fond
Model Checking Contest 2021
11th edition, Paris, France, June 23, 2021
Execution of r189-tajo-162089432800245
Last Updated
Jun 28, 2021

About the Execution of 2020-gold for Referendum-COL-0200

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
10843.315 3600000.00 3611854.00 6442.90 TFFT??TTFTTFFTFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/mnt/tpsp/fkordon/mcc2021-input.r189-tajo-162089432800245.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2021-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-4028
Executing tool gold2020
Input is Referendum-COL-0200, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r189-tajo-162089432800245
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 332K
-rw-r--r-- 1 mcc users 12K May 5 16:58 CTLCardinality.txt
-rw-r--r-- 1 mcc users 106K May 10 09:44 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.5K May 5 16:58 CTLFireability.txt
-rw-r--r-- 1 mcc users 46K May 10 09:44 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 6 14:48 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K May 6 14:48 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.9K Mar 28 16:31 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Mar 28 16:31 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.9K Mar 28 16:31 LTLFireability.txt
-rw-r--r-- 1 mcc users 15K Mar 28 16:31 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K Mar 27 10:33 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 21K Mar 27 10:32 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Mar 25 13:45 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K Mar 25 13:44 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Mar 22 08:15 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.7K Mar 22 08:15 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 5 16:51 equiv_pt
-rw-r--r-- 1 mcc users 5 May 5 16:51 instance
-rw-r--r-- 1 mcc users 5 May 5 16:51 iscolored
-rw-r--r-- 1 mcc users 11K May 5 16:51 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Referendum-COL-0200-00
FORMULA_NAME Referendum-COL-0200-01
FORMULA_NAME Referendum-COL-0200-02
FORMULA_NAME Referendum-COL-0200-03
FORMULA_NAME Referendum-COL-0200-04
FORMULA_NAME Referendum-COL-0200-05
FORMULA_NAME Referendum-COL-0200-06
FORMULA_NAME Referendum-COL-0200-07
FORMULA_NAME Referendum-COL-0200-08
FORMULA_NAME Referendum-COL-0200-09
FORMULA_NAME Referendum-COL-0200-10
FORMULA_NAME Referendum-COL-0200-11
FORMULA_NAME Referendum-COL-0200-12
FORMULA_NAME Referendum-COL-0200-13
FORMULA_NAME Referendum-COL-0200-14
FORMULA_NAME Referendum-COL-0200-15

=== Now, execution of the tool begins

BK_START 1621425572303

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
[2021-05-19 11:59:33] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -timeout, 3600, -rebuildPNML]
[2021-05-19 11:59:33] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2021-05-19 11:59:33] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
[2021-05-19 11:59:34] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 503 ms
[2021-05-19 11:59:34] [INFO ] sort/places :
Dot->ready,
Voters->voting,voted_yes,voted_no,

[2021-05-19 11:59:34] [INFO ] Imported 4 HL places and 3 HL transitions for a total of 601 PT places and 401.0 transition bindings in 10 ms.
[2021-05-19 11:59:34] [INFO ] Computed order based on color domains.
[2021-05-19 11:59:34] [INFO ] Unfolded HLPN to a Petri net with 601 places and 401 transitions in 9 ms.
[2021-05-19 11:59:34] [INFO ] Unfolded HLPN properties in 3 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 66 ms.
Working with output stream class java.io.PrintStream
Incomplete random walk after 100000 steps, including 495 resets, run finished after 2204 ms. (steps per millisecond=45 ) properties seen :[1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1]
// Phase 1: matrix 401 rows 601 cols
[2021-05-19 11:59:36] [INFO ] Computed 200 place invariants in 26 ms
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 26 ms returned unsat
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 16 ms returned unsat
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 13 ms returned unsat
[2021-05-19 11:59:37] [INFO ] [Real]Absence check using 200 positive place invariants in 14 ms returned unsat
Successfully simplified 4 atomic propositions for a total of 11 simplifications.
[2021-05-19 11:59:37] [INFO ] Initial state reduction rules for CTL removed 6 formulas.
[2021-05-19 11:59:37] [INFO ] Flatten gal took : 77 ms
FORMULA Referendum-COL-0200-13 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-10 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-07 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-03 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Referendum-COL-0200-01 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2021-05-19 11:59:37] [INFO ] Applying decomposition
[2021-05-19 11:59:37] [INFO ] Flatten gal took : 40 ms
[2021-05-19 11:59:37] [INFO ] Decomposing Gal with order
[2021-05-19 11:59:37] [INFO ] Rewriting arrays to variables to allow decomposition.
[2021-05-19 11:59:37] [INFO ] Flatten gal took : 59 ms
[2021-05-19 11:59:37] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 19 ms.
[2021-05-19 11:59:38] [INFO ] Export to MCC properties in file /home/mcc/execution/LTLCardinality.sr.xml took 11 ms.
[2021-05-19 11:59:38] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml took 7 ms.
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ Referendum-COL-0200 @ 3570 seconds

FORMULA Referendum-COL-0200-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Referendum-COL-0200-09 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Referendum-COL-0200-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Referendum-COL-0200-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Referendum-COL-0200-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Referendum-COL-0200-08 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Referendum-COL-0200-00 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA Referendum-COL-0200-06 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ Referendum-COL-0200

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2020",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Wed May 19 11:59:38 2021
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 201,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 201,
"visible_transitions": 0
},
"processed": "X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))",
"processed_size": 1415,
"rewrites": 36
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 0,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 396
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 1,
"aneg": 0,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 802,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 201,
"visible_transitions": 0
},
"processed": "X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600) OR (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) AND (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600)))))",
"processed_size": 5218,
"rewrites": 36
},
"result":
{
"edges": 801,
"markings": 802,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 452
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 452
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "X ((1 <= p600))",
"processed_size": 15,
"rewrites": 36
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 3,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 528
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 3,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1000,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 600,
"visible_transitions": 0
},
"processed": "F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) AND (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + 1 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)) OR (1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))))",
"processed_size": 6817,
"rewrites": 36
},
"result":
{
"edges": 204,
"markings": 203,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 4,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 633
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 1,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "F (G ((F (((1 <= p600))) AND (1 <= p600))))",
"processed_size": 43,
"rewrites": 36
},
"result":
{
"edges": 204,
"markings": 203,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 792
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 201,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 201,
