fond
Model Checking Contest 2021
11th edition, Paris, France, June 23, 2021
Execution of r265-tall-162106800600301
Last Updated
Jun 28, 2021

About the Execution of 2020-gold for Sudoku-PT-AN07

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
13686.819 3600000.00 3614246.00 10030.30 FFTTFTTTTFFF?TFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2021-input.r265-tall-162106800600301.qcow2', fmt=qcow2 size=4294967296 backing_file='/data/fkordon/mcc2021-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool gold2020
Input is Sudoku-PT-AN07, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r265-tall-162106800600301
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 6.2M
-rw-r--r-- 1 mcc users 512K May 15 08:50 CTLCardinality.txt
-rw-r--r-- 1 mcc users 2.5M May 15 08:50 CTLCardinality.xml
-rw-r--r-- 1 mcc users 174K May 15 08:50 CTLFireability.txt
-rw-r--r-- 1 mcc users 841K May 15 08:50 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 6 14:48 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K May 6 14:48 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 84K Mar 28 16:44 LTLCardinality.txt
-rw-r--r-- 1 mcc users 290K Mar 28 16:44 LTLCardinality.xml
-rw-r--r-- 1 mcc users 158K Mar 28 16:44 LTLFireability.txt
-rw-r--r-- 1 mcc users 580K Mar 28 16:44 LTLFireability.xml
-rw-r--r-- 1 mcc users 74K May 13 19:29 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 244K May 13 19:29 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 121K May 13 19:29 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 423K May 13 19:29 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 22 08:16 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.3K Mar 22 08:16 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 5 16:52 equiv_col
-rw-r--r-- 1 mcc users 5 May 5 16:52 instance
-rw-r--r-- 1 mcc users 6 May 5 16:52 iscolored
-rw-r--r-- 1 mcc users 204K May 5 16:52 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Sudoku-PT-AN07-00
FORMULA_NAME Sudoku-PT-AN07-01
FORMULA_NAME Sudoku-PT-AN07-02
FORMULA_NAME Sudoku-PT-AN07-03
FORMULA_NAME Sudoku-PT-AN07-04
FORMULA_NAME Sudoku-PT-AN07-05
FORMULA_NAME Sudoku-PT-AN07-06
FORMULA_NAME Sudoku-PT-AN07-07
FORMULA_NAME Sudoku-PT-AN07-08
FORMULA_NAME Sudoku-PT-AN07-09
FORMULA_NAME Sudoku-PT-AN07-10
FORMULA_NAME Sudoku-PT-AN07-11
FORMULA_NAME Sudoku-PT-AN07-12
FORMULA_NAME Sudoku-PT-AN07-13
FORMULA_NAME Sudoku-PT-AN07-14
FORMULA_NAME Sudoku-PT-AN07-15

=== Now, execution of the tool begins

BK_START 1621212047081

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
[2021-05-17 00:40:48] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -timeout, 3600, -rebuildPNML]
[2021-05-17 00:40:48] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2021-05-17 00:40:49] [INFO ] Load time of PNML (sax parser for PT used): 87 ms
[2021-05-17 00:40:49] [INFO ] Transformed 490 places.
[2021-05-17 00:40:49] [INFO ] Transformed 343 transitions.
[2021-05-17 00:40:49] [INFO ] Parsed PT model containing 490 places and 343 transitions in 130 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 57 ms.
Working with output stream class java.io.PrintStream
Incomplete random walk after 100000 steps, including 2346 resets, run finished after 4836 ms. (steps per millisecond=20 ) properties seen :[0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1]
// Phase 1: matrix 343 rows 490 cols
[2021-05-17 00:40:54] [INFO ] Computed 147 place invariants in 23 ms
[2021-05-17 00:40:54] [INFO ] [Real]Absence check using 147 positive place invariants in 116 ms returned sat
[2021-05-17 00:40:54] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:54] [INFO ] [Real]Absence check using state equation in 482 ms returned sat
[2021-05-17 00:40:54] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:54] [INFO ] [Nat]Absence check using 147 positive place invariants in 65 ms returned sat
[2021-05-17 00:40:54] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:55] [INFO ] [Nat]Absence check using state equation in 456 ms returned sat
[2021-05-17 00:40:55] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 17 ms.
[2021-05-17 00:40:55] [INFO ] Added : 0 causal constraints over 0 iterations in 48 ms. Result :sat
[2021-05-17 00:40:55] [INFO ] [Real]Absence check using 147 positive place invariants in 85 ms returned sat
[2021-05-17 00:40:55] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:56] [INFO ] [Real]Absence check using state equation in 479 ms returned sat
[2021-05-17 00:40:56] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:56] [INFO ] [Nat]Absence check using 147 positive place invariants in 62 ms returned sat
[2021-05-17 00:40:56] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:56] [INFO ] [Nat]Absence check using state equation in 454 ms returned sat
[2021-05-17 00:40:56] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 17 ms.
[2021-05-17 00:40:56] [INFO ] Added : 0 causal constraints over 0 iterations in 37 ms. Result :sat
[2021-05-17 00:40:56] [INFO ] [Real]Absence check using 147 positive place invariants in 62 ms returned unsat
[2021-05-17 00:40:57] [INFO ] [Real]Absence check using 147 positive place invariants in 73 ms returned sat
[2021-05-17 00:40:57] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:57] [INFO ] [Real]Absence check using state equation in 461 ms returned sat
[2021-05-17 00:40:57] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:57] [INFO ] [Nat]Absence check using 147 positive place invariants in 66 ms returned sat
[2021-05-17 00:40:57] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:58] [INFO ] [Nat]Absence check using state equation in 431 ms returned sat
[2021-05-17 00:40:58] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 16 ms.
[2021-05-17 00:40:58] [INFO ] Added : 0 causal constraints over 0 iterations in 34 ms. Result :sat
[2021-05-17 00:40:58] [INFO ] [Real]Absence check using 147 positive place invariants in 68 ms returned sat
[2021-05-17 00:40:58] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:58] [INFO ] [Real]Absence check using state equation in 469 ms returned sat
[2021-05-17 00:40:58] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:40:58] [INFO ] [Nat]Absence check using 147 positive place invariants in 62 ms returned sat
[2021-05-17 00:40:58] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:40:59] [INFO ] [Nat]Absence check using state equation in 434 ms returned sat
[2021-05-17 00:40:59] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 16 ms.
[2021-05-17 00:40:59] [INFO ] Added : 0 causal constraints over 0 iterations in 34 ms. Result :sat
[2021-05-17 00:40:59] [INFO ] [Real]Absence check using 147 positive place invariants in 10 ms returned unsat
[2021-05-17 00:40:59] [INFO ] [Real]Absence check using 147 positive place invariants in 59 ms returned unsat
[2021-05-17 00:40:59] [INFO ] [Real]Absence check using 147 positive place invariants in 66 ms returned sat
[2021-05-17 00:40:59] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:00] [INFO ] [Real]Absence check using state equation in 790 ms returned sat
[2021-05-17 00:41:00] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:41:00] [INFO ] [Nat]Absence check using 147 positive place invariants in 72 ms returned sat
[2021-05-17 00:41:00] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:01] [INFO ] [Nat]Absence check using state equation in 459 ms returned sat
[2021-05-17 00:41:01] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 10 ms.
[2021-05-17 00:41:01] [INFO ] Added : 0 causal constraints over 0 iterations in 28 ms. Result :sat
[2021-05-17 00:41:01] [INFO ] [Real]Absence check using 147 positive place invariants in 67 ms returned sat
[2021-05-17 00:41:01] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:01] [INFO ] [Real]Absence check using state equation in 466 ms returned sat
[2021-05-17 00:41:01] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:41:01] [INFO ] [Nat]Absence check using 147 positive place invariants in 61 ms returned sat
[2021-05-17 00:41:01] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:02] [INFO ] [Nat]Absence check using state equation in 434 ms returned sat
[2021-05-17 00:41:02] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 16 ms.
[2021-05-17 00:41:02] [INFO ] Added : 0 causal constraints over 0 iterations in 34 ms. Result :sat
[2021-05-17 00:41:02] [INFO ] [Real]Absence check using 147 positive place invariants in 83 ms returned sat
[2021-05-17 00:41:02] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:02] [INFO ] [Real]Absence check using state equation in 466 ms returned sat
[2021-05-17 00:41:02] [INFO ] Solution in real domain found non-integer solution.
[2021-05-17 00:41:03] [INFO ] [Nat]Absence check using 147 positive place invariants in 61 ms returned sat
[2021-05-17 00:41:03] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2021-05-17 00:41:03] [INFO ] [Nat]Absence check using state equation in 435 ms returned sat
[2021-05-17 00:41:03] [INFO ] Computed and/alt/rep : 0/0/0 causal constraints in 21 ms.
[2021-05-17 00:41:03] [INFO ] Added : 0 causal constraints over 0 iterations in 38 ms. Result :sat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 61 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 12 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 52 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 36 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 4 ms returned unsat
[2021-05-17 00:41:03] [INFO ] [Real]Absence check using 147 positive place invariants in 30 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 20 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 30 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 22 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 19 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 4 ms returned unsat
[2021-05-17 00:41:04] [INFO ] [Real]Absence check using 147 positive place invariants in 4 ms returned unsat
Successfully simplified 15 atomic propositions for a total of 19 simplifications.
[2021-05-17 00:41:04] [INFO ] Initial state reduction rules for CTL removed 9 formulas.
[2021-05-17 00:41:04] [INFO ] Flatten gal took : 114 ms
FORMULA Sudoku-PT-AN07-13 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-09 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-08 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-06 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-05 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-03 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-01 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Sudoku-PT-AN07-00 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2021-05-17 00:41:04] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
[2021-05-17 00:41:04] [INFO ] Flatten gal took : 37 ms
[2021-05-17 00:41:04] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
FORMULA Sudoku-PT-AN07-10 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2021-05-17 00:41:04] [INFO ] Export to MCC properties in file /home/mcc/execution/LTLCardinality.sr.xml took 7 ms.
