About the Execution of 2020-gold for Referendum-COL-0200
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
10843.315 | 3600000.00 | 3611854.00 | 6442.90 | TFFT??TTFTTFFTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/mnt/tpsp/fkordon/mcc2021-input.r189-tajo-162089432800245.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2021-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-4028
Executing tool gold2020
Input is Referendum-COL-0200, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r189-tajo-162089432800245
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 332K
-rw-r--r-- 1 mcc users 12K May 5 16:58 CTLCardinality.txt
-rw-r--r-- 1 mcc users 106K May 10 09:44 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.5K May 5 16:58 CTLFireability.txt
-rw-r--r-- 1 mcc users 46K May 10 09:44 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 6 14:48 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K May 6 14:48 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.9K Mar 28 16:31 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Mar 28 16:31 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.9K Mar 28 16:31 LTLFireability.txt
-rw-r--r-- 1 mcc users 15K Mar 28 16:31 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K Mar 27 10:33 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 21K Mar 27 10:32 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Mar 25 13:45 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K Mar 25 13:44 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Mar 22 08:15 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.7K Mar 22 08:15 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 5 16:51 equiv_pt
-rw-r--r-- 1 mcc users 5 May 5 16:51 instance
-rw-r--r-- 1 mcc users 5 May 5 16:51 iscolored
-rw-r--r-- 1 mcc users 11K May 5 16:51 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Referendum-COL-0200-00
FORMULA_NAME Referendum-COL-0200-01
FORMULA_NAME Referendum-COL-0200-02
FORMULA_NAME Referendum-COL-0200-03
FORMULA_NAME Referendum-COL-0200-04
FORMULA_NAME Referendum-COL-0200-05
FORMULA_NAME Referendum-COL-0200-06
FORMULA_NAME Referendum-COL-0200-07
FORMULA_NAME Referendum-COL-0200-08
FORMULA_NAME Referendum-COL-0200-09
FORMULA_NAME Referendum-COL-0200-10
FORMULA_NAME Referendum-COL-0200-11
FORMULA_NAME Referendum-COL-0200-12
FORMULA_NAME Referendum-COL-0200-13
FORMULA_NAME Referendum-COL-0200-14
FORMULA_NAME Referendum-COL-0200-15
=== Now, execution of the tool begins
BK_START 1621425572303
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
[2021-05-19 11:59:33] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -timeout, 3600, -rebuildPNML]
[2021-05-19 11:59:33] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2021-05-19 11:59:33] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
[2021-05-19 11:59:34] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 503 ms
[2021-05-19 11:59:34] [INFO ] sort/places :
Dot->ready,
Voters->voting,voted_yes,voted_no,
[2021-05-19 11:59:34] [INFO ] Imported 4 HL places and 3 HL transitions for a total of 601 PT places and 401.0 transition bindings in 10 ms.
[2021-05-19 11:59:34] [INFO ] Computed order based on color domains.
[2021-05-19 11:59:34] [INFO ] Unfolded HLPN to a Petri net with 601 places and 401 transitions in 9 ms.
[2021-05-19 11:59:34] [INFO ] Unfolded HLPN properties in 3 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 66 ms.
Working with output stream class java.io.PrintStream
Incomplete random walk after 100000 steps, including 495 resets, run finished after 2204 ms. (steps per millisecond=45 ) properties seen :[1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1]
// Phase 1: matrix 401 rows 601 cols
[2021-05-19 11:59:36] [INFO ] Computed 200 place invariants in 26 ms
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 26 ms returned unsat
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 16 ms returned unsat
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 13 ms returned unsat
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 14 ms returned unsat
Successfully simplified 4 atomic propositions for a total of 11 simplifications.
[2021-05-19 11:59:37] [INFO ] Initial state reduction rules for CTL removed 6 formulas.
[2021-05-19 11:59:37] [INFO ] Flatten gal took : 77 ms
FORMULA Referendum-COL-0200-13 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-10 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-07 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-03 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-01 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2021-05-19 11:59:37] [INFO ] Applying decomposition
[2021-05-19 11:59:37] [INFO ] Flatten gal took : 40 ms
[2021-05-19 11:59:37] [INFO ] Decomposing Gal with order
[2021-05-19 11:59:37] [INFO ] Rewriting arrays to variables to allow decomposition.
[2021-05-19 11:59:37] [INFO ] Flatten gal took : 59 ms
[2021-05-19 11:59:37] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 19 ms.
[2021-05-19 11:59:38] [INFO ] Export to MCC properties in file /home/mcc/execution/LTLCardinality.sr.xml took 11 ms.
[2021-05-19 11:59:38] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml took 7 ms.
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ Referendum-COL-0200 @ 3570 seconds
FORMULA Referendum-COL-0200-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Referendum-COL-0200-09 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Referendum-COL-0200-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Referendum-COL-0200-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Referendum-COL-0200-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Referendum-COL-0200-08 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Referendum-COL-0200-00 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA Referendum-COL-0200-06 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ Referendum-COL-0200
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2020",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Wed May 19 11:59:38 2021
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 201,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 201,
"visible_transitions": 0
},
"processed": "X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))",
"processed_size": 1415,
"rewrites": 36
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 0,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 396
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 1,
"aneg": 0,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 802,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 201,
"visible_transitions": 0
},
"processed": "X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600) OR (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) AND (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600)))))",
"processed_size": 5218,
"rewrites": 36
},
"result":
{
"edges": 801,
"markings": 802,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 452
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 452
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "X ((1 <= p600))",
"processed_size": 15,
"rewrites": 36
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 3,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 528
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 3,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1000,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 600,
"visible_transitions": 0
},
"processed": "F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) AND (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + 1 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)) OR (1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))))",
"processed_size": 6817,
"rewrites": 36
},
"result":
{
"edges": 204,
"markings": 203,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 4,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 633
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 1,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "F (G ((F (((1 <= p600))) AND (1 <= p600))))",
"processed_size": 43,
"rewrites": 36
},
"result":
{
"edges": 204,
"markings": 203,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 792
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 201,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 201,
"visible_transitions": 0
},
"processed": "G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + 1 <= p600))",
