About the Execution of 2020-gold for Sudoku-PT-AN07
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
13686.819 | 3600000.00 | 3614246.00 | 10030.30 | FFTTFTTTTFFF?TFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2021-input.r265-tall-162106800600301.qcow2', fmt=qcow2 size=4294967296 backing_file='/data/fkordon/mcc2021-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool gold2020
Input is Sudoku-PT-AN07, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r265-tall-162106800600301
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 6.2M
-rw-r--r-- 1 mcc users 512K May 15 08:50 CTLCardinality.txt
-rw-r--r-- 1 mcc users 2.5M May 15 08:50 CTLCardinality.xml
-rw-r--r-- 1 mcc users 174K May 15 08:50 CTLFireability.txt
-rw-r--r-- 1 mcc users 841K May 15 08:50 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 6 14:48 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K May 6 14:48 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 84K Mar 28 16:44 LTLCardinality.txt
-rw-r--r-- 1 mcc users 290K Mar 28 16:44 LTLCardinality.xml
-rw-r--r-- 1 mcc users 158K Mar 28 16:44 LTLFireability.txt
-rw-r--r-- 1 mcc users 580K Mar 28 16:44 LTLFireability.xml
-rw-r--r-- 1 mcc users 74K May 13 19:29 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 244K May 13 19:29 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 121K May 13 19:29 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 423K May 13 19:29 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 22 08:16 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.3K Mar 22 08:16 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 5 16:52 equiv_col
-rw-r--r-- 1 mcc users 5 May 5 16:52 instance
-rw-r--r-- 1 mcc users 6 May 5 16:52 iscolored
-rw-r--r-- 1 mcc users 204K May 5 16:52 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Sudoku-PT-AN07-00
FORMULA_NAME Sudoku-PT-AN07-01
FORMULA_NAME Sudoku-PT-AN07-02
FORMULA_NAME Sudoku-PT-AN07-03
FORMULA_NAME Sudoku-PT-AN07-04
FORMULA_NAME Sudoku-PT-AN07-05
FORMULA_NAME Sudoku-PT-AN07-06
FORMULA_NAME Sudoku-PT-AN07-07
FORMULA_NAME Sudoku-PT-AN07-08
FORMULA_NAME Sudoku-PT-AN07-09
FORMULA_NAME Sudoku-PT-AN07-10
FORMULA_NAME Sudoku-PT-AN07-11
FORMULA_NAME Sudoku-PT-AN07-12
FORMULA_NAME Sudoku-PT-AN07-13
FORMULA_NAME Sudoku-PT-AN07-14
FORMULA_NAME Sudoku-PT-AN07-15
=== Now, execution of the tool begins
BK_START 1621212047081
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
[2021-05-17 00:40:48] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -timeout, 3600, -rebuildPNML]
[2021-05-17 00:40:48] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2021-05-17 00:40:49] [INFO ] Load time of PNML (sax parser for PT used): 87 ms
[2021-05-17 00:40:49] [INFO ] Transformed 490 places.
[2021-05-17 00:40:49] [INFO ] Transformed 343 transitions.
[2021-05-17 00:40:49] [INFO ] Parsed PT model containing 490 places and 343 transitions in 130 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 57 ms.
Working with output stream class java.io.PrintStream
Incomplete random walk after 100000 steps, including 2346 resets, run finished after 4836 ms. (steps per millisecond=20 ) properties seen :[0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1]
// Phase 1: matrix 343 rows 490 cols
[2021-05-17 00:40:54] [INFO ] Computed 147 place invariants in 23 ms
[2021-05-17 00:40:54] [INFO ] [Real]Absence check using 147 positive place invariants in 116 ms returned sat
[2021-05-17 00:40:54] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:54] [INFO ] [Real]Absence check using state equation in 482 ms returned sat
[2021-05-17 00:40:54] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:54] [INFO ] [Nat]Absence check using 147 positive place invariants in 65 ms returned sat
[2021-05-17 00:40:54] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:55] [INFO ] [Nat]Absence check using state equation in 456 ms returned sat
[2021-05-17 00:40:55] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 17 ms.
[2021-05-17 00:40:55] [INFO ] Added : 0 causal constraints over 0 iterations in 48 ms. Result :sat
[2021-05-17 00:40:55] [INFO ] [Real]Absence check using 147 positive place invariants in 85 ms returned sat
[2021-05-17 00:40:55] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:56] [INFO ] [Real]Absence check using state equation in 479 ms returned sat
[2021-05-17 00:40:56] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:56] [INFO ] [Nat]Absence check using 147 positive place invariants in 62 ms returned sat
[2021-05-17 00:40:56] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:56] [INFO ] [Nat]Absence check using state equation in 454 ms returned sat
[2021-05-17 00:40:56] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 17 ms.
[2021-05-17 00:40:56] [INFO ] Added : 0 causal constraints over 0 iterations in 37 ms. Result :sat
[2021-05-17 00:40:56] [INFO ] [Real]Absence check using 147 positive place invariants in 62 ms returned unsat
[2021-05-17 00:40:57] [INFO ] [Real]Absence check using 147 positive place invariants in 73 ms returned sat
[2021-05-17 00:40:57] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:57] [INFO ] [Real]Absence check using state equation in 461 ms returned sat
[2021-05-17 00:40:57] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:57] [INFO ] [Nat]Absence check using 147 positive place invariants in 66 ms returned sat
[2021-05-17 00:40:57] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:58] [INFO ] [Nat]Absence check using state equation in 431 ms returned sat
[2021-05-17 00:40:58] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 16 ms.
[2021-05-17 00:40:58] [INFO ] Added : 0 causal constraints over 0 iterations in 34 ms. Result :sat
[2021-05-17 00:40:58] [INFO ] [Real]Absence check using 147 positive place invariants in 68 ms returned sat
[2021-05-17 00:40:58] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:58] [INFO ] [Real]Absence check using state equation in 469 ms returned sat
[2021-05-17 00:40:58] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:58] [INFO ] [Nat]Absence check using 147 positive place invariants in 62 ms returned sat
[2021-05-17 00:40:58] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:59] [INFO ] [Nat]Absence check using state equation in 434 ms returned sat
[2021-05-17 00:40:59] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 16 ms.
[2021-05-17 00:40:59] [INFO ] Added : 0 causal constraints over 0 iterations in 34 ms. Result :sat
[2021-05-17 00:40:59] [INFO ] [Real]Absence check using 147 positive place invariants in 10 ms returned unsat
[2021-05-17 00:40:59] [INFO ] [Real]Absence check using 147 positive place invariants in 59 ms returned unsat
[2021-05-17 00:40:59] [INFO ] [Real]Absence check using 147 positive place invariants in 66 ms returned sat
[2021-05-17 00:40:59] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:00] [INFO ] [Real]Absence check using state equation in 790 ms returned sat
[2021-05-17 00:41:00] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:41:00] [INFO ] [Nat]Absence check using 147 positive place invariants in 72 ms returned sat
[2021-05-17 00:41:00] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:01] [INFO ] [Nat]Absence check using state equation in 459 ms returned sat
[2021-05-17 00:41:01] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 10 ms.
[2021-05-17 00:41:01] [INFO ] Added : 0 causal constraints over 0 iterations in 28 ms. Result :sat
[2021-05-17 00:41:01] [INFO ] [Real]Absence check using 147 positive place invariants in 67 ms returned sat
[2021-05-17 00:41:01] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:01] [INFO ] [Real]Absence check using state equation in 466 ms returned sat
[2021-05-17 00:41:01] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:41:01] [INFO ] [Nat]Absence check using 147 positive place invariants in 61 ms returned sat
[2021-05-17 00:41:01] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:02] [INFO ] [Nat]Absence check using state equation in 434 ms returned sat
[2021-05-17 00:41:02] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 16 ms.
[2021-05-17 00:41:02] [INFO ] Added : 0 causal constraints over 0 iterations in 34 ms. Result :sat
[2021-05-17 00:41:02] [INFO ] [Real]Absence check using 147 positive place invariants in 83 ms returned sat
[2021-05-17 00:41:02] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:02] [INFO ] [Real]Absence check using state equation in 466 ms returned sat
[2021-05-17 00:41:02] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:41:03] [INFO ] [Nat]Absence check using 147 positive place invariants in 61 ms returned sat
[2021-05-17 00:41:03] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:03] [INFO ] [Nat]Absence check using state equation in 435 ms returned sat
[2021-05-17 00:41:03] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 21 ms.
[2021-05-17 00:41:03] [INFO ] Added : 0 causal constraints over 0 iterations in 38 ms. Result :sat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 61 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 12 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 52 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 36 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 4 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 30 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 20 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 30 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 22 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 19 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 4 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 4 ms returned unsat
Successfully simplified 15 atomic propositions for a total of 19 simplifications.
[2021-05-17 00:41:04] [INFO ] Initial state reduction rules for CTL removed 9 formulas.
[2021-05-17 00:41:04] [INFO ] Flatten gal took : 114 ms
FORMULA Sudoku-PT-AN07-13 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-09 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-08 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-06 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-05 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-03 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-01 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-00 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2021-05-17 00:41:04] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
[2021-05-17 00:41:04] [INFO ] Flatten gal took : 37 ms
[2021-05-17 00:41:04] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
FORMULA Sudoku-PT-AN07-10 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2021-05-17 00:41:04] [INFO ] Export to MCC properties in file /home/mcc/execution/LTLCardinality.sr.xml took 7 ms.
[2021-05-17 00:41:04] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml took 4 ms.