"visible_transitions": 0
},
"processed": "G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + 1 <= p600))",
"processed_size": 1415,
"rewrites": 36
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1056
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 400,
"taut": 0,
"tconj": 0,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 400,
"visible_transitions": 0
},
"processed": "F ((G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 0)) OR (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)))",
"processed_size": 2712,
"rewrites": 36
},
"result":
{
"edges": 1,
"markings": 2,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1584
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 2,
"G": 0,
"U": 2,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1201,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 601,
"visible_transitions": 0
},
"processed": "(F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) U (((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 2) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) AND F ((p600 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))))",
"processed_size": 8216,
"rewrites": 36
},
"result":
{
"edges": 1,
"markings": 2,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 6
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 31864,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "F((G(**) OR **)) : (X(*) AND (* R (G(*) AND *))) : X(F((F(G((F(**) OR **))) OR X(**)))) : ((G(*) R *) R *) : (F(**) U ((** U **) AND F(**))) : G(*) : X(X((F(**) AND (F(**) OR **)))) : (X(**) AND (** U **)) : F(G((X(**) AND (F(**) OR **)))) : F(G((F(**) AND **)))"
},
"net":
{
"arcs": 1001,
"conflict_clusters": 601,
"places": 601,
"places_significant": 401,
"singleton_clusters": 0,
"transitions": 401
},
"result":
{
"interim_value": "yes no unknown unknown yes no yes no no no ",
"preliminary_value": "yes no unknown unknown yes no yes no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 1002/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 601
lola: finding significant places
lola: 601 places, 401 transitions, 401 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p600)
lola: (NOT(G (F (NOT(G (X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 0))))))) OR F ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) : (NOT(X ((p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 <= p600))) AND NOT(((p600 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99) U (F ((1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) OR (1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))))) : F (X ((F (G ((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)) OR (1 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)))) OR X ((1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))))) : NOT(((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) U (p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p600)) U ((1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399) AND (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))) : ((((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) U F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399))) U (((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= 2) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)) AND F ((p600 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))) : NOT(F ((p600 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599))) : X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600) OR (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) AND (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 <= p600))))) : (X ((1 <= p600)) AND ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99) U (1 <= p600))) : X (F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) AND (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + 1 <= p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p409 + p408 + p407 + p406 + p405 + p404 + p403 + p402 + p401 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599)) OR (1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399)))))) : F (G (X ((F (((((1 <= p600)) U (1 <= p600)) AND F ((1 <= p600)))) AND (1 <= p600)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:519
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:416
lola: rewrite Frontend/Parser/formula_rewrite.k:497
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 0 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((p600 + 1 <= p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 +... (shortened)
lola: processed formula length: 1415
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 1 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (F ((F (G ((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p14... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (F ((F (G ((F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p14... (shortened)
lola: processed formula length: 5534
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 702835 markings, 1248402 edges, 140567 markings/sec, 0 secs
lola: 1457907 markings, 2606659 edges, 151014 markings/sec, 5 secs
lola: 2182128 markings, 3915808 edges, 144844 markings/sec, 10 secs
lola: 2903429 markings, 5222003 edges, 144260 markings/sec, 15 secs
lola: 3613327 markings, 6506765 edges, 141980 markings/sec, 20 secs
lola: 4302315 markings, 7758948 edges, 137798 markings/sec, 25 secs
lola: 4993775 markings, 9020631 edges, 138292 markings/sec, 30 secs
lola: 5688658 markings, 10287768 edges, 138977 markings/sec, 35 secs
lola: 6336542 markings, 11457832 edges, 129577 markings/sec, 40 secs
lola: 6950535 markings, 12575355 edges, 122799 markings/sec, 45 secs
lola: 7594941 markings, 13748978 edges, 128881 markings/sec, 50 secs
lola: 8218979 markings, 14890413 edges, 124808 markings/sec, 55 secs
lola: 8856710 markings, 16051479 edges, 127546 markings/sec, 60 secs
lola: 9471133 markings, 17174846 edges, 122885 markings/sec, 65 secs
lola: 10078542 markings, 18288682 edges, 121482 markings/sec, 70 secs
lola: 10693829 markings, 19419169 edges, 123057 markings/sec, 75 secs
lola: 11286698 markings, 20511341 edges, 118574 markings/sec, 80 secs
lola: 11927291 markings, 21674479 edges, 128119 markings/sec, 85 secs
lola: 12570633 markings, 22839892 edges, 128668 markings/sec, 90 secs
lola: 13207928 markings, 23998627 edges, 127459 markings/sec, 95 secs
lola: 13839353 markings, 25150204 edges, 126285 markings/sec, 100 secs
lola: 14459872 markings, 26288808 edges, 124104 markings/sec, 105 secs
lola: 15074580 markings, 27406405 edges, 122942 markings/sec, 110 secs
lola: 15667442 markings, 28490717 edges, 118572 markings/sec, 115 secs
lola: 16284685 markings, 29622627 edges, 123449 markings/sec, 120 secs
lola: 16897227 markings, 30748451 edges, 122508 markings/sec, 125 secs
lola: 17480607 markings, 31826490 edges, 116676 markings/sec, 130 secs
lola: 18076328 markings, 32910284 edges, 119144 markings/sec, 135 secs
lola: 18664275 markings, 33985473 edges, 117589 markings/sec, 140 secs
lola: 19262448 markings, 35081902 edges, 119635 markings/sec, 145 secs
lola: 19864607 markings, 36188668 edges, 120432 markings/sec, 150 secs
lola: 20439483 markings, 37247208 edges, 114975 markings/sec, 155 secs
lola: 21033108 markings, 38338708 edges, 118725 markings/sec, 160 secs
lola: 21677848 markings, 39523818 edges, 128948 markings/sec, 165 secs
lola: 22320864 markings, 40712884 edges, 128603 markings/sec, 170 secs
lola: 22971777 markings, 41912731 edges, 130183 markings/sec, 175 secs
lola: 23612464 markings, 43099872 edges, 128137 markings/sec, 180 secs
lola: 24260837 markings, 44295128 edges, 129675 markings/sec, 185 secs
lola: 24944861 markings, 45529577 edges, 136805 markings/sec, 190 secs
lola: 25634057 markings, 46782843 edges, 137839 markings/sec, 195 secs
lola: 26277885 markings, 47955640 edges, 128766 markings/sec, 200 secs
lola: 26948374 markings, 49185473 edges, 134098 markings/sec, 205 secs
lola: 27620057 markings, 50406586 edges, 134337 markings/sec, 210 secs
lola: 28235821 markings, 51532662 edges, 123153 markings/sec, 215 secs
lola: 28872007 markings, 52699458 edges, 127237 markings/sec, 220 secs
lola: 29541062 markings, 53929128 edges, 133811 markings/sec, 225 secs
lola: 30208210 markings, 55160024 edges, 133430 markings/sec, 230 secs
lola: 30870406 markings, 56366029 edges, 132439 markings/sec, 235 secs
lola: 31531148 markings, 57575250 edges, 132148 markings/sec, 240 secs
lola: 32192959 markings, 58787586 edges, 132362 markings/sec, 245 secs
lola: 32865330 markings, 60026148 edges, 134474 markings/sec, 250 secs