"processed_size": 1415,
"rewrites": 36
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1056
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 400,
"taut": 0,
"tconj": 0,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 400,
"visible_transitions": 0
},
"processed": "F ((G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 0)) OR (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))",
"processed_size": 2712,
"rewrites": 36
},
"result":
{
"edges": 1,
"markings": 2,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1584
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 0,
"U": 2,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1201,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 601,
"visible_transitions": 0
},
"processed": "(F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) U (((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 2) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) AND F ((p600 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))))",
"processed_size": 8216,
"rewrites": 36
},
"result":
{
"edges": 1,
"markings": 2,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 6
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 31864,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "F((G(**) OR **)) : (X(*) AND (* R (G(*) AND *))) : X(F((F(G((F(**) OR **))) OR X(**)))) : ((G(*) R *) R *) : (F(**) U ((** U **) AND F(**))) : G(*) : X(X((F(**) AND (F(**) OR **)))) : (X(**) AND (** U **)) : F(G((X(**) AND (F(**) OR **)))) : F(G((F(**) AND **)))"
},
"net":
{
"arcs": 1001,
"conflict_clusters": 601,
"places": 601,
"places_significant": 401,
"singleton_clusters": 0,
"transitions": 401
},
"result":
{
"interim_value": "yes no unknown unknown yes no yes no no no ",
"preliminary_value": "yes no unknown unknown yes no yes no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 1002/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 601
lola: finding significant places
lola: 601 places, 401 transitions, 401 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p600)
lola: (NOT(G (F (NOT(G (X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 0))))))) OR F ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) : (NOT(X ((p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 <= p600))) AND NOT(((p600 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99) U (F ((1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) OR (1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))))) : F (X ((F (G ((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)) OR (1 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)))) OR X ((1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))))) : NOT(((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) U (p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p600)) U ((1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399) AND (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))) : ((((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) U F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))) U (((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 2) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) AND F ((p600 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))) : NOT(F ((p600 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599))) : X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600) OR (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) AND (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600))))) : (X ((1 <= p600)) AND ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99) U (1 <= p600))) : X (F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) AND (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + 1 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)) OR (1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))))) : F (G (X ((F (((((1 <= p600)) U (1 <= p600)) AND F ((1 <= p600)))) AND (1 <= p600)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:519
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:416
lola: rewrite Frontend/Parser/formula_rewrite.k:497
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 0 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 +... (shortened)
lola: processed formula length: 1415
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 1 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (F ((F (G ((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p14... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (F ((F (G ((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p14... (shortened)
lola: processed formula length: 5534
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 702835 markings, 1248402 edges, 140567 markings/sec, 0 secs
lola: 1457907 markings, 2606659 edges, 151014 markings/sec, 5 secs
lola: 2182128 markings, 3915808 edges, 144844 markings/sec, 10 secs
lola: 2903429 markings, 5222003 edges, 144260 markings/sec, 15 secs
lola: 3613327 markings, 6506765 edges, 141980 markings/sec, 20 secs
lola: 4302315 markings, 7758948 edges, 137798 markings/sec, 25 secs
lola: 4993775 markings, 9020631 edges, 138292 markings/sec, 30 secs
lola: 5688658 markings, 10287768 edges, 138977 markings/sec, 35 secs
lola: 6336542 markings, 11457832 edges, 129577 markings/sec, 40 secs
lola: 6950535 markings, 12575355 edges, 122799 markings/sec, 45 secs
lola: 7594941 markings, 13748978 edges, 128881 markings/sec, 50 secs
lola: 8218979 markings, 14890413 edges, 124808 markings/sec, 55 secs
lola: 8856710 markings, 16051479 edges, 127546 markings/sec, 60 secs
lola: 9471133 markings, 17174846 edges, 122885 markings/sec, 65 secs
lola: 10078542 markings, 18288682 edges, 121482 markings/sec, 70 secs
lola: 10693829 markings, 19419169 edges, 123057 markings/sec, 75 secs
lola: 11286698 markings, 20511341 edges, 118574 markings/sec, 80 secs
lola: 11927291 markings, 21674479 edges, 128119 markings/sec, 85 secs
lola: 12570633 markings, 22839892 edges, 128668 markings/sec, 90 secs
lola: 13207928 markings, 23998627 edges, 127459 markings/sec, 95 secs
lola: 13839353 markings, 25150204 edges, 126285 markings/sec, 100 secs
lola: 14459872 markings, 26288808 edges, 124104 markings/sec, 105 secs
lola: 15074580 markings, 27406405 edges, 122942 markings/sec, 110 secs
lola: 15667442 markings, 28490717 edges, 118572 markings/sec, 115 secs
lola: 16284685 markings, 29622627 edges, 123449 markings/sec, 120 secs
lola: 16897227 markings, 30748451 edges, 122508 markings/sec, 125 secs
lola: 17480607 markings, 31826490 edges, 116676 markings/sec, 130 secs
lola: 18076328 markings, 32910284 edges, 119144 markings/sec, 135 secs
lola: 18664275 markings, 33985473 edges, 117589 markings/sec, 140 secs
lola: 19262448 markings, 35081902 edges, 119635 markings/sec, 145 secs
lola: 19864607 markings, 36188668 edges, 120432 markings/sec, 150 secs
lola: 20439483 markings, 37247208 edges, 114975 markings/sec, 155 secs
lola: 21033108 markings, 38338708 edges, 118725 markings/sec, 160 secs
lola: 21677848 markings, 39523818 edges, 128948 markings/sec, 165 secs
lola: 22320864 markings, 40712884 edges, 128603 markings/sec, 170 secs
lola: 22971777 markings, 41912731 edges, 130183 markings/sec, 175 secs
lola: 23612464 markings, 43099872 edges, 128137 markings/sec, 180 secs
lola: 24260837 markings, 44295128 edges, 129675 markings/sec, 185 secs
lola: 24944861 markings, 45529577 edges, 136805 markings/sec, 190 secs
lola: 25634057 markings, 46782843 edges, 137839 markings/sec, 195 secs
lola: 26277885 markings, 47955640 edges, 128766 markings/sec, 200 secs
lola: 26948374 markings, 49185473 edges, 134098 markings/sec, 205 secs
lola: 27620057 markings, 50406586 edges, 134337 markings/sec, 210 secs
lola: 28235821 markings, 51532662 edges, 123153 markings/sec, 215 secs
lola: 28872007 markings, 52699458 edges, 127237 markings/sec, 220 secs
lola: 29541062 markings, 53929128 edges, 133811 markings/sec, 225 secs
lola: 30208210 markings, 55160024 edges, 133430 markings/sec, 230 secs
lola: 30870406 markings, 56366029 edges, 132439 markings/sec, 235 secs
lola: 31531148 markings, 57575250 edges, 132148 markings/sec, 240 secs
lola: 32192959 markings, 58787586 edges, 132362 markings/sec, 245 secs
lola: 32865330 markings, 60026148 edges, 134474 markings/sec, 250 secs
lola: 33490580 markings, 61177600 edges, 125050 markings/sec, 255 secs
lola: 34157667 markings, 62402958 edges, 133417 markings/sec, 260 secs
lola: 34832720 markings, 63649283 edges, 135011 markings/sec, 265 secs
