fond
Model Checking Contest 2021
11th edition, Paris, France, June 23, 2021
Execution of r140-tall-162298996000163
Last Updated
Jun 28, 2021

About the Execution of ITS-Tools for Philosophers-PT-002000

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
3118.527 2123176.00 1659731.00 22162.20 2000 2000 1000 2000 2000 2000 2000 2000 1 1 1 1 1 1 1 1 normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2021-input.r140-tall-162298996000163.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2021-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool itstools
Input is Philosophers-PT-002000, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r140-tall-162298996000163
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 74M
-rw-r--r-- 1 mcc users 4.3M May 5 16:58 CTLCardinality.txt
-rw-r--r-- 1 mcc users 22M May 10 09:43 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.1M May 5 16:58 CTLFireability.txt
-rw-r--r-- 1 mcc users 19M May 10 09:43 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 6 14:48 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 987K Mar 28 16:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 3.6M Mar 28 16:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 795K Mar 28 16:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 3.5M Mar 28 16:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 962K Mar 27 07:35 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 3.2M Mar 27 07:35 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 870K Mar 25 09:12 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 3.7M Mar 25 09:12 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 214K Mar 22 09:16 UpperBounds.txt
-rw-r--r-- 1 mcc users 529K Mar 22 09:16 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 5 16:51 equiv_col
-rw-r--r-- 1 mcc users 7 May 5 16:51 instance
-rw-r--r-- 1 mcc users 6 May 5 16:51 iscolored
-rw-r--r-- 1 mcc users 8.7M May 5 16:51 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of positive values
NUM_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-PT-002000-UpperBounds-00
FORMULA_NAME Philosophers-PT-002000-UpperBounds-01
FORMULA_NAME Philosophers-PT-002000-UpperBounds-02
FORMULA_NAME Philosophers-PT-002000-UpperBounds-03
FORMULA_NAME Philosophers-PT-002000-UpperBounds-04
FORMULA_NAME Philosophers-PT-002000-UpperBounds-05
FORMULA_NAME Philosophers-PT-002000-UpperBounds-06
FORMULA_NAME Philosophers-PT-002000-UpperBounds-07
FORMULA_NAME Philosophers-PT-002000-UpperBounds-08
FORMULA_NAME Philosophers-PT-002000-UpperBounds-09
FORMULA_NAME Philosophers-PT-002000-UpperBounds-10
FORMULA_NAME Philosophers-PT-002000-UpperBounds-11
FORMULA_NAME Philosophers-PT-002000-UpperBounds-12
FORMULA_NAME Philosophers-PT-002000-UpperBounds-13
FORMULA_NAME Philosophers-PT-002000-UpperBounds-14
FORMULA_NAME Philosophers-PT-002000-UpperBounds-15

=== Now, execution of the tool begins

BK_START 1622996115277

Running Version 0
[2021-06-06 16:15:16] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, UpperBounds, -spotpath, /home/mcc/BenchKit/bin//..//ltlfilt, -z3path, /home/mcc/BenchKit/bin//..//z3/bin/z3, -yices2path, /home/mcc/BenchKit/bin//..//yices/bin/yices, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2021-06-06 16:15:16] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2021-06-06 16:15:17] [INFO ] Load time of PNML (sax parser for PT used): 581 ms
[2021-06-06 16:15:17] [INFO ] Transformed 10000 places.
[2021-06-06 16:15:17] [INFO ] Transformed 10000 transitions.
[2021-06-06 16:15:17] [INFO ] Found NUPN structural information;
[2021-06-06 16:15:17] [INFO ] Parsed PT model containing 10000 places and 10000 transitions in 689 ms.
Parsed 16 properties from file /home/mcc/execution/UpperBounds.xml in 540 ms.