[2021-05-17 00:41:04] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml took 4 ms.
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ Sudoku-PT-AN07 @ 3570 seconds

FORMULA Sudoku-PT-AN07-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Sudoku-PT-AN07-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Sudoku-PT-AN07-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Sudoku-PT-AN07-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Sudoku-PT-AN07-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ Sudoku-PT-AN07

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2020",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Mon May 17 00:41:06 2021
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 594
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 2,
"U": 0,
"X": 3,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 5,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1911,
"taut": 0,
"tconj": 0,
"tdisj": 4,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 392,
"visible_transitions": 0
},
"processed": "X ((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (G ((X ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) OR (G ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))))",
"processed_size": 13174,
"rewrites": 35
},
"result":
{
"edges": 444871,
"markings": 222608,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 12
},
"compoundnumber": 0,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 712
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 712
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 392,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 392,
"visible_transitions": 0
},
"processed": "(p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)",
"processed_size": 2638,
"rewrites": 37
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "state space / EG",
"value": true
},
"task":
{
"compoundnumber": 1,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 343
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 891
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 2,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 735,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 392,
"visible_transitions": 0
},
"processed": "X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48)) AND F (G ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= 0))))))",
"processed_size": 5015,
"rewrites": 35
},
"result":
{
"edges": 44,
"markings": 44,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 891
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 49,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 49,
"visible_transitions": 0
},
"processed": "X (X (F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489))))",
"processed_size": 359,
"rewrites": 35
},
"result":
{
"edges": 111475,
"markings": 55910,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1188
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 1,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 2,
"visible_transitions": 0
},
"processed": "F (G (((p406 + 1 <= p105))))",
"processed_size": 28,
"rewrites": 35
},
"result":
{
"edges": 47,
"markings": 46,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 4,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "stabilization",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 2376
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 2,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 4,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 4,
"visible_transitions": 0
},
"processed": "G (F ((G ((p310 <= p20)) AND (p87 <= p479))))",
"processed_size": 45,
"rewrites": 35
},
"result":
{
"edges": 101376,
"markings": 18682,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 27620,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "X((X(**) OR (G((X(**) OR **)) OR (G(**) OR **)))) : (X(G((F(**) AND F(G(*))))) AND F(**)) : X(X(F(**))) : X((X(F(*)) OR G(**))) : F(G(*)) : G(F((G(**) AND **)))"
},
"net":
{
"arcs": 1372,
"conflict_clusters": 344,
"places": 490,
"places_significant": 343,
"singleton_clusters": 0,
"transitions": 343
},
"result":
{
"interim_value": "yes no yes unknown no no ",
"preliminary_value": "yes no yes unknown no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 833/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 490
lola: finding significant places
lola: 490 places, 343 transitions, 343 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (3 <= p26)
lola: X ((((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR G ((X ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))) OR G ((p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) OR (p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) : (X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48)) AND NOT(F (G (F ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))))))) AND ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48) U F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p142 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48)))) : NOT(X (G (NOT(X ((F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489)) AND (((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489) U (0 <= 0)) OR (1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489)))))))) : (NOT(X (X (G ((p286 <= p464))))) OR X (G ((p416 <= p457)))) : F (NOT(((0 <= 0) U ((p105 <= p406))))) : X (((F ((p87 <= p479)) U (1 <= p472)) U F (G (X (G (F ((G ((p310 <= p20)) AND (p87 <= p479)))))))))
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:528
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:425
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((X ((1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p1... (shortened)
lola: processed formula length: 13174
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 12 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 222608 markings, 444871 edges
lola: ========================================
lola: subprocess 1 will run for 712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p15... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 1 will run for 712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:750
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 ... (shortened)
lola: processed formula length: 2638
lola: 37 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (G ((F ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156... (shortened)
lola: processed formula length: 5015
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 44 markings, 44 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 2 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (X (F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (X (F ((1 <= p481 + p480 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p470 + p469 + p467 + p466 + p465 + p464 + p463 + p462 + p460 + p459 + p458 + p457 + p456 + p455 + p453 + p452 + p451 + p450 + p449 + p448 + p446 + p445 + p444 + p443 + p442 + p441 + p447 + p454 + p461 + p468 + p475 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489))))
lola: processed formula length: 359
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 55910 markings, 111475 edges
lola: ========================================
lola: subprocess 3 will run for 1187 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: processed formula length: 54
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 253814 markings, 1667460 edges, 50763 markings/sec, 0 secs
lola: 502018 markings, 3309147 edges, 49641 markings/sec, 5 secs
lola: 721836 markings, 4948934 edges, 43964 markings/sec, 10 secs
lola: 947685 markings, 6588248 edges, 45170 markings/sec, 15 secs
lola: 1142324 markings, 8231666 edges, 38928 markings/sec, 20 secs
lola: 1342896 markings, 9852927 edges, 40114 markings/sec, 25 secs
lola: 1575307 markings, 11445332 edges, 46482 markings/sec, 30 secs
lola: 1803290 markings, 13036709 edges, 45597 markings/sec, 35 secs
lola: 2030116 markings, 14637742 edges, 45365 markings/sec, 40 secs
lola: 2239087 markings, 16241854 edges, 41794 markings/sec, 45 secs
lola: 2413537 markings, 17850124 edges, 34890 markings/sec, 50 secs
lola: 2610574 markings, 19477442 edges, 39407 markings/sec, 55 secs
lola: 2804466 markings, 21126424 edges, 38778 markings/sec, 60 secs
lola: 3006383 markings, 22758183 edges, 40383 markings/sec, 65 secs
lola: 3198130 markings, 24388237 edges, 38349 markings/sec, 70 secs
lola: 3387307 markings, 26023119 edges, 37835 markings/sec, 75 secs
lola: 3577491 markings, 27639136 edges, 38037 markings/sec, 80 secs
lola: 3754904 markings, 29268718 edges, 35483 markings/sec, 85 secs