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ Sudoku-PT-AN07 @ 3570 seconds
FORMULA Sudoku-PT-AN07-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Sudoku-PT-AN07-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Sudoku-PT-AN07-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Sudoku-PT-AN07-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Sudoku-PT-AN07-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ Sudoku-PT-AN07
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2020",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Mon May 17 00:41:06 2021
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 594
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 2,
"U": 0,
"X": 3,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 5,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1911,
"taut": 0,
"tconj": 0,
"tdisj": 4,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 392,
"visible_transitions": 0
},
"processed": "X ((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (G ((X ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) OR (G ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))))",
"processed_size": 13174,
"rewrites": 35
},
"result":
{
"edges": 444871,
"markings": 222608,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 12
},
"compoundnumber": 0,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 712
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 712
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 392,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 392,
"visible_transitions": 0
},
"processed": "(p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)",
"processed_size": 2638,
"rewrites": 37
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "state space / EG",
"value": true
},
"task":
{
"compoundnumber": 1,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 343
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 891
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 2,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 735,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 392,
"visible_transitions": 0
},
"processed": "X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48)) AND F (G ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= 0))))))",
"processed_size": 5015,
"rewrites": 35
},
"result":
{
"edges": 44,
"markings": 44,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 891
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 49,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 49,
"visible_transitions": 0
},
"processed": "X (X (F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489))))",
"processed_size": 359,
"rewrites": 35
},
"result":
{
"edges": 111475,
"markings": 55910,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1188
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 1,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 2,
"visible_transitions": 0
},
"processed": "F (G (((p406 + 1 <= p105))))",
"processed_size": 28,
"rewrites": 35
},
"result":
{
"edges": 47,
"markings": 46,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 4,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "stabilization",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 2376
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 2,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 4,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 4,
"visible_transitions": 0
},
"processed": "G (F ((G ((p310 <= p20)) AND (p87 <= p479))))",
"processed_size": 45,
"rewrites": 35
},
"result":
{
"edges": 101376,
"markings": 18682,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 27620,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "X((X(**) OR (G((X(**) OR **)) OR (G(**) OR **)))) : (X(G((F(**) AND F(G(*))))) AND F(**)) : X(X(F(**))) : X((X(F(*)) OR G(**))) : F(G(*)) : G(F((G(**) AND **)))"
},
"net":
{
"arcs": 1372,
"conflict_clusters": 344,
"places": 490,
"places_significant": 343,
"singleton_clusters": 0,
"transitions": 343
},
"result":
{
"interim_value": "yes no yes unknown no no ",
"preliminary_value": "yes no yes unknown no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 833/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 490
lola: finding significant places
lola: 490 places, 343 transitions, 343 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (3 <= p26)
lola: X ((((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR G ((X ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))) OR G ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) : (X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48)) AND NOT(F (G (F ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))))))) AND ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48) U F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48)))) : NOT(X (G (NOT(X ((F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489)) AND (((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489) U (0 <= 0)) OR (1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489)))))))) : (NOT(X (X (G ((p286 <= p464))))) OR X (G ((p416 <= p457)))) : F (NOT(((0 <= 0) U ((p105 <= p406))))) : X (((F ((p87 <= p479)) U (1 <= p472)) U F (G (X (G (F ((G ((p310 <= p20)) AND (p87 <= p479)))))))))
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:528
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:425
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p1... (shortened)
lola: processed formula length: 13174
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 12 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 222608 markings, 444871 edges
lola: ========================================
lola: subprocess 1 will run for 712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p15... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 1 will run for 712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:750
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 ... (shortened)
lola: processed formula length: 2638
lola: 37 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156... (shortened)
lola: processed formula length: 5015
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 44 markings, 44 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 2 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (X (F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (X (F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489))))
lola: processed formula length: 359
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 55910 markings, 111475 edges
lola: ========================================
lola: subprocess 3 will run for 1187 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: processed formula length: 54
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 253814 markings, 1667460 edges, 50763 markings/sec, 0 secs
lola: 502018 markings, 3309147 edges, 49641 markings/sec, 5 secs
lola: 721836 markings, 4948934 edges, 43964 markings/sec, 10 secs
lola: 947685 markings, 6588248 edges, 45170 markings/sec, 15 secs
lola: 1142324 markings, 8231666 edges, 38928 markings/sec, 20 secs
lola: 1342896 markings, 9852927 edges, 40114 markings/sec, 25 secs
lola: 1575307 markings, 11445332 edges, 46482 markings/sec, 30 secs
lola: 1803290 markings, 13036709 edges, 45597 markings/sec, 35 secs
lola: 2030116 markings, 14637742 edges, 45365 markings/sec, 40 secs
lola: 2239087 markings, 16241854 edges, 41794 markings/sec, 45 secs
lola: 2413537 markings, 17850124 edges, 34890 markings/sec, 50 secs
lola: 2610574 markings, 19477442 edges, 39407 markings/sec, 55 secs
lola: 2804466 markings, 21126424 edges, 38778 markings/sec, 60 secs
lola: 3006383 markings, 22758183 edges, 40383 markings/sec, 65 secs
lola: 3198130 markings, 24388237 edges, 38349 markings/sec, 70 secs
lola: 3387307 markings, 26023119 edges, 37835 markings/sec, 75 secs
lola: 3577491 markings, 27639136 edges, 38037 markings/sec, 80 secs
lola: 3754904 markings, 29268718 edges, 35483 markings/sec, 85 secs
lola: 3936224 markings, 30898941 edges, 36264 markings/sec, 90 secs
lola: 4091724 markings, 32527835 edges, 31100 markings/sec, 95 secs
lola: 4230693 markings, 34150317 edges, 27794 markings/sec, 100 secs
lola: 4475561 markings, 35805601 edges, 48974 markings/sec, 105 secs
lola: 4723119 markings, 37437510 edges, 49512 markings/sec, 110 secs
lola: 4943284 markings, 39071007 edges, 44033 markings/sec, 115 secs
lola: 5167415 markings, 40701407 edges, 44826 markings/sec, 120 secs
lola: 5360824 markings, 42335884 edges, 38682 markings/sec, 125 secs