FORMULA Philosophers-PT-002000-UpperBounds-14 1 TECHNIQUES TOPOLOGICAL INITIAL_STATE
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:15:18] [INFO ] Computed 4000 place invariants in 91 ms
FORMULA Philosophers-PT-002000-UpperBounds-07 2000 TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Philosophers-PT-002000-UpperBounds-00 2000 TECHNIQUES TOPOLOGICAL INITIAL_STATE
Incomplete random walk after 10000 steps, including 2 resets, run finished after 8874 ms. (steps per millisecond=1 ) properties (out of 13) seen :3496
FORMULA Philosophers-PT-002000-UpperBounds-15 1 TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA Philosophers-PT-002000-UpperBounds-13 1 TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA Philosophers-PT-002000-UpperBounds-12 1 TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA Philosophers-PT-002000-UpperBounds-11 1 TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA Philosophers-PT-002000-UpperBounds-09 1 TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA Philosophers-PT-002000-UpperBounds-08 1 TECHNIQUES TOPOLOGICAL RANDOM_WALK
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1112 ms. (steps per millisecond=8 ) properties (out of 7) seen :4
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1151 ms. (steps per millisecond=8 ) properties (out of 7) seen :5
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1074 ms. (steps per millisecond=9 ) properties (out of 7) seen :4
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1068 ms. (steps per millisecond=9 ) properties (out of 7) seen :1
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1077 ms. (steps per millisecond=9 ) properties (out of 7) seen :4
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1102 ms. (steps per millisecond=9 ) properties (out of 7) seen :4
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 607 ms. (steps per millisecond=16 ) properties (out of 7) seen :5
FORMULA Philosophers-PT-002000-UpperBounds-10 1 TECHNIQUES TOPOLOGICAL BESTFIRST_WALK
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:15:34] [INFO ] Computed 4000 place invariants in 36 ms
[2021-06-06 16:15:38] [INFO ] [Real]Absence check using 4000 positive place invariants in 1744 ms returned sat
[2021-06-06 16:15:38] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:15:39] [INFO ] [Real]Absence check using state equation in 1381 ms returned unknown
[2021-06-06 16:15:43] [INFO ] [Real]Absence check using 4000 positive place invariants in 1856 ms returned sat
[2021-06-06 16:15:43] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:15:44] [WARNING] SMT solver failed with error :java.lang.RuntimeException: SMT solver raised an error when submitting script. Raised (error "Failed to assert expression: java.io.IOException: Broken pipe ... while checking expression at index 1
java.lang.RuntimeException: SMT solver raised an error when submitting script. Raised (error "Failed to assert expression: java.io.IOException: Broken pipe ...
at fr.lip6.move.gal.structural.smt.SMTUtils.execAndCheckResult(SMTUtils.java:240)
at fr.lip6.move.gal.structural.smt.DeadlockTester.verifyPossible(DeadlockTester.java:571)
at fr.lip6.move.gal.structural.smt.DeadlockTester.findStructuralMaxWithSMT(DeadlockTester.java:2242)
at fr.lip6.move.gal.application.UpperBoundsSolver.applyReductions(UpperBoundsSolver.java:187)
at fr.lip6.move.gal.application.Application.startNoEx(Application.java:428)
at fr.lip6.move.gal.application.Application.start(Application.java:140)
at fr.lip6.move.gal.itscl.application.Application.start(Application.java:43)
at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:203)
at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:134)
at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:104)
at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:401)
at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:255)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:566)
at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:653)
at org.eclipse.equinox.launcher.Main.basicRun(Main.java:590)
at org.eclipse.equinox.launcher.Main.run(Main.java:1461)
at org.eclipse.equinox.launcher.Main.main(Main.java:1434)
[2021-06-06 16:15:48] [INFO ] [Real]Absence check using 4000 positive place invariants in 1805 ms returned sat
[2021-06-06 16:15:48] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:15:49] [INFO ] [Real]Absence check using state equation in 1414 ms returned unknown
[2021-06-06 16:15:53] [INFO ] [Real]Absence check using 4000 positive place invariants in 1791 ms returned sat
[2021-06-06 16:15:53] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:15:54] [INFO ] [Real]Absence check using state equation in 1453 ms returned unknown
[2021-06-06 16:15:58] [INFO ] [Real]Absence check using 4000 positive place invariants in 1725 ms returned sat
[2021-06-06 16:15:58] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:15:59] [INFO ] [Real]Absence check using state equation in 1542 ms returned unknown
[2021-06-06 16:16:02] [INFO ] [Real]Absence check using 4000 positive place invariants in 1544 ms returned sat
[2021-06-06 16:16:02] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:16:04] [INFO ] [Real]Absence check using state equation in 2047 ms returned unknown
Current structural bounds on expressions (after SMT) : [2000, 2000, 2000, 2000, 2000, 2000] Max seen :[648, 305, 648, 593, 648, 648]
Support contains 6000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Applied a total of 0 rules in 748 ms. Remains 10000 /10000 variables (removed 0) and now considering 10000/10000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 10000/10000 places, 10000/10000 transitions.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:16:05] [INFO ] Computed 4000 place invariants in 35 ms