lola: 3936224 markings, 30898941 edges, 36264 markings/sec, 90 secs
lola: 4091724 markings, 32527835 edges, 31100 markings/sec, 95 secs
lola: 4230693 markings, 34150317 edges, 27794 markings/sec, 100 secs
lola: 4475561 markings, 35805601 edges, 48974 markings/sec, 105 secs
lola: 4723119 markings, 37437510 edges, 49512 markings/sec, 110 secs
lola: 4943284 markings, 39071007 edges, 44033 markings/sec, 115 secs
lola: 5167415 markings, 40701407 edges, 44826 markings/sec, 120 secs
lola: 5360824 markings, 42335884 edges, 38682 markings/sec, 125 secs
lola: 5561449 markings, 43948959 edges, 40125 markings/sec, 130 secs
lola: 5792017 markings, 45529507 edges, 46114 markings/sec, 135 secs
lola: 6018467 markings, 47109530 edges, 45290 markings/sec, 140 secs
lola: 6243934 markings, 48698019 edges, 45093 markings/sec, 145 secs
lola: 6450191 markings, 50287923 edges, 41251 markings/sec, 150 secs
lola: 6625766 markings, 51883555 edges, 35115 markings/sec, 155 secs
lola: 6819293 markings, 53492738 edges, 38705 markings/sec, 160 secs
lola: 7012859 markings, 55126591 edges, 38713 markings/sec, 165 secs
lola: 7210767 markings, 56739252 edges, 39582 markings/sec, 170 secs
lola: 7402600 markings, 58347305 edges, 38367 markings/sec, 175 secs
lola: 7589569 markings, 59960658 edges, 37394 markings/sec, 180 secs
lola: 7775439 markings, 61562252 edges, 37174 markings/sec, 185 secs
lola: 7952708 markings, 63172275 edges, 35454 markings/sec, 190 secs
lola: 8130598 markings, 64784892 edges, 35578 markings/sec, 195 secs
lola: 8288389 markings, 66399436 edges, 31558 markings/sec, 200 secs
lola: 8422721 markings, 68009925 edges, 26866 markings/sec, 205 secs
lola: 8665699 markings, 69648615 edges, 48596 markings/sec, 210 secs
lola: 8908571 markings, 71278264 edges, 48574 markings/sec, 215 secs
lola: 9123304 markings, 72906604 edges, 42947 markings/sec, 220 secs
lola: 9353247 markings, 74529340 edges, 45989 markings/sec, 225 secs
lola: 9548671 markings, 76159369 edges, 39085 markings/sec, 230 secs
lola: 9741587 markings, 77777100 edges, 38583 markings/sec, 235 secs
lola: 9969488 markings, 79362237 edges, 45580 markings/sec, 240 secs
lola: 10196330 markings, 80941876 edges, 45368 markings/sec, 245 secs
lola: 10425409 markings, 82533614 edges, 45816 markings/sec, 250 secs
lola: 10630294 markings, 84125978 edges, 40977 markings/sec, 255 secs
lola: 10821341 markings, 85727369 edges, 38209 markings/sec, 260 secs
lola: 11005491 markings, 87328932 edges, 36830 markings/sec, 265 secs
lola: 11205027 markings, 88959595 edges, 39907 markings/sec, 270 secs
lola: 11395606 markings, 90581354 edges, 38116 markings/sec, 275 secs
lola: 11595872 markings, 92189756 edges, 40053 markings/sec, 280 secs
lola: 11777296 markings, 93798697 edges, 36285 markings/sec, 285 secs
lola: 11959559 markings, 95401232 edges, 36453 markings/sec, 290 secs
lola: 12140278 markings, 97008139 edges, 36144 markings/sec, 295 secs
lola: 12315631 markings, 98617412 edges, 35071 markings/sec, 300 secs
lola: 12478631 markings, 100228806 edges, 32600 markings/sec, 305 secs
lola: 12621473 markings, 101842197 edges, 28568 markings/sec, 310 secs
lola: 12813213 markings, 103463743 edges, 38348 markings/sec, 315 secs
lola: 13005970 markings, 105097366 edges, 38551 markings/sec, 320 secs
lola: 13204818 markings, 106706281 edges, 39770 markings/sec, 325 secs
lola: 13395327 markings, 108313349 edges, 38102 markings/sec, 330 secs
lola: 13581773 markings, 109920383 edges, 37289 markings/sec, 335 secs
lola: 13767077 markings, 111509498 edges, 37061 markings/sec, 340 secs
lola: 13943934 markings, 113118103 edges, 35371 markings/sec, 345 secs
lola: 14121715 markings, 114728209 edges, 35556 markings/sec, 350 secs
lola: 14278672 markings, 116336756 edges, 31391 markings/sec, 355 secs
lola: 14412641 markings, 117941831 edges, 26794 markings/sec, 360 secs
lola: 14608184 markings, 119487652 edges, 39109 markings/sec, 365 secs
lola: 14788098 markings, 121034309 edges, 35983 markings/sec, 370 secs
lola: 14980044 markings, 122566618 edges, 38389 markings/sec, 375 secs
lola: 15165594 markings, 124123860 edges, 37110 markings/sec, 380 secs
lola: 15348504 markings, 125698749 edges, 36582 markings/sec, 385 secs
lola: 15528586 markings, 127263878 edges, 36016 markings/sec, 390 secs
lola: 15701926 markings, 128838610 edges, 34668 markings/sec, 395 secs
lola: 15868811 markings, 130379895 edges, 33377 markings/sec, 400 secs
lola: 16027173 markings, 131942694 edges, 31672 markings/sec, 405 secs
lola: 16166679 markings, 133510925 edges, 27901 markings/sec, 410 secs
lola: 16346275 markings, 135041697 edges, 35919 markings/sec, 415 secs
lola: 16533955 markings, 136593659 edges, 37536 markings/sec, 420 secs
lola: 16716756 markings, 138129441 edges, 36560 markings/sec, 425 secs
lola: 16910586 markings, 139676964 edges, 38766 markings/sec, 430 secs
lola: 17084380 markings, 141229060 edges, 34759 markings/sec, 435 secs
lola: 17255390 markings, 142785795 edges, 34202 markings/sec, 440 secs
lola: 17443486 markings, 144352582 edges, 37619 markings/sec, 445 secs
lola: 17603318 markings, 145890078 edges, 31966 markings/sec, 450 secs
lola: 17767836 markings, 147435142 edges, 32904 markings/sec, 455 secs
lola: 17911102 markings, 148964170 edges, 28653 markings/sec, 460 secs
lola: 18041844 markings, 150509639 edges, 26148 markings/sec, 465 secs
lola: 18198745 markings, 152118672 edges, 31380 markings/sec, 470 secs
lola: 18345106 markings, 153722606 edges, 29272 markings/sec, 475 secs
lola: 18487007 markings, 155339541 edges, 28380 markings/sec, 480 secs
lola: 18627170 markings, 156939596 edges, 28033 markings/sec, 485 secs
lola: 18776841 markings, 158526552 edges, 29934 markings/sec, 490 secs
lola: 18924137 markings, 160111435 edges, 29459 markings/sec, 495 secs
lola: 19063075 markings, 161703603 edges, 27788 markings/sec, 500 secs
lola: 19197830 markings, 163292019 edges, 26951 markings/sec, 505 secs
lola: 19341923 markings, 164892026 edges, 28819 markings/sec, 510 secs
lola: 19468177 markings, 166462923 edges, 25251 markings/sec, 515 secs
lola: 19617407 markings, 168045870 edges, 29846 markings/sec, 520 secs
lola: 19762861 markings, 169642189 edges, 29091 markings/sec, 525 secs
lola: 19885846 markings, 171229073 edges, 24597 markings/sec, 530 secs
lola: 20020212 markings, 172827280 edges, 26873 markings/sec, 535 secs
lola: 20155089 markings, 174417226 edges, 26975 markings/sec, 540 secs
lola: 20275867 markings, 176005137 edges, 24156 markings/sec, 545 secs
lola: 20398247 markings, 177592459 edges, 24476 markings/sec, 550 secs
lola: 20513472 markings, 179189629 edges, 23045 markings/sec, 555 secs
lola: 20625144 markings, 180745817 edges, 22334 markings/sec, 560 secs
lola: 20863582 markings, 182396841 edges, 47688 markings/sec, 565 secs
lola: 21111779 markings, 184023652 edges, 49639 markings/sec, 570 secs
lola: 21335434 markings, 185648693 edges, 44731 markings/sec, 575 secs
lola: 21553775 markings, 187275115 edges, 43668 markings/sec, 580 secs
lola: 21748539 markings, 188907140 edges, 38953 markings/sec, 585 secs
lola: 21952379 markings, 190508254 edges, 40768 markings/sec, 590 secs
lola: 22178618 markings, 192081546 edges, 45248 markings/sec, 595 secs
lola: 22403349 markings, 193657494 edges, 44946 markings/sec, 600 secs
lola: 22631494 markings, 195259314 edges, 45629 markings/sec, 605 secs
lola: 22840007 markings, 196864255 edges, 41703 markings/sec, 610 secs
lola: 23011545 markings, 198472425 edges, 34308 markings/sec, 615 secs
lola: 23209814 markings, 200101727 edges, 39654 markings/sec, 620 secs
lola: 23401980 markings, 201737301 edges, 38433 markings/sec, 625 secs
lola: 23602983 markings, 203359630 edges, 40201 markings/sec, 630 secs
lola: 23793060 markings, 204974817 edges, 38015 markings/sec, 635 secs
lola: 23981655 markings, 206600491 edges, 37719 markings/sec, 640 secs
lola: 24171058 markings, 208209814 edges, 37881 markings/sec, 645 secs
lola: 24348075 markings, 209830593 edges, 35403 markings/sec, 650 secs
lola: 24528189 markings, 211452583 edges, 36023 markings/sec, 655 secs
lola: 24683210 markings, 213074595 edges, 31004 markings/sec, 660 secs
lola: 24815786 markings, 214679297 edges, 26515 markings/sec, 665 secs
lola: 25062645 markings, 216310634 edges, 49372 markings/sec, 670 secs
lola: 25307176 markings, 217919224 edges, 48906 markings/sec, 675 secs
lola: 25520691 markings, 219525988 edges, 42703 markings/sec, 680 secs
lola: 25745066 markings, 221129481 edges, 44875 markings/sec, 685 secs
lola: 25936652 markings, 222739569 edges, 38317 markings/sec, 690 secs
lola: 26127958 markings, 224327368 edges, 38261 markings/sec, 695 secs