lola: 35512103 markings, 64902209 edges, 135877 markings/sec, 270 secs
lola: 36190013 markings, 66158528 edges, 135582 markings/sec, 275 secs
lola: 36776225 markings, 67244795 edges, 117242 markings/sec, 280 secs
lola: 37466680 markings, 68501548 edges, 138091 markings/sec, 285 secs
lola: 38147565 markings, 69749968 edges, 136177 markings/sec, 290 secs
lola: 38813141 markings, 70968682 edges, 133115 markings/sec, 295 secs
lola: 39478140 markings, 72193705 edges, 133000 markings/sec, 300 secs
lola: 40159304 markings, 73446927 edges, 136233 markings/sec, 305 secs
lola: 40764007 markings, 74558288 edges, 120941 markings/sec, 310 secs
lola: 41432108 markings, 75793062 edges, 133620 markings/sec, 315 secs
lola: 42113296 markings, 77049203 edges, 136238 markings/sec, 320 secs
lola: 42789155 markings, 78301955 edges, 135172 markings/sec, 325 secs
lola: 43468235 markings, 79557156 edges, 135816 markings/sec, 330 secs
lola: 44151071 markings, 80811556 edges, 136567 markings/sec, 335 secs
lola: 44825881 markings, 82058298 edges, 134962 markings/sec, 340 secs
lola: 45504058 markings, 83308905 edges, 135635 markings/sec, 345 secs
lola: 46177162 markings, 84556599 edges, 134621 markings/sec, 350 secs
lola: 46851805 markings, 85807306 edges, 134929 markings/sec, 355 secs
lola: 47530754 markings, 87062953 edges, 135790 markings/sec, 360 secs
lola: 48203489 markings, 88310416 edges, 134547 markings/sec, 365 secs
lola: 48875783 markings, 89559060 edges, 134459 markings/sec, 370 secs
lola: 49547828 markings, 90809142 edges, 134409 markings/sec, 375 secs
lola: 50213387 markings, 92052202 edges, 133112 markings/sec, 380 secs
lola: 50916196 markings, 93324515 edges, 140562 markings/sec, 385 secs
lola: 51603741 markings, 94573242 edges, 137509 markings/sec, 390 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown unknown unknown unknown unknown unknown unknown unknown
lola: memory consumption: 10742512 KB
lola: time consumption: 400 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 2 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p1... (shortened)
lola: processed formula length: 5218
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 802 markings, 801 edges
lola: ========================================
lola: subprocess 3 will run for 452 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (X ((1 <= p600)) AND ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 3 will run for 452 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((1 <= p600))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((1 <= p600))
lola: processed formula length: 15
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 4 will run for 528 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455... (shortened)
lola: processed formula length: 6817
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 203 markings, 204 edges
lola: ========================================
lola: subprocess 5 will run for 633 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F (G ((F (((1 <= p600))) AND (1 <= p600))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F (G ((F (((1 <= p600))) AND (1 <= p600))))
lola: processed formula length: 43
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 203 markings, 204 edges
lola: ========================================
lola: subprocess 6 will run for 792 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456... (shortened)
lola: processed formula length: 1415
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: subprocess 7 will run for 1056 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F ((G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F ((G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + ... (shortened)
lola: processed formula length: 2712
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 2 markings, 1 edges
lola: ========================================
lola: subprocess 8 will run for 1584 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p1... (shortened)
lola: processed formula length: 8216
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 2 markings, 1 edges
lola: ========================================
lola: subprocess 9 will run for 3169 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: ((G ((p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p2... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: ((G ((p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p2... (shortened)
lola: processed formula length: 8224
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 15 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 146869 markings, 1738482 edges, 29374 markings/sec, 0 secs
lola: 291765 markings, 3593728 edges, 28979 markings/sec, 5 secs
lola: 421324 markings, 5457656 edges, 25912 markings/sec, 10 secs
lola: 551837 markings, 7310426 edges, 26103 markings/sec, 15 secs
lola: 686442 markings, 9161155 edges, 26921 markings/sec, 20 secs
lola: 803403 markings, 11014787 edges, 23392 markings/sec, 25 secs
lola: 936658 markings, 12878980 edges, 26651 markings/sec, 30 secs
lola: 1054725 markings, 14746451 edges, 23613 markings/sec, 35 secs
lola: 1172414 markings, 16613852 edges, 23538 markings/sec, 40 secs
lola: 1284197 markings, 18482435 edges, 22357 markings/sec, 45 secs
lola: 1385376 markings, 20352688 edges, 20236 markings/sec, 50 secs
lola: 1496337 markings, 22212496 edges, 22192 markings/sec, 55 secs
lola: 1635599 markings, 24048398 edges, 27852 markings/sec, 60 secs
lola: 1759163 markings, 25888030 edges, 24713 markings/sec, 65 secs
lola: 1885697 markings, 27733268 edges, 25307 markings/sec, 70 secs
lola: 2000947 markings, 29585503 edges, 23050 markings/sec, 75 secs
lola: 2123731 markings, 31435351 edges, 24557 markings/sec, 80 secs
lola: 2234736 markings, 33289668 edges, 22201 markings/sec, 85 secs
lola: 2341525 markings, 35138507 edges, 21358 markings/sec, 90 secs
lola: 2438961 markings, 36977606 edges, 19487 markings/sec, 95 secs
lola: 2566952 markings, 38823297 edges, 25598 markings/sec, 100 secs
lola: 2683695 markings, 40673443 edges, 23349 markings/sec, 105 secs
lola: 2801969 markings, 42522003 edges, 23655 markings/sec, 110 secs
lola: 2914975 markings, 44368490 edges, 22601 markings/sec, 115 secs
lola: 3015648 markings, 46147486 edges, 20135 markings/sec, 120 secs
lola: 3106251 markings, 47887371 edges, 18121 markings/sec, 125 secs
lola: 3225186 markings, 49705465 edges, 23787 markings/sec, 130 secs
lola: 3338040 markings, 51570342 edges, 22571 markings/sec, 135 secs
lola: 3444723 markings, 53428437 edges, 21337 markings/sec, 140 secs
lola: 3540856 markings, 55271726 edges, 19227 markings/sec, 145 secs
lola: 3650876 markings, 57128068 edges, 22004 markings/sec, 150 secs
lola: 3758232 markings, 58991747 edges, 21471 markings/sec, 155 secs
lola: 3851853 markings, 60835895 edges, 18724 markings/sec, 160 secs
lola: 3959289 markings, 62700504 edges, 21487 markings/sec, 165 secs
lola: 4052777 markings, 64539001 edges, 18698 markings/sec, 170 secs
lola: 4151253 markings, 66395806 edges, 19695 markings/sec, 175 secs
lola: 4243990 markings, 68249699 edges, 18547 markings/sec, 180 secs
lola: 4324957 markings, 69962722 edges, 16193 markings/sec, 185 secs
lola: 4402684 markings, 71724821 edges, 15545 markings/sec, 190 secs
lola: 4527027 markings, 73546897 edges, 24869 markings/sec, 195 secs
lola: 4659256 markings, 75366819 edges, 26446 markings/sec, 200 secs
lola: 4778593 markings, 77189114 edges, 23867 markings/sec, 205 secs
lola: 4904398 markings, 79024451 edges, 25161 markings/sec, 210 secs
lola: 5022234 markings, 80859044 edges, 23567 markings/sec, 215 secs
lola: 5130815 markings, 82613850 edges, 21716 markings/sec, 220 secs
lola: 5233562 markings, 84356191 edges, 20549 markings/sec, 225 secs
lola: 5330926 markings, 86155898 edges, 19473 markings/sec, 230 secs
lola: 5438612 markings, 87975732 edges, 21537 markings/sec, 235 secs
lola: 5565133 markings, 89810103 edges, 25304 markings/sec, 240 secs
lola: 5675956 markings, 91545165 edges, 22165 markings/sec, 245 secs
lola: 5783632 markings, 93273970 edges, 21535 markings/sec, 250 secs
lola: 5893735 markings, 95110334 edges, 22021 markings/sec, 255 secs
lola: 5992628 markings, 96929204 edges, 19779 markings/sec, 260 secs
lola: 6095569 markings, 98740734 edges, 20588 markings/sec, 265 secs
lola: 6211155 markings, 100594526 edges, 23117 markings/sec, 270 secs
lola: 6325160 markings, 102449724 edges, 22801 markings/sec, 275 secs
lola: 6427686 markings, 104298253 edges, 20505 markings/sec, 280 secs