Interrupted random walk after 45247 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=1 ) properties seen :{0=974, 1=310, 2=974, 3=888, 4=974, 5=974}
Interrupted Best-First random walk after 47880 steps, including 0 resets, run timeout after 5092 ms. (steps per millisecond=9 ) properties seen :{0=11, 2=11, 4=11, 5=11}
Interrupted Best-First random walk after 54894 steps, including 0 resets, run timeout after 5009 ms. (steps per millisecond=10 ) properties seen :{0=1, 1=6, 2=1, 3=1, 4=1, 5=1}
Interrupted Best-First random walk after 56833 steps, including 0 resets, run timeout after 5042 ms. (steps per millisecond=11 ) properties seen :{0=14, 2=14, 4=14, 5=14}
Interrupted Best-First random walk after 47880 steps, including 0 resets, run timeout after 5032 ms. (steps per millisecond=9 ) properties seen :{3=11}
Interrupted Best-First random walk after 54858 steps, including 0 resets, run timeout after 5066 ms. (steps per millisecond=10 ) properties seen :{0=13, 2=13, 4=13, 5=13}
Interrupted Best-First random walk after 50881 steps, including 0 resets, run timeout after 5005 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:17:05] [INFO ] Computed 4000 place invariants in 33 ms
[2021-06-06 16:17:09] [INFO ] [Real]Absence check using 4000 positive place invariants in 1714 ms returned sat
[2021-06-06 16:17:09] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:17:17] [INFO ] [Real]Absence check using state equation in 8837 ms returned sat
[2021-06-06 16:17:18] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:18:06] [INFO ] [Real]Absence check using 4000 positive place invariants in 1718 ms returned sat
[2021-06-06 16:18:06] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:18:15] [INFO ] [Real]Absence check using state equation in 9010 ms returned sat
[2021-06-06 16:18:16] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:19:04] [INFO ] [Real]Absence check using 4000 positive place invariants in 1680 ms returned sat
[2021-06-06 16:19:04] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:19:12] [INFO ] [Real]Absence check using state equation in 8514 ms returned sat
[2021-06-06 16:19:13] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:20:01] [INFO ] [Real]Absence check using 4000 positive place invariants in 1696 ms returned sat
[2021-06-06 16:20:01] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:20:10] [INFO ] [Real]Absence check using state equation in 9127 ms returned sat
[2021-06-06 16:20:10] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:20:59] [INFO ] [Real]Absence check using 4000 positive place invariants in 1729 ms returned sat
[2021-06-06 16:20:59] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:21:08] [INFO ] [Real]Absence check using state equation in 9357 ms returned sat
[2021-06-06 16:21:08] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:21:57] [INFO ] [Real]Absence check using 4000 positive place invariants in 1752 ms returned sat
[2021-06-06 16:21:57] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:22:07] [INFO ] [Real]Absence check using state equation in 10593 ms returned sat
[2021-06-06 16:22:08] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000, 2000, 2000, 2000, 2000, 2000] Max seen :[974, 310, 974, 888, 974, 974]
Support contains 6000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Applied a total of 0 rules in 611 ms. Remains 10000 /10000 variables (removed 0) and now considering 10000/10000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 10000/10000 places, 10000/10000 transitions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Applied a total of 0 rules in 425 ms. Remains 10000 /10000 variables (removed 0) and now considering 10000/10000 (removed 0) transitions.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:22:54] [INFO ] Computed 4000 place invariants in 18 ms
[2021-06-06 16:22:55] [INFO ] Implicit Places using invariants in 1448 ms returned []
Implicit Place search using SMT only with invariants took 1458 ms to find 0 implicit places.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:22:55] [INFO ] Computed 4000 place invariants in 17 ms
[2021-06-06 16:22:57] [INFO ] Dead Transitions using invariants and state equation in 1485 ms returned []
Finished structural reductions, in 1 iterations. Remains : 10000/10000 places, 10000/10000 transitions.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:22:57] [INFO ] Computed 4000 place invariants in 18 ms
Interrupted random walk after 46298 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=1 ) properties seen :{0=867, 1=303, 2=867, 3=983, 4=867, 5=867}
Interrupted Best-First random walk after 50881 steps, including 0 resets, run timeout after 5038 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
Interrupted Best-First random walk after 50911 steps, including 0 resets, run timeout after 5027 ms. (steps per millisecond=10 ) properties seen :{0=1, 1=6, 2=1, 3=1, 4=1, 5=1}
Interrupted Best-First random walk after 50881 steps, including 0 resets, run timeout after 5027 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
Interrupted Best-First random walk after 51857 steps, including 0 resets, run timeout after 5091 ms. (steps per millisecond=10 ) properties seen :{3=12}
Interrupted Best-First random walk after 51857 steps, including 0 resets, run timeout after 5063 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
Interrupted Best-First random walk after 50881 steps, including 0 resets, run timeout after 5071 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:23:57] [INFO ] Computed 4000 place invariants in 22 ms
[2021-06-06 16:24:01] [INFO ] [Real]Absence check using 4000 positive place invariants in 1733 ms returned sat
[2021-06-06 16:24:01] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:24:10] [INFO ] [Real]Absence check using state equation in 9246 ms returned sat