lola: 33490580 markings, 61177600 edges, 125050 markings/sec, 255 secs
lola: 34157667 markings, 62402958 edges, 133417 markings/sec, 260 secs
lola: 34832720 markings, 63649283 edges, 135011 markings/sec, 265 secs
lola: 35512103 markings, 64902209 edges, 135877 markings/sec, 270 secs
lola: 36190013 markings, 66158528 edges, 135582 markings/sec, 275 secs
lola: 36776225 markings, 67244795 edges, 117242 markings/sec, 280 secs
lola: 37466680 markings, 68501548 edges, 138091 markings/sec, 285 secs
lola: 38147565 markings, 69749968 edges, 136177 markings/sec, 290 secs
lola: 38813141 markings, 70968682 edges, 133115 markings/sec, 295 secs
lola: 39478140 markings, 72193705 edges, 133000 markings/sec, 300 secs
lola: 40159304 markings, 73446927 edges, 136233 markings/sec, 305 secs
lola: 40764007 markings, 74558288 edges, 120941 markings/sec, 310 secs
lola: 41432108 markings, 75793062 edges, 133620 markings/sec, 315 secs
lola: 42113296 markings, 77049203 edges, 136238 markings/sec, 320 secs
lola: 42789155 markings, 78301955 edges, 135172 markings/sec, 325 secs
lola: 43468235 markings, 79557156 edges, 135816 markings/sec, 330 secs
lola: 44151071 markings, 80811556 edges, 136567 markings/sec, 335 secs
lola: 44825881 markings, 82058298 edges, 134962 markings/sec, 340 secs
lola: 45504058 markings, 83308905 edges, 135635 markings/sec, 345 secs
lola: 46177162 markings, 84556599 edges, 134621 markings/sec, 350 secs
lola: 46851805 markings, 85807306 edges, 134929 markings/sec, 355 secs
lola: 47530754 markings, 87062953 edges, 135790 markings/sec, 360 secs
lola: 48203489 markings, 88310416 edges, 134547 markings/sec, 365 secs
lola: 48875783 markings, 89559060 edges, 134459 markings/sec, 370 secs
lola: 49547828 markings, 90809142 edges, 134409 markings/sec, 375 secs
lola: 50213387 markings, 92052202 edges, 133112 markings/sec, 380 secs
lola: 50916196 markings, 93324515 edges, 140562 markings/sec, 385 secs
lola: 51603741 markings, 94573242 edges, 137509 markings/sec, 390 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown unknown unknown unknown unknown unknown unknown unknown
lola: memory consumption: 10742512 KB
lola: time consumption: 400 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 2 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X (X ((F (((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p1... (shortened)
lola: processed formula length: 5218
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 802 markings, 801 edges
lola: ========================================
lola: subprocess 3 will run for 452 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (X ((1 <= p600)) AND ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 3 will run for 452 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: X ((1 <= p600))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: X ((1 <= p600))
lola: processed formula length: 15
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 4 will run for 528 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F (G ((X ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455... (shortened)
lola: processed formula length: 6817
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 203 markings, 204 edges
lola: ========================================
lola: subprocess 5 will run for 633 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F (G ((F (((1 <= p600))) AND (1 <= p600))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F (G ((F (((1 <= p600))) AND (1 <= p600))))
lola: processed formula length: 43
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 203 markings, 204 edges
lola: ========================================
lola: subprocess 6 will run for 792 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456... (shortened)
lola: processed formula length: 1415
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: subprocess 7 will run for 1056 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: F ((G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: F ((G ((p400 + p499 + p498 + p497 + p496 + p495 + p494 + p493 + p492 + p491 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + ... (shortened)
lola: processed formula length: 2712
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 2 markings, 1 edges
lola: ========================================
lola: subprocess 8 will run for 1584 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p1... (shortened)
lola: processed formula length: 8216
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 2 markings, 1 edges
lola: ========================================
lola: subprocess 9 will run for 3169 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: ((G ((p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p2... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: ((G ((p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p2... (shortened)
lola: processed formula length: 8224
lola: 36 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 15 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 146869 markings, 1738482 edges, 29374 markings/sec, 0 secs
lola: 291765 markings, 3593728 edges, 28979 markings/sec, 5 secs
lola: 421324 markings, 5457656 edges, 25912 markings/sec, 10 secs
lola: 551837 markings, 7310426 edges, 26103 markings/sec, 15 secs
lola: 686442 markings, 9161155 edges, 26921 markings/sec, 20 secs
lola: 803403 markings, 11014787 edges, 23392 markings/sec, 25 secs
lola: 936658 markings, 12878980 edges, 26651 markings/sec, 30 secs
lola: 1054725 markings, 14746451 edges, 23613 markings/sec, 35 secs
lola: 1172414 markings, 16613852 edges, 23538 markings/sec, 40 secs
lola: 1284197 markings, 18482435 edges, 22357 markings/sec, 45 secs
lola: 1385376 markings, 20352688 edges, 20236 markings/sec, 50 secs
lola: 1496337 markings, 22212496 edges, 22192 markings/sec, 55 secs
lola: 1635599 markings, 24048398 edges, 27852 markings/sec, 60 secs
lola: 1759163 markings, 25888030 edges, 24713 markings/sec, 65 secs
lola: 1885697 markings, 27733268 edges, 25307 markings/sec, 70 secs
lola: 2000947 markings, 29585503 edges, 23050 markings/sec, 75 secs
lola: 2123731 markings, 31435351 edges, 24557 markings/sec, 80 secs
lola: 2234736 markings, 33289668 edges, 22201 markings/sec, 85 secs
lola: 2341525 markings, 35138507 edges, 21358 markings/sec, 90 secs
lola: 2438961 markings, 36977606 edges, 19487 markings/sec, 95 secs
lola: 2566952 markings, 38823297 edges, 25598 markings/sec, 100 secs
lola: 2683695 markings, 40673443 edges, 23349 markings/sec, 105 secs
lola: 2801969 markings, 42522003 edges, 23655 markings/sec, 110 secs
lola: 2914975 markings, 44368490 edges, 22601 markings/sec, 115 secs
lola: 3015648 markings, 46147486 edges, 20135 markings/sec, 120 secs
lola: 3106251 markings, 47887371 edges, 18121 markings/sec, 125 secs
lola: 3225186 markings, 49705465 edges, 23787 markings/sec, 130 secs
lola: 3338040 markings, 51570342 edges, 22571 markings/sec, 135 secs
lola: 3444723 markings, 53428437 edges, 21337 markings/sec, 140 secs
lola: 3540856 markings, 55271726 edges, 19227 markings/sec, 145 secs
lola: 3650876 markings, 57128068 edges, 22004 markings/sec, 150 secs
lola: 3758232 markings, 58991747 edges, 21471 markings/sec, 155 secs
lola: 3851853 markings, 60835895 edges, 18724 markings/sec, 160 secs
lola: 3959289 markings, 62700504 edges, 21487 markings/sec, 165 secs
lola: 4052777 markings, 64539001 edges, 18698 markings/sec, 170 secs
lola: 4151253 markings, 66395806 edges, 19695 markings/sec, 175 secs
lola: 4243990 markings, 68249699 edges, 18547 markings/sec, 180 secs
lola: 4324957 markings, 69962722 edges, 16193 markings/sec, 185 secs
lola: 4402684 markings, 71724821 edges, 15545 markings/sec, 190 secs
lola: 4527027 markings, 73546897 edges, 24869 markings/sec, 195 secs
lola: 4659256 markings, 75366819 edges, 26446 markings/sec, 200 secs
lola: 4778593 markings, 77189114 edges, 23867 markings/sec, 205 secs
lola: 4904398 markings, 79024451 edges, 25161 markings/sec, 210 secs
lola: 5022234 markings, 80859044 edges, 23567 markings/sec, 215 secs
lola: 5130815 markings, 82613850 edges, 21716 markings/sec, 220 secs
lola: 5233562 markings, 84356191 edges, 20549 markings/sec, 225 secs
lola: 5330926 markings, 86155898 edges, 19473 markings/sec, 230 secs
lola: 5438612 markings, 87975732 edges, 21537 markings/sec, 235 secs
lola: 5565133 markings, 89810103 edges, 25304 markings/sec, 240 secs
lola: 5675956 markings, 91545165 edges, 22165 markings/sec, 245 secs
lola: 5783632 markings, 93273970 edges, 21535 markings/sec, 250 secs
