \boldsymbol{X}

deadlock - there exists a reachable marking from which no transition can be fired ..? ${ }^{(r)}$
reversible - from every reachable marking, there is a transition path going back to the initial marking? ${ }^{(\mathrm{s})}$
live - for every transition t, from every reachable marking, one can reach a marking in which t can fire? ${ }^{(\mathrm{t})}$

[^0]
Size of the marking graphs

Parameter	Number of reachable markings	Number of transition firings	Max. number of tokens per place	Max. number of tokens per marking
$n C=4$ version D	32	57	4	8
$n C=4$ version N	45	84	4	9
$n C=10$ version D	?	?	?	$\geq 20^{\text {(u) }}$
$n C=10$ version N	?	?	?	$\geq 21^{\text {(v) }}$
$n C=20$ version D	?	?	?	$\geq 40^{(\mathrm{w})}$
$n C=20$ version N	?	?	?	$\geq 41^{(\mathrm{x})}$
$n C=50$ version D	?	?	?	$\geq 100^{(y)}$
$n C=50$ version N	?	?	?	$\geq 101{ }^{\text {(z) }}$
$n C=100$ version D	?	?	?	$\geq 200^{\text {(aa) }}$
$n C=100$ version N	?	?	?	$\geq 201{ }^{\text {(ab) }}$
$n C=200$ version D	?	?	?	$\geq 400^{\text {(ac) }}$
$n C=200$ version N	?	?	?	$\geq 401{ }^{\text {(ad) }}$
$n C=500$ version D	?	?	?	$\geq 1000^{(\mathrm{ae})}$
$n C=500$ version N	?	?	?	$\geq 1001{ }^{\text {(af) }}$
$n C=1000$ version D	?	?	?	$\geq 2000{ }^{\text {(ag) }}$
$\begin{aligned} & n C=1000 \text { version } \\ & \mathrm{N} \end{aligned}$?	?	?	$\geq 2001{ }^{\text {(ah) }}$
$n C=2000$ version D	?	?	?	$\geq 4000{ }^{\text {(ai) }}$
$\begin{aligned} & n C=2000 \text { version } \\ & \mathrm{N} \end{aligned}$?	?	?	$\geq 4001{ }^{\text {(aj) }}$
$n C=5000 \text { version }$ D	?	?	?	$\geq 10000^{\text {(ak) }}$
$\begin{aligned} & n C=5000 \text { version } \\ & \mathrm{N} \end{aligned}$?	?	?	$\geq 10001^{\text {(al) }}$
$n C=10000$ version D	?	?	?	$\geq 20000^{\text {(am) }}$
$\begin{aligned} & n C=10000 \text { version } \\ & \mathrm{N} \end{aligned}$?	?	?	$\geq 20001^{\text {(an) }}$

[^1]
[^0]: (a) 2 arcs are not simple free choice, e.g., the arc from place "resA" (which has 2 outgoing transitions) to transition "lockA" (which has 2 input places).
 (b) transitions "lockA2" and "lockA" share a common input place "resA", but only the former transition has input place "haveB".
 (c) 6 transitions are not of a state machine, e.g., transition "relB".
 (d) place "resA" is not of a marked graph.
 ${ }^{(e)}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(f)}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 (g) stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(h)}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(i)}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(\mathrm{j})}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(k)}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(1)} 6$ transitions are not conservative, e.g., transition "relB".
 (m) 3 transitions are not subconservative, e.g., transition "relB"
 ${ }^{(n)}$ the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
 ${ }^{(\mathrm{o})}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(\mathrm{p})}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 ${ }^{(q)}$ stated by CÆSAR.BDD version 3.5 on all 22 instances $(n C \in\{4,10,20,50,100,200,500,1000,2000,5000,10000\}$, version D or $N)$.
 (r) $\boldsymbol{\checkmark}$ for the D version, \boldsymbol{X} for the N version.
 (s) $\boldsymbol{\checkmark}$ for the D version, \boldsymbol{X} for the N version.
 ${ }^{(t)} \boldsymbol{V}$ for the D version, \boldsymbol{X} for the N version.

[^1]: (u) lower bound given by the number of initial tokens.
 (v) lower bound given by the number of initial tokens.
 (w) lower bound given by the number of initial tokens.
 ${ }^{(x)}$ lower bound given by the number of initial tokens.
 (y) lower bound given by the number of initial tokens.
 (z) lower bound given by the number of initial tokens.
 (aa) lower bound given by the number of initial tokens.
 ${ }^{(a b)}$ lower bound given by the number of initial tokens.
 (ac) lower bound given by the number of initial tokens.
 (ad) lower bound given by the number of initial tokens.
 (ae) lower bound given by the number of initial tokens.
 (af) lower bound given by the number of initial tokens.
 (ag) lower bound given by the number of initial tokens.
 ${ }^{(a h)}$ lower bound given by the number of initial tokens.
 (ai) lower bound given by the number of initial tokens.
 (aj) lower bound given by the number of initial tokens.
 ${ }^{(a k)}$ lower bound given by the number of initial tokens.
 (al) lower bound given by the number of initial tokens.
 (am) lower bound given by the number of initial tokens.
 ${ }^{(a n)}$ lower bound given by the number of initial tokens.