[2021-06-06 16:24:10] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:24:58] [INFO ] [Real]Absence check using 4000 positive place invariants in 1628 ms returned sat
[2021-06-06 16:24:58] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:25:08] [INFO ] [Real]Absence check using state equation in 9262 ms returned sat
[2021-06-06 16:25:08] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:25:56] [INFO ] [Real]Absence check using 4000 positive place invariants in 1676 ms returned sat
[2021-06-06 16:25:56] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:26:05] [INFO ] [Real]Absence check using state equation in 8456 ms returned sat
[2021-06-06 16:26:05] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:26:53] [INFO ] [Real]Absence check using 4000 positive place invariants in 1666 ms returned sat
[2021-06-06 16:26:53] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:27:03] [INFO ] [Real]Absence check using state equation in 9286 ms returned sat
[2021-06-06 16:27:03] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:27:51] [INFO ] [Real]Absence check using 4000 positive place invariants in 1677 ms returned sat
[2021-06-06 16:27:51] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:28:01] [INFO ] [Real]Absence check using state equation in 9434 ms returned sat
[2021-06-06 16:28:01] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:28:49] [INFO ] [Real]Absence check using 4000 positive place invariants in 1724 ms returned sat
[2021-06-06 16:28:49] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:28:59] [INFO ] [Real]Absence check using state equation in 9299 ms returned sat
[2021-06-06 16:28:59] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000, 2000, 2000, 2000, 2000, 2000] Max seen :[974, 310, 974, 983, 974, 974]
Support contains 6000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Applied a total of 0 rules in 328 ms. Remains 10000 /10000 variables (removed 0) and now considering 10000/10000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 10000/10000 places, 10000/10000 transitions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Applied a total of 0 rules in 312 ms. Remains 10000 /10000 variables (removed 0) and now considering 10000/10000 (removed 0) transitions.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:29:45] [INFO ] Computed 4000 place invariants in 25 ms
[2021-06-06 16:29:46] [INFO ] Implicit Places using invariants in 1392 ms returned []
Implicit Place search using SMT only with invariants took 1393 ms to find 0 implicit places.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:29:46] [INFO ] Computed 4000 place invariants in 25 ms
[2021-06-06 16:29:47] [INFO ] Dead Transitions using invariants and state equation in 1452 ms returned []
Finished structural reductions, in 1 iterations. Remains : 10000/10000 places, 10000/10000 transitions.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:29:48] [INFO ] Computed 4000 place invariants in 26 ms
Interrupted random walk after 46549 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=1 ) properties seen :{0=962, 1=295, 2=962, 3=935, 4=962, 5=962}
Interrupted Best-First random walk after 50881 steps, including 0 resets, run timeout after 5015 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
Interrupted Best-First random walk after 51893 steps, including 0 resets, run timeout after 5061 ms. (steps per millisecond=10 ) properties seen :{0=1, 1=6, 2=1, 3=1, 4=1, 5=1}
Interrupted Best-First random walk after 51857 steps, including 0 resets, run timeout after 5065 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
Interrupted Best-First random walk after 51857 steps, including 0 resets, run timeout after 5080 ms. (steps per millisecond=10 ) properties seen :{3=12}
Interrupted Best-First random walk after 50881 steps, including 0 resets, run timeout after 5031 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
Interrupted Best-First random walk after 50881 steps, including 0 resets, run timeout after 5015 ms. (steps per millisecond=10 ) properties seen :{0=12, 2=12, 4=12, 5=12}
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:30:48] [INFO ] Computed 4000 place invariants in 27 ms
[2021-06-06 16:30:51] [INFO ] [Real]Absence check using 4000 positive place invariants in 1636 ms returned sat
[2021-06-06 16:30:51] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:30:59] [INFO ] [Real]Absence check using state equation in 8105 ms returned sat
[2021-06-06 16:30:59] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:31:48] [INFO ] [Real]Absence check using 4000 positive place invariants in 1735 ms returned sat
[2021-06-06 16:31:48] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:31:57] [INFO ] [Real]Absence check using state equation in 9036 ms returned sat
[2021-06-06 16:31:57] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:32:45] [INFO ] [Real]Absence check using 4000 positive place invariants in 1638 ms returned sat
[2021-06-06 16:32:45] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:32:54] [INFO ] [Real]Absence check using state equation in 8698 ms returned sat
[2021-06-06 16:32:54] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:33:43] [INFO ] [Real]Absence check using 4000 positive place invariants in 1711 ms returned sat
[2021-06-06 16:33:43] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:33:52] [INFO ] [Real]Absence check using state equation in 9645 ms returned sat
[2021-06-06 16:33:53] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:34:41] [INFO ] [Real]Absence check using 4000 positive place invariants in 1710 ms returned sat
[2021-06-06 16:34:41] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:34:50] [INFO ] [Real]Absence check using state equation in 8937 ms returned sat
[2021-06-06 16:34:50] [INFO ] Solution in real domain found non-integer solution.