lola: 5893735 markings, 95110334 edges, 22021 markings/sec, 255 secs
lola: 5992628 markings, 96929204 edges, 19779 markings/sec, 260 secs
lola: 6095569 markings, 98740734 edges, 20588 markings/sec, 265 secs
lola: 6211155 markings, 100594526 edges, 23117 markings/sec, 270 secs
lola: 6325160 markings, 102449724 edges, 22801 markings/sec, 275 secs
lola: 6427686 markings, 104298253 edges, 20505 markings/sec, 280 secs
lola: 6525964 markings, 106128377 edges, 19656 markings/sec, 285 secs
lola: 6637725 markings, 107979643 edges, 22352 markings/sec, 290 secs
lola: 6738470 markings, 109829545 edges, 20149 markings/sec, 295 secs
lola: 6837372 markings, 111666150 edges, 19780 markings/sec, 300 secs
lola: 6938614 markings, 113518785 edges, 20248 markings/sec, 305 secs
lola: 7033136 markings, 115352632 edges, 18904 markings/sec, 310 secs
lola: 7125617 markings, 117190296 edges, 18496 markings/sec, 315 secs
lola: 7211908 markings, 118917403 edges, 17258 markings/sec, 320 secs
lola: 7296623 markings, 120683578 edges, 16943 markings/sec, 325 secs
lola: 7375114 markings, 122502173 edges, 15698 markings/sec, 330 secs
lola: 7508203 markings, 124343191 edges, 26618 markings/sec, 335 secs
lola: 7624710 markings, 126178284 edges, 23301 markings/sec, 340 secs
lola: 7739849 markings, 128014212 edges, 23028 markings/sec, 345 secs
lola: 7850732 markings, 129851005 edges, 22177 markings/sec, 350 secs
lola: 7951342 markings, 131682207 edges, 20122 markings/sec, 355 secs
lola: 8052606 markings, 133503376 edges, 20253 markings/sec, 360 secs
lola: 8168743 markings, 135363674 edges, 23227 markings/sec, 365 secs
lola: 8283138 markings, 137218477 edges, 22879 markings/sec, 370 secs
lola: 8386756 markings, 139071891 edges, 20724 markings/sec, 375 secs
lola: 8484820 markings, 140911365 edges, 19613 markings/sec, 380 secs
lola: 8597215 markings, 142768032 edges, 22479 markings/sec, 385 secs
lola: 8698984 markings, 144617427 edges, 20354 markings/sec, 390 secs
lola: 8797233 markings, 146455576 edges, 19650 markings/sec, 395 secs
lola: 8893550 markings, 148200229 edges, 19263 markings/sec, 400 secs
lola: 8984595 markings, 149966734 edges, 18209 markings/sec, 405 secs
lola: 9078923 markings, 151810992 edges, 18866 markings/sec, 410 secs
lola: 9170486 markings, 153654230 edges, 18313 markings/sec, 415 secs
lola: 9258800 markings, 155497323 edges, 17663 markings/sec, 420 secs
lola: 9336177 markings, 157332942 edges, 15475 markings/sec, 425 secs
lola: 9449437 markings, 159017721 edges, 22652 markings/sec, 430 secs
lola: 9557563 markings, 160800574 edges, 21625 markings/sec, 435 secs
lola: 9664444 markings, 162662349 edges, 21376 markings/sec, 440 secs
lola: 9760985 markings, 164513616 edges, 19308 markings/sec, 445 secs
lola: 9860717 markings, 166176744 edges, 19946 markings/sec, 450 secs
lola: 9965021 markings, 167992083 edges, 20861 markings/sec, 455 secs
lola: 10057131 markings, 169773146 edges, 18422 markings/sec, 460 secs
lola: 10162182 markings, 171622602 edges, 21010 markings/sec, 465 secs
lola: 10246866 markings, 173260481 edges, 16937 markings/sec, 470 secs
lola: 10342527 markings, 175063441 edges, 19132 markings/sec, 475 secs
lola: 10430274 markings, 176810356 edges, 17549 markings/sec, 480 secs
lola: 10516240 markings, 178573590 edges, 17193 markings/sec, 485 secs
lola: 10595602 markings, 180320198 edges, 15872 markings/sec, 490 secs
lola: 10686277 markings, 182105531 edges, 18135 markings/sec, 495 secs
lola: 10790215 markings, 183888067 edges, 20788 markings/sec, 500 secs
lola: 10887988 markings, 185698921 edges, 19555 markings/sec, 505 secs
lola: 10990209 markings, 187573312 edges, 20444 markings/sec, 510 secs
lola: 11088324 markings, 189391447 edges, 19623 markings/sec, 515 secs
lola: 11180245 markings, 191146279 edges, 18384 markings/sec, 520 secs
lola: 11271224 markings, 192956369 edges, 18196 markings/sec, 525 secs
lola: 11363793 markings, 194823068 edges, 18514 markings/sec, 530 secs
lola: 11450605 markings, 196685550 edges, 17362 markings/sec, 535 secs
lola: 11530384 markings, 198418107 edges, 15956 markings/sec, 540 secs
lola: 11631867 markings, 200235957 edges, 20297 markings/sec, 545 secs
lola: 11728185 markings, 202098347 edges, 19264 markings/sec, 550 secs
lola: 11823836 markings, 203967963 edges, 19130 markings/sec, 555 secs
lola: 11910286 markings, 205695773 edges, 17290 markings/sec, 560 secs
lola: 11996869 markings, 207505111 edges, 17317 markings/sec, 565 secs
lola: 12073734 markings, 209309128 edges, 15373 markings/sec, 570 secs
lola: 12171157 markings, 211144134 edges, 19485 markings/sec, 575 secs
lola: 12262501 markings, 212963969 edges, 18269 markings/sec, 580 secs
lola: 12348958 markings, 214774803 edges, 17291 markings/sec, 585 secs
lola: 12430130 markings, 216588420 edges, 16234 markings/sec, 590 secs
lola: 12517179 markings, 218404007 edges, 17410 markings/sec, 595 secs
lola: 12603139 markings, 220220246 edges, 17192 markings/sec, 600 secs
lola: 12684021 markings, 222038082 edges, 16176 markings/sec, 605 secs
lola: 12766758 markings, 223838752 edges, 16547 markings/sec, 610 secs
lola: 12847330 markings, 225659527 edges, 16114 markings/sec, 615 secs
lola: 12927142 markings, 227463072 edges, 15962 markings/sec, 620 secs
lola: 13004038 markings, 229262513 edges, 15379 markings/sec, 625 secs
lola: 13077282 markings, 231056379 edges, 14649 markings/sec, 630 secs
lola: 13152950 markings, 232820150 edges, 15134 markings/sec, 635 secs
lola: 13234398 markings, 234562546 edges, 16290 markings/sec, 640 secs
lola: 13315823 markings, 236310790 edges, 16285 markings/sec, 645 secs
lola: 13397748 markings, 238066985 edges, 16385 markings/sec, 650 secs
lola: 13479346 markings, 239821561 edges, 16320 markings/sec, 655 secs
lola: 13602549 markings, 241581006 edges, 24641 markings/sec, 660 secs
lola: 13721919 markings, 243215502 edges, 23874 markings/sec, 665 secs
lola: 13815893 markings, 244730041 edges, 18795 markings/sec, 670 secs
lola: 13928476 markings, 246281990 edges, 22517 markings/sec, 675 secs
lola: 14030863 markings, 247946108 edges, 20477 markings/sec, 680 secs
lola: 14146119 markings, 249670990 edges, 23051 markings/sec, 685 secs
lola: 14242617 markings, 251239302 edges, 19300 markings/sec, 690 secs
lola: 14333047 markings, 252803052 edges, 18086 markings/sec, 695 secs
lola: 14420232 markings, 254445449 edges, 17437 markings/sec, 700 secs
lola: 14511467 markings, 255995675 edges, 18247 markings/sec, 705 secs
lola: 14622900 markings, 257568970 edges, 22287 markings/sec, 710 secs
lola: 14721667 markings, 259138364 edges, 19753 markings/sec, 715 secs
lola: 14829660 markings, 260839549 edges, 21599 markings/sec, 720 secs
lola: 14932542 markings, 262543464 edges, 20576 markings/sec, 725 secs
lola: 15024004 markings, 264112465 edges, 18292 markings/sec, 730 secs
lola: 15106844 markings, 265686816 edges, 16568 markings/sec, 735 secs
lola: 15212983 markings, 267399233 edges, 21228 markings/sec, 740 secs
lola: 15326495 markings, 269231372 edges, 22702 markings/sec, 745 secs
lola: 15433834 markings, 271062545 edges, 21468 markings/sec, 750 secs
lola: 15532104 markings, 272883961 edges, 19654 markings/sec, 755 secs
lola: 15635294 markings, 274688636 edges, 20638 markings/sec, 760 secs
lola: 15741166 markings, 276517364 edges, 21174 markings/sec, 765 secs
lola: 15838805 markings, 278337857 edges, 19528 markings/sec, 770 secs
lola: 15937634 markings, 280143925 edges, 19766 markings/sec, 775 secs
lola: 16031672 markings, 281881911 edges, 18808 markings/sec, 780 secs
lola: 16112940 markings, 283450428 edges, 16254 markings/sec, 785 secs
lola: 16196159 markings, 285079413 edges, 16644 markings/sec, 790 secs
lola: 16278735 markings, 286718211 edges, 16515 markings/sec, 795 secs
lola: 16353029 markings, 288286212 edges, 14859 markings/sec, 800 secs
lola: 16423263 markings, 289856850 edges, 14047 markings/sec, 805 secs
lola: 16518531 markings, 291453356 edges, 19054 markings/sec, 810 secs
lola: 16637837 markings, 293242708 edges, 23861 markings/sec, 815 secs
lola: 16743759 markings, 294875834 edges, 21184 markings/sec, 820 secs
lola: 16846790 markings, 296535348 edges, 20606 markings/sec, 825 secs
lola: 16951443 markings, 298330902 edges, 20931 markings/sec, 830 secs
lola: 17049278 markings, 300143157 edges, 19567 markings/sec, 835 secs
lola: 17155072 markings, 301943737 edges, 21159 markings/sec, 840 secs
lola: 17270506 markings, 303782176 edges, 23087 markings/sec, 845 secs
lola: 17381397 markings, 305619693 edges, 22178 markings/sec, 850 secs
lola: 17481652 markings, 307455228 edges, 20051 markings/sec, 855 secs