lola: 26352213 markings, 225885336 edges, 44851 markings/sec, 700 secs
lola: 26576275 markings, 227445095 edges, 44812 markings/sec, 705 secs
lola: 26803345 markings, 229026882 edges, 45414 markings/sec, 710 secs
lola: 27005287 markings, 230602346 edges, 40388 markings/sec, 715 secs
lola: 27194778 markings, 232180165 edges, 37898 markings/sec, 720 secs
lola: 27374666 markings, 233759120 edges, 35978 markings/sec, 725 secs
lola: 27574283 markings, 235371679 edges, 39923 markings/sec, 730 secs
lola: 27759638 markings, 236979956 edges, 37071 markings/sec, 735 secs
lola: 27961927 markings, 238573321 edges, 40458 markings/sec, 740 secs
lola: 28141072 markings, 240171224 edges, 35829 markings/sec, 745 secs
lola: 28318075 markings, 241766693 edges, 35401 markings/sec, 750 secs
lola: 28506209 markings, 243358213 edges, 37627 markings/sec, 755 secs
lola: 28673918 markings, 244943579 edges, 33542 markings/sec, 760 secs
lola: 28839969 markings, 246538257 edges, 33210 markings/sec, 765 secs
lola: 28985049 markings, 248134705 edges, 29016 markings/sec, 770 secs
lola: 29191261 markings, 249739144 edges, 41242 markings/sec, 775 secs
lola: 29429564 markings, 251360533 edges, 47661 markings/sec, 780 secs
lola: 29656299 markings, 252973418 edges, 45347 markings/sec, 785 secs
lola: 29879128 markings, 254580421 edges, 44566 markings/sec, 790 secs
lola: 30081406 markings, 256191585 edges, 40456 markings/sec, 795 secs
lola: 30244128 markings, 257805454 edges, 32544 markings/sec, 800 secs
lola: 30485423 markings, 259379291 edges, 48259 markings/sec, 805 secs
lola: 30718494 markings, 260931662 edges, 46614 markings/sec, 810 secs
lola: 30922563 markings, 262494222 edges, 40814 markings/sec, 815 secs
lola: 31145467 markings, 264068136 edges, 44581 markings/sec, 820 secs
lola: 31340629 markings, 265645827 edges, 39032 markings/sec, 825 secs
lola: 31504845 markings, 267218343 edges, 32843 markings/sec, 830 secs
lola: 31713959 markings, 268830742 edges, 41823 markings/sec, 835 secs
lola: 31895583 markings, 270436104 edges, 36325 markings/sec, 840 secs
lola: 32101532 markings, 272028169 edges, 41190 markings/sec, 845 secs
lola: 32279327 markings, 273616369 edges, 35559 markings/sec, 850 secs
lola: 32453548 markings, 275212912 edges, 34844 markings/sec, 855 secs
lola: 32653730 markings, 276796702 edges, 40036 markings/sec, 860 secs
lola: 32828744 markings, 278393248 edges, 35003 markings/sec, 865 secs
lola: 32995377 markings, 279986682 edges, 33327 markings/sec, 870 secs
lola: 33150403 markings, 281584796 edges, 31005 markings/sec, 875 secs
lola: 33294616 markings, 283182689 edges, 28843 markings/sec, 880 secs
lola: 33501679 markings, 284800412 edges, 41413 markings/sec, 885 secs
lola: 33689491 markings, 286420906 edges, 37562 markings/sec, 890 secs
lola: 33891089 markings, 288015741 edges, 40320 markings/sec, 895 secs
lola: 34071526 markings, 289614008 edges, 36087 markings/sec, 900 secs
lola: 34249297 markings, 291210593 edges, 35554 markings/sec, 905 secs
lola: 34448326 markings, 292802863 edges, 39806 markings/sec, 910 secs
lola: 34617447 markings, 294402577 edges, 33824 markings/sec, 915 secs
lola: 34782337 markings, 296000738 edges, 32978 markings/sec, 920 secs
lola: 34941099 markings, 297614233 edges, 31752 markings/sec, 925 secs
lola: 35086073 markings, 299186575 edges, 28995 markings/sec, 930 secs
lola: 35288582 markings, 300743020 edges, 40502 markings/sec, 935 secs
lola: 35464765 markings, 302280573 edges, 35237 markings/sec, 940 secs
lola: 35657445 markings, 303811377 edges, 38536 markings/sec, 945 secs
lola: 35830759 markings, 305346652 edges, 34663 markings/sec, 950 secs
lola: 36000048 markings, 306900560 edges, 33858 markings/sec, 955 secs
lola: 36196371 markings, 308458572 edges, 39265 markings/sec, 960 secs
lola: 36369086 markings, 310023692 edges, 34543 markings/sec, 965 secs
lola: 36533659 markings, 311583897 edges, 32915 markings/sec, 970 secs
lola: 36683341 markings, 313144139 edges, 29936 markings/sec, 975 secs
lola: 36815944 markings, 314683244 edges, 26521 markings/sec, 980 secs
lola: 37014052 markings, 316200288 edges, 39622 markings/sec, 985 secs
lola: 37176637 markings, 317709464 edges, 32517 markings/sec, 990 secs
lola: 37379931 markings, 319222226 edges, 40659 markings/sec, 995 secs
lola: 37549972 markings, 320728683 edges, 34008 markings/sec, 1000 secs
lola: 37729357 markings, 322257086 edges, 35877 markings/sec, 1005 secs
lola: 37908514 markings, 323780884 edges, 35831 markings/sec, 1010 secs
lola: 38074116 markings, 325301202 edges, 33120 markings/sec, 1015 secs
lola: 38237637 markings, 326817164 edges, 32704 markings/sec, 1020 secs
lola: 38393448 markings, 328350179 edges, 31162 markings/sec, 1025 secs
lola: 38530214 markings, 329874531 edges, 27353 markings/sec, 1030 secs
lola: 38667503 markings, 331432841 edges, 27458 markings/sec, 1035 secs
lola: 38821456 markings, 333024527 edges, 30791 markings/sec, 1040 secs
lola: 38970326 markings, 334608758 edges, 29774 markings/sec, 1045 secs
lola: 39103434 markings, 336209710 edges, 26622 markings/sec, 1050 secs
lola: 39246795 markings, 337794910 edges, 28672 markings/sec, 1055 secs
lola: 39395686 markings, 339367086 edges, 29778 markings/sec, 1060 secs
lola: 39543416 markings, 340938886 edges, 29546 markings/sec, 1065 secs
lola: 39674931 markings, 342511251 edges, 26303 markings/sec, 1070 secs
lola: 39810982 markings, 344086062 edges, 27210 markings/sec, 1075 secs
lola: 39951242 markings, 345671200 edges, 28052 markings/sec, 1080 secs
lola: 40080245 markings, 347233913 edges, 25801 markings/sec, 1085 secs
lola: 40228431 markings, 348801842 edges, 29637 markings/sec, 1090 secs
lola: 40368763 markings, 350377503 edges, 28066 markings/sec, 1095 secs
lola: 40492093 markings, 351942205 edges, 24666 markings/sec, 1100 secs
lola: 40622579 markings, 353514566 edges, 26097 markings/sec, 1105 secs
lola: 40758397 markings, 355087266 edges, 27164 markings/sec, 1110 secs
lola: 40875979 markings, 356654852 edges, 23516 markings/sec, 1115 secs
lola: 40997102 markings, 358225953 edges, 24225 markings/sec, 1120 secs
lola: 41110371 markings, 359810783 edges, 22654 markings/sec, 1125 secs
lola: 41229189 markings, 361378151 edges, 23764 markings/sec, 1130 secs
lola: 41465924 markings, 363011375 edges, 47347 markings/sec, 1135 secs
lola: 41708651 markings, 364624311 edges, 48545 markings/sec, 1140 secs
lola: 41931572 markings, 366231829 edges, 44584 markings/sec, 1145 secs
lola: 42146752 markings, 367839228 edges, 43036 markings/sec, 1150 secs
lola: 42339029 markings, 369451038 edges, 38455 markings/sec, 1155 secs
lola: 42537009 markings, 371035716 edges, 39596 markings/sec, 1160 secs
lola: 42762831 markings, 372589562 edges, 45164 markings/sec, 1165 secs
lola: 42986068 markings, 374144433 edges, 44647 markings/sec, 1170 secs
lola: 43208748 markings, 375709062 edges, 44536 markings/sec, 1175 secs
lola: 43408296 markings, 377277412 edges, 39910 markings/sec, 1180 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no yes unknown unknown unknown
lola: memory consumption: 6868936 KB
lola: time consumption: 1194 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 4 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F (G (((p406 + 1 <= p105))))
lola: ========================================
lola: SUBTASK
lola: checking stabilization
lola: stabilization not yet implemented, converting to LTL...
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F (G (((p406 + 1 <= p105))))
lola: processed formula length: 28
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 46 markings, 47 edges
lola: ========================================
lola: subprocess 5 will run for 2376 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: G (F ((G ((p310 <= p20)) AND (p87 <= p479))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: G (F ((G ((p310 <= p20)) AND (p87 <= p479))))
lola: processed formula length: 45
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 18682 markings, 101376 edges
lola: ========================================
lola: ========================================
lola: ...considering subproblem: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((X (F ((p464 + 1 <= p286))) OR G ((p416 <= p457))))
lola: processed formula length: 54
lola: 35 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 253524 markings, 1664563 edges, 50705 markings/sec, 0 secs
lola: 501547 markings, 3305669 edges, 49605 markings/sec, 5 secs
lola: 721761 markings, 4948229 edges, 44043 markings/sec, 10 secs
lola: 947545 markings, 6586616 edges, 45157 markings/sec, 15 secs