[2021-06-06 16:35:39] [INFO ] [Real]Absence check using 4000 positive place invariants in 1720 ms returned sat
[2021-06-06 16:35:39] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:35:48] [INFO ] [Real]Absence check using state equation in 9545 ms returned sat
[2021-06-06 16:35:49] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000, 2000, 2000, 2000, 2000, 2000] Max seen :[974, 310, 974, 983, 974, 974]
Support contains 6000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Applied a total of 0 rules in 343 ms. Remains 10000 /10000 variables (removed 0) and now considering 10000/10000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 10000/10000 places, 10000/10000 transitions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Applied a total of 0 rules in 310 ms. Remains 10000 /10000 variables (removed 0) and now considering 10000/10000 (removed 0) transitions.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:36:34] [INFO ] Computed 4000 place invariants in 16 ms
[2021-06-06 16:36:36] [INFO ] Implicit Places using invariants in 1275 ms returned []
Implicit Place search using SMT only with invariants took 1289 ms to find 0 implicit places.
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:36:36] [INFO ] Computed 4000 place invariants in 16 ms
[2021-06-06 16:36:37] [INFO ] Dead Transitions using invariants and state equation in 1284 ms returned []
Finished structural reductions, in 1 iterations. Remains : 10000/10000 places, 10000/10000 transitions.
Starting property specific reduction for Philosophers-PT-002000-UpperBounds-01
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:36:37] [INFO ] Computed 4000 place invariants in 15 ms
Incomplete random walk after 10000 steps, including 2 resets, run finished after 4404 ms. (steps per millisecond=2 ) properties (out of 1) seen :622
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 972 ms. (steps per millisecond=10 ) properties (out of 1) seen :1
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:36:42] [INFO ] Computed 4000 place invariants in 16 ms
[2021-06-06 16:36:46] [INFO ] [Real]Absence check using 4000 positive place invariants in 1652 ms returned sat
[2021-06-06 16:36:46] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:36:47] [INFO ] [Real]Absence check using state equation in 1883 ms returned unknown
Current structural bounds on expressions (after SMT) : [2000] Max seen :[622]
Support contains 2000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Performed 2000 Post agglomeration using F-continuation condition.Transition count delta: 2000
Deduced a syphon composed of 2000 places in 2 ms
Reduce places removed 2000 places and 0 transitions.
Iterating global reduction 0 with 4000 rules applied. Total rules applied 4000 place count 8000 transition count 8000
Free-agglomeration rule (complex) applied 2000 times.
Iterating global reduction 0 with 2000 rules applied. Total rules applied 6000 place count 8000 transition count 6000
Reduce places removed 2000 places and 0 transitions.
Drop transitions removed 2000 transitions
Reduce isomorphic transitions removed 2000 transitions.
Iterating post reduction 0 with 4000 rules applied. Total rules applied 10000 place count 6000 transition count 4000
Applied a total of 10000 rules in 2784 ms. Remains 6000 /10000 variables (removed 4000) and now considering 4000/10000 (removed 6000) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/10000 places, 4000/10000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:36:50] [INFO ] Computed 4000 place invariants in 8 ms
Interrupted random walk after 83786 steps, including 16 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=2000}
FORMULA Philosophers-PT-002000-UpperBounds-01 2000 TECHNIQUES TOPOLOGICAL RANDOM_WALK
Ending property specific reduction for Philosophers-PT-002000-UpperBounds-01 in 43260 ms.