lola: 17580605 markings, 309262506 edges, 19791 markings/sec, 860 secs
lola: 17690458 markings, 311096445 edges, 21971 markings/sec, 865 secs
lola: 17789367 markings, 312924652 edges, 19782 markings/sec, 870 secs
lola: 17887577 markings, 314738251 edges, 19642 markings/sec, 875 secs
lola: 17987390 markings, 316571694 edges, 19963 markings/sec, 880 secs
lola: 18081361 markings, 318388143 edges, 18794 markings/sec, 885 secs
lola: 18172640 markings, 320201718 edges, 18256 markings/sec, 890 secs
lola: 18263576 markings, 322018876 edges, 18187 markings/sec, 895 secs
lola: 18348352 markings, 323831273 edges, 16955 markings/sec, 900 secs
lola: 18431436 markings, 325633799 edges, 16617 markings/sec, 905 secs
lola: 18537973 markings, 327264738 edges, 21307 markings/sec, 910 secs
lola: 18637022 markings, 328890778 edges, 19810 markings/sec, 915 secs
lola: 18732275 markings, 330536661 edges, 19051 markings/sec, 920 secs
lola: 18825646 markings, 332312000 edges, 18674 markings/sec, 925 secs
lola: 18932675 markings, 334133276 edges, 21406 markings/sec, 930 secs
lola: 19038610 markings, 335968880 edges, 21187 markings/sec, 935 secs
lola: 19132884 markings, 337788480 edges, 18855 markings/sec, 940 secs
lola: 19236563 markings, 339616142 edges, 20736 markings/sec, 945 secs
lola: 19330308 markings, 341436562 edges, 18749 markings/sec, 950 secs
lola: 19427285 markings, 343260241 edges, 19395 markings/sec, 955 secs
lola: 19518642 markings, 345076681 edges, 18271 markings/sec, 960 secs
lola: 19606161 markings, 346886386 edges, 17504 markings/sec, 965 secs
lola: 19687887 markings, 348701253 edges, 16345 markings/sec, 970 secs
lola: 19785756 markings, 350525263 edges, 19574 markings/sec, 975 secs
lola: 19892888 markings, 352377909 edges, 21426 markings/sec, 980 secs
lola: 19989459 markings, 354217796 edges, 19314 markings/sec, 985 secs
lola: 20092111 markings, 356057043 edges, 20530 markings/sec, 990 secs
lola: 20188572 markings, 357895194 edges, 19292 markings/sec, 995 secs
lola: 20285872 markings, 359735064 edges, 19460 markings/sec, 1000 secs
lola: 20377993 markings, 361568668 edges, 18424 markings/sec, 1005 secs
lola: 20467266 markings, 363397209 edges, 17855 markings/sec, 1010 secs
lola: 20549694 markings, 365228528 edges, 16486 markings/sec, 1015 secs
lola: 20641932 markings, 367067581 edges, 18448 markings/sec, 1020 secs
lola: 20742021 markings, 368924836 edges, 20018 markings/sec, 1025 secs
lola: 20839254 markings, 370773988 edges, 19447 markings/sec, 1030 secs
lola: 20931897 markings, 372617566 edges, 18529 markings/sec, 1035 secs
lola: 21022677 markings, 374456926 edges, 18156 markings/sec, 1040 secs
lola: 21107705 markings, 376290362 edges, 17006 markings/sec, 1045 secs
lola: 21192181 markings, 378119778 edges, 16895 markings/sec, 1050 secs
lola: 21285682 markings, 379966732 edges, 18700 markings/sec, 1055 secs
lola: 21376870 markings, 381810050 edges, 18238 markings/sec, 1060 secs
lola: 21465111 markings, 383651068 edges, 17648 markings/sec, 1065 secs
lola: 21544341 markings, 385480426 edges, 15846 markings/sec, 1070 secs
lola: 21636412 markings, 387332188 edges, 18414 markings/sec, 1075 secs
lola: 21722521 markings, 389175314 edges, 17222 markings/sec, 1080 secs
lola: 21802886 markings, 391006879 edges, 16073 markings/sec, 1085 secs
lola: 21888424 markings, 392840738 edges, 17108 markings/sec, 1090 secs
lola: 21967574 markings, 394663890 edges, 15830 markings/sec, 1095 secs
lola: 22045706 markings, 396493823 edges, 15626 markings/sec, 1100 secs
lola: 22122791 markings, 398309300 edges, 15417 markings/sec, 1105 secs
lola: 22196698 markings, 400126947 edges, 14781 markings/sec, 1110 secs
lola: 22279981 markings, 401927151 edges, 16657 markings/sec, 1115 secs
lola: 22364756 markings, 403743897 edges, 16955 markings/sec, 1120 secs
lola: 22446838 markings, 405551410 edges, 16416 markings/sec, 1125 secs
lola: 22526409 markings, 407351918 edges, 15914 markings/sec, 1130 secs
lola: 22655068 markings, 409180866 edges, 25732 markings/sec, 1135 secs
lola: 22772350 markings, 411011125 edges, 23456 markings/sec, 1140 secs
lola: 22885372 markings, 412836829 edges, 22604 markings/sec, 1145 secs
lola: 22998446 markings, 414665718 edges, 22615 markings/sec, 1150 secs
lola: 23100065 markings, 416485689 edges, 20324 markings/sec, 1155 secs
lola: 23193483 markings, 418280904 edges, 18684 markings/sec, 1160 secs
lola: 23315393 markings, 420124634 edges, 24382 markings/sec, 1165 secs
lola: 23425828 markings, 421963244 edges, 22087 markings/sec, 1170 secs
lola: 23531824 markings, 423799794 edges, 21199 markings/sec, 1175 secs
lola: 23625060 markings, 425610348 edges, 18647 markings/sec, 1180 secs
lola: 23736816 markings, 427446390 edges, 22351 markings/sec, 1185 secs
lola: 23840741 markings, 429279279 edges, 20785 markings/sec, 1190 secs
lola: 23933315 markings, 431084540 edges, 18515 markings/sec, 1195 secs
lola: 24038133 markings, 432919284 edges, 20964 markings/sec, 1200 secs
lola: 24129777 markings, 434725329 edges, 18329 markings/sec, 1205 secs
lola: 24226385 markings, 436551055 edges, 19322 markings/sec, 1210 secs
lola: 24317164 markings, 438363138 edges, 18156 markings/sec, 1215 secs
lola: 24402706 markings, 440173086 edges, 17108 markings/sec, 1220 secs
lola: 24482070 markings, 441982877 edges, 15873 markings/sec, 1225 secs
lola: 24595858 markings, 443812030 edges, 22758 markings/sec, 1230 secs
lola: 24708811 markings, 445656287 edges, 22591 markings/sec, 1235 secs
lola: 24814922 markings, 447494564 edges, 21222 markings/sec, 1240 secs
lola: 24910630 markings, 449319594 edges, 19142 markings/sec, 1245 secs
lola: 25018398 markings, 451147468 edges, 21554 markings/sec, 1250 secs
lola: 25124071 markings, 452986007 edges, 21135 markings/sec, 1255 secs
lola: 25217992 markings, 454803899 edges, 18784 markings/sec, 1260 secs
lola: 25322303 markings, 456637060 edges, 20862 markings/sec, 1265 secs
lola: 25415588 markings, 458458004 edges, 18657 markings/sec, 1270 secs
lola: 25513109 markings, 460286271 edges, 19504 markings/sec, 1275 secs
lola: 25593470 markings, 461888582 edges, 16072 markings/sec, 1280 secs
lola: 25669988 markings, 463457777 edges, 15304 markings/sec, 1285 secs
lola: 25742495 markings, 465033837 edges, 14501 markings/sec, 1290 secs
lola: 25827984 markings, 466841744 edges, 17098 markings/sec, 1295 secs
lola: 25939383 markings, 468699939 edges, 22280 markings/sec, 1300 secs
lola: 26039902 markings, 470547954 edges, 20104 markings/sec, 1305 secs
lola: 26139205 markings, 472383483 edges, 19861 markings/sec, 1310 secs
lola: 26239793 markings, 474232493 edges, 20118 markings/sec, 1315 secs
lola: 26335056 markings, 476069777 edges, 19053 markings/sec, 1320 secs
lola: 26427863 markings, 477908772 edges, 18561 markings/sec, 1325 secs
lola: 26519426 markings, 479749475 edges, 18313 markings/sec, 1330 secs
lola: 26604835 markings, 481580705 edges, 17082 markings/sec, 1335 secs
lola: 26688437 markings, 483402874 edges, 16720 markings/sec, 1340 secs
lola: 26792367 markings, 485258071 edges, 20786 markings/sec, 1345 secs
lola: 26872601 markings, 486845272 edges, 16047 markings/sec, 1350 secs
lola: 26957826 markings, 488440618 edges, 17045 markings/sec, 1355 secs
lola: 27037433 markings, 490024406 edges, 15921 markings/sec, 1360 secs
lola: 27114589 markings, 491609313 edges, 15431 markings/sec, 1365 secs
lola: 27187482 markings, 493192584 edges, 14579 markings/sec, 1370 secs
lola: 27256955 markings, 494764778 edges, 13895 markings/sec, 1375 secs
lola: 27346796 markings, 496468143 edges, 17968 markings/sec, 1380 secs
lola: 27438709 markings, 498301800 edges, 18383 markings/sec, 1385 secs
lola: 27525272 markings, 500132847 edges, 17313 markings/sec, 1390 secs
lola: 27605181 markings, 501958199 edges, 15982 markings/sec, 1395 secs
lola: 27694559 markings, 503784463 edges, 17876 markings/sec, 1400 secs
lola: 27782044 markings, 505616847 edges, 17497 markings/sec, 1405 secs
lola: 27860075 markings, 507445374 edges, 15606 markings/sec, 1410 secs
lola: 27947356 markings, 509270372 edges, 17456 markings/sec, 1415 secs
lola: 28024540 markings, 511095903 edges, 15437 markings/sec, 1420 secs
lola: 28106220 markings, 512921715 edges, 16336 markings/sec, 1425 secs
lola: 28182987 markings, 514741490 edges, 15353 markings/sec, 1430 secs
lola: 28257486 markings, 516553382 edges, 14900 markings/sec, 1435 secs
lola: 28337730 markings, 518359875 edges, 16049 markings/sec, 1440 secs
lola: 28420257 markings, 520166725 edges, 16505 markings/sec, 1445 secs
lola: 28499979 markings, 521963860 edges, 15944 markings/sec, 1450 secs