lola: 6525964 markings, 106128377 edges, 19656 markings/sec, 285 secs
lola: 6637725 markings, 107979643 edges, 22352 markings/sec, 290 secs
lola: 6738470 markings, 109829545 edges, 20149 markings/sec, 295 secs
lola: 6837372 markings, 111666150 edges, 19780 markings/sec, 300 secs
lola: 6938614 markings, 113518785 edges, 20248 markings/sec, 305 secs
lola: 7033136 markings, 115352632 edges, 18904 markings/sec, 310 secs
lola: 7125617 markings, 117190296 edges, 18496 markings/sec, 315 secs
lola: 7211908 markings, 118917403 edges, 17258 markings/sec, 320 secs
lola: 7296623 markings, 120683578 edges, 16943 markings/sec, 325 secs
lola: 7375114 markings, 122502173 edges, 15698 markings/sec, 330 secs
lola: 7508203 markings, 124343191 edges, 26618 markings/sec, 335 secs
lola: 7624710 markings, 126178284 edges, 23301 markings/sec, 340 secs
lola: 7739849 markings, 128014212 edges, 23028 markings/sec, 345 secs
lola: 7850732 markings, 129851005 edges, 22177 markings/sec, 350 secs
lola: 7951342 markings, 131682207 edges, 20122 markings/sec, 355 secs
lola: 8052606 markings, 133503376 edges, 20253 markings/sec, 360 secs
lola: 8168743 markings, 135363674 edges, 23227 markings/sec, 365 secs
lola: 8283138 markings, 137218477 edges, 22879 markings/sec, 370 secs
lola: 8386756 markings, 139071891 edges, 20724 markings/sec, 375 secs
lola: 8484820 markings, 140911365 edges, 19613 markings/sec, 380 secs
lola: 8597215 markings, 142768032 edges, 22479 markings/sec, 385 secs
lola: 8698984 markings, 144617427 edges, 20354 markings/sec, 390 secs
lola: 8797233 markings, 146455576 edges, 19650 markings/sec, 395 secs
lola: 8893550 markings, 148200229 edges, 19263 markings/sec, 400 secs
lola: 8984595 markings, 149966734 edges, 18209 markings/sec, 405 secs
lola: 9078923 markings, 151810992 edges, 18866 markings/sec, 410 secs
lola: 9170486 markings, 153654230 edges, 18313 markings/sec, 415 secs
lola: 9258800 markings, 155497323 edges, 17663 markings/sec, 420 secs
lola: 9336177 markings, 157332942 edges, 15475 markings/sec, 425 secs
lola: 9449437 markings, 159017721 edges, 22652 markings/sec, 430 secs
lola: 9557563 markings, 160800574 edges, 21625 markings/sec, 435 secs
lola: 9664444 markings, 162662349 edges, 21376 markings/sec, 440 secs
lola: 9760985 markings, 164513616 edges, 19308 markings/sec, 445 secs
lola: 9860717 markings, 166176744 edges, 19946 markings/sec, 450 secs
lola: 9965021 markings, 167992083 edges, 20861 markings/sec, 455 secs
lola: 10057131 markings, 169773146 edges, 18422 markings/sec, 460 secs
lola: 10162182 markings, 171622602 edges, 21010 markings/sec, 465 secs
lola: 10246866 markings, 173260481 edges, 16937 markings/sec, 470 secs
lola: 10342527 markings, 175063441 edges, 19132 markings/sec, 475 secs
lola: 10430274 markings, 176810356 edges, 17549 markings/sec, 480 secs
lola: 10516240 markings, 178573590 edges, 17193 markings/sec, 485 secs
lola: 10595602 markings, 180320198 edges, 15872 markings/sec, 490 secs
lola: 10686277 markings, 182105531 edges, 18135 markings/sec, 495 secs
lola: 10790215 markings, 183888067 edges, 20788 markings/sec, 500 secs
lola: 10887988 markings, 185698921 edges, 19555 markings/sec, 505 secs
lola: 10990209 markings, 187573312 edges, 20444 markings/sec, 510 secs
lola: 11088324 markings, 189391447 edges, 19623 markings/sec, 515 secs
lola: 11180245 markings, 191146279 edges, 18384 markings/sec, 520 secs
lola: 11271224 markings, 192956369 edges, 18196 markings/sec, 525 secs
lola: 11363793 markings, 194823068 edges, 18514 markings/sec, 530 secs
lola: 11450605 markings, 196685550 edges, 17362 markings/sec, 535 secs
lola: 11530384 markings, 198418107 edges, 15956 markings/sec, 540 secs
lola: 11631867 markings, 200235957 edges, 20297 markings/sec, 545 secs
lola: 11728185 markings, 202098347 edges, 19264 markings/sec, 550 secs
lola: 11823836 markings, 203967963 edges, 19130 markings/sec, 555 secs
lola: 11910286 markings, 205695773 edges, 17290 markings/sec, 560 secs
lola: 11996869 markings, 207505111 edges, 17317 markings/sec, 565 secs
lola: 12073734 markings, 209309128 edges, 15373 markings/sec, 570 secs
lola: 12171157 markings, 211144134 edges, 19485 markings/sec, 575 secs
lola: 12262501 markings, 212963969 edges, 18269 markings/sec, 580 secs
lola: 12348958 markings, 214774803 edges, 17291 markings/sec, 585 secs
lola: 12430130 markings, 216588420 edges, 16234 markings/sec, 590 secs
lola: 12517179 markings, 218404007 edges, 17410 markings/sec, 595 secs
lola: 12603139 markings, 220220246 edges, 17192 markings/sec, 600 secs
lola: 12684021 markings, 222038082 edges, 16176 markings/sec, 605 secs
lola: 12766758 markings, 223838752 edges, 16547 markings/sec, 610 secs
lola: 12847330 markings, 225659527 edges, 16114 markings/sec, 615 secs
lola: 12927142 markings, 227463072 edges, 15962 markings/sec, 620 secs
lola: 13004038 markings, 229262513 edges, 15379 markings/sec, 625 secs
lola: 13077282 markings, 231056379 edges, 14649 markings/sec, 630 secs
lola: 13152950 markings, 232820150 edges, 15134 markings/sec, 635 secs
lola: 13234398 markings, 234562546 edges, 16290 markings/sec, 640 secs
lola: 13315823 markings, 236310790 edges, 16285 markings/sec, 645 secs
lola: 13397748 markings, 238066985 edges, 16385 markings/sec, 650 secs
lola: 13479346 markings, 239821561 edges, 16320 markings/sec, 655 secs
lola: 13602549 markings, 241581006 edges, 24641 markings/sec, 660 secs
lola: 13721919 markings, 243215502 edges, 23874 markings/sec, 665 secs
lola: 13815893 markings, 244730041 edges, 18795 markings/sec, 670 secs
lola: 13928476 markings, 246281990 edges, 22517 markings/sec, 675 secs
lola: 14030863 markings, 247946108 edges, 20477 markings/sec, 680 secs
lola: 14146119 markings, 249670990 edges, 23051 markings/sec, 685 secs
lola: 14242617 markings, 251239302 edges, 19300 markings/sec, 690 secs
lola: 14333047 markings, 252803052 edges, 18086 markings/sec, 695 secs
lola: 14420232 markings, 254445449 edges, 17437 markings/sec, 700 secs
lola: 14511467 markings, 255995675 edges, 18247 markings/sec, 705 secs
lola: 14622900 markings, 257568970 edges, 22287 markings/sec, 710 secs
lola: 14721667 markings, 259138364 edges, 19753 markings/sec, 715 secs
lola: 14829660 markings, 260839549 edges, 21599 markings/sec, 720 secs
lola: 14932542 markings, 262543464 edges, 20576 markings/sec, 725 secs
lola: 15024004 markings, 264112465 edges, 18292 markings/sec, 730 secs
lola: 15106844 markings, 265686816 edges, 16568 markings/sec, 735 secs
lola: 15212983 markings, 267399233 edges, 21228 markings/sec, 740 secs
lola: 15326495 markings, 269231372 edges, 22702 markings/sec, 745 secs
lola: 15433834 markings, 271062545 edges, 21468 markings/sec, 750 secs
lola: 15532104 markings, 272883961 edges, 19654 markings/sec, 755 secs
lola: 15635294 markings, 274688636 edges, 20638 markings/sec, 760 secs
lola: 15741166 markings, 276517364 edges, 21174 markings/sec, 765 secs
lola: 15838805 markings, 278337857 edges, 19528 markings/sec, 770 secs
lola: 15937634 markings, 280143925 edges, 19766 markings/sec, 775 secs
lola: 16031672 markings, 281881911 edges, 18808 markings/sec, 780 secs
lola: 16112940 markings, 283450428 edges, 16254 markings/sec, 785 secs
lola: 16196159 markings, 285079413 edges, 16644 markings/sec, 790 secs
lola: 16278735 markings, 286718211 edges, 16515 markings/sec, 795 secs
lola: 16353029 markings, 288286212 edges, 14859 markings/sec, 800 secs
lola: 16423263 markings, 289856850 edges, 14047 markings/sec, 805 secs
lola: 16518531 markings, 291453356 edges, 19054 markings/sec, 810 secs
lola: 16637837 markings, 293242708 edges, 23861 markings/sec, 815 secs
lola: 16743759 markings, 294875834 edges, 21184 markings/sec, 820 secs
lola: 16846790 markings, 296535348 edges, 20606 markings/sec, 825 secs
lola: 16951443 markings, 298330902 edges, 20931 markings/sec, 830 secs
lola: 17049278 markings, 300143157 edges, 19567 markings/sec, 835 secs
lola: 17155072 markings, 301943737 edges, 21159 markings/sec, 840 secs
lola: 17270506 markings, 303782176 edges, 23087 markings/sec, 845 secs
lola: 17381397 markings, 305619693 edges, 22178 markings/sec, 850 secs
lola: 17481652 markings, 307455228 edges, 20051 markings/sec, 855 secs
lola: 17580605 markings, 309262506 edges, 19791 markings/sec, 860 secs
lola: 17690458 markings, 311096445 edges, 21971 markings/sec, 865 secs
lola: 17789367 markings, 312924652 edges, 19782 markings/sec, 870 secs
lola: 17887577 markings, 314738251 edges, 19642 markings/sec, 875 secs