lola: 1141629 markings, 8226503 edges, 38817 markings/sec, 20 secs
lola: 1341608 markings, 9840865 edges, 39996 markings/sec, 25 secs
lola: 1571421 markings, 11427047 edges, 45963 markings/sec, 30 secs
lola: 1800638 markings, 13017139 edges, 45843 markings/sec, 35 secs
lola: 2027686 markings, 14615095 edges, 45410 markings/sec, 40 secs
lola: 2235144 markings, 16214198 edges, 41492 markings/sec, 45 secs
lola: 2411629 markings, 17825807 edges, 35297 markings/sec, 50 secs
lola: 2607119 markings, 19446680 edges, 39098 markings/sec, 55 secs
lola: 2801015 markings, 21093092 edges, 38779 markings/sec, 60 secs
lola: 3002587 markings, 22720939 edges, 40314 markings/sec, 65 secs
lola: 3193808 markings, 24342271 edges, 38244 markings/sec, 70 secs
lola: 3381644 markings, 25965011 edges, 37567 markings/sec, 75 secs
lola: 3570290 markings, 27571018 edges, 37729 markings/sec, 80 secs
lola: 3747500 markings, 29188029 edges, 35442 markings/sec, 85 secs
lola: 3927104 markings, 30806051 edges, 35921 markings/sec, 90 secs
lola: 4083199 markings, 32431310 edges, 31219 markings/sec, 95 secs
lola: 4213228 markings, 34028393 edges, 26006 markings/sec, 100 secs
lola: 4461697 markings, 35673708 edges, 49694 markings/sec, 105 secs
lola: 4707236 markings, 37297668 edges, 49108 markings/sec, 110 secs
lola: 4921412 markings, 38917295 edges, 42835 markings/sec, 115 secs
lola: 5148826 markings, 40537193 edges, 45483 markings/sec, 120 secs
lola: 5342388 markings, 42164909 edges, 38712 markings/sec, 125 secs
lola: 5537041 markings, 43775453 edges, 38931 markings/sec, 130 secs
lola: 5766576 markings, 45369197 edges, 45907 markings/sec, 135 secs
lola: 5994529 markings, 46947309 edges, 45591 markings/sec, 140 secs
lola: 6221784 markings, 48543139 edges, 45451 markings/sec, 145 secs
lola: 6427942 markings, 50142687 edges, 41232 markings/sec, 150 secs
lola: 6614318 markings, 51748442 edges, 37275 markings/sec, 155 secs
lola: 6803217 markings, 53366403 edges, 37780 markings/sec, 160 secs
lola: 7000934 markings, 55004120 edges, 39543 markings/sec, 165 secs
lola: 7196363 markings, 56632025 edges, 39086 markings/sec, 170 secs
lola: 7392713 markings, 58248443 edges, 39270 markings/sec, 175 secs
lola: 7579752 markings, 59870875 edges, 37408 markings/sec, 180 secs
lola: 7763968 markings, 61477879 edges, 36843 markings/sec, 185 secs
lola: 7942935 markings, 63093466 edges, 35793 markings/sec, 190 secs
lola: 8120440 markings, 64710688 edges, 35501 markings/sec, 195 secs
lola: 8281633 markings, 66330995 edges, 32239 markings/sec, 200 secs
lola: 8418992 markings, 67952964 edges, 27472 markings/sec, 205 secs
lola: 8659942 markings, 69594675 edges, 48190 markings/sec, 210 secs
lola: 8900658 markings, 71226856 edges, 48143 markings/sec, 215 secs
lola: 9113350 markings, 72858652 edges, 42538 markings/sec, 220 secs
lola: 9344618 markings, 74478111 edges, 46254 markings/sec, 225 secs
lola: 9542038 markings, 76105792 edges, 39484 markings/sec, 230 secs
lola: 9730851 markings, 77720137 edges, 37763 markings/sec, 235 secs
lola: 9960061 markings, 79297969 edges, 45842 markings/sec, 240 secs
lola: 10185270 markings, 80871649 edges, 45042 markings/sec, 245 secs
lola: 10413901 markings, 82463122 edges, 45726 markings/sec, 250 secs
lola: 10619786 markings, 84056822 edges, 41177 markings/sec, 255 secs
lola: 10813703 markings, 85659304 edges, 38783 markings/sec, 260 secs
lola: 10996712 markings, 87265444 edges, 36602 markings/sec, 265 secs
lola: 11198515 markings, 88900277 edges, 40361 markings/sec, 270 secs
lola: 11387948 markings, 90526782 edges, 37887 markings/sec, 275 secs
lola: 11590773 markings, 92140324 edges, 40565 markings/sec, 280 secs
lola: 11771784 markings, 93753833 edges, 36202 markings/sec, 285 secs
lola: 11954730 markings, 95367747 edges, 36589 markings/sec, 290 secs
lola: 12138040 markings, 96980857 edges, 36662 markings/sec, 295 secs
lola: 12312831 markings, 98594857 edges, 34958 markings/sec, 300 secs
lola: 12476708 markings, 100211253 edges, 32775 markings/sec, 305 secs
lola: 12620865 markings, 101834437 edges, 28831 markings/sec, 310 secs
lola: 12813405 markings, 103465157 edges, 38508 markings/sec, 315 secs
lola: 13006997 markings, 105107539 edges, 38718 markings/sec, 320 secs
lola: 13208137 markings, 106729754 edges, 40228 markings/sec, 325 secs
lola: 13399186 markings, 108350986 edges, 38210 markings/sec, 330 secs
lola: 13586695 markings, 109971324 edges, 37502 markings/sec, 335 secs
lola: 13774519 markings, 111567140 edges, 37565 markings/sec, 340 secs
lola: 13950450 markings, 113176667 edges, 35186 markings/sec, 345 secs
lola: 14129259 markings, 114788770 edges, 35762 markings/sec, 350 secs
lola: 14284689 markings, 116401306 edges, 31086 markings/sec, 355 secs
lola: 14416850 markings, 118012670 edges, 26432 markings/sec, 360 secs
lola: 14622560 markings, 119583989 edges, 41142 markings/sec, 365 secs
lola: 14798870 markings, 121155054 edges, 35262 markings/sec, 370 secs
lola: 15000021 markings, 122715082 edges, 40230 markings/sec, 375 secs
lola: 15179629 markings, 124277722 edges, 35922 markings/sec, 380 secs
lola: 15363435 markings, 125852645 edges, 36761 markings/sec, 385 secs
lola: 15547925 markings, 127414821 edges, 36898 markings/sec, 390 secs
lola: 15721133 markings, 128998440 edges, 34642 markings/sec, 395 secs
lola: 15896368 markings, 130585084 edges, 35047 markings/sec, 400 secs
lola: 16050738 markings, 132170551 edges, 30874 markings/sec, 405 secs
lola: 16182754 markings, 133744348 edges, 26403 markings/sec, 410 secs
lola: 16375536 markings, 135295802 edges, 38556 markings/sec, 415 secs
lola: 16559314 markings, 136854766 edges, 36756 markings/sec, 420 secs
lola: 16751637 markings, 138398280 edges, 38465 markings/sec, 425 secs
lola: 16936729 markings, 139948968 edges, 37018 markings/sec, 430 secs
lola: 17118214 markings, 141512765 edges, 36297 markings/sec, 435 secs
lola: 17295128 markings, 143065098 edges, 35383 markings/sec, 440 secs
lola: 17467966 markings, 144625801 edges, 34568 markings/sec, 445 secs
lola: 17639271 markings, 146191685 edges, 34261 markings/sec, 450 secs
lola: 17797461 markings, 147755710 edges, 31638 markings/sec, 455 secs
lola: 17937471 markings, 149317977 edges, 28002 markings/sec, 460 secs
lola: 18079676 markings, 150916684 edges, 28441 markings/sec, 465 secs
lola: 18234373 markings, 152536219 edges, 30939 markings/sec, 470 secs
lola: 18387100 markings, 154155354 edges, 30545 markings/sec, 475 secs
lola: 18519483 markings, 155782378 edges, 26477 markings/sec, 480 secs
lola: 18669065 markings, 157394825 edges, 29916 markings/sec, 485 secs
lola: 18820750 markings, 158991364 edges, 30337 markings/sec, 490 secs
lola: 18970922 markings, 160596432 edges, 30034 markings/sec, 495 secs
lola: 19099455 markings, 162199856 edges, 25707 markings/sec, 500 secs
lola: 19242978 markings, 163809339 edges, 28705 markings/sec, 505 secs
lola: 19382233 markings, 165424592 edges, 27851 markings/sec, 510 secs
lola: 19518517 markings, 167020652 edges, 27257 markings/sec, 515 secs
lola: 19669290 markings, 168620446 edges, 30155 markings/sec, 520 secs
lola: 19807186 markings, 170229105 edges, 27579 markings/sec, 525 secs
lola: 19940631 markings, 171836369 edges, 26689 markings/sec, 530 secs
lola: 20065849 markings, 173437197 edges, 25044 markings/sec, 535 secs
lola: 20205653 markings, 175052199 edges, 27961 markings/sec, 540 secs
lola: 20325849 markings, 176653143 edges, 24039 markings/sec, 545 secs
lola: 20449127 markings, 178265352 edges, 24656 markings/sec, 550 secs
lola: 20554820 markings, 179870118 edges, 21139 markings/sec, 555 secs
lola: 20745527 markings, 181487440 edges, 38141 markings/sec, 560 secs
lola: 20983482 markings, 183130537 edges, 47591 markings/sec, 565 secs
lola: 21216195 markings, 184763276 edges, 46543 markings/sec, 570 secs
lola: 21444238 markings, 186392071 edges, 45609 markings/sec, 575 secs
lola: 21648873 markings, 188025176 edges, 40927 markings/sec, 580 secs
lola: 21813591 markings, 189662425 edges, 32944 markings/sec, 585 secs
lola: 22058885 markings, 191265627 edges, 49059 markings/sec, 590 secs
lola: 22298787 markings, 192852745 edges, 47980 markings/sec, 595 secs
lola: 22508937 markings, 194451649 edges, 42030 markings/sec, 600 secs
lola: 22735520 markings, 196052071 edges, 45317 markings/sec, 605 secs
lola: 22927992 markings, 197657355 edges, 38494 markings/sec, 610 secs
lola: 23101162 markings, 199270847 edges, 34634 markings/sec, 615 secs
lola: 23311836 markings, 200905174 edges, 42135 markings/sec, 620 secs
lola: 23499419 markings, 202542919 edges, 37517 markings/sec, 625 secs
lola: 23705266 markings, 204154272 edges, 41169 markings/sec, 630 secs