lola: 28582083 markings, 523755352 edges, 16421 markings/sec, 1455 secs
lola: 28700979 markings, 525603889 edges, 23779 markings/sec, 1460 secs
lola: 28813260 markings, 527447446 edges, 22456 markings/sec, 1465 secs
lola: 28917835 markings, 529289981 edges, 20915 markings/sec, 1470 secs
lola: 29010122 markings, 531106776 edges, 18457 markings/sec, 1475 secs
lola: 29124299 markings, 532949729 edges, 22835 markings/sec, 1480 secs
lola: 29226876 markings, 534789611 edges, 20515 markings/sec, 1485 secs
lola: 29322406 markings, 536608213 edges, 19106 markings/sec, 1490 secs
lola: 29425855 markings, 538452916 edges, 20690 markings/sec, 1495 secs
lola: 29519684 markings, 540274112 edges, 18766 markings/sec, 1500 secs
lola: 29613999 markings, 542098738 edges, 18863 markings/sec, 1505 secs
lola: 29704568 markings, 543917724 edges, 18114 markings/sec, 1510 secs
lola: 29791237 markings, 545730138 edges, 17334 markings/sec, 1515 secs
lola: 29868574 markings, 547541310 edges, 15467 markings/sec, 1520 secs
lola: 29979184 markings, 549385517 edges, 22122 markings/sec, 1525 secs
lola: 30084664 markings, 551242844 edges, 21096 markings/sec, 1530 secs
lola: 30179383 markings, 553082144 edges, 18944 markings/sec, 1535 secs
lola: 30284992 markings, 554940064 edges, 21122 markings/sec, 1540 secs
lola: 30378581 markings, 556779459 edges, 18718 markings/sec, 1545 secs
lola: 30475553 markings, 558625081 edges, 19394 markings/sec, 1550 secs
lola: 30567351 markings, 560464136 edges, 18360 markings/sec, 1555 secs
lola: 30654821 markings, 562300818 edges, 17494 markings/sec, 1560 secs
lola: 30733526 markings, 564136011 edges, 15741 markings/sec, 1565 secs
lola: 30837310 markings, 565980704 edges, 20757 markings/sec, 1570 secs
lola: 30931158 markings, 567818737 edges, 18770 markings/sec, 1575 secs
lola: 31029988 markings, 569666687 edges, 19766 markings/sec, 1580 secs
lola: 31122474 markings, 571508628 edges, 18497 markings/sec, 1585 secs
lola: 31209342 markings, 573346947 edges, 17374 markings/sec, 1590 secs
lola: 31292015 markings, 575190962 edges, 16535 markings/sec, 1595 secs
lola: 31385520 markings, 577033536 edges, 18701 markings/sec, 1600 secs
lola: 31478178 markings, 578872564 edges, 18532 markings/sec, 1605 secs
lola: 31567874 markings, 580711086 edges, 17939 markings/sec, 1610 secs
lola: 31650747 markings, 582547964 edges, 16575 markings/sec, 1615 secs
lola: 31736309 markings, 584380311 edges, 17112 markings/sec, 1620 secs
lola: 31824841 markings, 586216446 edges, 17706 markings/sec, 1625 secs
lola: 31907369 markings, 588053153 edges, 16506 markings/sec, 1630 secs
lola: 31990107 markings, 589880125 edges, 16548 markings/sec, 1635 secs
lola: 32072061 markings, 591710334 edges, 16391 markings/sec, 1640 secs
lola: 32152716 markings, 593530256 edges, 16131 markings/sec, 1645 secs
lola: 32229375 markings, 595351390 edges, 15332 markings/sec, 1650 secs
lola: 32305070 markings, 597173586 edges, 15139 markings/sec, 1655 secs
lola: 32381021 markings, 598970559 edges, 15190 markings/sec, 1660 secs
lola: 32461871 markings, 600761501 edges, 16170 markings/sec, 1665 secs
lola: 32539707 markings, 602550370 edges, 15567 markings/sec, 1670 secs
lola: 32621384 markings, 604340687 edges, 16335 markings/sec, 1675 secs
lola: 32733493 markings, 606198172 edges, 22422 markings/sec, 1680 secs
lola: 32834683 markings, 608050061 edges, 20238 markings/sec, 1685 secs
lola: 32933337 markings, 609887947 edges, 19731 markings/sec, 1690 secs
lola: 33034966 markings, 611741734 edges, 20326 markings/sec, 1695 secs
lola: 33129628 markings, 613578856 edges, 18932 markings/sec, 1700 secs
lola: 33222104 markings, 615421234 edges, 18495 markings/sec, 1705 secs
lola: 33314726 markings, 617260855 edges, 18524 markings/sec, 1710 secs
lola: 33401092 markings, 619102572 edges, 17273 markings/sec, 1715 secs
lola: 33483814 markings, 620927274 edges, 16544 markings/sec, 1720 secs
lola: 33581961 markings, 622656599 edges, 19629 markings/sec, 1725 secs
lola: 33672077 markings, 624439494 edges, 18023 markings/sec, 1730 secs
lola: 33768248 markings, 626251054 edges, 19234 markings/sec, 1735 secs
lola: 33849426 markings, 627867423 edges, 16236 markings/sec, 1740 secs
lola: 33923909 markings, 629409290 edges, 14897 markings/sec, 1745 secs
lola: 33997094 markings, 631033639 edges, 14637 markings/sec, 1750 secs
lola: 34082725 markings, 632841861 edges, 17126 markings/sec, 1755 secs
lola: 34175490 markings, 634679716 edges, 18553 markings/sec, 1760 secs
lola: 34267120 markings, 636512522 edges, 18326 markings/sec, 1765 secs
lola: 34352208 markings, 638337284 edges, 17018 markings/sec, 1770 secs
lola: 34433384 markings, 640162295 edges, 16235 markings/sec, 1775 secs
lola: 34520800 markings, 641935649 edges, 17483 markings/sec, 1780 secs
lola: 34596960 markings, 643565278 edges, 15232 markings/sec, 1785 secs
lola: 34668479 markings, 645244054 edges, 14304 markings/sec, 1790 secs
lola: 34752126 markings, 646985568 edges, 16729 markings/sec, 1795 secs
lola: 34828176 markings, 648789801 edges, 15210 markings/sec, 1800 secs
lola: 34903148 markings, 650445802 edges, 14994 markings/sec, 1805 secs
lola: 34971660 markings, 652064256 edges, 13702 markings/sec, 1810 secs
lola: 35037212 markings, 653661800 edges, 13110 markings/sec, 1815 secs
lola: 35108928 markings, 655351560 edges, 14343 markings/sec, 1820 secs
lola: 35176456 markings, 656887492 edges, 13506 markings/sec, 1825 secs
lola: 35239582 markings, 658382837 edges, 12625 markings/sec, 1830 secs
lola: 35315678 markings, 660087439 edges, 15219 markings/sec, 1835 secs
lola: 35419351 markings, 661940215 edges, 20735 markings/sec, 1840 secs
lola: 35513434 markings, 663764592 edges, 18817 markings/sec, 1845 secs
lola: 35608135 markings, 665601316 edges, 18940 markings/sec, 1850 secs
lola: 35699396 markings, 667433934 edges, 18252 markings/sec, 1855 secs
lola: 35786716 markings, 669255153 edges, 17464 markings/sec, 1860 secs
lola: 35863604 markings, 671068838 edges, 15378 markings/sec, 1865 secs
lola: 35961346 markings, 672901206 edges, 19548 markings/sec, 1870 secs
lola: 36050007 markings, 674668490 edges, 17732 markings/sec, 1875 secs
lola: 36131854 markings, 676369055 edges, 16369 markings/sec, 1880 secs
lola: 36210702 markings, 678113168 edges, 15770 markings/sec, 1885 secs
lola: 36295680 markings, 679926762 edges, 16996 markings/sec, 1890 secs
lola: 36382920 markings, 681749502 edges, 17448 markings/sec, 1895 secs
lola: 36464190 markings, 683561555 edges, 16254 markings/sec, 1900 secs
lola: 36546396 markings, 685372942 edges, 16441 markings/sec, 1905 secs
lola: 36627882 markings, 687194761 edges, 16297 markings/sec, 1910 secs
lola: 36708271 markings, 689005818 edges, 16078 markings/sec, 1915 secs
lola: 36780403 markings, 690712359 edges, 14426 markings/sec, 1920 secs
lola: 36850197 markings, 692394419 edges, 13959 markings/sec, 1925 secs
lola: 36921910 markings, 694130785 edges, 14343 markings/sec, 1930 secs
lola: 36996228 markings, 695860311 edges, 14864 markings/sec, 1935 secs
lola: 37065900 markings, 697577190 edges, 13934 markings/sec, 1940 secs
lola: 37154614 markings, 699370464 edges, 17743 markings/sec, 1945 secs
lola: 37246319 markings, 701198195 edges, 18341 markings/sec, 1950 secs
lola: 37336799 markings, 703032962 edges, 18096 markings/sec, 1955 secs
lola: 37420485 markings, 704857441 edges, 16737 markings/sec, 1960 secs
lola: 37503564 markings, 706673675 edges, 16616 markings/sec, 1965 secs
lola: 37592708 markings, 708501430 edges, 17829 markings/sec, 1970 secs
lola: 37674850 markings, 710322646 edges, 16428 markings/sec, 1975 secs
lola: 37757292 markings, 712137643 edges, 16488 markings/sec, 1980 secs
lola: 37839454 markings, 713963433 edges, 16432 markings/sec, 1985 secs
lola: 37918240 markings, 715777752 edges, 15757 markings/sec, 1990 secs
lola: 37996399 markings, 717587485 edges, 15632 markings/sec, 1995 secs
lola: 38071532 markings, 719398070 edges, 15027 markings/sec, 2000 secs
lola: 38144542 markings, 721174433 edges, 14602 markings/sec, 2005 secs
lola: 38216299 markings, 722907183 edges, 14351 markings/sec, 2010 secs
lola: 38283660 markings, 724625978 edges, 13472 markings/sec, 2015 secs
lola: 38367208 markings, 726307683 edges, 16710 markings/sec, 2020 secs
lola: 38448887 markings, 728014210 edges, 16336 markings/sec, 2025 secs
lola: 38527195 markings, 729835739 edges, 15662 markings/sec, 2030 secs
lola: 38613520 markings, 731655568 edges, 17265 markings/sec, 2035 secs
lola: 38686236 markings, 733348923 edges, 14543 markings/sec, 2040 secs