lola: 17987390 markings, 316571694 edges, 19963 markings/sec, 880 secs
lola: 18081361 markings, 318388143 edges, 18794 markings/sec, 885 secs
lola: 18172640 markings, 320201718 edges, 18256 markings/sec, 890 secs
lola: 18263576 markings, 322018876 edges, 18187 markings/sec, 895 secs
lola: 18348352 markings, 323831273 edges, 16955 markings/sec, 900 secs
lola: 18431436 markings, 325633799 edges, 16617 markings/sec, 905 secs
lola: 18537973 markings, 327264738 edges, 21307 markings/sec, 910 secs
lola: 18637022 markings, 328890778 edges, 19810 markings/sec, 915 secs
lola: 18732275 markings, 330536661 edges, 19051 markings/sec, 920 secs
lola: 18825646 markings, 332312000 edges, 18674 markings/sec, 925 secs
lola: 18932675 markings, 334133276 edges, 21406 markings/sec, 930 secs
lola: 19038610 markings, 335968880 edges, 21187 markings/sec, 935 secs
lola: 19132884 markings, 337788480 edges, 18855 markings/sec, 940 secs
lola: 19236563 markings, 339616142 edges, 20736 markings/sec, 945 secs
lola: 19330308 markings, 341436562 edges, 18749 markings/sec, 950 secs
lola: 19427285 markings, 343260241 edges, 19395 markings/sec, 955 secs
lola: 19518642 markings, 345076681 edges, 18271 markings/sec, 960 secs
lola: 19606161 markings, 346886386 edges, 17504 markings/sec, 965 secs
lola: 19687887 markings, 348701253 edges, 16345 markings/sec, 970 secs
lola: 19785756 markings, 350525263 edges, 19574 markings/sec, 975 secs
lola: 19892888 markings, 352377909 edges, 21426 markings/sec, 980 secs
lola: 19989459 markings, 354217796 edges, 19314 markings/sec, 985 secs
lola: 20092111 markings, 356057043 edges, 20530 markings/sec, 990 secs
lola: 20188572 markings, 357895194 edges, 19292 markings/sec, 995 secs
lola: 20285872 markings, 359735064 edges, 19460 markings/sec, 1000 secs
lola: 20377993 markings, 361568668 edges, 18424 markings/sec, 1005 secs
lola: 20467266 markings, 363397209 edges, 17855 markings/sec, 1010 secs
lola: 20549694 markings, 365228528 edges, 16486 markings/sec, 1015 secs
lola: 20641932 markings, 367067581 edges, 18448 markings/sec, 1020 secs
lola: 20742021 markings, 368924836 edges, 20018 markings/sec, 1025 secs
lola: 20839254 markings, 370773988 edges, 19447 markings/sec, 1030 secs
lola: 20931897 markings, 372617566 edges, 18529 markings/sec, 1035 secs
lola: 21022677 markings, 374456926 edges, 18156 markings/sec, 1040 secs
lola: 21107705 markings, 376290362 edges, 17006 markings/sec, 1045 secs
lola: 21192181 markings, 378119778 edges, 16895 markings/sec, 1050 secs
lola: 21285682 markings, 379966732 edges, 18700 markings/sec, 1055 secs
lola: 21376870 markings, 381810050 edges, 18238 markings/sec, 1060 secs
lola: 21465111 markings, 383651068 edges, 17648 markings/sec, 1065 secs
lola: 21544341 markings, 385480426 edges, 15846 markings/sec, 1070 secs
lola: 21636412 markings, 387332188 edges, 18414 markings/sec, 1075 secs
lola: 21722521 markings, 389175314 edges, 17222 markings/sec, 1080 secs
lola: 21802886 markings, 391006879 edges, 16073 markings/sec, 1085 secs
lola: 21888424 markings, 392840738 edges, 17108 markings/sec, 1090 secs
lola: 21967574 markings, 394663890 edges, 15830 markings/sec, 1095 secs
lola: 22045706 markings, 396493823 edges, 15626 markings/sec, 1100 secs
lola: 22122791 markings, 398309300 edges, 15417 markings/sec, 1105 secs
lola: 22196698 markings, 400126947 edges, 14781 markings/sec, 1110 secs
lola: 22279981 markings, 401927151 edges, 16657 markings/sec, 1115 secs
lola: 22364756 markings, 403743897 edges, 16955 markings/sec, 1120 secs
lola: 22446838 markings, 405551410 edges, 16416 markings/sec, 1125 secs
lola: 22526409 markings, 407351918 edges, 15914 markings/sec, 1130 secs
lola: 22655068 markings, 409180866 edges, 25732 markings/sec, 1135 secs
lola: 22772350 markings, 411011125 edges, 23456 markings/sec, 1140 secs
lola: 22885372 markings, 412836829 edges, 22604 markings/sec, 1145 secs
lola: 22998446 markings, 414665718 edges, 22615 markings/sec, 1150 secs
lola: 23100065 markings, 416485689 edges, 20324 markings/sec, 1155 secs
lola: 23193483 markings, 418280904 edges, 18684 markings/sec, 1160 secs
lola: 23315393 markings, 420124634 edges, 24382 markings/sec, 1165 secs
lola: 23425828 markings, 421963244 edges, 22087 markings/sec, 1170 secs
lola: 23531824 markings, 423799794 edges, 21199 markings/sec, 1175 secs
lola: 23625060 markings, 425610348 edges, 18647 markings/sec, 1180 secs
lola: 23736816 markings, 427446390 edges, 22351 markings/sec, 1185 secs
lola: 23840741 markings, 429279279 edges, 20785 markings/sec, 1190 secs
lola: 23933315 markings, 431084540 edges, 18515 markings/sec, 1195 secs
lola: 24038133 markings, 432919284 edges, 20964 markings/sec, 1200 secs
lola: 24129777 markings, 434725329 edges, 18329 markings/sec, 1205 secs
lola: 24226385 markings, 436551055 edges, 19322 markings/sec, 1210 secs
lola: 24317164 markings, 438363138 edges, 18156 markings/sec, 1215 secs
lola: 24402706 markings, 440173086 edges, 17108 markings/sec, 1220 secs
lola: 24482070 markings, 441982877 edges, 15873 markings/sec, 1225 secs
lola: 24595858 markings, 443812030 edges, 22758 markings/sec, 1230 secs
lola: 24708811 markings, 445656287 edges, 22591 markings/sec, 1235 secs
lola: 24814922 markings, 447494564 edges, 21222 markings/sec, 1240 secs
lola: 24910630 markings, 449319594 edges, 19142 markings/sec, 1245 secs
lola: 25018398 markings, 451147468 edges, 21554 markings/sec, 1250 secs
lola: 25124071 markings, 452986007 edges, 21135 markings/sec, 1255 secs
lola: 25217992 markings, 454803899 edges, 18784 markings/sec, 1260 secs
lola: 25322303 markings, 456637060 edges, 20862 markings/sec, 1265 secs
lola: 25415588 markings, 458458004 edges, 18657 markings/sec, 1270 secs
lola: 25513109 markings, 460286271 edges, 19504 markings/sec, 1275 secs
lola: 25593470 markings, 461888582 edges, 16072 markings/sec, 1280 secs
lola: 25669988 markings, 463457777 edges, 15304 markings/sec, 1285 secs
lola: 25742495 markings, 465033837 edges, 14501 markings/sec, 1290 secs
lola: 25827984 markings, 466841744 edges, 17098 markings/sec, 1295 secs
lola: 25939383 markings, 468699939 edges, 22280 markings/sec, 1300 secs
lola: 26039902 markings, 470547954 edges, 20104 markings/sec, 1305 secs
lola: 26139205 markings, 472383483 edges, 19861 markings/sec, 1310 secs
lola: 26239793 markings, 474232493 edges, 20118 markings/sec, 1315 secs
lola: 26335056 markings, 476069777 edges, 19053 markings/sec, 1320 secs
lola: 26427863 markings, 477908772 edges, 18561 markings/sec, 1325 secs
lola: 26519426 markings, 479749475 edges, 18313 markings/sec, 1330 secs
lola: 26604835 markings, 481580705 edges, 17082 markings/sec, 1335 secs
lola: 26688437 markings, 483402874 edges, 16720 markings/sec, 1340 secs
lola: 26792367 markings, 485258071 edges, 20786 markings/sec, 1345 secs
lola: 26872601 markings, 486845272 edges, 16047 markings/sec, 1350 secs
lola: 26957826 markings, 488440618 edges, 17045 markings/sec, 1355 secs
lola: 27037433 markings, 490024406 edges, 15921 markings/sec, 1360 secs
lola: 27114589 markings, 491609313 edges, 15431 markings/sec, 1365 secs
lola: 27187482 markings, 493192584 edges, 14579 markings/sec, 1370 secs
lola: 27256955 markings, 494764778 edges, 13895 markings/sec, 1375 secs
lola: 27346796 markings, 496468143 edges, 17968 markings/sec, 1380 secs
lola: 27438709 markings, 498301800 edges, 18383 markings/sec, 1385 secs
lola: 27525272 markings, 500132847 edges, 17313 markings/sec, 1390 secs
lola: 27605181 markings, 501958199 edges, 15982 markings/sec, 1395 secs
lola: 27694559 markings, 503784463 edges, 17876 markings/sec, 1400 secs
lola: 27782044 markings, 505616847 edges, 17497 markings/sec, 1405 secs
lola: 27860075 markings, 507445374 edges, 15606 markings/sec, 1410 secs
lola: 27947356 markings, 509270372 edges, 17456 markings/sec, 1415 secs
lola: 28024540 markings, 511095903 edges, 15437 markings/sec, 1420 secs
lola: 28106220 markings, 512921715 edges, 16336 markings/sec, 1425 secs
lola: 28182987 markings, 514741490 edges, 15353 markings/sec, 1430 secs
lola: 28257486 markings, 516553382 edges, 14900 markings/sec, 1435 secs
lola: 28337730 markings, 518359875 edges, 16049 markings/sec, 1440 secs
lola: 28420257 markings, 520166725 edges, 16505 markings/sec, 1445 secs
lola: 28499979 markings, 521963860 edges, 15944 markings/sec, 1450 secs
lola: 28582083 markings, 523755352 edges, 16421 markings/sec, 1455 secs
lola: 28700979 markings, 525603889 edges, 23779 markings/sec, 1460 secs
lola: 28813260 markings, 527447446 edges, 22456 markings/sec, 1465 secs