Starting property specific reduction for Philosophers-PT-002000-UpperBounds-02
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:37:20] [INFO ] Computed 4000 place invariants in 22 ms
Incomplete random walk after 10000 steps, including 2 resets, run finished after 4166 ms. (steps per millisecond=2 ) properties (out of 1) seen :305
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1022 ms. (steps per millisecond=9 ) properties (out of 1) seen :0
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:37:25] [INFO ] Computed 4000 place invariants in 20 ms
[2021-06-06 16:37:29] [INFO ] [Real]Absence check using 4000 positive place invariants in 1749 ms returned sat
[2021-06-06 16:37:29] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:37:31] [INFO ] [Real]Absence check using state equation in 1775 ms returned unknown
Current structural bounds on expressions (after SMT) : [2000] Max seen :[305]
Support contains 2000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Free-agglomeration rule (complex) applied 4000 times.
Iterating global reduction 0 with 4000 rules applied. Total rules applied 4000 place count 10000 transition count 6000
Reduce places removed 4000 places and 0 transitions.
Ensure Unique test removed 2000 transitions
Reduce isomorphic transitions removed 2000 transitions.
Iterating post reduction 0 with 6000 rules applied. Total rules applied 10000 place count 6000 transition count 4000
Applied a total of 10000 rules in 2705 ms. Remains 6000 /10000 variables (removed 4000) and now considering 4000/10000 (removed 6000) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/10000 places, 4000/10000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:37:33] [INFO ] Computed 4000 place invariants in 6 ms
Interrupted random walk after 87051 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=588}
Interrupted Best-First random walk after 49425 steps, including 0 resets, run timeout after 5021 ms. (steps per millisecond=9 ) properties seen :{0=24}
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:38:08] [INFO ] Computed 4000 place invariants in 14 ms
[2021-06-06 16:38:10] [INFO ] [Real]Absence check using 4000 positive place invariants in 1339 ms returned sat
[2021-06-06 16:38:10] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:38:14] [INFO ] [Real]Absence check using state equation in 3352 ms returned sat
[2021-06-06 16:38:14] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000] Max seen :[588]
Support contains 2000 out of 6000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 205 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 203 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:38:59] [INFO ] Computed 4000 place invariants in 10 ms
[2021-06-06 16:39:00] [INFO ] Implicit Places using invariants in 788 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:39:00] [INFO ] Computed 4000 place invariants in 8 ms
[2021-06-06 16:39:01] [INFO ] Implicit Places using invariants and state equation in 855 ms returned []
Implicit Place search using SMT with State Equation took 1655 ms to find 0 implicit places.
[2021-06-06 16:39:01] [INFO ] Redundant transitions in 254 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:39:01] [INFO ] Computed 4000 place invariants in 13 ms
[2021-06-06 16:39:02] [INFO ] Dead Transitions using invariants and state equation in 920 ms returned []
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:39:02] [INFO ] Computed 4000 place invariants in 14 ms
Interrupted random walk after 87658 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=600}
Interrupted Best-First random walk after 50426 steps, including 0 resets, run timeout after 5036 ms. (steps per millisecond=10 ) properties seen :{0=25}
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:39:37] [INFO ] Computed 4000 place invariants in 15 ms
[2021-06-06 16:39:40] [INFO ] [Real]Absence check using 4000 positive place invariants in 1357 ms returned sat
[2021-06-06 16:39:40] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:39:43] [INFO ] [Real]Absence check using state equation in 3618 ms returned sat
[2021-06-06 16:39:43] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000] Max seen :[600]
Support contains 2000 out of 6000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 204 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 189 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:40:29] [INFO ] Computed 4000 place invariants in 15 ms
[2021-06-06 16:40:30] [INFO ] Implicit Places using invariants in 828 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:40:30] [INFO ] Computed 4000 place invariants in 7 ms
[2021-06-06 16:40:30] [INFO ] Implicit Places using invariants and state equation in 791 ms returned []
Implicit Place search using SMT with State Equation took 1638 ms to find 0 implicit places.