lola: 23884495 markings, 205772262 edges, 35846 markings/sec, 635 secs
lola: 24067224 markings, 207389605 edges, 36546 markings/sec, 640 secs
lola: 24264442 markings, 209000416 edges, 39444 markings/sec, 645 secs
lola: 24432677 markings, 210617384 edges, 33647 markings/sec, 650 secs
lola: 24601295 markings, 212231242 edges, 33724 markings/sec, 655 secs
lola: 24754809 markings, 213857321 edges, 30703 markings/sec, 660 secs
lola: 24947352 markings, 215472946 edges, 38509 markings/sec, 665 secs
lola: 25182795 markings, 217096776 edges, 47089 markings/sec, 670 secs
lola: 25412613 markings, 218705177 edges, 45964 markings/sec, 675 secs
lola: 25641209 markings, 220311101 edges, 45719 markings/sec, 680 secs
lola: 25845076 markings, 221921857 edges, 40773 markings/sec, 685 secs
lola: 26014687 markings, 223540888 edges, 33922 markings/sec, 690 secs
lola: 26247311 markings, 225117053 edges, 46525 markings/sec, 695 secs
lola: 26475413 markings, 226676216 edges, 45620 markings/sec, 700 secs
lola: 26689424 markings, 228248619 edges, 42802 markings/sec, 705 secs
lola: 26904223 markings, 229816536 edges, 42960 markings/sec, 710 secs
lola: 27104920 markings, 231393905 edges, 40139 markings/sec, 715 secs
lola: 27265516 markings, 232965622 edges, 32119 markings/sec, 720 secs
lola: 27478335 markings, 234579935 edges, 42564 markings/sec, 725 secs
lola: 27656674 markings, 236188553 edges, 35668 markings/sec, 730 secs
lola: 27865737 markings, 237778348 edges, 41813 markings/sec, 735 secs
lola: 28040928 markings, 239367663 edges, 35038 markings/sec, 740 secs
lola: 28224305 markings, 240967884 edges, 36675 markings/sec, 745 secs
lola: 28418723 markings, 242551110 edges, 38884 markings/sec, 750 secs
lola: 28595290 markings, 244144426 edges, 35313 markings/sec, 755 secs
lola: 28763569 markings, 245734733 edges, 33656 markings/sec, 760 secs
lola: 28915595 markings, 247326510 edges, 30405 markings/sec, 765 secs
lola: 29059748 markings, 248919747 edges, 28831 markings/sec, 770 secs
lola: 29294944 markings, 250551224 edges, 47039 markings/sec, 775 secs
lola: 29540880 markings, 252160334 edges, 49187 markings/sec, 780 secs
lola: 29760182 markings, 253770671 edges, 43860 markings/sec, 785 secs
lola: 29979667 markings, 255378321 edges, 43897 markings/sec, 790 secs
lola: 30170657 markings, 256988300 edges, 38198 markings/sec, 795 secs
lola: 30367303 markings, 258572987 edges, 39329 markings/sec, 800 secs
lola: 30590996 markings, 260127445 edges, 44739 markings/sec, 805 secs
lola: 30817456 markings, 261683684 edges, 45292 markings/sec, 810 secs
lola: 31039545 markings, 263247053 edges, 44418 markings/sec, 815 secs
lola: 31240897 markings, 264818536 edges, 40270 markings/sec, 820 secs
lola: 31423843 markings, 266398762 edges, 36589 markings/sec, 825 secs
lola: 31609378 markings, 267987930 edges, 37107 markings/sec, 830 secs
lola: 31805022 markings, 269599901 edges, 39129 markings/sec, 835 secs
lola: 31994727 markings, 271201864 edges, 37941 markings/sec, 840 secs
lola: 32192234 markings, 272793454 edges, 39501 markings/sec, 845 secs
lola: 32373171 markings, 274387106 edges, 36187 markings/sec, 850 secs
lola: 32553562 markings, 275974587 edges, 36078 markings/sec, 855 secs
lola: 32732847 markings, 277564869 edges, 35857 markings/sec, 860 secs
lola: 32905734 markings, 279156520 edges, 34577 markings/sec, 865 secs
lola: 33066806 markings, 280749644 edges, 32214 markings/sec, 870 secs
lola: 33211142 markings, 282352095 edges, 28867 markings/sec, 875 secs
lola: 33398300 markings, 283959920 edges, 37432 markings/sec, 880 secs
lola: 33591360 markings, 285580680 edges, 38612 markings/sec, 885 secs
lola: 33786768 markings, 287185178 edges, 39082 markings/sec, 890 secs
lola: 33979386 markings, 288783206 edges, 38524 markings/sec, 895 secs
lola: 34164453 markings, 290384152 edges, 37013 markings/sec, 900 secs
lola: 34346100 markings, 291971621 edges, 36329 markings/sec, 905 secs
lola: 34522481 markings, 293566507 edges, 35276 markings/sec, 910 secs
lola: 34697060 markings, 295162340 edges, 34916 markings/sec, 915 secs
lola: 34857744 markings, 296760954 edges, 32137 markings/sec, 920 secs
lola: 34995349 markings, 298357936 edges, 27521 markings/sec, 925 secs
lola: 35182892 markings, 299903169 edges, 37509 markings/sec, 930 secs
lola: 35367030 markings, 301448290 edges, 36828 markings/sec, 935 secs
lola: 35551765 markings, 302971101 edges, 36947 markings/sec, 940 secs
lola: 35741053 markings, 304509287 edges, 37858 markings/sec, 945 secs
lola: 35915870 markings, 306050380 edges, 34963 markings/sec, 950 secs
lola: 36088901 markings, 307592744 edges, 34606 markings/sec, 955 secs
lola: 36270354 markings, 309149233 edges, 36291 markings/sec, 960 secs
lola: 36434514 markings, 310698792 edges, 32832 markings/sec, 965 secs
lola: 36596800 markings, 312252203 edges, 32457 markings/sec, 970 secs
lola: 36739776 markings, 313800507 edges, 28595 markings/sec, 975 secs
lola: 36897687 markings, 315298473 edges, 31582 markings/sec, 980 secs
lola: 37088015 markings, 316811699 edges, 38066 markings/sec, 985 secs
lola: 37259926 markings, 318309905 edges, 34382 markings/sec, 990 secs
lola: 37453434 markings, 319822652 edges, 38702 markings/sec, 995 secs
lola: 37621880 markings, 321335897 edges, 33689 markings/sec, 1000 secs
lola: 37787113 markings, 322847013 edges, 33047 markings/sec, 1005 secs
lola: 37979635 markings, 324379684 edges, 38504 markings/sec, 1010 secs
lola: 38146705 markings, 325910473 edges, 33414 markings/sec, 1015 secs
lola: 38307717 markings, 327437140 edges, 32202 markings/sec, 1020 secs
lola: 38452437 markings, 328953644 edges, 28944 markings/sec, 1025 secs
lola: 38572994 markings, 330453771 edges, 24111 markings/sec, 1030 secs
lola: 38730986 markings, 332046279 edges, 31598 markings/sec, 1035 secs
lola: 38881999 markings, 333641206 edges, 30203 markings/sec, 1040 secs
lola: 39025675 markings, 335226845 edges, 28735 markings/sec, 1045 secs
lola: 39148732 markings, 336811017 edges, 24611 markings/sec, 1050 secs
lola: 39299352 markings, 338387621 edges, 30124 markings/sec, 1055 secs
lola: 39453547 markings, 339959296 edges, 30839 markings/sec, 1060 secs
lola: 39596450 markings, 341532403 edges, 28581 markings/sec, 1065 secs
lola: 39715694 markings, 343087664 edges, 23849 markings/sec, 1070 secs
lola: 39865423 markings, 344672191 edges, 29946 markings/sec, 1075 secs
lola: 39994716 markings, 346249284 edges, 25859 markings/sec, 1080 secs
lola: 40130413 markings, 347808078 edges, 27139 markings/sec, 1085 secs
lola: 40280469 markings, 349384900 edges, 30011 markings/sec, 1090 secs
lola: 40412834 markings, 350962942 edges, 26473 markings/sec, 1095 secs
lola: 40547169 markings, 352540548 edges, 26867 markings/sec, 1100 secs
lola: 40668487 markings, 354103799 edges, 24264 markings/sec, 1105 secs
lola: 40804606 markings, 355689265 edges, 27224 markings/sec, 1110 secs
lola: 40921511 markings, 357253059 edges, 23381 markings/sec, 1115 secs
lola: 41042911 markings, 358834251 edges, 24280 markings/sec, 1120 secs
lola: 41146402 markings, 360397860 edges, 20698 markings/sec, 1125 secs
lola: 41326189 markings, 361971384 edges, 35957 markings/sec, 1130 secs
lola: 41560561 markings, 363590493 edges, 46874 markings/sec, 1135 secs
lola: 41789418 markings, 365191934 edges, 45771 markings/sec, 1140 secs
lola: 42017097 markings, 366790907 edges, 45536 markings/sec, 1145 secs
lola: 42221388 markings, 368399689 edges, 40858 markings/sec, 1150 secs
lola: 42391127 markings, 370013919 edges, 33948 markings/sec, 1155 secs
lola: 42621665 markings, 371587722 edges, 46108 markings/sec, 1160 secs
lola: 42849424 markings, 373147711 edges, 45552 markings/sec, 1165 secs
lola: 43065173 markings, 374720523 edges, 43150 markings/sec, 1170 secs
lola: 43280651 markings, 376287732 edges, 43096 markings/sec, 1175 secs
lola: 43479547 markings, 377863295 edges, 39779 markings/sec, 1180 secs
lola: 43639153 markings, 379431501 edges, 31921 markings/sec, 1185 secs
lola: 43852806 markings, 381047257 edges, 42731 markings/sec, 1190 secs
lola: 44030758 markings, 382657455 edges, 35590 markings/sec, 1195 secs
lola: 44240513 markings, 384248002 edges, 41951 markings/sec, 1200 secs
lola: 44414419 markings, 385836252 edges, 34781 markings/sec, 1205 secs
lola: 44600194 markings, 387435106 edges, 37155 markings/sec, 1210 secs
lola: 44793551 markings, 389015698 edges, 38671 markings/sec, 1215 secs
lola: 44969406 markings, 390607210 edges, 35171 markings/sec, 1220 secs
lola: 45138672 markings, 392197098 edges, 33853 markings/sec, 1225 secs
lola: 45290829 markings, 393789106 edges, 30431 markings/sec, 1230 secs