lola: 28917835 markings, 529289981 edges, 20915 markings/sec, 1470 secs
lola: 29010122 markings, 531106776 edges, 18457 markings/sec, 1475 secs
lola: 29124299 markings, 532949729 edges, 22835 markings/sec, 1480 secs
lola: 29226876 markings, 534789611 edges, 20515 markings/sec, 1485 secs
lola: 29322406 markings, 536608213 edges, 19106 markings/sec, 1490 secs
lola: 29425855 markings, 538452916 edges, 20690 markings/sec, 1495 secs
lola: 29519684 markings, 540274112 edges, 18766 markings/sec, 1500 secs
lola: 29613999 markings, 542098738 edges, 18863 markings/sec, 1505 secs
lola: 29704568 markings, 543917724 edges, 18114 markings/sec, 1510 secs
lola: 29791237 markings, 545730138 edges, 17334 markings/sec, 1515 secs
lola: 29868574 markings, 547541310 edges, 15467 markings/sec, 1520 secs
lola: 29979184 markings, 549385517 edges, 22122 markings/sec, 1525 secs
lola: 30084664 markings, 551242844 edges, 21096 markings/sec, 1530 secs
lola: 30179383 markings, 553082144 edges, 18944 markings/sec, 1535 secs
lola: 30284992 markings, 554940064 edges, 21122 markings/sec, 1540 secs
lola: 30378581 markings, 556779459 edges, 18718 markings/sec, 1545 secs
lola: 30475553 markings, 558625081 edges, 19394 markings/sec, 1550 secs
lola: 30567351 markings, 560464136 edges, 18360 markings/sec, 1555 secs
lola: 30654821 markings, 562300818 edges, 17494 markings/sec, 1560 secs
lola: 30733526 markings, 564136011 edges, 15741 markings/sec, 1565 secs
lola: 30837310 markings, 565980704 edges, 20757 markings/sec, 1570 secs
lola: 30931158 markings, 567818737 edges, 18770 markings/sec, 1575 secs
lola: 31029988 markings, 569666687 edges, 19766 markings/sec, 1580 secs
lola: 31122474 markings, 571508628 edges, 18497 markings/sec, 1585 secs
lola: 31209342 markings, 573346947 edges, 17374 markings/sec, 1590 secs
lola: 31292015 markings, 575190962 edges, 16535 markings/sec, 1595 secs
lola: 31385520 markings, 577033536 edges, 18701 markings/sec, 1600 secs
lola: 31478178 markings, 578872564 edges, 18532 markings/sec, 1605 secs
lola: 31567874 markings, 580711086 edges, 17939 markings/sec, 1610 secs
lola: 31650747 markings, 582547964 edges, 16575 markings/sec, 1615 secs
lola: 31736309 markings, 584380311 edges, 17112 markings/sec, 1620 secs
lola: 31824841 markings, 586216446 edges, 17706 markings/sec, 1625 secs
lola: 31907369 markings, 588053153 edges, 16506 markings/sec, 1630 secs
lola: 31990107 markings, 589880125 edges, 16548 markings/sec, 1635 secs
lola: 32072061 markings, 591710334 edges, 16391 markings/sec, 1640 secs
lola: 32152716 markings, 593530256 edges, 16131 markings/sec, 1645 secs
lola: 32229375 markings, 595351390 edges, 15332 markings/sec, 1650 secs
lola: 32305070 markings, 597173586 edges, 15139 markings/sec, 1655 secs
lola: 32381021 markings, 598970559 edges, 15190 markings/sec, 1660 secs
lola: 32461871 markings, 600761501 edges, 16170 markings/sec, 1665 secs
lola: 32539707 markings, 602550370 edges, 15567 markings/sec, 1670 secs
lola: 32621384 markings, 604340687 edges, 16335 markings/sec, 1675 secs
lola: 32733493 markings, 606198172 edges, 22422 markings/sec, 1680 secs
lola: 32834683 markings, 608050061 edges, 20238 markings/sec, 1685 secs
lola: 32933337 markings, 609887947 edges, 19731 markings/sec, 1690 secs
lola: 33034966 markings, 611741734 edges, 20326 markings/sec, 1695 secs
lola: 33129628 markings, 613578856 edges, 18932 markings/sec, 1700 secs
lola: 33222104 markings, 615421234 edges, 18495 markings/sec, 1705 secs
lola: 33314726 markings, 617260855 edges, 18524 markings/sec, 1710 secs
lola: 33401092 markings, 619102572 edges, 17273 markings/sec, 1715 secs
lola: 33483814 markings, 620927274 edges, 16544 markings/sec, 1720 secs
lola: 33581961 markings, 622656599 edges, 19629 markings/sec, 1725 secs
lola: 33672077 markings, 624439494 edges, 18023 markings/sec, 1730 secs
lola: 33768248 markings, 626251054 edges, 19234 markings/sec, 1735 secs
lola: 33849426 markings, 627867423 edges, 16236 markings/sec, 1740 secs
lola: 33923909 markings, 629409290 edges, 14897 markings/sec, 1745 secs
lola: 33997094 markings, 631033639 edges, 14637 markings/sec, 1750 secs
lola: 34082725 markings, 632841861 edges, 17126 markings/sec, 1755 secs
lola: 34175490 markings, 634679716 edges, 18553 markings/sec, 1760 secs
lola: 34267120 markings, 636512522 edges, 18326 markings/sec, 1765 secs
lola: 34352208 markings, 638337284 edges, 17018 markings/sec, 1770 secs
lola: 34433384 markings, 640162295 edges, 16235 markings/sec, 1775 secs
lola: 34520800 markings, 641935649 edges, 17483 markings/sec, 1780 secs
lola: 34596960 markings, 643565278 edges, 15232 markings/sec, 1785 secs
lola: 34668479 markings, 645244054 edges, 14304 markings/sec, 1790 secs
lola: 34752126 markings, 646985568 edges, 16729 markings/sec, 1795 secs
lola: 34828176 markings, 648789801 edges, 15210 markings/sec, 1800 secs
lola: 34903148 markings, 650445802 edges, 14994 markings/sec, 1805 secs
lola: 34971660 markings, 652064256 edges, 13702 markings/sec, 1810 secs
lola: 35037212 markings, 653661800 edges, 13110 markings/sec, 1815 secs
lola: 35108928 markings, 655351560 edges, 14343 markings/sec, 1820 secs
lola: 35176456 markings, 656887492 edges, 13506 markings/sec, 1825 secs
lola: 35239582 markings, 658382837 edges, 12625 markings/sec, 1830 secs
lola: 35315678 markings, 660087439 edges, 15219 markings/sec, 1835 secs
lola: 35419351 markings, 661940215 edges, 20735 markings/sec, 1840 secs
lola: 35513434 markings, 663764592 edges, 18817 markings/sec, 1845 secs
lola: 35608135 markings, 665601316 edges, 18940 markings/sec, 1850 secs
lola: 35699396 markings, 667433934 edges, 18252 markings/sec, 1855 secs
lola: 35786716 markings, 669255153 edges, 17464 markings/sec, 1860 secs
lola: 35863604 markings, 671068838 edges, 15378 markings/sec, 1865 secs
lola: 35961346 markings, 672901206 edges, 19548 markings/sec, 1870 secs
lola: 36050007 markings, 674668490 edges, 17732 markings/sec, 1875 secs
lola: 36131854 markings, 676369055 edges, 16369 markings/sec, 1880 secs
lola: 36210702 markings, 678113168 edges, 15770 markings/sec, 1885 secs
lola: 36295680 markings, 679926762 edges, 16996 markings/sec, 1890 secs
lola: 36382920 markings, 681749502 edges, 17448 markings/sec, 1895 secs
lola: 36464190 markings, 683561555 edges, 16254 markings/sec, 1900 secs
lola: 36546396 markings, 685372942 edges, 16441 markings/sec, 1905 secs
lola: 36627882 markings, 687194761 edges, 16297 markings/sec, 1910 secs
lola: 36708271 markings, 689005818 edges, 16078 markings/sec, 1915 secs
lola: 36780403 markings, 690712359 edges, 14426 markings/sec, 1920 secs
lola: 36850197 markings, 692394419 edges, 13959 markings/sec, 1925 secs
lola: 36921910 markings, 694130785 edges, 14343 markings/sec, 1930 secs
lola: 36996228 markings, 695860311 edges, 14864 markings/sec, 1935 secs
lola: 37065900 markings, 697577190 edges, 13934 markings/sec, 1940 secs
lola: 37154614 markings, 699370464 edges, 17743 markings/sec, 1945 secs
lola: 37246319 markings, 701198195 edges, 18341 markings/sec, 1950 secs
lola: 37336799 markings, 703032962 edges, 18096 markings/sec, 1955 secs
lola: 37420485 markings, 704857441 edges, 16737 markings/sec, 1960 secs
lola: 37503564 markings, 706673675 edges, 16616 markings/sec, 1965 secs
lola: 37592708 markings, 708501430 edges, 17829 markings/sec, 1970 secs
lola: 37674850 markings, 710322646 edges, 16428 markings/sec, 1975 secs
lola: 37757292 markings, 712137643 edges, 16488 markings/sec, 1980 secs
lola: 37839454 markings, 713963433 edges, 16432 markings/sec, 1985 secs
lola: 37918240 markings, 715777752 edges, 15757 markings/sec, 1990 secs
lola: 37996399 markings, 717587485 edges, 15632 markings/sec, 1995 secs
lola: 38071532 markings, 719398070 edges, 15027 markings/sec, 2000 secs
lola: 38144542 markings, 721174433 edges, 14602 markings/sec, 2005 secs
lola: 38216299 markings, 722907183 edges, 14351 markings/sec, 2010 secs
lola: 38283660 markings, 724625978 edges, 13472 markings/sec, 2015 secs
lola: 38367208 markings, 726307683 edges, 16710 markings/sec, 2020 secs
lola: 38448887 markings, 728014210 edges, 16336 markings/sec, 2025 secs
lola: 38527195 markings, 729835739 edges, 15662 markings/sec, 2030 secs
lola: 38613520 markings, 731655568 edges, 17265 markings/sec, 2035 secs
lola: 38686236 markings, 733348923 edges, 14543 markings/sec, 2040 secs
lola: 38761096 markings, 735026105 edges, 14972 markings/sec, 2045 secs
lola: 38837051 markings, 736808587 edges, 15191 markings/sec, 2050 secs