lola: 5561449 markings, 43948959 edges, 40125 markings/sec, 130 secs
lola: 5792017 markings, 45529507 edges, 46114 markings/sec, 135 secs
lola: 6018467 markings, 47109530 edges, 45290 markings/sec, 140 secs
lola: 6243934 markings, 48698019 edges, 45093 markings/sec, 145 secs
lola: 6450191 markings, 50287923 edges, 41251 markings/sec, 150 secs
lola: 6625766 markings, 51883555 edges, 35115 markings/sec, 155 secs
lola: 6819293 markings, 53492738 edges, 38705 markings/sec, 160 secs
lola: 7012859 markings, 55126591 edges, 38713 markings/sec, 165 secs
lola: 7210767 markings, 56739252 edges, 39582 markings/sec, 170 secs
lola: 7402600 markings, 58347305 edges, 38367 markings/sec, 175 secs
lola: 7589569 markings, 59960658 edges, 37394 markings/sec, 180 secs
lola: 7775439 markings, 61562252 edges, 37174 markings/sec, 185 secs
lola: 7952708 markings, 63172275 edges, 35454 markings/sec, 190 secs
lola: 8130598 markings, 64784892 edges, 35578 markings/sec, 195 secs
lola: 8288389 markings, 66399436 edges, 31558 markings/sec, 200 secs
lola: 8422721 markings, 68009925 edges, 26866 markings/sec, 205 secs
lola: 8665699 markings, 69648615 edges, 48596 markings/sec, 210 secs
lola: 8908571 markings, 71278264 edges, 48574 markings/sec, 215 secs
lola: 9123304 markings, 72906604 edges, 42947 markings/sec, 220 secs
lola: 9353247 markings, 74529340 edges, 45989 markings/sec, 225 secs
lola: 9548671 markings, 76159369 edges, 39085 markings/sec, 230 secs
lola: 9741587 markings, 77777100 edges, 38583 markings/sec, 235 secs
lola: 9969488 markings, 79362237 edges, 45580 markings/sec, 240 secs
lola: 10196330 markings, 80941876 edges, 45368 markings/sec, 245 secs
lola: 10425409 markings, 82533614 edges, 45816 markings/sec, 250 secs
lola: 10630294 markings, 84125978 edges, 40977 markings/sec, 255 secs
lola: 10821341 markings, 85727369 edges, 38209 markings/sec, 260 secs
lola: 11005491 markings, 87328932 edges, 36830 markings/sec, 265 secs
lola: 11205027 markings, 88959595 edges, 39907 markings/sec, 270 secs
lola: 11395606 markings, 90581354 edges, 38116 markings/sec, 275 secs
lola: 11595872 markings, 92189756 edges, 40053 markings/sec, 280 secs
lola: 11777296 markings, 93798697 edges, 36285 markings/sec, 285 secs
lola: 11959559 markings, 95401232 edges, 36453 markings/sec, 290 secs
lola: 12140278 markings, 97008139 edges, 36144 markings/sec, 295 secs
lola: 12315631 markings, 98617412 edges, 35071 markings/sec, 300 secs
lola: 12478631 markings, 100228806 edges, 32600 markings/sec, 305 secs
lola: 12621473 markings, 101842197 edges, 28568 markings/sec, 310 secs
lola: 12813213 markings, 103463743 edges, 38348 markings/sec, 315 secs
lola: 13005970 markings, 105097366 edges, 38551 markings/sec, 320 secs
lola: 13204818 markings, 106706281 edges, 39770 markings/sec, 325 secs
lola: 13395327 markings, 108313349 edges, 38102 markings/sec, 330 secs
lola: 13581773 markings, 109920383 edges, 37289 markings/sec, 335 secs
lola: 13767077 markings, 111509498 edges, 37061 markings/sec, 340 secs
lola: 13943934 markings, 113118103 edges, 35371 markings/sec, 345 secs
lola: 14121715 markings, 114728209 edges, 35556 markings/sec, 350 secs
lola: 14278672 markings, 116336756 edges, 31391 markings/sec, 355 secs
lola: 14412641 markings, 117941831 edges, 26794 markings/sec, 360 secs
lola: 14608184 markings, 119487652 edges, 39109 markings/sec, 365 secs
lola: 14788098 markings, 121034309 edges, 35983 markings/sec, 370 secs
lola: 14980044 markings, 122566618 edges, 38389 markings/sec, 375 secs
lola: 15165594 markings, 124123860 edges, 37110 markings/sec, 380 secs
lola: 15348504 markings, 125698749 edges, 36582 markings/sec, 385 secs
lola: 15528586 markings, 127263878 edges, 36016 markings/sec, 390 secs
lola: 15701926 markings, 128838610 edges, 34668 markings/sec, 395 secs
lola: 15868811 markings, 130379895 edges, 33377 markings/sec, 400 secs
lola: 16027173 markings, 131942694 edges, 31672 markings/sec, 405 secs
lola: 16166679 markings, 133510925 edges, 27901 markings/sec, 410 secs
lola: 16346275 markings, 135041697 edges, 35919 markings/sec, 415 secs
lola: 16533955 markings, 136593659 edges, 37536 markings/sec, 420 secs
lola: 16716756 markings, 138129441 edges, 36560 markings/sec, 425 secs
lola: 16910586 markings, 139676964 edges, 38766 markings/sec, 430 secs
lola: 17084380 markings, 141229060 edges, 34759 markings/sec, 435 secs
lola: 17255390 markings, 142785795 edges, 34202 markings/sec, 440 secs
lola: 17443486 markings, 144352582 edges, 37619 markings/sec, 445 secs
lola: 17603318 markings, 145890078 edges, 31966 markings/sec, 450 secs
lola: 17767836 markings, 147435142 edges, 32904 markings/sec, 455 secs
lola: 17911102 markings, 148964170 edges, 28653 markings/sec, 460 secs
lola: 18041844 markings, 150509639 edges, 26148 markings/sec, 465 secs
lola: 18198745 markings, 152118672 edges, 31380 markings/sec, 470 secs
lola: 18345106 markings, 153722606 edges, 29272 markings/sec, 475 secs
lola: 18487007 markings, 155339541 edges, 28380 markings/sec, 480 secs
lola: 18627170 markings, 156939596 edges, 28033 markings/sec, 485 secs
lola: 18776841 markings, 158526552 edges, 29934 markings/sec, 490 secs
lola: 18924137 markings, 160111435 edges, 29459 markings/sec, 495 secs
lola: 19063075 markings, 161703603 edges, 27788 markings/sec, 500 secs
lola: 19197830 markings, 163292019 edges, 26951 markings/sec, 505 secs
lola: 19341923 markings, 164892026 edges, 28819 markings/sec, 510 secs
lola: 19468177 markings, 166462923 edges, 25251 markings/sec, 515 secs
lola: 19617407 markings, 168045870 edges, 29846 markings/sec, 520 secs
lola: 19762861 markings, 169642189 edges, 29091 markings/sec, 525 secs
lola: 19885846 markings, 171229073 edges, 24597 markings/sec, 530 secs
lola: 20020212 markings, 172827280 edges, 26873 markings/sec, 535 secs
lola: 20155089 markings, 174417226 edges, 26975 markings/sec, 540 secs
lola: 20275867 markings, 176005137 edges, 24156 markings/sec, 545 secs
lola: 20398247 markings, 177592459 edges, 24476 markings/sec, 550 secs
lola: 20513472 markings, 179189629 edges, 23045 markings/sec, 555 secs
lola: 20625144 markings, 180745817 edges, 22334 markings/sec, 560 secs
lola: 20863582 markings, 182396841 edges, 47688 markings/sec, 565 secs
lola: 21111779 markings, 184023652 edges, 49639 markings/sec, 570 secs
lola: 21335434 markings, 185648693 edges, 44731 markings/sec, 575 secs
lola: 21553775 markings, 187275115 edges, 43668 markings/sec, 580 secs
lola: 21748539 markings, 188907140 edges, 38953 markings/sec, 585 secs
lola: 21952379 markings, 190508254 edges, 40768 markings/sec, 590 secs
lola: 22178618 markings, 192081546 edges, 45248 markings/sec, 595 secs
lola: 22403349 markings, 193657494 edges, 44946 markings/sec, 600 secs
lola: 22631494 markings, 195259314 edges, 45629 markings/sec, 605 secs
lola: 22840007 markings, 196864255 edges, 41703 markings/sec, 610 secs
lola: 23011545 markings, 198472425 edges, 34308 markings/sec, 615 secs
lola: 23209814 markings, 200101727 edges, 39654 markings/sec, 620 secs
lola: 23401980 markings, 201737301 edges, 38433 markings/sec, 625 secs
lola: 23602983 markings, 203359630 edges, 40201 markings/sec, 630 secs
lola: 23793060 markings, 204974817 edges, 38015 markings/sec, 635 secs
lola: 23981655 markings, 206600491 edges, 37719 markings/sec, 640 secs
lola: 24171058 markings, 208209814 edges, 37881 markings/sec, 645 secs
lola: 24348075 markings, 209830593 edges, 35403 markings/sec, 650 secs
lola: 24528189 markings, 211452583 edges, 36023 markings/sec, 655 secs
lola: 24683210 markings, 213074595 edges, 31004 markings/sec, 660 secs
lola: 24815786 markings, 214679297 edges, 26515 markings/sec, 665 secs
lola: 25062645 markings, 216310634 edges, 49372 markings/sec, 670 secs
lola: 25307176 markings, 217919224 edges, 48906 markings/sec, 675 secs
lola: 25520691 markings, 219525988 edges, 42703 markings/sec, 680 secs
lola: 25745066 markings, 221129481 edges, 44875 markings/sec, 685 secs
lola: 25936652 markings, 222739569 edges, 38317 markings/sec, 690 secs
lola: 26127958 markings, 224327368 edges, 38261 markings/sec, 695 secs
lola: 26352213 markings, 225885336 edges, 44851 markings/sec, 700 secs
lola: 26576275 markings, 227445095 edges, 44812 markings/sec, 705 secs
lola: 26803345 markings, 229026882 edges, 45414 markings/sec, 710 secs
lola: 27005287 markings, 230602346 edges, 40388 markings/sec, 715 secs
lola: 27194778 markings, 232180165 edges, 37898 markings/sec, 720 secs
lola: 27374666 markings, 233759120 edges, 35978 markings/sec, 725 secs