lola: 45431403 markings, 395376817 edges, 28115 markings/sec, 1235 secs
lola: 45669350 markings, 397015827 edges, 47589 markings/sec, 1240 secs
lola: 45916636 markings, 398631864 edges, 49457 markings/sec, 1245 secs
lola: 46133654 markings, 400243220 edges, 43404 markings/sec, 1250 secs
lola: 46356450 markings, 401858397 edges, 44559 markings/sec, 1255 secs
lola: 46547128 markings, 403466997 edges, 38136 markings/sec, 1260 secs
lola: 46742333 markings, 405040099 edges, 39041 markings/sec, 1265 secs
lola: 46962922 markings, 406581655 edges, 44118 markings/sec, 1270 secs
lola: 47187071 markings, 408123672 edges, 44830 markings/sec, 1275 secs
lola: 47407490 markings, 409674712 edges, 44084 markings/sec, 1280 secs
lola: 47608349 markings, 411233320 edges, 40172 markings/sec, 1285 secs
lola: 47794346 markings, 412805456 edges, 37199 markings/sec, 1290 secs
lola: 47974322 markings, 414373837 edges, 35995 markings/sec, 1295 secs
lola: 48172823 markings, 415988637 edges, 39700 markings/sec, 1300 secs
lola: 48359772 markings, 417592518 edges, 37390 markings/sec, 1305 secs
lola: 48560447 markings, 419186045 edges, 40135 markings/sec, 1310 secs
lola: 48737536 markings, 420772986 edges, 35418 markings/sec, 1315 secs
lola: 48915650 markings, 422362665 edges, 35623 markings/sec, 1320 secs
lola: 49102518 markings, 423957223 edges, 37374 markings/sec, 1325 secs
lola: 49271139 markings, 425545359 edges, 33724 markings/sec, 1330 secs
lola: 49436686 markings, 427144639 edges, 33109 markings/sec, 1335 secs
lola: 49581411 markings, 428743668 edges, 28945 markings/sec, 1340 secs
lola: 49789082 markings, 430342546 edges, 41534 markings/sec, 1345 secs
lola: 50027564 markings, 431956585 edges, 47696 markings/sec, 1350 secs
lola: 50252533 markings, 433564166 edges, 44994 markings/sec, 1355 secs
lola: 50474591 markings, 435166824 edges, 44412 markings/sec, 1360 secs
lola: 50676300 markings, 436775154 edges, 40342 markings/sec, 1365 secs
lola: 50838509 markings, 438386819 edges, 32442 markings/sec, 1370 secs
lola: 51080697 markings, 439964169 edges, 48438 markings/sec, 1375 secs
lola: 51315042 markings, 441523860 edges, 46869 markings/sec, 1380 secs
lola: 51518854 markings, 443097036 edges, 40762 markings/sec, 1385 secs
lola: 51742458 markings, 444669040 edges, 44721 markings/sec, 1390 secs
lola: 51937339 markings, 446248691 edges, 38976 markings/sec, 1395 secs
lola: 52104322 markings, 447832691 edges, 33397 markings/sec, 1400 secs
lola: 52311683 markings, 449442963 edges, 41472 markings/sec, 1405 secs
lola: 52496963 markings, 451055431 edges, 37056 markings/sec, 1410 secs
lola: 52699741 markings, 452645471 edges, 40556 markings/sec, 1415 secs
lola: 52879335 markings, 454240309 edges, 35919 markings/sec, 1420 secs
lola: 53054369 markings, 455837428 edges, 35007 markings/sec, 1425 secs
lola: 53255294 markings, 457424580 edges, 40185 markings/sec, 1430 secs
lola: 53427666 markings, 459021185 edges, 34474 markings/sec, 1435 secs
lola: 53594118 markings, 460612920 edges, 33290 markings/sec, 1440 secs
lola: 53749567 markings, 462213458 edges, 31090 markings/sec, 1445 secs
lola: 53895126 markings, 463809474 edges, 29112 markings/sec, 1450 secs
lola: 54102868 markings, 465424685 edges, 41548 markings/sec, 1455 secs
lola: 54288694 markings, 467043553 edges, 37165 markings/sec, 1460 secs
lola: 54491494 markings, 468633400 edges, 40560 markings/sec, 1465 secs
lola: 54671017 markings, 470234131 edges, 35905 markings/sec, 1470 secs
lola: 54847083 markings, 471810569 edges, 35213 markings/sec, 1475 secs
lola: 55045035 markings, 473396531 edges, 39590 markings/sec, 1480 secs
lola: 55212909 markings, 474990912 edges, 33575 markings/sec, 1485 secs
lola: 55376851 markings, 476585046 edges, 32788 markings/sec, 1490 secs
lola: 55535531 markings, 478193382 edges, 31736 markings/sec, 1495 secs
lola: 55680261 markings, 479764101 edges, 28946 markings/sec, 1500 secs
lola: 55882737 markings, 481317930 edges, 40495 markings/sec, 1505 secs
lola: 56060041 markings, 482866840 edges, 35461 markings/sec, 1510 secs
lola: 56255256 markings, 484411585 edges, 39043 markings/sec, 1515 secs
lola: 56430303 markings, 485965319 edges, 35009 markings/sec, 1520 secs
lola: 56599234 markings, 487517438 edges, 33786 markings/sec, 1525 secs
lola: 56796086 markings, 489073703 edges, 39370 markings/sec, 1530 secs
lola: 56967222 markings, 490639006 edges, 34227 markings/sec, 1535 secs
lola: 57131538 markings, 492203567 edges, 32863 markings/sec, 1540 secs
lola: 57282221 markings, 493770042 edges, 30137 markings/sec, 1545 secs
lola: 57417159 markings, 495320285 edges, 26988 markings/sec, 1550 secs
lola: 57617546 markings, 496850627 edges, 40077 markings/sec, 1555 secs
lola: 57786002 markings, 498376963 edges, 33691 markings/sec, 1560 secs
lola: 57987205 markings, 499904688 edges, 40241 markings/sec, 1565 secs
lola: 58154888 markings, 501430839 edges, 33537 markings/sec, 1570 secs
lola: 58337151 markings, 502980902 edges, 36453 markings/sec, 1575 secs
lola: 58521306 markings, 504516724 edges, 36831 markings/sec, 1580 secs
lola: 58690121 markings, 506059767 edges, 33763 markings/sec, 1585 secs
lola: 58861934 markings, 507610023 edges, 34363 markings/sec, 1590 secs
lola: 59011216 markings, 509153542 edges, 29856 markings/sec, 1595 secs
lola: 59141160 markings, 510691127 edges, 25989 markings/sec, 1600 secs
lola: 59290720 markings, 512281802 edges, 29912 markings/sec, 1605 secs
lola: 59444158 markings, 513881531 edges, 30688 markings/sec, 1610 secs
lola: 59589191 markings, 515468261 edges, 29007 markings/sec, 1615 secs
lola: 59716880 markings, 517057712 edges, 25538 markings/sec, 1620 secs
lola: 59865053 markings, 518632457 edges, 29635 markings/sec, 1625 secs
lola: 60014359 markings, 520193984 edges, 29861 markings/sec, 1630 secs
lola: 60160414 markings, 521764092 edges, 29211 markings/sec, 1635 secs
lola: 60286794 markings, 523333549 edges, 25276 markings/sec, 1640 secs
lola: 60426205 markings, 524907106 edges, 27882 markings/sec, 1645 secs
lola: 60563650 markings, 526485130 edges, 27489 markings/sec, 1650 secs
lola: 60695562 markings, 528040857 edges, 26382 markings/sec, 1655 secs
lola: 60842162 markings, 529603587 edges, 29320 markings/sec, 1660 secs
lola: 60980357 markings, 531180574 edges, 27639 markings/sec, 1665 secs
lola: 61104810 markings, 532745493 edges, 24891 markings/sec, 1670 secs
lola: 61232228 markings, 534313503 edges, 25484 markings/sec, 1675 secs
lola: 61370524 markings, 535890264 edges, 27659 markings/sec, 1680 secs
lola: 61487911 markings, 537459152 edges, 23477 markings/sec, 1685 secs
lola: 61606356 markings, 539026292 edges, 23689 markings/sec, 1690 secs
lola: 61717900 markings, 540601583 edges, 22309 markings/sec, 1695 secs
lola: 61858328 markings, 542162403 edges, 28086 markings/sec, 1700 secs
lola: 62096538 markings, 543796862 edges, 47642 markings/sec, 1705 secs
lola: 62329274 markings, 545408462 edges, 46547 markings/sec, 1710 secs
lola: 62560036 markings, 547021408 edges, 46152 markings/sec, 1715 secs
lola: 62768549 markings, 548636302 edges, 41703 markings/sec, 1720 secs
lola: 62957880 markings, 550258817 edges, 37866 markings/sec, 1725 secs
lola: 63169409 markings, 551848147 edges, 42306 markings/sec, 1730 secs
lola: 63397634 markings, 553419508 edges, 45645 markings/sec, 1735 secs
lola: 63620918 markings, 554995409 edges, 44657 markings/sec, 1740 secs
lola: 63844442 markings, 556575775 edges, 44705 markings/sec, 1745 secs
lola: 64044177 markings, 558158204 edges, 39947 markings/sec, 1750 secs
lola: 64209267 markings, 559741994 edges, 33018 markings/sec, 1755 secs
lola: 64410672 markings, 561350949 edges, 40281 markings/sec, 1760 secs
lola: 64597622 markings, 562971038 edges, 37390 markings/sec, 1765 secs
lola: 64801264 markings, 564570455 edges, 40728 markings/sec, 1770 secs
lola: 64985479 markings, 566171938 edges, 36843 markings/sec, 1775 secs
lola: 65172108 markings, 567778390 edges, 37326 markings/sec, 1780 secs
lola: 65360566 markings, 569368032 edges, 37692 markings/sec, 1785 secs
lola: 65535197 markings, 570967239 edges, 34926 markings/sec, 1790 secs
lola: 65713231 markings, 572566937 edges, 35607 markings/sec, 1795 secs
lola: 65867025 markings, 574169977 edges, 30759 markings/sec, 1800 secs
lola: 65995917 markings, 575766829 edges, 25778 markings/sec, 1805 secs
lola: 66245510 markings, 577414090 edges, 49919 markings/sec, 1810 secs
lola: 66492420 markings, 579041835 edges, 49382 markings/sec, 1815 secs
lola: 66708250 markings, 580670693 edges, 43166 markings/sec, 1820 secs
lola: 66934912 markings, 582293805 edges, 45332 markings/sec, 1825 secs