lola: 38910444 markings, 738607862 edges, 14679 markings/sec, 2055 secs
lola: 38983729 markings, 740374560 edges, 14657 markings/sec, 2060 secs
lola: 39051407 markings, 742104364 edges, 13536 markings/sec, 2065 secs
lola: 39120366 markings, 743699201 edges, 13792 markings/sec, 2070 secs
lola: 39198614 markings, 745417258 edges, 15650 markings/sec, 2075 secs
lola: 39277221 markings, 747226963 edges, 15721 markings/sec, 2080 secs
lola: 39354241 markings, 749036240 edges, 15404 markings/sec, 2085 secs
lola: 39430927 markings, 750846124 edges, 15337 markings/sec, 2090 secs
lola: 39503161 markings, 752636286 edges, 14447 markings/sec, 2095 secs
lola: 39571145 markings, 754364557 edges, 13597 markings/sec, 2100 secs
lola: 39642555 markings, 756117145 edges, 14282 markings/sec, 2105 secs
lola: 39718499 markings, 757917940 edges, 15189 markings/sec, 2110 secs
lola: 39795623 markings, 759720792 edges, 15425 markings/sec, 2115 secs
lola: 39867823 markings, 761508479 edges, 14440 markings/sec, 2120 secs
lola: 39934527 markings, 763254223 edges, 13341 markings/sec, 2125 secs
lola: 40005543 markings, 765030139 edges, 14203 markings/sec, 2130 secs
lola: 40079316 markings, 766829141 edges, 14755 markings/sec, 2135 secs
lola: 40148974 markings, 768602116 edges, 13932 markings/sec, 2140 secs
lola: 40214095 markings, 770359392 edges, 13024 markings/sec, 2145 secs
lola: 40286515 markings, 772145268 edges, 14484 markings/sec, 2150 secs
lola: 40348014 markings, 773904341 edges, 12300 markings/sec, 2155 secs
lola: 40417496 markings, 775693137 edges, 13896 markings/sec, 2160 secs
lola: 40481061 markings, 777459083 edges, 12713 markings/sec, 2165 secs
lola: 40541586 markings, 779230455 edges, 12105 markings/sec, 2170 secs
lola: 40600704 markings, 780969316 edges, 11824 markings/sec, 2175 secs
lola: 40709921 markings, 782686751 edges, 21843 markings/sec, 2180 secs
lola: 40838294 markings, 784454887 edges, 25675 markings/sec, 2185 secs
lola: 40947513 markings, 786198092 edges, 21844 markings/sec, 2190 secs
lola: 41067574 markings, 787863133 edges, 24012 markings/sec, 2195 secs
lola: 41173626 markings, 789537647 edges, 21210 markings/sec, 2200 secs
lola: 41285515 markings, 791309406 edges, 22378 markings/sec, 2205 secs
lola: 41393911 markings, 793081385 edges, 21679 markings/sec, 2210 secs
lola: 41494482 markings, 794846547 edges, 20114 markings/sec, 2215 secs
lola: 41586908 markings, 796592086 edges, 18485 markings/sec, 2220 secs
lola: 41709678 markings, 798370010 edges, 24554 markings/sec, 2225 secs
lola: 41819525 markings, 800148948 edges, 21969 markings/sec, 2230 secs
lola: 41938855 markings, 801935660 edges, 23866 markings/sec, 2235 secs
lola: 42046052 markings, 803713760 edges, 21439 markings/sec, 2240 secs
lola: 42147980 markings, 805482151 edges, 20386 markings/sec, 2245 secs
lola: 42240037 markings, 807226434 edges, 18411 markings/sec, 2250 secs
lola: 42352980 markings, 809008738 edges, 22589 markings/sec, 2255 secs
lola: 42464112 markings, 810811668 edges, 22226 markings/sec, 2260 secs
lola: 42567998 markings, 812600300 edges, 20777 markings/sec, 2265 secs
lola: 42661803 markings, 814373079 edges, 18761 markings/sec, 2270 secs
lola: 42764912 markings, 816141800 edges, 20622 markings/sec, 2275 secs
lola: 42869025 markings, 817935230 edges, 20823 markings/sec, 2280 secs
lola: 42963079 markings, 819711977 edges, 18811 markings/sec, 2285 secs
lola: 43060028 markings, 821484861 edges, 19390 markings/sec, 2290 secs
lola: 43156300 markings, 823264352 edges, 19254 markings/sec, 2295 secs
lola: 43249027 markings, 825025851 edges, 18545 markings/sec, 2300 secs
lola: 43336782 markings, 826778456 edges, 17551 markings/sec, 2305 secs
lola: 43423819 markings, 828537445 edges, 17407 markings/sec, 2310 secs
lola: 43505129 markings, 830280607 edges, 16262 markings/sec, 2315 secs
lola: 43583296 markings, 831996099 edges, 15633 markings/sec, 2320 secs
lola: 43711504 markings, 833791915 edges, 25642 markings/sec, 2325 secs
lola: 43824124 markings, 835568470 edges, 22524 markings/sec, 2330 secs
lola: 43935129 markings, 837345036 edges, 22201 markings/sec, 2335 secs
lola: 44043398 markings, 839120664 edges, 21654 markings/sec, 2340 secs
lola: 44140819 markings, 840882235 edges, 19484 markings/sec, 2345 secs
lola: 44230364 markings, 842607869 edges, 17909 markings/sec, 2350 secs
lola: 44350736 markings, 844417362 edges, 24074 markings/sec, 2355 secs
lola: 44459063 markings, 846219394 edges, 21665 markings/sec, 2360 secs
lola: 44557018 markings, 847908511 edges, 19591 markings/sec, 2365 secs
lola: 44650757 markings, 849700966 edges, 18748 markings/sec, 2370 secs
lola: 44756702 markings, 851489918 edges, 21189 markings/sec, 2375 secs
lola: 44851082 markings, 853110621 edges, 18876 markings/sec, 2380 secs
lola: 44933738 markings, 854694939 edges, 16531 markings/sec, 2385 secs
lola: 45023260 markings, 856327808 edges, 17904 markings/sec, 2390 secs
lola: 45115268 markings, 858023200 edges, 18402 markings/sec, 2395 secs
lola: 45208793 markings, 859813453 edges, 18705 markings/sec, 2400 secs
lola: 45298959 markings, 861608514 edges, 18033 markings/sec, 2405 secs
lola: 45381701 markings, 863278277 edges, 16548 markings/sec, 2410 secs
lola: 45456687 markings, 864837180 edges, 14997 markings/sec, 2415 secs
lola: 45524824 markings, 866431117 edges, 13627 markings/sec, 2420 secs
lola: 45634112 markings, 868159606 edges, 21858 markings/sec, 2425 secs
lola: 45738467 markings, 869858717 edges, 20871 markings/sec, 2430 secs
lola: 45828587 markings, 871430415 edges, 18024 markings/sec, 2435 secs
lola: 45914894 markings, 873008490 edges, 17261 markings/sec, 2440 secs
lola: 46003421 markings, 874620304 edges, 17705 markings/sec, 2445 secs
lola: 46101991 markings, 876257771 edges, 19714 markings/sec, 2450 secs
lola: 46188975 markings, 877823848 edges, 17397 markings/sec, 2455 secs
lola: 46267033 markings, 879375674 edges, 15612 markings/sec, 2460 secs
lola: 46358287 markings, 880941429 edges, 18251 markings/sec, 2465 secs
lola: 46439477 markings, 882502393 edges, 16238 markings/sec, 2470 secs
lola: 46525405 markings, 884127964 edges, 17186 markings/sec, 2475 secs
lola: 46600311 markings, 885641338 edges, 14981 markings/sec, 2480 secs
lola: 46681630 markings, 887288441 edges, 16264 markings/sec, 2485 secs
lola: 46765150 markings, 889017314 edges, 16704 markings/sec, 2490 secs
lola: 46838416 markings, 890747619 edges, 14653 markings/sec, 2495 secs
lola: 46941029 markings, 892445569 edges, 20523 markings/sec, 2500 secs
lola: 47038221 markings, 894139570 edges, 19438 markings/sec, 2505 secs
lola: 47122655 markings, 895779075 edges, 16887 markings/sec, 2510 secs
lola: 47220115 markings, 897492398 edges, 19492 markings/sec, 2515 secs
lola: 47306212 markings, 899137075 edges, 17219 markings/sec, 2520 secs
lola: 47393498 markings, 900791567 edges, 17457 markings/sec, 2525 secs
lola: 47479928 markings, 902512331 edges, 17286 markings/sec, 2530 secs
lola: 47565082 markings, 904241268 edges, 17031 markings/sec, 2535 secs
lola: 47641668 markings, 905895771 edges, 15317 markings/sec, 2540 secs
lola: 47709360 markings, 907489929 edges, 13538 markings/sec, 2545 secs
lola: 47810971 markings, 909242521 edges, 20322 markings/sec, 2550 secs
lola: 47898050 markings, 910952197 edges, 17416 markings/sec, 2555 secs
lola: 47985136 markings, 912570064 edges, 17417 markings/sec, 2560 secs
lola: 48071194 markings, 914280551 edges, 17212 markings/sec, 2565 secs
lola: 48149806 markings, 915892601 edges, 15722 markings/sec, 2570 secs
lola: 48227798 markings, 917581925 edges, 15598 markings/sec, 2575 secs
lola: 48303434 markings, 919252825 edges, 15127 markings/sec, 2580 secs
lola: 48391434 markings, 920943004 edges, 17600 markings/sec, 2585 secs
lola: 48473612 markings, 922581820 edges, 16436 markings/sec, 2590 secs
lola: 48553259 markings, 924268936 edges, 15929 markings/sec, 2595 secs
lola: 48627522 markings, 925909380 edges, 14853 markings/sec, 2600 secs
lola: 48708140 markings, 927613544 edges, 16124 markings/sec, 2605 secs
lola: 48786011 markings, 929218816 edges, 15574 markings/sec, 2610 secs
lola: 48861329 markings, 930889701 edges, 15064 markings/sec, 2615 secs
lola: 48938129 markings, 932603765 edges, 15360 markings/sec, 2620 secs
lola: 49016993 markings, 934319261 edges, 15773 markings/sec, 2625 secs
lola: 49082725 markings, 935854342 edges, 13146 markings/sec, 2630 secs
lola: 49155703 markings, 937537762 edges, 14596 markings/sec, 2635 secs