[2021-06-06 16:40:31] [INFO ] Redundant transitions in 245 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:40:31] [INFO ] Computed 4000 place invariants in 6 ms
[2021-06-06 16:40:31] [INFO ] Dead Transitions using invariants and state equation in 794 ms returned []
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:40:31] [INFO ] Computed 4000 place invariants in 7 ms
Interrupted random walk after 86405 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=601}
Interrupted Best-First random walk after 49425 steps, including 0 resets, run timeout after 5011 ms. (steps per millisecond=9 ) properties seen :{0=24}
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:41:06] [INFO ] Computed 4000 place invariants in 7 ms
[2021-06-06 16:41:09] [INFO ] [Real]Absence check using 4000 positive place invariants in 1405 ms returned sat
[2021-06-06 16:41:09] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:41:12] [INFO ] [Real]Absence check using state equation in 3632 ms returned sat
[2021-06-06 16:41:13] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000] Max seen :[601]
Support contains 2000 out of 6000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 206 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 206 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:41:58] [INFO ] Computed 4000 place invariants in 14 ms
[2021-06-06 16:41:59] [INFO ] Implicit Places using invariants in 893 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:41:59] [INFO ] Computed 4000 place invariants in 13 ms
[2021-06-06 16:42:00] [INFO ] Implicit Places using invariants and state equation in 897 ms returned []
Implicit Place search using SMT with State Equation took 1795 ms to find 0 implicit places.
[2021-06-06 16:42:00] [INFO ] Redundant transitions in 138 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:42:00] [INFO ] Computed 4000 place invariants in 13 ms
[2021-06-06 16:42:01] [INFO ] Dead Transitions using invariants and state equation in 900 ms returned []
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:42:01] [INFO ] Computed 4000 place invariants in 10 ms
Interrupted random walk after 85850 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=605}
Interrupted Best-First random walk after 48482 steps, including 0 resets, run timeout after 5089 ms. (steps per millisecond=9 ) properties seen :{0=24}
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:42:36] [INFO ] Computed 4000 place invariants in 15 ms
[2021-06-06 16:42:38] [INFO ] [Real]Absence check using 4000 positive place invariants in 1439 ms returned sat
[2021-06-06 16:42:38] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:42:42] [INFO ] [Real]Absence check using state equation in 3841 ms returned sat
[2021-06-06 16:42:42] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000] Max seen :[605]
Support contains 2000 out of 6000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 193 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 191 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:43:28] [INFO ] Computed 4000 place invariants in 8 ms
[2021-06-06 16:43:29] [INFO ] Implicit Places using invariants in 817 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:43:29] [INFO ] Computed 4000 place invariants in 7 ms
[2021-06-06 16:43:29] [INFO ] Implicit Places using invariants and state equation in 804 ms returned []
Implicit Place search using SMT with State Equation took 1626 ms to find 0 implicit places.
[2021-06-06 16:43:30] [INFO ] Redundant transitions in 130 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:43:30] [INFO ] Computed 4000 place invariants in 12 ms
[2021-06-06 16:43:30] [INFO ] Dead Transitions using invariants and state equation in 841 ms returned []
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:43:30] [INFO ] Computed 4000 place invariants in 19 ms
Interrupted random walk after 85399 steps, including 0 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=604}
Interrupted Best-First random walk after 48478 steps, including 0 resets, run timeout after 5076 ms. (steps per millisecond=9 ) properties seen :{0=24}
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:44:06] [INFO ] Computed 4000 place invariants in 14 ms
[2021-06-06 16:44:08] [INFO ] [Real]Absence check using 4000 positive place invariants in 1489 ms returned sat
[2021-06-06 16:44:08] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:44:12] [INFO ] [Real]Absence check using state equation in 3701 ms returned sat
[2021-06-06 16:44:12] [INFO ] Solution in real domain found non-integer solution.
Current structural bounds on expressions (after SMT) : [2000] Max seen :[605]
Support contains 2000 out of 6000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 219 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
Starting structural reductions, iteration 0 : 6000/6000 places, 4000/4000 transitions.
Applied a total of 0 rules in 199 ms. Remains 6000 /6000 variables (removed 0) and now considering 4000/4000 (removed 0) transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:44:57] [INFO ] Computed 4000 place invariants in 15 ms
[2021-06-06 16:44:58] [INFO ] Implicit Places using invariants in 922 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:44:58] [INFO ] Computed 4000 place invariants in 12 ms
[2021-06-06 16:44:59] [INFO ] Implicit Places using invariants and state equation in 904 ms returned []
Implicit Place search using SMT with State Equation took 1828 ms to find 0 implicit places.