lola: 38761096 markings, 735026105 edges, 14972 markings/sec, 2045 secs
lola: 38837051 markings, 736808587 edges, 15191 markings/sec, 2050 secs
lola: 38910444 markings, 738607862 edges, 14679 markings/sec, 2055 secs
lola: 38983729 markings, 740374560 edges, 14657 markings/sec, 2060 secs
lola: 39051407 markings, 742104364 edges, 13536 markings/sec, 2065 secs
lola: 39120366 markings, 743699201 edges, 13792 markings/sec, 2070 secs
lola: 39198614 markings, 745417258 edges, 15650 markings/sec, 2075 secs
lola: 39277221 markings, 747226963 edges, 15721 markings/sec, 2080 secs
lola: 39354241 markings, 749036240 edges, 15404 markings/sec, 2085 secs
lola: 39430927 markings, 750846124 edges, 15337 markings/sec, 2090 secs
lola: 39503161 markings, 752636286 edges, 14447 markings/sec, 2095 secs
lola: 39571145 markings, 754364557 edges, 13597 markings/sec, 2100 secs
lola: 39642555 markings, 756117145 edges, 14282 markings/sec, 2105 secs
lola: 39718499 markings, 757917940 edges, 15189 markings/sec, 2110 secs
lola: 39795623 markings, 759720792 edges, 15425 markings/sec, 2115 secs
lola: 39867823 markings, 761508479 edges, 14440 markings/sec, 2120 secs
lola: 39934527 markings, 763254223 edges, 13341 markings/sec, 2125 secs
lola: 40005543 markings, 765030139 edges, 14203 markings/sec, 2130 secs
lola: 40079316 markings, 766829141 edges, 14755 markings/sec, 2135 secs
lola: 40148974 markings, 768602116 edges, 13932 markings/sec, 2140 secs
lola: 40214095 markings, 770359392 edges, 13024 markings/sec, 2145 secs
lola: 40286515 markings, 772145268 edges, 14484 markings/sec, 2150 secs
lola: 40348014 markings, 773904341 edges, 12300 markings/sec, 2155 secs
lola: 40417496 markings, 775693137 edges, 13896 markings/sec, 2160 secs
lola: 40481061 markings, 777459083 edges, 12713 markings/sec, 2165 secs
lola: 40541586 markings, 779230455 edges, 12105 markings/sec, 2170 secs
lola: 40600704 markings, 780969316 edges, 11824 markings/sec, 2175 secs
lola: 40709921 markings, 782686751 edges, 21843 markings/sec, 2180 secs
lola: 40838294 markings, 784454887 edges, 25675 markings/sec, 2185 secs
lola: 40947513 markings, 786198092 edges, 21844 markings/sec, 2190 secs
lola: 41067574 markings, 787863133 edges, 24012 markings/sec, 2195 secs
lola: 41173626 markings, 789537647 edges, 21210 markings/sec, 2200 secs
lola: 41285515 markings, 791309406 edges, 22378 markings/sec, 2205 secs
lola: 41393911 markings, 793081385 edges, 21679 markings/sec, 2210 secs
lola: 41494482 markings, 794846547 edges, 20114 markings/sec, 2215 secs
lola: 41586908 markings, 796592086 edges, 18485 markings/sec, 2220 secs
lola: 41709678 markings, 798370010 edges, 24554 markings/sec, 2225 secs
lola: 41819525 markings, 800148948 edges, 21969 markings/sec, 2230 secs
lola: 41938855 markings, 801935660 edges, 23866 markings/sec, 2235 secs
lola: 42046052 markings, 803713760 edges, 21439 markings/sec, 2240 secs
lola: 42147980 markings, 805482151 edges, 20386 markings/sec, 2245 secs
lola: 42240037 markings, 807226434 edges, 18411 markings/sec, 2250 secs
lola: 42352980 markings, 809008738 edges, 22589 markings/sec, 2255 secs
lola: 42464112 markings, 810811668 edges, 22226 markings/sec, 2260 secs
lola: 42567998 markings, 812600300 edges, 20777 markings/sec, 2265 secs
lola: 42661803 markings, 814373079 edges, 18761 markings/sec, 2270 secs
lola: 42764912 markings, 816141800 edges, 20622 markings/sec, 2275 secs
lola: 42869025 markings, 817935230 edges, 20823 markings/sec, 2280 secs
lola: 42963079 markings, 819711977 edges, 18811 markings/sec, 2285 secs
lola: 43060028 markings, 821484861 edges, 19390 markings/sec, 2290 secs
lola: 43156300 markings, 823264352 edges, 19254 markings/sec, 2295 secs
lola: 43249027 markings, 825025851 edges, 18545 markings/sec, 2300 secs
lola: 43336782 markings, 826778456 edges, 17551 markings/sec, 2305 secs
lola: 43423819 markings, 828537445 edges, 17407 markings/sec, 2310 secs
lola: 43505129 markings, 830280607 edges, 16262 markings/sec, 2315 secs
lola: 43583296 markings, 831996099 edges, 15633 markings/sec, 2320 secs
lola: 43711504 markings, 833791915 edges, 25642 markings/sec, 2325 secs
lola: 43824124 markings, 835568470 edges, 22524 markings/sec, 2330 secs
lola: 43935129 markings, 837345036 edges, 22201 markings/sec, 2335 secs
lola: 44043398 markings, 839120664 edges, 21654 markings/sec, 2340 secs
lola: 44140819 markings, 840882235 edges, 19484 markings/sec, 2345 secs
lola: 44230364 markings, 842607869 edges, 17909 markings/sec, 2350 secs
lola: 44350736 markings, 844417362 edges, 24074 markings/sec, 2355 secs
lola: 44459063 markings, 846219394 edges, 21665 markings/sec, 2360 secs
lola: 44557018 markings, 847908511 edges, 19591 markings/sec, 2365 secs
lola: 44650757 markings, 849700966 edges, 18748 markings/sec, 2370 secs
lola: 44756702 markings, 851489918 edges, 21189 markings/sec, 2375 secs
lola: 44851082 markings, 853110621 edges, 18876 markings/sec, 2380 secs
lola: 44933738 markings, 854694939 edges, 16531 markings/sec, 2385 secs
lola: 45023260 markings, 856327808 edges, 17904 markings/sec, 2390 secs
lola: 45115268 markings, 858023200 edges, 18402 markings/sec, 2395 secs
lola: 45208793 markings, 859813453 edges, 18705 markings/sec, 2400 secs
lola: 45298959 markings, 861608514 edges, 18033 markings/sec, 2405 secs
lola: 45381701 markings, 863278277 edges, 16548 markings/sec, 2410 secs
lola: 45456687 markings, 864837180 edges, 14997 markings/sec, 2415 secs
lola: 45524824 markings, 866431117 edges, 13627 markings/sec, 2420 secs
lola: 45634112 markings, 868159606 edges, 21858 markings/sec, 2425 secs
lola: 45738467 markings, 869858717 edges, 20871 markings/sec, 2430 secs
lola: 45828587 markings, 871430415 edges, 18024 markings/sec, 2435 secs
lola: 45914894 markings, 873008490 edges, 17261 markings/sec, 2440 secs
lola: 46003421 markings, 874620304 edges, 17705 markings/sec, 2445 secs
lola: 46101991 markings, 876257771 edges, 19714 markings/sec, 2450 secs
lola: 46188975 markings, 877823848 edges, 17397 markings/sec, 2455 secs
lola: 46267033 markings, 879375674 edges, 15612 markings/sec, 2460 secs
lola: 46358287 markings, 880941429 edges, 18251 markings/sec, 2465 secs
lola: 46439477 markings, 882502393 edges, 16238 markings/sec, 2470 secs
lola: 46525405 markings, 884127964 edges, 17186 markings/sec, 2475 secs
lola: 46600311 markings, 885641338 edges, 14981 markings/sec, 2480 secs
lola: 46681630 markings, 887288441 edges, 16264 markings/sec, 2485 secs
lola: 46765150 markings, 889017314 edges, 16704 markings/sec, 2490 secs
lola: 46838416 markings, 890747619 edges, 14653 markings/sec, 2495 secs
lola: 46941029 markings, 892445569 edges, 20523 markings/sec, 2500 secs
lola: 47038221 markings, 894139570 edges, 19438 markings/sec, 2505 secs
lola: 47122655 markings, 895779075 edges, 16887 markings/sec, 2510 secs
lola: 47220115 markings, 897492398 edges, 19492 markings/sec, 2515 secs
lola: 47306212 markings, 899137075 edges, 17219 markings/sec, 2520 secs
lola: 47393498 markings, 900791567 edges, 17457 markings/sec, 2525 secs
lola: 47479928 markings, 902512331 edges, 17286 markings/sec, 2530 secs
lola: 47565082 markings, 904241268 edges, 17031 markings/sec, 2535 secs
lola: 47641668 markings, 905895771 edges, 15317 markings/sec, 2540 secs
lola: 47709360 markings, 907489929 edges, 13538 markings/sec, 2545 secs
lola: 47810971 markings, 909242521 edges, 20322 markings/sec, 2550 secs
lola: 47898050 markings, 910952197 edges, 17416 markings/sec, 2555 secs
lola: 47985136 markings, 912570064 edges, 17417 markings/sec, 2560 secs
lola: 48071194 markings, 914280551 edges, 17212 markings/sec, 2565 secs
lola: 48149806 markings, 915892601 edges, 15722 markings/sec, 2570 secs
lola: 48227798 markings, 917581925 edges, 15598 markings/sec, 2575 secs
lola: 48303434 markings, 919252825 edges, 15127 markings/sec, 2580 secs
lola: 48391434 markings, 920943004 edges, 17600 markings/sec, 2585 secs
lola: 48473612 markings, 922581820 edges, 16436 markings/sec, 2590 secs
lola: 48553259 markings, 924268936 edges, 15929 markings/sec, 2595 secs
lola: 48627522 markings, 925909380 edges, 14853 markings/sec, 2600 secs
lola: 48708140 markings, 927613544 edges, 16124 markings/sec, 2605 secs
lola: 48786011 markings, 929218816 edges, 15574 markings/sec, 2610 secs
lola: 48861329 markings, 930889701 edges, 15064 markings/sec, 2615 secs
lola: 48938129 markings, 932603765 edges, 15360 markings/sec, 2620 secs
lola: 49016993 markings, 934319261 edges, 15773 markings/sec, 2625 secs
lola: 49082725 markings, 935854342 edges, 13146 markings/sec, 2630 secs