lola: 49220871 markings, 939068257 edges, 13034 markings/sec, 2640 secs
lola: 49285944 markings, 940650837 edges, 13015 markings/sec, 2645 secs
lola: 49360096 markings, 942364507 edges, 14830 markings/sec, 2650 secs
lola: 49432899 markings, 943921724 edges, 14561 markings/sec, 2655 secs
lola: 49505157 markings, 945472757 edges, 14452 markings/sec, 2660 secs
lola: 49573087 markings, 946982104 edges, 13586 markings/sec, 2665 secs
lola: 49639853 markings, 948492985 edges, 13353 markings/sec, 2670 secs
lola: 49745479 markings, 950032070 edges, 21125 markings/sec, 2675 secs
lola: 49845538 markings, 951575252 edges, 20012 markings/sec, 2680 secs
lola: 49944842 markings, 953107231 edges, 19861 markings/sec, 2685 secs
lola: 50039950 markings, 954644277 edges, 19022 markings/sec, 2690 secs
lola: 50132036 markings, 956186424 edges, 18417 markings/sec, 2695 secs
lola: 50218931 markings, 957752253 edges, 17379 markings/sec, 2700 secs
lola: 50302937 markings, 959364975 edges, 16801 markings/sec, 2705 secs
lola: 50408593 markings, 960962892 edges, 21131 markings/sec, 2710 secs
lola: 50512986 markings, 962664221 edges, 20879 markings/sec, 2715 secs
lola: 50617134 markings, 964464555 edges, 20830 markings/sec, 2720 secs
lola: 50711550 markings, 966246110 edges, 18883 markings/sec, 2725 secs
lola: 50815537 markings, 968023531 edges, 20797 markings/sec, 2730 secs
lola: 50919467 markings, 969826594 edges, 20786 markings/sec, 2735 secs
lola: 51013466 markings, 971601500 edges, 18800 markings/sec, 2740 secs
lola: 51110810 markings, 973369285 edges, 19469 markings/sec, 2745 secs
lola: 51206508 markings, 975161499 edges, 19140 markings/sec, 2750 secs
lola: 51300188 markings, 976935083 edges, 18736 markings/sec, 2755 secs
lola: 51389461 markings, 978712946 edges, 17855 markings/sec, 2760 secs
lola: 51477058 markings, 980489977 edges, 17519 markings/sec, 2765 secs
lola: 51559295 markings, 982259591 edges, 16447 markings/sec, 2770 secs
lola: 51644357 markings, 984019433 edges, 17012 markings/sec, 2775 secs
lola: 51756334 markings, 985818866 edges, 22395 markings/sec, 2780 secs
lola: 51867376 markings, 987612758 edges, 22208 markings/sec, 2785 secs
lola: 51968957 markings, 989418401 edges, 20316 markings/sec, 2790 secs
lola: 52058460 markings, 991181036 edges, 17901 markings/sec, 2795 secs
lola: 52169145 markings, 992963442 edges, 22137 markings/sec, 2800 secs
lola: 52268622 markings, 994728768 edges, 19895 markings/sec, 2805 secs
lola: 52358756 markings, 996489450 edges, 18027 markings/sec, 2810 secs
lola: 52461796 markings, 998291695 edges, 20608 markings/sec, 2815 secs
lola: 52551186 markings, 1000066349 edges, 17878 markings/sec, 2820 secs
lola: 52647001 markings, 1001859238 edges, 19163 markings/sec, 2825 secs
lola: 52736452 markings, 1003639086 edges, 17890 markings/sec, 2830 secs
lola: 52819981 markings, 1005412331 edges, 16706 markings/sec, 2835 secs
lola: 52899536 markings, 1007180233 edges, 15911 markings/sec, 2840 secs
lola: 52998341 markings, 1008951451 edges, 19761 markings/sec, 2845 secs
lola: 53103439 markings, 1010770013 edges, 21020 markings/sec, 2850 secs
lola: 53197403 markings, 1012578494 edges, 18793 markings/sec, 2855 secs
lola: 53292436 markings, 1014272727 edges, 19007 markings/sec, 2860 secs
lola: 53387737 markings, 1016078651 edges, 19060 markings/sec, 2865 secs
lola: 53483190 markings, 1017887116 edges, 19091 markings/sec, 2870 secs
lola: 53570612 markings, 1019630895 edges, 17484 markings/sec, 2875 secs
lola: 53653432 markings, 1021319213 edges, 16564 markings/sec, 2880 secs
lola: 53734006 markings, 1023056323 edges, 16115 markings/sec, 2885 secs
lola: 53816722 markings, 1024829816 edges, 16543 markings/sec, 2890 secs
lola: 53917868 markings, 1026652432 edges, 20229 markings/sec, 2895 secs
lola: 54010532 markings, 1028449297 edges, 18533 markings/sec, 2900 secs
lola: 54102806 markings, 1030246020 edges, 18455 markings/sec, 2905 secs
lola: 54191922 markings, 1032033410 edges, 17823 markings/sec, 2910 secs
lola: 54277431 markings, 1033819282 edges, 17102 markings/sec, 2915 secs
lola: 54353805 markings, 1035601069 edges, 15275 markings/sec, 2920 secs
lola: 54448500 markings, 1037392101 edges, 18939 markings/sec, 2925 secs
lola: 54532035 markings, 1039058870 edges, 16707 markings/sec, 2930 secs
lola: 54614142 markings, 1040743297 edges, 16421 markings/sec, 2935 secs
lola: 54707245 markings, 1042805727 edges, 18621 markings/sec, 2940 secs
lola: 54790490 markings, 1044573331 edges, 16649 markings/sec, 2945 secs
lola: 54882208 markings, 1046507578 edges, 18344 markings/sec, 2950 secs
lola: 54953057 markings, 1048060756 edges, 14170 markings/sec, 2955 secs
lola: 55027063 markings, 1049693880 edges, 14801 markings/sec, 2960 secs
lola: 55106368 markings, 1051461121 edges, 15861 markings/sec, 2965 secs
lola: 55177857 markings, 1053090066 edges, 14298 markings/sec, 2970 secs
lola: 55246396 markings, 1054706819 edges, 13708 markings/sec, 2975 secs
lola: 55318089 markings, 1056404743 edges, 14339 markings/sec, 2980 secs
lola: 55385067 markings, 1058034407 edges, 13396 markings/sec, 2985 secs
lola: 55455061 markings, 1059593700 edges, 13999 markings/sec, 2990 secs
lola: 55530049 markings, 1061224994 edges, 14998 markings/sec, 2995 secs
lola: 55605843 markings, 1062933737 edges, 15159 markings/sec, 3000 secs
lola: 55674805 markings, 1064527927 edges, 13792 markings/sec, 3005 secs
lola: 55782163 markings, 1066237827 edges, 21472 markings/sec, 3010 secs
lola: 55887514 markings, 1067955135 edges, 21070 markings/sec, 3015 secs
lola: 55992350 markings, 1069759008 edges, 20967 markings/sec, 3020 secs
lola: 56087137 markings, 1071547527 edges, 18957 markings/sec, 3025 secs
lola: 56191387 markings, 1073333771 edges, 20850 markings/sec, 3030 secs
lola: 56295805 markings, 1075138412 edges, 20884 markings/sec, 3035 secs
lola: 56390668 markings, 1076930074 edges, 18973 markings/sec, 3040 secs
lola: 56489134 markings, 1078718308 edges, 19693 markings/sec, 3045 secs
lola: 56584929 markings, 1080514205 edges, 19159 markings/sec, 3050 secs
lola: 56679061 markings, 1082296100 edges, 18826 markings/sec, 3055 secs
lola: 56761526 markings, 1083942807 edges, 16493 markings/sec, 3060 secs
lola: 56847738 markings, 1085690728 edges, 17242 markings/sec, 3065 secs
lola: 56929926 markings, 1087455843 edges, 16438 markings/sec, 3070 secs
lola: 57009694 markings, 1089205361 edges, 15954 markings/sec, 3075 secs
lola: 57121186 markings, 1091038000 edges, 22298 markings/sec, 3080 secs
lola: 57215220 markings, 1092744474 edges, 18807 markings/sec, 3085 secs
lola: 57307222 markings, 1094499820 edges, 18400 markings/sec, 3090 secs
lola: 57409951 markings, 1096327347 edges, 20546 markings/sec, 3095 secs
lola: 57502182 markings, 1098129943 edges, 18446 markings/sec, 3100 secs
lola: 57593086 markings, 1099863288 edges, 18181 markings/sec, 3105 secs
lola: 57678804 markings, 1101570860 edges, 17144 markings/sec, 3110 secs
lola: 57760762 markings, 1103307787 edges, 16392 markings/sec, 3115 secs
lola: 57840492 markings, 1105096941 edges, 15946 markings/sec, 3120 secs
lola: 57936809 markings, 1106903586 edges, 19263 markings/sec, 3125 secs
lola: 58033080 markings, 1108725962 edges, 19254 markings/sec, 3130 secs
lola: 58128929 markings, 1110543303 edges, 19170 markings/sec, 3135 secs
lola: 58219546 markings, 1112347078 edges, 18123 markings/sec, 3140 secs
lola: 58308465 markings, 1114162655 edges, 17784 markings/sec, 3145 secs
lola: 58390636 markings, 1115977514 edges, 16434 markings/sec, 3150 secs
lola: 58476098 markings, 1117781102 edges, 17092 markings/sec, 3155 secs
lola: 58567631 markings, 1119599788 edges, 18307 markings/sec, 3160 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no unknown unknown yes no yes no no no
lola: memory consumption: 9028712 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: time limit reached - aborting
lola:
preliminary result: yes no unknown unknown yes no yes no no no
lola:
preliminary result: yes no unknown unknown yes no yes no no no
lola: memory consumption: 31864 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Referendum-COL-0200"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="gold2020"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool gold2020"
echo " Input is Referendum-COL-0200, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r189-tajo-162089432800245"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Referendum-COL-0200.tgz
mv Referendum-COL-0200 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;