lola: 27574283 markings, 235371679 edges, 39923 markings/sec, 730 secs
lola: 27759638 markings, 236979956 edges, 37071 markings/sec, 735 secs
lola: 27961927 markings, 238573321 edges, 40458 markings/sec, 740 secs
lola: 28141072 markings, 240171224 edges, 35829 markings/sec, 745 secs
lola: 28318075 markings, 241766693 edges, 35401 markings/sec, 750 secs
lola: 28506209 markings, 243358213 edges, 37627 markings/sec, 755 secs
lola: 28673918 markings, 244943579 edges, 33542 markings/sec, 760 secs
lola: 28839969 markings, 246538257 edges, 33210 markings/sec, 765 secs
lola: 28985049 markings, 248134705 edges, 29016 markings/sec, 770 secs
lola: 29191261 markings, 249739144 edges, 41242 markings/sec, 775 secs
lola: 29429564 markings, 251360533 edges, 47661 markings/sec, 780 secs
lola: 29656299 markings, 252973418 edges, 45347 markings/sec, 785 secs
lola: 29879128 markings, 254580421 edges, 44566 markings/sec, 790 secs
lola: 30081406 markings, 256191585 edges, 40456 markings/sec, 795 secs
lola: 30244128 markings, 257805454 edges, 32544 markings/sec, 800 secs
lola: 30485423 markings, 259379291 edges, 48259 markings/sec, 805 secs
lola: 30718494 markings, 260931662 edges, 46614 markings/sec, 810 secs
lola: 30922563 markings, 262494222 edges, 40814 markings/sec, 815 secs
lola: 31145467 markings, 264068136 edges, 44581 markings/sec, 820 secs
lola: 31340629 markings, 265645827 edges, 39032 markings/sec, 825 secs
lola: 31504845 markings, 267218343 edges, 32843 markings/sec, 830 secs
lola: 31713959 markings, 268830742 edges, 41823 markings/sec, 835 secs
lola: 31895583 markings, 270436104 edges, 36325 markings/sec, 840 secs
lola: 32101532 markings, 272028169 edges, 41190 markings/sec, 845 secs
lola: 32279327 markings, 273616369 edges, 35559 markings/sec, 850 secs
lola: 32453548 markings, 275212912 edges, 34844 markings/sec, 855 secs
lola: 32653730 markings, 276796702 edges, 40036 markings/sec, 860 secs
lola: 32828744 markings, 278393248 edges, 35003 markings/sec, 865 secs
lola: 32995377 markings, 279986682 edges, 33327 markings/sec, 870 secs
lola: 33150403 markings, 281584796 edges, 31005 markings/sec, 875 secs
lola: 33294616 markings, 283182689 edges, 28843 markings/sec, 880 secs
lola: 33501679 markings, 284800412 edges, 41413 markings/sec, 885 secs
lola: 33689491 markings, 286420906 edges, 37562 markings/sec, 890 secs
lola: 33891089 markings, 288015741 edges, 40320 markings/sec, 895 secs
lola: 34071526 markings, 289614008 edges, 36087 markings/sec, 900 secs
lola: 34249297 markings, 291210593 edges, 35554 markings/sec, 905 secs
lola: 34448326 markings, 292802863 edges, 39806 markings/sec, 910 secs
lola: 34617447 markings, 294402577 edges, 33824 markings/sec, 915 secs
lola: 34782337 markings, 296000738 edges, 32978 markings/sec, 920 secs
lola: 34941099 markings, 297614233 edges, 31752 markings/sec, 925 secs
lola: 35086073 markings, 299186575 edges, 28995 markings/sec, 930 secs
lola: 35288582 markings, 300743020 edges, 40502 markings/sec, 935 secs
lola: 35464765 markings, 302280573 edges, 35237 markings/sec, 940 secs
lola: 35657445 markings, 303811377 edges, 38536 markings/sec, 945 secs
lola: 35830759 markings, 305346652 edges, 34663 markings/sec, 950 secs
lola: 36000048 markings, 306900560 edges, 33858 markings/sec, 955 secs
lola: 36196371 markings, 308458572 edges, 39265 markings/sec, 960 secs
lola: 36369086 markings, 310023692 edges, 34543 markings/sec, 965 secs
lola: 36533659 markings, 311583897 edges, 32915 markings/sec, 970 secs
lola: 36683341 markings, 313144139 edges, 29936 markings/sec, 975 secs
lola: 36815944 markings, 314683244 edges, 26521 markings/sec, 980 secs
lola: 37014052 markings, 316200288 edges, 39622 markings/sec, 985 secs
lola: 37176637 markings, 317709464 edges, 32517 markings/sec, 990 secs
lola: 37379931 markings, 319222226 edges, 40659 markings/sec, 995 secs
lola: 37549972 markings, 320728683 edges, 34008 markings/sec, 1000 secs
lola: 37729357 markings, 322257086 edges, 35877 markings/sec, 1005 secs
lola: 37908514 markings, 323780884 edges, 35831 markings/sec, 1010 secs
lola: 38074116 markings, 325301202 edges, 33120 markings/sec, 1015 secs
lola: 38237637 markings, 326817164 edges, 32704 markings/sec, 1020 secs
lola: 38393448 markings, 328350179 edges, 31162 markings/sec, 1025 secs
lola: 38530214 markings, 329874531 edges, 27353 markings/sec, 1030 secs
lola: 38667503 markings, 331432841 edges, 27458 markings/sec, 1035 secs
lola: 38821456 markings, 333024527 edges, 30791 markings/sec, 1040 secs
lola: 38970326 markings, 334608758 edges, 29774 markings/sec, 1045 secs
lola: 39103434 markings, 336209710 edges, 26622 markings/sec, 1050 secs
lola: 39246795 markings, 337794910 edges, 28672 markings/sec, 1055 secs
lola: 39395686 markings, 339367086 edges, 29778 markings/sec, 1060 secs
lola: 39543416 markings, 340938886 edges, 29546 markings/sec, 1065 secs
lola: 39674931 markings, 342511251 edges, 26303 markings/sec, 1070 secs
lola: 39810982 markings, 344086062 edges, 27210 markings/sec, 1075 secs
lola: 39951242 markings, 345671200 edges, 28052 markings/sec, 1080 secs
lola: 40080245 markings, 347233913 edges, 25801 markings/sec, 1085 secs
lola: 40228431 markings, 348801842 edges, 29637 markings/sec, 1090 secs
lola: 40368763 markings, 350377503 edges, 28066 markings/sec, 1095 secs
lola: 40492093 markings, 351942205 edges, 24666 markings/sec, 1100 secs
lola: 40622579 markings, 353514566 edges, 26097 markings/sec, 1105 secs
lola: 40758397 markings, 355087266 edges, 27164 markings/sec, 1110 secs
lola: 40875979 markings, 356654852 edges, 23516 markings/sec, 1115 secs
lola: 40997102 markings, 358225953 edges, 24225 markings/sec, 1120 secs
lola: 41110371 markings, 359810783 edges, 22654 markings/sec, 1125 secs
lola: 41229189 markings, 361378151 edges, 23764 markings/sec, 1130 secs
lola: 41465924 markings, 363011375 edges, 47347 markings/sec, 1135 secs
lola: 41708651 markings, 364624311 edges, 48545 markings/sec, 1140 secs
lola: 41931572 markings, 366231829 edges, 44584 markings/sec, 1145 secs
lola: 42146752 markings, 367839228 edges, 43036 markings/sec, 1150 secs
lola: 42339029 markings, 369451038 edges, 38455 markings/sec, 1155 secs
lola: 42537009 markings, 371035716 edges, 39596 markings/sec, 1160 secs
lola: 42762831 markings, 372589562 edges, 45164 markings/sec, 1165 secs
lola: 42986068 markings, 374144433 edges, 44647 markings/sec, 1170 secs
lola: 43208748 markings, 375709062 edges, 44536 markings/sec, 1175 secs
lola: 43408296 markings, 377277412 edges, 39910 markings/sec, 1180 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no yes unknown unknown unknown
lola: memory consumption: 6868936 KB
lola: time consumption: 1194 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 4 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F (G (((p406 + 1 <= p105))))
lola: ========================================
lola: SUBTASK
lola: checking stabilization
lola: stabilization not yet implemented, converting to LTL...
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F (G (((p406 + 1 <= p105))))
lola: processed formula length: 28
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 46 markings, 47 edges
lola: ========================================
lola: subprocess 5 will run for 2376 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: G (F ((G ((p310 <= p20)) AND (p87 <= p479))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: G (F ((G ((p310 <= p20)) AND (p87 <= p479))))
lola: processed formula length: 45
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 18682 markings, 101376 edges
lola: ========================================
lola: ========================================
lola: ...considering subproblem: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: processed formula length: 54
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 253524 markings, 1664563 edges, 50705 markings/sec, 0 secs
lola: 501547 markings, 3305669 edges, 49605 markings/sec, 5 secs
lola: 721761 markings, 4948229 edges, 44043 markings/sec, 10 secs
lola: 947545 markings, 6586616 edges, 45157 markings/sec, 15 secs
lola: 1141629 markings, 8226503 edges, 38817 markings/sec, 20 secs
lola: 1341608 markings, 9840865 edges, 39996 markings/sec, 25 secs
lola: 1571421 markings, 11427047 edges, 45963 markings/sec, 30 secs
lola: 1800638 markings, 13017139 edges, 45843 markings/sec, 35 secs
lola: 2027686 markings, 14615095 edges, 45410 markings/sec, 40 secs
lola: 2235144 markings, 16214198 edges, 41492 markings/sec, 45 secs