lola: 49155703 markings, 937537762 edges, 14596 markings/sec, 2635 secs
lola: 49220871 markings, 939068257 edges, 13034 markings/sec, 2640 secs
lola: 49285944 markings, 940650837 edges, 13015 markings/sec, 2645 secs
lola: 49360096 markings, 942364507 edges, 14830 markings/sec, 2650 secs
lola: 49432899 markings, 943921724 edges, 14561 markings/sec, 2655 secs
lola: 49505157 markings, 945472757 edges, 14452 markings/sec, 2660 secs
lola: 49573087 markings, 946982104 edges, 13586 markings/sec, 2665 secs
lola: 49639853 markings, 948492985 edges, 13353 markings/sec, 2670 secs
lola: 49745479 markings, 950032070 edges, 21125 markings/sec, 2675 secs
lola: 49845538 markings, 951575252 edges, 20012 markings/sec, 2680 secs
lola: 49944842 markings, 953107231 edges, 19861 markings/sec, 2685 secs
lola: 50039950 markings, 954644277 edges, 19022 markings/sec, 2690 secs
lola: 50132036 markings, 956186424 edges, 18417 markings/sec, 2695 secs
lola: 50218931 markings, 957752253 edges, 17379 markings/sec, 2700 secs
lola: 50302937 markings, 959364975 edges, 16801 markings/sec, 2705 secs
lola: 50408593 markings, 960962892 edges, 21131 markings/sec, 2710 secs
lola: 50512986 markings, 962664221 edges, 20879 markings/sec, 2715 secs
lola: 50617134 markings, 964464555 edges, 20830 markings/sec, 2720 secs
lola: 50711550 markings, 966246110 edges, 18883 markings/sec, 2725 secs
lola: 50815537 markings, 968023531 edges, 20797 markings/sec, 2730 secs
lola: 50919467 markings, 969826594 edges, 20786 markings/sec, 2735 secs
lola: 51013466 markings, 971601500 edges, 18800 markings/sec, 2740 secs
lola: 51110810 markings, 973369285 edges, 19469 markings/sec, 2745 secs
lola: 51206508 markings, 975161499 edges, 19140 markings/sec, 2750 secs
lola: 51300188 markings, 976935083 edges, 18736 markings/sec, 2755 secs
lola: 51389461 markings, 978712946 edges, 17855 markings/sec, 2760 secs
lola: 51477058 markings, 980489977 edges, 17519 markings/sec, 2765 secs
lola: 51559295 markings, 982259591 edges, 16447 markings/sec, 2770 secs
lola: 51644357 markings, 984019433 edges, 17012 markings/sec, 2775 secs
lola: 51756334 markings, 985818866 edges, 22395 markings/sec, 2780 secs
lola: 51867376 markings, 987612758 edges, 22208 markings/sec, 2785 secs
lola: 51968957 markings, 989418401 edges, 20316 markings/sec, 2790 secs
lola: 52058460 markings, 991181036 edges, 17901 markings/sec, 2795 secs
lola: 52169145 markings, 992963442 edges, 22137 markings/sec, 2800 secs
lola: 52268622 markings, 994728768 edges, 19895 markings/sec, 2805 secs
lola: 52358756 markings, 996489450 edges, 18027 markings/sec, 2810 secs
lola: 52461796 markings, 998291695 edges, 20608 markings/sec, 2815 secs
lola: 52551186 markings, 1000066349 edges, 17878 markings/sec, 2820 secs
lola: 52647001 markings, 1001859238 edges, 19163 markings/sec, 2825 secs
lola: 52736452 markings, 1003639086 edges, 17890 markings/sec, 2830 secs
lola: 52819981 markings, 1005412331 edges, 16706 markings/sec, 2835 secs
lola: 52899536 markings, 1007180233 edges, 15911 markings/sec, 2840 secs
lola: 52998341 markings, 1008951451 edges, 19761 markings/sec, 2845 secs
lola: 53103439 markings, 1010770013 edges, 21020 markings/sec, 2850 secs
lola: 53197403 markings, 1012578494 edges, 18793 markings/sec, 2855 secs
lola: 53292436 markings, 1014272727 edges, 19007 markings/sec, 2860 secs
lola: 53387737 markings, 1016078651 edges, 19060 markings/sec, 2865 secs
lola: 53483190 markings, 1017887116 edges, 19091 markings/sec, 2870 secs
lola: 53570612 markings, 1019630895 edges, 17484 markings/sec, 2875 secs
lola: 53653432 markings, 1021319213 edges, 16564 markings/sec, 2880 secs
lola: 53734006 markings, 1023056323 edges, 16115 markings/sec, 2885 secs
lola: 53816722 markings, 1024829816 edges, 16543 markings/sec, 2890 secs
lola: 53917868 markings, 1026652432 edges, 20229 markings/sec, 2895 secs
lola: 54010532 markings, 1028449297 edges, 18533 markings/sec, 2900 secs
lola: 54102806 markings, 1030246020 edges, 18455 markings/sec, 2905 secs
lola: 54191922 markings, 1032033410 edges, 17823 markings/sec, 2910 secs
lola: 54277431 markings, 1033819282 edges, 17102 markings/sec, 2915 secs
lola: 54353805 markings, 1035601069 edges, 15275 markings/sec, 2920 secs
lola: 54448500 markings, 1037392101 edges, 18939 markings/sec, 2925 secs
lola: 54532035 markings, 1039058870 edges, 16707 markings/sec, 2930 secs
lola: 54614142 markings, 1040743297 edges, 16421 markings/sec, 2935 secs
lola: 54707245 markings, 1042805727 edges, 18621 markings/sec, 2940 secs
lola: 54790490 markings, 1044573331 edges, 16649 markings/sec, 2945 secs
lola: 54882208 markings, 1046507578 edges, 18344 markings/sec, 2950 secs
lola: 54953057 markings, 1048060756 edges, 14170 markings/sec, 2955 secs
lola: 55027063 markings, 1049693880 edges, 14801 markings/sec, 2960 secs
lola: 55106368 markings, 1051461121 edges, 15861 markings/sec, 2965 secs
lola: 55177857 markings, 1053090066 edges, 14298 markings/sec, 2970 secs
lola: 55246396 markings, 1054706819 edges, 13708 markings/sec, 2975 secs
lola: 55318089 markings, 1056404743 edges, 14339 markings/sec, 2980 secs
lola: 55385067 markings, 1058034407 edges, 13396 markings/sec, 2985 secs
lola: 55455061 markings, 1059593700 edges, 13999 markings/sec, 2990 secs
lola: 55530049 markings, 1061224994 edges, 14998 markings/sec, 2995 secs
lola: 55605843 markings, 1062933737 edges, 15159 markings/sec, 3000 secs
lola: 55674805 markings, 1064527927 edges, 13792 markings/sec, 3005 secs
lola: 55782163 markings, 1066237827 edges, 21472 markings/sec, 3010 secs
lola: 55887514 markings, 1067955135 edges, 21070 markings/sec, 3015 secs
lola: 55992350 markings, 1069759008 edges, 20967 markings/sec, 3020 secs
lola: 56087137 markings, 1071547527 edges, 18957 markings/sec, 3025 secs
lola: 56191387 markings, 1073333771 edges, 20850 markings/sec, 3030 secs
lola: 56295805 markings, 1075138412 edges, 20884 markings/sec, 3035 secs
lola: 56390668 markings, 1076930074 edges, 18973 markings/sec, 3040 secs
lola: 56489134 markings, 1078718308 edges, 19693 markings/sec, 3045 secs
lola: 56584929 markings, 1080514205 edges, 19159 markings/sec, 3050 secs
lola: 56679061 markings, 1082296100 edges, 18826 markings/sec, 3055 secs
lola: 56761526 markings, 1083942807 edges, 16493 markings/sec, 3060 secs
lola: 56847738 markings, 1085690728 edges, 17242 markings/sec, 3065 secs
lola: 56929926 markings, 1087455843 edges, 16438 markings/sec, 3070 secs
lola: 57009694 markings, 1089205361 edges, 15954 markings/sec, 3075 secs
lola: 57121186 markings, 1091038000 edges, 22298 markings/sec, 3080 secs
lola: 57215220 markings, 1092744474 edges, 18807 markings/sec, 3085 secs
lola: 57307222 markings, 1094499820 edges, 18400 markings/sec, 3090 secs
lola: 57409951 markings, 1096327347 edges, 20546 markings/sec, 3095 secs
lola: 57502182 markings, 1098129943 edges, 18446 markings/sec, 3100 secs
lola: 57593086 markings, 1099863288 edges, 18181 markings/sec, 3105 secs
lola: 57678804 markings, 1101570860 edges, 17144 markings/sec, 3110 secs
lola: 57760762 markings, 1103307787 edges, 16392 markings/sec, 3115 secs
lola: 57840492 markings, 1105096941 edges, 15946 markings/sec, 3120 secs
lola: 57936809 markings, 1106903586 edges, 19263 markings/sec, 3125 secs
lola: 58033080 markings, 1108725962 edges, 19254 markings/sec, 3130 secs
lola: 58128929 markings, 1110543303 edges, 19170 markings/sec, 3135 secs
lola: 58219546 markings, 1112347078 edges, 18123 markings/sec, 3140 secs
lola: 58308465 markings, 1114162655 edges, 17784 markings/sec, 3145 secs
lola: 58390636 markings, 1115977514 edges, 16434 markings/sec, 3150 secs
lola: 58476098 markings, 1117781102 edges, 17092 markings/sec, 3155 secs
lola: 58567631 markings, 1119599788 edges, 18307 markings/sec, 3160 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no unknown unknown yes no yes no no no
lola: memory consumption: 9028712 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: time limit reached - aborting
lola:
preliminary result: yes no unknown unknown yes no yes no no no
lola:
preliminary result: yes no unknown unknown yes no yes no no no
lola: memory consumption: 31864 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Referendum-COL-0200"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="gold2020"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool gold2020"
echo " Input is Referendum-COL-0200, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r189-tajo-162089432800245"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Referendum-COL-0200.tgz
mv Referendum-COL-0200 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;