lola: 67128464 markings, 583921429 edges, 38710 markings/sec, 1830 secs
lola: 67325139 markings, 585535739 edges, 39335 markings/sec, 1835 secs
lola: 67552808 markings, 587120896 edges, 45534 markings/sec, 1840 secs
lola: 67781685 markings, 588701982 edges, 45775 markings/sec, 1845 secs
lola: 68008030 markings, 590289850 edges, 45269 markings/sec, 1850 secs
lola: 68212473 markings, 591882517 edges, 40889 markings/sec, 1855 secs
lola: 68397154 markings, 593480892 edges, 36936 markings/sec, 1860 secs
lola: 68585819 markings, 595091941 edges, 37733 markings/sec, 1865 secs
lola: 68782164 markings, 596719185 edges, 39269 markings/sec, 1870 secs
lola: 68975828 markings, 598336507 edges, 38733 markings/sec, 1875 secs
lola: 69172425 markings, 599944227 edges, 39319 markings/sec, 1880 secs
lola: 69357172 markings, 601550279 edges, 36949 markings/sec, 1885 secs
lola: 69539471 markings, 603152928 edges, 36460 markings/sec, 1890 secs
lola: 69717152 markings, 604757194 edges, 35536 markings/sec, 1895 secs
lola: 69892547 markings, 606362727 edges, 35079 markings/sec, 1900 secs
lola: 70055757 markings, 607975213 edges, 32642 markings/sec, 1905 secs
lola: 70195032 markings, 609588019 edges, 27855 markings/sec, 1910 secs
lola: 70426975 markings, 611209921 edges, 46389 markings/sec, 1915 secs
lola: 70666358 markings, 612834679 edges, 47877 markings/sec, 1920 secs
lola: 70882631 markings, 614457472 edges, 43255 markings/sec, 1925 secs
lola: 71107943 markings, 616067883 edges, 45062 markings/sec, 1930 secs
lola: 71308380 markings, 617687600 edges, 40087 markings/sec, 1935 secs
lola: 71486737 markings, 619298997 edges, 35671 markings/sec, 1940 secs
lola: 71715008 markings, 620867807 edges, 45654 markings/sec, 1945 secs
lola: 71951457 markings, 622434604 edges, 47290 markings/sec, 1950 secs
lola: 72164333 markings, 624009263 edges, 42575 markings/sec, 1955 secs
lola: 72383267 markings, 625589292 edges, 43787 markings/sec, 1960 secs
lola: 72570090 markings, 627167753 edges, 37365 markings/sec, 1965 secs
lola: 72746136 markings, 628758666 edges, 35209 markings/sec, 1970 secs
lola: 72950361 markings, 630375956 edges, 40845 markings/sec, 1975 secs
lola: 73137068 markings, 631995224 edges, 37341 markings/sec, 1980 secs
lola: 73339472 markings, 633588470 edges, 40481 markings/sec, 1985 secs
lola: 73518768 markings, 635191249 edges, 35859 markings/sec, 1990 secs
lola: 73699159 markings, 636791773 edges, 36078 markings/sec, 1995 secs
lola: 73891623 markings, 638388497 edges, 38493 markings/sec, 2000 secs
lola: 74057480 markings, 639986768 edges, 33171 markings/sec, 2005 secs
lola: 74226785 markings, 641588445 edges, 33861 markings/sec, 2010 secs
lola: 74376200 markings, 643195342 edges, 29883 markings/sec, 2015 secs
lola: 74546584 markings, 644800380 edges, 34077 markings/sec, 2020 secs
lola: 74748582 markings, 646422623 edges, 40400 markings/sec, 2025 secs
lola: 74934655 markings, 648037371 edges, 37215 markings/sec, 2030 secs
lola: 75137949 markings, 649637049 edges, 40659 markings/sec, 2035 secs
lola: 75317718 markings, 651237475 edges, 35954 markings/sec, 2040 secs
lola: 75494563 markings, 652832683 edges, 35369 markings/sec, 2045 secs
lola: 75683429 markings, 654433149 edges, 37773 markings/sec, 2050 secs
lola: 75852497 markings, 656031302 edges, 33814 markings/sec, 2055 secs
lola: 76019622 markings, 657638158 edges, 33425 markings/sec, 2060 secs
lola: 76164676 markings, 659245206 edges, 29011 markings/sec, 2065 secs
lola: 76340532 markings, 660802511 edges, 35171 markings/sec, 2070 secs
lola: 76532664 markings, 662360271 edges, 38426 markings/sec, 2075 secs
lola: 76708929 markings, 663890345 edges, 35253 markings/sec, 2080 secs
lola: 76906101 markings, 665438797 edges, 39434 markings/sec, 2085 secs
lola: 77079743 markings, 666989706 edges, 34728 markings/sec, 2090 secs
lola: 77252981 markings, 668548825 edges, 34648 markings/sec, 2095 secs
lola: 77441391 markings, 670114429 edges, 37682 markings/sec, 2100 secs
lola: 77603821 markings, 671673082 edges, 32486 markings/sec, 2105 secs
lola: 77768316 markings, 673235682 edges, 32899 markings/sec, 2110 secs
lola: 77917684 markings, 674812029 edges, 29874 markings/sec, 2115 secs
lola: 78073924 markings, 676353727 edges, 31248 markings/sec, 2120 secs
lola: 78268168 markings, 677893890 edges, 38849 markings/sec, 2125 secs
lola: 78444233 markings, 679428586 edges, 35213 markings/sec, 2130 secs
lola: 78640909 markings, 680965241 edges, 39335 markings/sec, 2135 secs
lola: 78812383 markings, 682506244 edges, 34295 markings/sec, 2140 secs
lola: 78982829 markings, 684043182 edges, 34089 markings/sec, 2145 secs
lola: 79176765 markings, 685591244 edges, 38787 markings/sec, 2150 secs
lola: 79342121 markings, 687137714 edges, 33071 markings/sec, 2155 secs
lola: 79504391 markings, 688681489 edges, 32454 markings/sec, 2160 secs
lola: 79653655 markings, 690225686 edges, 29853 markings/sec, 2165 secs
lola: 79778268 markings, 691759426 edges, 24923 markings/sec, 2170 secs
lola: 79937527 markings, 693370133 edges, 31852 markings/sec, 2175 secs
lola: 80086463 markings, 694974782 edges, 29787 markings/sec, 2180 secs
lola: 80231975 markings, 696578931 edges, 29102 markings/sec, 2185 secs
lola: 80359755 markings, 698174389 edges, 25556 markings/sec, 2190 secs
lola: 80511318 markings, 699761521 edges, 30313 markings/sec, 2195 secs
lola: 80662825 markings, 701338720 edges, 30301 markings/sec, 2200 secs
lola: 80806542 markings, 702922691 edges, 28743 markings/sec, 2205 secs
lola: 80931714 markings, 704494253 edges, 25034 markings/sec, 2210 secs
lola: 81075928 markings, 706080811 edges, 28843 markings/sec, 2215 secs
lola: 81202171 markings, 707664891 edges, 25249 markings/sec, 2220 secs
lola: 81347367 markings, 709234163 edges, 29039 markings/sec, 2225 secs
lola: 81490916 markings, 710813756 edges, 28710 markings/sec, 2230 secs
lola: 81621285 markings, 712394330 edges, 26074 markings/sec, 2235 secs
lola: 81759926 markings, 713983788 edges, 27728 markings/sec, 2240 secs
lola: 81883777 markings, 715552499 edges, 24770 markings/sec, 2245 secs
lola: 82015119 markings, 717142055 edges, 26268 markings/sec, 2250 secs
lola: 82133082 markings, 718716402 edges, 23593 markings/sec, 2255 secs
lola: 82257424 markings, 720315590 edges, 24868 markings/sec, 2260 secs
lola: 82354752 markings, 721885655 edges, 19466 markings/sec, 2265 secs
lola: 82538581 markings, 723486756 edges, 36766 markings/sec, 2270 secs
lola: 82729948 markings, 725109036 edges, 38273 markings/sec, 2275 secs
lola: 82927946 markings, 726713634 edges, 39600 markings/sec, 2280 secs
lola: 83118160 markings, 728313661 edges, 38043 markings/sec, 2285 secs
lola: 83304899 markings, 729917207 edges, 37348 markings/sec, 2290 secs
lola: 83486959 markings, 731503656 edges, 36412 markings/sec, 2295 secs
lola: 83663223 markings, 733102724 edges, 35253 markings/sec, 2300 secs
lola: 83838407 markings, 734701775 edges, 35037 markings/sec, 2305 secs
lola: 83998180 markings, 736305177 edges, 31955 markings/sec, 2310 secs
lola: 84135122 markings, 737905550 edges, 27388 markings/sec, 2315 secs
lola: 84324706 markings, 739455987 edges, 37917 markings/sec, 2320 secs
lola: 84509354 markings, 741012975 edges, 36930 markings/sec, 2325 secs
lola: 84699714 markings, 742550933 edges, 38072 markings/sec, 2330 secs
lola: 84885556 markings, 744097599 edges, 37168 markings/sec, 2335 secs
lola: 85065354 markings, 745653672 edges, 35960 markings/sec, 2340 secs
lola: 85241100 markings, 747202529 edges, 35149 markings/sec, 2345 secs
lola: 85415824 markings, 748761979 edges, 34945 markings/sec, 2350 secs
lola: 85586620 markings, 750324896 edges, 34159 markings/sec, 2355 secs
lola: 85744487 markings, 751883921 edges, 31573 markings/sec, 2360 secs
lola: 85886026 markings, 753439589 edges, 28308 markings/sec, 2365 secs
lola: 86056773 markings, 754947357 edges, 34149 markings/sec, 2370 secs
lola: time limit reached - aborting
lola:
preliminary result: yes no yes unknown no no
lola: lola: caught signal User defined signal 1 - aborting LoLA

preliminary result: yes no yes unknown no no
lola:
preliminary result: yes no yes unknown no no
lola: memory consumption: 27620 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Sudoku-PT-AN07"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="gold2020"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool gold2020"
echo " Input is Sudoku-PT-AN07, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r265-tall-162106800600301"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Sudoku-PT-AN07.tgz
mv Sudoku-PT-AN07 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;