lola: 2411629 markings, 17825807 edges, 35297 markings/sec, 50 secs
lola: 2607119 markings, 19446680 edges, 39098 markings/sec, 55 secs
lola: 2801015 markings, 21093092 edges, 38779 markings/sec, 60 secs
lola: 3002587 markings, 22720939 edges, 40314 markings/sec, 65 secs
lola: 3193808 markings, 24342271 edges, 38244 markings/sec, 70 secs
lola: 3381644 markings, 25965011 edges, 37567 markings/sec, 75 secs
lola: 3570290 markings, 27571018 edges, 37729 markings/sec, 80 secs
lola: 3747500 markings, 29188029 edges, 35442 markings/sec, 85 secs
lola: 3927104 markings, 30806051 edges, 35921 markings/sec, 90 secs
lola: 4083199 markings, 32431310 edges, 31219 markings/sec, 95 secs
lola: 4213228 markings, 34028393 edges, 26006 markings/sec, 100 secs
lola: 4461697 markings, 35673708 edges, 49694 markings/sec, 105 secs
lola: 4707236 markings, 37297668 edges, 49108 markings/sec, 110 secs
lola: 4921412 markings, 38917295 edges, 42835 markings/sec, 115 secs
lola: 5148826 markings, 40537193 edges, 45483 markings/sec, 120 secs
lola: 5342388 markings, 42164909 edges, 38712 markings/sec, 125 secs
lola: 5537041 markings, 43775453 edges, 38931 markings/sec, 130 secs
lola: 5766576 markings, 45369197 edges, 45907 markings/sec, 135 secs
lola: 5994529 markings, 46947309 edges, 45591 markings/sec, 140 secs
lola: 6221784 markings, 48543139 edges, 45451 markings/sec, 145 secs
lola: 6427942 markings, 50142687 edges, 41232 markings/sec, 150 secs
lola: 6614318 markings, 51748442 edges, 37275 markings/sec, 155 secs
lola: 6803217 markings, 53366403 edges, 37780 markings/sec, 160 secs
lola: 7000934 markings, 55004120 edges, 39543 markings/sec, 165 secs
lola: 7196363 markings, 56632025 edges, 39086 markings/sec, 170 secs
lola: 7392713 markings, 58248443 edges, 39270 markings/sec, 175 secs
lola: 7579752 markings, 59870875 edges, 37408 markings/sec, 180 secs
lola: 7763968 markings, 61477879 edges, 36843 markings/sec, 185 secs
lola: 7942935 markings, 63093466 edges, 35793 markings/sec, 190 secs
lola: 8120440 markings, 64710688 edges, 35501 markings/sec, 195 secs
lola: 8281633 markings, 66330995 edges, 32239 markings/sec, 200 secs
lola: 8418992 markings, 67952964 edges, 27472 markings/sec, 205 secs
lola: 8659942 markings, 69594675 edges, 48190 markings/sec, 210 secs
lola: 8900658 markings, 71226856 edges, 48143 markings/sec, 215 secs
lola: 9113350 markings, 72858652 edges, 42538 markings/sec, 220 secs
lola: 9344618 markings, 74478111 edges, 46254 markings/sec, 225 secs
lola: 9542038 markings, 76105792 edges, 39484 markings/sec, 230 secs
lola: 9730851 markings, 77720137 edges, 37763 markings/sec, 235 secs
lola: 9960061 markings, 79297969 edges, 45842 markings/sec, 240 secs
lola: 10185270 markings, 80871649 edges, 45042 markings/sec, 245 secs
lola: 10413901 markings, 82463122 edges, 45726 markings/sec, 250 secs
lola: 10619786 markings, 84056822 edges, 41177 markings/sec, 255 secs
lola: 10813703 markings, 85659304 edges, 38783 markings/sec, 260 secs
lola: 10996712 markings, 87265444 edges, 36602 markings/sec, 265 secs
lola: 11198515 markings, 88900277 edges, 40361 markings/sec, 270 secs
lola: 11387948 markings, 90526782 edges, 37887 markings/sec, 275 secs
lola: 11590773 markings, 92140324 edges, 40565 markings/sec, 280 secs
lola: 11771784 markings, 93753833 edges, 36202 markings/sec, 285 secs
lola: 11954730 markings, 95367747 edges, 36589 markings/sec, 290 secs
lola: 12138040 markings, 96980857 edges, 36662 markings/sec, 295 secs
lola: 12312831 markings, 98594857 edges, 34958 markings/sec, 300 secs
lola: 12476708 markings, 100211253 edges, 32775 markings/sec, 305 secs
lola: 12620865 markings, 101834437 edges, 28831 markings/sec, 310 secs
lola: 12813405 markings, 103465157 edges, 38508 markings/sec, 315 secs
lola: 13006997 markings, 105107539 edges, 38718 markings/sec, 320 secs
lola: 13208137 markings, 106729754 edges, 40228 markings/sec, 325 secs
lola: 13399186 markings, 108350986 edges, 38210 markings/sec, 330 secs
lola: 13586695 markings, 109971324 edges, 37502 markings/sec, 335 secs
lola: 13774519 markings, 111567140 edges, 37565 markings/sec, 340 secs
lola: 13950450 markings, 113176667 edges, 35186 markings/sec, 345 secs
lola: 14129259 markings, 114788770 edges, 35762 markings/sec, 350 secs
lola: 14284689 markings, 116401306 edges, 31086 markings/sec, 355 secs
lola: 14416850 markings, 118012670 edges, 26432 markings/sec, 360 secs
lola: 14622560 markings, 119583989 edges, 41142 markings/sec, 365 secs
lola: 14798870 markings, 121155054 edges, 35262 markings/sec, 370 secs
lola: 15000021 markings, 122715082 edges, 40230 markings/sec, 375 secs
lola: 15179629 markings, 124277722 edges, 35922 markings/sec, 380 secs
lola: 15363435 markings, 125852645 edges, 36761 markings/sec, 385 secs
lola: 15547925 markings, 127414821 edges, 36898 markings/sec, 390 secs
lola: 15721133 markings, 128998440 edges, 34642 markings/sec, 395 secs
lola: 15896368 markings, 130585084 edges, 35047 markings/sec, 400 secs
lola: 16050738 markings, 132170551 edges, 30874 markings/sec, 405 secs
lola: 16182754 markings, 133744348 edges, 26403 markings/sec, 410 secs
lola: 16375536 markings, 135295802 edges, 38556 markings/sec, 415 secs
lola: 16559314 markings, 136854766 edges, 36756 markings/sec, 420 secs
lola: 16751637 markings, 138398280 edges, 38465 markings/sec, 425 secs
lola: 16936729 markings, 139948968 edges, 37018 markings/sec, 430 secs
lola: 17118214 markings, 141512765 edges, 36297 markings/sec, 435 secs
lola: 17295128 markings, 143065098 edges, 35383 markings/sec, 440 secs
lola: 17467966 markings, 144625801 edges, 34568 markings/sec, 445 secs
lola: 17639271 markings, 146191685 edges, 34261 markings/sec, 450 secs
lola: 17797461 markings, 147755710 edges, 31638 markings/sec, 455 secs
lola: 17937471 markings, 149317977 edges, 28002 markings/sec, 460 secs
lola: 18079676 markings, 150916684 edges, 28441 markings/sec, 465 secs
lola: 18234373 markings, 152536219 edges, 30939 markings/sec, 470 secs
lola: 18387100 markings, 154155354 edges, 30545 markings/sec, 475 secs
lola: 18519483 markings, 155782378 edges, 26477 markings/sec, 480 secs
lola: 18669065 markings, 157394825 edges, 29916 markings/sec, 485 secs
lola: 18820750 markings, 158991364 edges, 30337 markings/sec, 490 secs
lola: 18970922 markings, 160596432 edges, 30034 markings/sec, 495 secs
lola: 19099455 markings, 162199856 edges, 25707 markings/sec, 500 secs
lola: 19242978 markings, 163809339 edges, 28705 markings/sec, 505 secs
lola: 19382233 markings, 165424592 edges, 27851 markings/sec, 510 secs
lola: 19518517 markings, 167020652 edges, 27257 markings/sec, 515 secs
lola: 19669290 markings, 168620446 edges, 30155 markings/sec, 520 secs
lola: 19807186 markings, 170229105 edges, 27579 markings/sec, 525 secs
lola: 19940631 markings, 171836369 edges, 26689 markings/sec, 530 secs
lola: 20065849 markings, 173437197 edges, 25044 markings/sec, 535 secs
lola: 20205653 markings, 175052199 edges, 27961 markings/sec, 540 secs
lola: 20325849 markings, 176653143 edges, 24039 markings/sec, 545 secs
lola: 20449127 markings, 178265352 edges, 24656 markings/sec, 550 secs
lola: 20554820 markings, 179870118 edges, 21139 markings/sec, 555 secs
lola: 20745527 markings, 181487440 edges, 38141 markings/sec, 560 secs
lola: 20983482 markings, 183130537 edges, 47591 markings/sec, 565 secs
lola: 21216195 markings, 184763276 edges, 46543 markings/sec, 570 secs
lola: 21444238 markings, 186392071 edges, 45609 markings/sec, 575 secs
lola: 21648873 markings, 188025176 edges, 40927 markings/sec, 580 secs
lola: 21813591 markings, 189662425 edges, 32944 markings/sec, 585 secs
lola: 22058885 markings, 191265627 edges, 49059 markings/sec, 590 secs
lola: 22298787 markings, 192852745 edges, 47980 markings/sec, 595 secs
lola: 22508937 markings, 194451649 edges, 42030 markings/sec, 600 secs
lola: 22735520 markings, 196052071 edges, 45317 markings/sec, 605 secs
lola: 22927992 markings, 197657355 edges, 38494 markings/sec, 610 secs
lola: 23101162 markings, 199270847 edges, 34634 markings/sec, 615 secs
lola: 23311836 markings, 200905174 edges, 42135 markings/sec, 620 secs
lola: 23499419 markings, 202542919 edges, 37517 markings/sec, 625 secs
lola: 23705266 markings, 204154272 edges, 41169 markings/sec, 630 secs
lola: 23884495 markings, 205772262 edges, 35846 markings/sec, 635 secs
lola: 24067224 markings, 207389605 edges, 36546 markings/sec, 640 secs
lola: 24264442 markings, 209000416 edges, 39444 markings/sec, 645 secs
lola: 24432677 markings, 210617384 edges, 33647 markings/sec, 650 secs
lola: 24601295 markings, 212231242 edges, 33724 markings/sec, 655 secs
lola: 24754809 markings, 213857321 edges, 30703 markings/sec, 660 secs
lola: 24947352 markings, 215472946 edges, 38509 markings/sec, 665 secs
lola: 25182795 markings, 217096776 edges, 47089 markings/sec, 670 secs
lola: 25412613 markings, 218705177 edges, 45964 markings/sec, 675 secs
lola: 25641209 markings, 220311101 edges, 45719 markings/sec, 680 secs
lola: 25845076 markings, 221921857 edges, 40773 markings/sec, 685 secs
lola: 26014687 markings, 223540888 edges, 33922 markings/sec, 690 secs
lola: 26247311 markings, 225117053 edges, 46525 markings/sec, 695 secs
lola: 26475413 markings, 226676216 edges, 45620 markings/sec, 700 secs
lola: 26689424 markings, 228248619 edges, 42802 markings/sec, 705 secs
lola: 26904223 markings, 229816536 edges, 42960 markings/sec, 710 secs
lola: 27104920 markings, 231393905 edges, 40139 markings/sec, 715 secs
lola: 27265516 markings, 232965622 edges, 32119 markings/sec, 720 secs
lola: 27478335 markings, 234579935 edges, 42564 markings/sec, 725 secs
lola: 27656674 markings, 236188553 edges, 35668 markings/sec, 730 secs
lola: 27865737 markings, 237778348 edges, 41813 markings/sec, 735 secs
lola: 28040928 markings, 239367663 edges, 35038 markings/sec, 740 secs
lola: 28224305 markings, 240967884 edges, 36675 markings/sec, 745 secs
lola: 28418723 markings, 242551110 edges, 38884 markings/sec, 750 secs
lola: 28595290 markings, 244144426 edges, 35313 markings/sec, 755 secs
lola: 28763569 markings, 245734733 edges, 33656 markings/sec, 760 secs
lola: 28915595 markings, 247326510 edges, 30405 markings/sec, 765 secs
lola: 29059748 markings, 248919747 edges, 28831 markings/sec, 770 secs
lola: 29294944 markings, 250551224 edges, 47039 markings/sec, 775 secs
lola: 29540880 markings, 252160334 edges, 49187 markings/sec, 780 secs
lola: 29760182 markings, 253770671 edges, 43860 markings/sec, 785 secs
lola: 29979667 markings, 255378321 edges, 43897 markings/sec, 790 secs
lola: 30170657 markings, 256988300 edges, 38198 markings/sec, 795 secs
lola: 30367303 markings, 258572987 edges, 39329 markings/sec, 800 secs
lola: 30590996 markings, 260127445 edges, 44739 markings/sec, 805 secs
lola: 30817456 markings, 261683684 edges, 45292 markings/sec, 810 secs
lola: 31039545 markings, 263247053 edges, 44418 markings/sec, 815 secs
lola: 31240897 markings, 264818536 edges, 40270 markings/sec, 820 secs
lola: 31423843 markings, 266398762 edges, 36589 markings/sec, 825 secs
lola: 31609378 markings, 267987930 edges, 37107 markings/sec, 830 secs
lola: 31805022 markings, 269599901 edges, 39129 markings/sec, 835 secs
lola: 31994727 markings, 271201864 edges, 37941 markings/sec, 840 secs
lola: 32192234 markings, 272793454 edges, 39501 markings/sec, 845 secs
lola: 32373171 markings, 274387106 edges, 36187 markings/sec, 850 secs
lola: 32553562 markings, 275974587 edges, 36078 markings/sec, 855 secs
lola: 32732847 markings, 277564869 edges, 35857 markings/sec, 860 secs
lola: 32905734 markings, 279156520 edges, 34577 markings/sec, 865 secs
lola: 33066806 markings, 280749644 edges, 32214 markings/sec, 870 secs
lola: 33211142 markings, 282352095 edges, 28867 markings/sec, 875 secs
lola: 33398300 markings, 283959920 edges, 37432 markings/sec, 880 secs
lola: 33591360 markings, 285580680 edges, 38612 markings/sec, 885 secs
lola: 33786768 markings, 287185178 edges, 39082 markings/sec, 890 secs
lola: 33979386 markings, 288783206 edges, 38524 markings/sec, 895 secs
lola: 34164453 markings, 290384152 edges, 37013 markings/sec, 900 secs
lola: 34346100 markings, 291971621 edges, 36329 markings/sec, 905 secs
lola: 34522481 markings, 293566507 edges, 35276 markings/sec, 910 secs
lola: 34697060 markings, 295162340 edges, 34916 markings/sec, 915 secs
lola: 34857744 markings, 296760954 edges, 32137 markings/sec, 920 secs
lola: 34995349 markings, 298357936 edges, 27521 markings/sec, 925 secs
lola: 35182892 markings, 299903169 edges, 37509 markings/sec, 930 secs
lola: 35367030 markings, 301448290 edges, 36828 markings/sec, 935 secs
lola: 35551765 markings, 302971101 edges, 36947 markings/sec, 940 secs
lola: 35741053 markings, 304509287 edges, 37858 markings/sec, 945 secs
lola: 35915870 markings, 306050380 edges, 34963 markings/sec, 950 secs
lola: 36088901 markings, 307592744 edges, 34606 markings/sec, 955 secs
lola: 36270354 markings, 309149233 edges, 36291 markings/sec, 960 secs
lola: 36434514 markings, 310698792 edges, 32832 markings/sec, 965 secs
lola: 36596800 markings, 312252203 edges, 32457 markings/sec, 970 secs
lola: 36739776 markings, 313800507 edges, 28595 markings/sec, 975 secs
lola: 36897687 markings, 315298473 edges, 31582 markings/sec, 980 secs
lola: 37088015 markings, 316811699 edges, 38066 markings/sec, 985 secs
lola: 37259926 markings, 318309905 edges, 34382 markings/sec, 990 secs
lola: 37453434 markings, 319822652 edges, 38702 markings/sec, 995 secs
lola: 37621880 markings, 321335897 edges, 33689 markings/sec, 1000 secs
lola: 37787113 markings, 322847013 edges, 33047 markings/sec, 1005 secs
lola: 37979635 markings, 324379684 edges, 38504 markings/sec, 1010 secs
lola: 38146705 markings, 325910473 edges, 33414 markings/sec, 1015 secs
lola: 38307717 markings, 327437140 edges, 32202 markings/sec, 1020 secs
lola: 38452437 markings, 328953644 edges, 28944 markings/sec, 1025 secs
lola: 38572994 markings, 330453771 edges, 24111 markings/sec, 1030 secs
lola: 38730986 markings, 332046279 edges, 31598 markings/sec, 1035 secs
lola: 38881999 markings, 333641206 edges, 30203 markings/sec, 1040 secs
lola: 39025675 markings, 335226845 edges, 28735 markings/sec, 1045 secs
lola: 39148732 markings, 336811017 edges, 24611 markings/sec, 1050 secs
lola: 39299352 markings, 338387621 edges, 30124 markings/sec, 1055 secs
lola: 39453547 markings, 339959296 edges, 30839 markings/sec, 1060 secs
lola: 39596450 markings, 341532403 edges, 28581 markings/sec, 1065 secs
lola: 39715694 markings, 343087664 edges, 23849 markings/sec, 1070 secs
lola: 39865423 markings, 344672191 edges, 29946 markings/sec, 1075 secs
lola: 39994716 markings, 346249284 edges, 25859 markings/sec, 1080 secs
lola: 40130413 markings, 347808078 edges, 27139 markings/sec, 1085 secs
lola: 40280469 markings, 349384900 edges, 30011 markings/sec, 1090 secs
lola: 40412834 markings, 350962942 edges, 26473 markings/sec, 1095 secs
lola: 40547169 markings, 352540548 edges, 26867 markings/sec, 1100 secs
lola: 40668487 markings, 354103799 edges, 24264 markings/sec, 1105 secs
lola: 40804606 markings, 355689265 edges, 27224 markings/sec, 1110 secs
lola: 40921511 markings, 357253059 edges, 23381 markings/sec, 1115 secs
lola: 41042911 markings, 358834251 edges, 24280 markings/sec, 1120 secs
lola: 41146402 markings, 360397860 edges, 20698 markings/sec, 1125 secs
lola: 41326189 markings, 361971384 edges, 35957 markings/sec, 1130 secs
lola: 41560561 markings, 363590493 edges, 46874 markings/sec, 1135 secs
lola: 41789418 markings, 365191934 edges, 45771 markings/sec, 1140 secs
lola: 42017097 markings, 366790907 edges, 45536 markings/sec, 1145 secs
lola: 42221388 markings, 368399689 edges, 40858 markings/sec, 1150 secs
lola: 42391127 markings, 370013919 edges, 33948 markings/sec, 1155 secs
lola: 42621665 markings, 371587722 edges, 46108 markings/sec, 1160 secs
lola: 42849424 markings, 373147711 edges, 45552 markings/sec, 1165 secs
lola: 43065173 markings, 374720523 edges, 43150 markings/sec, 1170 secs
lola: 43280651 markings, 376287732 edges, 43096 markings/sec, 1175 secs
lola: 43479547 markings, 377863295 edges, 39779 markings/sec, 1180 secs
lola: 43639153 markings, 379431501 edges, 31921 markings/sec, 1185 secs
lola: 43852806 markings, 381047257 edges, 42731 markings/sec, 1190 secs
lola: 44030758 markings, 382657455 edges, 35590 markings/sec, 1195 secs
lola: 44240513 markings, 384248002 edges, 41951 markings/sec, 1200 secs
lola: 44414419 markings, 385836252 edges, 34781 markings/sec, 1205 secs
lola: 44600194 markings, 387435106 edges, 37155 markings/sec, 1210 secs
lola: 44793551 markings, 389015698 edges, 38671 markings/sec, 1215 secs
lola: 44969406 markings, 390607210 edges, 35171 markings/sec, 1220 secs
lola: 45138672 markings, 392197098 edges, 33853 markings/sec, 1225 secs
lola: 45290829 markings, 393789106 edges, 30431 markings/sec, 1230 secs
lola: 45431403 markings, 395376817 edges, 28115 markings/sec, 1235 secs
lola: 45669350 markings, 397015827 edges, 47589 markings/sec, 1240 secs
lola: 45916636 markings, 398631864 edges, 49457 markings/sec, 1245 secs
lola: 46133654 markings, 400243220 edges, 43404 markings/sec, 1250 secs
lola: 46356450 markings, 401858397 edges, 44559 markings/sec, 1255 secs
lola: 46547128 markings, 403466997 edges, 38136 markings/sec, 1260 secs
lola: 46742333 markings, 405040099 edges, 39041 markings/sec, 1265 secs
lola: 46962922 markings, 406581655 edges, 44118 markings/sec, 1270 secs
lola: 47187071 markings, 408123672 edges, 44830 markings/sec, 1275 secs
lola: 47407490 markings, 409674712 edges, 44084 markings/sec, 1280 secs
lola: 47608349 markings, 411233320 edges, 40172 markings/sec, 1285 secs
lola: 47794346 markings, 412805456 edges, 37199 markings/sec, 1290 secs
lola: 47974322 markings, 414373837 edges, 35995 markings/sec, 1295 secs
lola: 48172823 markings, 415988637 edges, 39700 markings/sec, 1300 secs
lola: 48359772 markings, 417592518 edges, 37390 markings/sec, 1305 secs
lola: 48560447 markings, 419186045 edges, 40135 markings/sec, 1310 secs
lola: 48737536 markings, 420772986 edges, 35418 markings/sec, 1315 secs
lola: 48915650 markings, 422362665 edges, 35623 markings/sec, 1320 secs
lola: 49102518 markings, 423957223 edges, 37374 markings/sec, 1325 secs
lola: 49271139 markings, 425545359 edges, 33724 markings/sec, 1330 secs
lola: 49436686 markings, 427144639 edges, 33109 markings/sec, 1335 secs
lola: 49581411 markings, 428743668 edges, 28945 markings/sec, 1340 secs
lola: 49789082 markings, 430342546 edges, 41534 markings/sec, 1345 secs
lola: 50027564 markings, 431956585 edges, 47696 markings/sec, 1350 secs
lola: 50252533 markings, 433564166 edges, 44994 markings/sec, 1355 secs
lola: 50474591 markings, 435166824 edges, 44412 markings/sec, 1360 secs
lola: 50676300 markings, 436775154 edges, 40342 markings/sec, 1365 secs
lola: 50838509 markings, 438386819 edges, 32442 markings/sec, 1370 secs
lola: 51080697 markings, 439964169 edges, 48438 markings/sec, 1375 secs
lola: 51315042 markings, 441523860 edges, 46869 markings/sec, 1380 secs
lola: 51518854 markings, 443097036 edges, 40762 markings/sec, 1385 secs
lola: 51742458 markings, 444669040 edges, 44721 markings/sec, 1390 secs
lola: 51937339 markings, 446248691 edges, 38976 markings/sec, 1395 secs
lola: 52104322 markings, 447832691 edges, 33397 markings/sec, 1400 secs
lola: 52311683 markings, 449442963 edges, 41472 markings/sec, 1405 secs
lola: 52496963 markings, 451055431 edges, 37056 markings/sec, 1410 secs
lola: 52699741 markings, 452645471 edges, 40556 markings/sec, 1415 secs
lola: 52879335 markings, 454240309 edges, 35919 markings/sec, 1420 secs
lola: 53054369 markings, 455837428 edges, 35007 markings/sec, 1425 secs
lola: 53255294 markings, 457424580 edges, 40185 markings/sec, 1430 secs
lola: 53427666 markings, 459021185 edges, 34474 markings/sec, 1435 secs
lola: 53594118 markings, 460612920 edges, 33290 markings/sec, 1440 secs
lola: 53749567 markings, 462213458 edges, 31090 markings/sec, 1445 secs
lola: 53895126 markings, 463809474 edges, 29112 markings/sec, 1450 secs
lola: 54102868 markings, 465424685 edges, 41548 markings/sec, 1455 secs
lola: 54288694 markings, 467043553 edges, 37165 markings/sec, 1460 secs
lola: 54491494 markings, 468633400 edges, 40560 markings/sec, 1465 secs
lola: 54671017 markings, 470234131 edges, 35905 markings/sec, 1470 secs
lola: 54847083 markings, 471810569 edges, 35213 markings/sec, 1475 secs
lola: 55045035 markings, 473396531 edges, 39590 markings/sec, 1480 secs
lola: 55212909 markings, 474990912 edges, 33575 markings/sec, 1485 secs
lola: 55376851 markings, 476585046 edges, 32788 markings/sec, 1490 secs
lola: 55535531 markings, 478193382 edges, 31736 markings/sec, 1495 secs
lola: 55680261 markings, 479764101 edges, 28946 markings/sec, 1500 secs
lola: 55882737 markings, 481317930 edges, 40495 markings/sec, 1505 secs
lola: 56060041 markings, 482866840 edges, 35461 markings/sec, 1510 secs
lola: 56255256 markings, 484411585 edges, 39043 markings/sec, 1515 secs
lola: 56430303 markings, 485965319 edges, 35009 markings/sec, 1520 secs
lola: 56599234 markings, 487517438 edges, 33786 markings/sec, 1525 secs
lola: 56796086 markings, 489073703 edges, 39370 markings/sec, 1530 secs
lola: 56967222 markings, 490639006 edges, 34227 markings/sec, 1535 secs
lola: 57131538 markings, 492203567 edges, 32863 markings/sec, 1540 secs
lola: 57282221 markings, 493770042 edges, 30137 markings/sec, 1545 secs
lola: 57417159 markings, 495320285 edges, 26988 markings/sec, 1550 secs
lola: 57617546 markings, 496850627 edges, 40077 markings/sec, 1555 secs
lola: 57786002 markings, 498376963 edges, 33691 markings/sec, 1560 secs
lola: 57987205 markings, 499904688 edges, 40241 markings/sec, 1565 secs
lola: 58154888 markings, 501430839 edges, 33537 markings/sec, 1570 secs
lola: 58337151 markings, 502980902 edges, 36453 markings/sec, 1575 secs
lola: 58521306 markings, 504516724 edges, 36831 markings/sec, 1580 secs
lola: 58690121 markings, 506059767 edges, 33763 markings/sec, 1585 secs
lola: 58861934 markings, 507610023 edges, 34363 markings/sec, 1590 secs
lola: 59011216 markings, 509153542 edges, 29856 markings/sec, 1595 secs
lola: 59141160 markings, 510691127 edges, 25989 markings/sec, 1600 secs
lola: 59290720 markings, 512281802 edges, 29912 markings/sec, 1605 secs
lola: 59444158 markings, 513881531 edges, 30688 markings/sec, 1610 secs
lola: 59589191 markings, 515468261 edges, 29007 markings/sec, 1615 secs
lola: 59716880 markings, 517057712 edges, 25538 markings/sec, 1620 secs
lola: 59865053 markings, 518632457 edges, 29635 markings/sec, 1625 secs
lola: 60014359 markings, 520193984 edges, 29861 markings/sec, 1630 secs
lola: 60160414 markings, 521764092 edges, 29211 markings/sec, 1635 secs
lola: 60286794 markings, 523333549 edges, 25276 markings/sec, 1640 secs
lola: 60426205 markings, 524907106 edges, 27882 markings/sec, 1645 secs
lola: 60563650 markings, 526485130 edges, 27489 markings/sec, 1650 secs
lola: 60695562 markings, 528040857 edges, 26382 markings/sec, 1655 secs
lola: 60842162 markings, 529603587 edges, 29320 markings/sec, 1660 secs
lola: 60980357 markings, 531180574 edges, 27639 markings/sec, 1665 secs
lola: 61104810 markings, 532745493 edges, 24891 markings/sec, 1670 secs
lola: 61232228 markings, 534313503 edges, 25484 markings/sec, 1675 secs
lola: 61370524 markings, 535890264 edges, 27659 markings/sec, 1680 secs
lola: 61487911 markings, 537459152 edges, 23477 markings/sec, 1685 secs
lola: 61606356 markings, 539026292 edges, 23689 markings/sec, 1690 secs
lola: 61717900 markings, 540601583 edges, 22309 markings/sec, 1695 secs
lola: 61858328 markings, 542162403 edges, 28086 markings/sec, 1700 secs
lola: 62096538 markings, 543796862 edges, 47642 markings/sec, 1705 secs
lola: 62329274 markings, 545408462 edges, 46547 markings/sec, 1710 secs
lola: 62560036 markings, 547021408 edges, 46152 markings/sec, 1715 secs
lola: 62768549 markings, 548636302 edges, 41703 markings/sec, 1720 secs
lola: 62957880 markings, 550258817 edges, 37866 markings/sec, 1725 secs
lola: 63169409 markings, 551848147 edges, 42306 markings/sec, 1730 secs
lola: 63397634 markings, 553419508 edges, 45645 markings/sec, 1735 secs
lola: 63620918 markings, 554995409 edges, 44657 markings/sec, 1740 secs
lola: 63844442 markings, 556575775 edges, 44705 markings/sec, 1745 secs
lola: 64044177 markings, 558158204 edges, 39947 markings/sec, 1750 secs
lola: 64209267 markings, 559741994 edges, 33018 markings/sec, 1755 secs
lola: 64410672 markings, 561350949 edges, 40281 markings/sec, 1760 secs
lola: 64597622 markings, 562971038 edges, 37390 markings/sec, 1765 secs
lola: 64801264 markings, 564570455 edges, 40728 markings/sec, 1770 secs
lola: 64985479 markings, 566171938 edges, 36843 markings/sec, 1775 secs
lola: 65172108 markings, 567778390 edges, 37326 markings/sec, 1780 secs
lola: 65360566 markings, 569368032 edges, 37692 markings/sec, 1785 secs
lola: 65535197 markings, 570967239 edges, 34926 markings/sec, 1790 secs
lola: 65713231 markings, 572566937 edges, 35607 markings/sec, 1795 secs
lola: 65867025 markings, 574169977 edges, 30759 markings/sec, 1800 secs
lola: 65995917 markings, 575766829 edges, 25778 markings/sec, 1805 secs
lola: 66245510 markings, 577414090 edges, 49919 markings/sec, 1810 secs
lola: 66492420 markings, 579041835 edges, 49382 markings/sec, 1815 secs
lola: 66708250 markings, 580670693 edges, 43166 markings/sec, 1820 secs
lola: 66934912 markings, 582293805 edges, 45332 markings/sec, 1825 secs
lola: 67128464 markings, 583921429 edges, 38710 markings/sec, 1830 secs
lola: 67325139 markings, 585535739 edges, 39335 markings/sec, 1835 secs
lola: 67552808 markings, 587120896 edges, 45534 markings/sec, 1840 secs
lola: 67781685 markings, 588701982 edges, 45775 markings/sec, 1845 secs
lola: 68008030 markings, 590289850 edges, 45269 markings/sec, 1850 secs
lola: 68212473 markings, 591882517 edges, 40889 markings/sec, 1855 secs
lola: 68397154 markings, 593480892 edges, 36936 markings/sec, 1860 secs
lola: 68585819 markings, 595091941 edges, 37733 markings/sec, 1865 secs
lola: 68782164 markings, 596719185 edges, 39269 markings/sec, 1870 secs
lola: 68975828 markings, 598336507 edges, 38733 markings/sec, 1875 secs
lola: 69172425 markings, 599944227 edges, 39319 markings/sec, 1880 secs
lola: 69357172 markings, 601550279 edges, 36949 markings/sec, 1885 secs
lola: 69539471 markings, 603152928 edges, 36460 markings/sec, 1890 secs
lola: 69717152 markings, 604757194 edges, 35536 markings/sec, 1895 secs
lola: 69892547 markings, 606362727 edges, 35079 markings/sec, 1900 secs
lola: 70055757 markings, 607975213 edges, 32642 markings/sec, 1905 secs
lola: 70195032 markings, 609588019 edges, 27855 markings/sec, 1910 secs
lola: 70426975 markings, 611209921 edges, 46389 markings/sec, 1915 secs
lola: 70666358 markings, 612834679 edges, 47877 markings/sec, 1920 secs
lola: 70882631 markings, 614457472 edges, 43255 markings/sec, 1925 secs
lola: 71107943 markings, 616067883 edges, 45062 markings/sec, 1930 secs
lola: 71308380 markings, 617687600 edges, 40087 markings/sec, 1935 secs
lola: 71486737 markings, 619298997 edges, 35671 markings/sec, 1940 secs
lola: 71715008 markings, 620867807 edges, 45654 markings/sec, 1945 secs
lola: 71951457 markings, 622434604 edges, 47290 markings/sec, 1950 secs
lola: 72164333 markings, 624009263 edges, 42575 markings/sec, 1955 secs
lola: 72383267 markings, 625589292 edges, 43787 markings/sec, 1960 secs
lola: 72570090 markings, 627167753 edges, 37365 markings/sec, 1965 secs
lola: 72746136 markings, 628758666 edges, 35209 markings/sec, 1970 secs
lola: 72950361 markings, 630375956 edges, 40845 markings/sec, 1975 secs
lola: 73137068 markings, 631995224 edges, 37341 markings/sec, 1980 secs
lola: 73339472 markings, 633588470 edges, 40481 markings/sec, 1985 secs
lola: 73518768 markings, 635191249 edges, 35859 markings/sec, 1990 secs
lola: 73699159 markings, 636791773 edges, 36078 markings/sec, 1995 secs
lola: 73891623 markings, 638388497 edges, 38493 markings/sec, 2000 secs
lola: 74057480 markings, 639986768 edges, 33171 markings/sec, 2005 secs
lola: 74226785 markings, 641588445 edges, 33861 markings/sec, 2010 secs
lola: 74376200 markings, 643195342 edges, 29883 markings/sec, 2015 secs
lola: 74546584 markings, 644800380 edges, 34077 markings/sec, 2020 secs
lola: 74748582 markings, 646422623 edges, 40400 markings/sec, 2025 secs
lola: 74934655 markings, 648037371 edges, 37215 markings/sec, 2030 secs
lola: 75137949 markings, 649637049 edges, 40659 markings/sec, 2035 secs
lola: 75317718 markings, 651237475 edges, 35954 markings/sec, 2040 secs
lola: 75494563 markings, 652832683 edges, 35369 markings/sec, 2045 secs
lola: 75683429 markings, 654433149 edges, 37773 markings/sec, 2050 secs
lola: 75852497 markings, 656031302 edges, 33814 markings/sec, 2055 secs
lola: 76019622 markings, 657638158 edges, 33425 markings/sec, 2060 secs
lola: 76164676 markings, 659245206 edges, 29011 markings/sec, 2065 secs
lola: 76340532 markings, 660802511 edges, 35171 markings/sec, 2070 secs
lola: 76532664 markings, 662360271 edges, 38426 markings/sec, 2075 secs
lola: 76708929 markings, 663890345 edges, 35253 markings/sec, 2080 secs
lola: 76906101 markings, 665438797 edges, 39434 markings/sec, 2085 secs
lola: 77079743 markings, 666989706 edges, 34728 markings/sec, 2090 secs
lola: 77252981 markings, 668548825 edges, 34648 markings/sec, 2095 secs
lola: 77441391 markings, 670114429 edges, 37682 markings/sec, 2100 secs
lola: 77603821 markings, 671673082 edges, 32486 markings/sec, 2105 secs
lola: 77768316 markings, 673235682 edges, 32899 markings/sec, 2110 secs
lola: 77917684 markings, 674812029 edges, 29874 markings/sec, 2115 secs
lola: 78073924 markings, 676353727 edges, 31248 markings/sec, 2120 secs
lola: 78268168 markings, 677893890 edges, 38849 markings/sec, 2125 secs
lola: 78444233 markings, 679428586 edges, 35213 markings/sec, 2130 secs
lola: 78640909 markings, 680965241 edges, 39335 markings/sec, 2135 secs
lola: 78812383 markings, 682506244 edges, 34295 markings/sec, 2140 secs
lola: 78982829 markings, 684043182 edges, 34089 markings/sec, 2145 secs
lola: 79176765 markings, 685591244 edges, 38787 markings/sec, 2150 secs
lola: 79342121 markings, 687137714 edges, 33071 markings/sec, 2155 secs
lola: 79504391 markings, 688681489 edges, 32454 markings/sec, 2160 secs
lola: 79653655 markings, 690225686 edges, 29853 markings/sec, 2165 secs
lola: 79778268 markings, 691759426 edges, 24923 markings/sec, 2170 secs
lola: 79937527 markings, 693370133 edges, 31852 markings/sec, 2175 secs
lola: 80086463 markings, 694974782 edges, 29787 markings/sec, 2180 secs
lola: 80231975 markings, 696578931 edges, 29102 markings/sec, 2185 secs
lola: 80359755 markings, 698174389 edges, 25556 markings/sec, 2190 secs
lola: 80511318 markings, 699761521 edges, 30313 markings/sec, 2195 secs
lola: 80662825 markings, 701338720 edges, 30301 markings/sec, 2200 secs
lola: 80806542 markings, 702922691 edges, 28743 markings/sec, 2205 secs
lola: 80931714 markings, 704494253 edges, 25034 markings/sec, 2210 secs
lola: 81075928 markings, 706080811 edges, 28843 markings/sec, 2215 secs
lola: 81202171 markings, 707664891 edges, 25249 markings/sec, 2220 secs
lola: 81347367 markings, 709234163 edges, 29039 markings/sec, 2225 secs
lola: 81490916 markings, 710813756 edges, 28710 markings/sec, 2230 secs
lola: 81621285 markings, 712394330 edges, 26074 markings/sec, 2235 secs
lola: 81759926 markings, 713983788 edges, 27728 markings/sec, 2240 secs
lola: 81883777 markings, 715552499 edges, 24770 markings/sec, 2245 secs
lola: 82015119 markings, 717142055 edges, 26268 markings/sec, 2250 secs
lola: 82133082 markings, 718716402 edges, 23593 markings/sec, 2255 secs
lola: 82257424 markings, 720315590 edges, 24868 markings/sec, 2260 secs
lola: 82354752 markings, 721885655 edges, 19466 markings/sec, 2265 secs
lola: 82538581 markings, 723486756 edges, 36766 markings/sec, 2270 secs
lola: 82729948 markings, 725109036 edges, 38273 markings/sec, 2275 secs
lola: 82927946 markings, 726713634 edges, 39600 markings/sec, 2280 secs
lola: 83118160 markings, 728313661 edges, 38043 markings/sec, 2285 secs
lola: 83304899 markings, 729917207 edges, 37348 markings/sec, 2290 secs
lola: 83486959 markings, 731503656 edges, 36412 markings/sec, 2295 secs
lola: 83663223 markings, 733102724 edges, 35253 markings/sec, 2300 secs
lola: 83838407 markings, 734701775 edges, 35037 markings/sec, 2305 secs
lola: 83998180 markings, 736305177 edges, 31955 markings/sec, 2310 secs
lola: 84135122 markings, 737905550 edges, 27388 markings/sec, 2315 secs
lola: 84324706 markings, 739455987 edges, 37917 markings/sec, 2320 secs
lola: 84509354 markings, 741012975 edges, 36930 markings/sec, 2325 secs
lola: 84699714 markings, 742550933 edges, 38072 markings/sec, 2330 secs
lola: 84885556 markings, 744097599 edges, 37168 markings/sec, 2335 secs
lola: 85065354 markings, 745653672 edges, 35960 markings/sec, 2340 secs
lola: 85241100 markings, 747202529 edges, 35149 markings/sec, 2345 secs
lola: 85415824 markings, 748761979 edges, 34945 markings/sec, 2350 secs
lola: 85586620 markings, 750324896 edges, 34159 markings/sec, 2355 secs
lola: 85744487 markings, 751883921 edges, 31573 markings/sec, 2360 secs
lola: 85886026 markings, 753439589 edges, 28308 markings/sec, 2365 secs
lola: 86056773 markings, 754947357 edges, 34149 markings/sec, 2370 secs
lola: time limit reached - aborting
lola:
preliminary result: yes no yes unknown no no
lola: lola: caught signal User defined signal 1 - aborting LoLA
preliminary result: yes no yes unknown no no
lola:
preliminary result: yes no yes unknown no no
lola: memory consumption: 27620 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Sudoku-PT-AN07"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="gold2020"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool gold2020"
echo " Input is Sudoku-PT-AN07, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r265-tall-162106800600301"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Sudoku-PT-AN07.tgz
mv Sudoku-PT-AN07 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;