[2021-06-06 16:44:59] [INFO ] Redundant transitions in 133 ms returned []
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:44:59] [INFO ] Computed 4000 place invariants in 10 ms
[2021-06-06 16:45:00] [INFO ] Dead Transitions using invariants and state equation in 903 ms returned []
Finished structural reductions, in 1 iterations. Remains : 6000/6000 places, 4000/4000 transitions.
Ending property specific reduction for Philosophers-PT-002000-UpperBounds-02 in 459935 ms.
Starting property specific reduction for Philosophers-PT-002000-UpperBounds-03
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:45:00] [INFO ] Computed 4000 place invariants in 20 ms
Incomplete random walk after 10000 steps, including 2 resets, run finished after 4574 ms. (steps per millisecond=2 ) properties (out of 1) seen :645
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1051 ms. (steps per millisecond=9 ) properties (out of 1) seen :1
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:45:06] [INFO ] Computed 4000 place invariants in 21 ms
[2021-06-06 16:45:09] [INFO ] [Real]Absence check using 4000 positive place invariants in 1810 ms returned sat
[2021-06-06 16:45:09] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:45:11] [INFO ] [Real]Absence check using state equation in 1503 ms returned unknown
Current structural bounds on expressions (after SMT) : [2000] Max seen :[645]
Support contains 2000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Performed 2000 Post agglomeration using F-continuation condition.Transition count delta: 2000
Deduced a syphon composed of 2000 places in 2 ms
Reduce places removed 2000 places and 0 transitions.
Iterating global reduction 0 with 4000 rules applied. Total rules applied 4000 place count 8000 transition count 8000
Free-agglomeration rule (complex) applied 2000 times.
Iterating global reduction 0 with 2000 rules applied. Total rules applied 6000 place count 8000 transition count 6000
Reduce places removed 2000 places and 0 transitions.
Drop transitions removed 2000 transitions
Reduce isomorphic transitions removed 2000 transitions.
Iterating post reduction 0 with 4000 rules applied. Total rules applied 10000 place count 6000 transition count 4000
Applied a total of 10000 rules in 2302 ms. Remains 6000 /10000 variables (removed 4000) and now considering 4000/10000 (removed 6000) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/10000 places, 4000/10000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:45:13] [INFO ] Computed 4000 place invariants in 11 ms
Interrupted random walk after 84357 steps, including 16 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=2000}
FORMULA Philosophers-PT-002000-UpperBounds-03 2000 TECHNIQUES TOPOLOGICAL RANDOM_WALK
Ending property specific reduction for Philosophers-PT-002000-UpperBounds-03 in 43028 ms.
Starting property specific reduction for Philosophers-PT-002000-UpperBounds-04
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:45:43] [INFO ] Computed 4000 place invariants in 17 ms
Incomplete random walk after 10000 steps, including 2 resets, run finished after 4448 ms. (steps per millisecond=2 ) properties (out of 1) seen :612
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1009 ms. (steps per millisecond=9 ) properties (out of 1) seen :1
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:45:49] [INFO ] Computed 4000 place invariants in 19 ms
[2021-06-06 16:45:52] [INFO ] [Real]Absence check using 4000 positive place invariants in 1813 ms returned sat
[2021-06-06 16:45:52] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:45:54] [INFO ] [Real]Absence check using state equation in 1549 ms returned unknown
Current structural bounds on expressions (after SMT) : [2000] Max seen :[612]
Support contains 2000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Performed 2000 Post agglomeration using F-continuation condition.Transition count delta: 2000
Deduced a syphon composed of 2000 places in 2 ms
Reduce places removed 2000 places and 0 transitions.
Iterating global reduction 0 with 4000 rules applied. Total rules applied 4000 place count 8000 transition count 8000
Free-agglomeration rule (complex) applied 2000 times.
Iterating global reduction 0 with 2000 rules applied. Total rules applied 6000 place count 8000 transition count 6000
Reduce places removed 2000 places and 0 transitions.
Drop transitions removed 2000 transitions
Reduce isomorphic transitions removed 2000 transitions.
Iterating post reduction 0 with 4000 rules applied. Total rules applied 10000 place count 6000 transition count 4000
Applied a total of 10000 rules in 2431 ms. Remains 6000 /10000 variables (removed 4000) and now considering 4000/10000 (removed 6000) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/10000 places, 4000/10000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:45:56] [INFO ] Computed 4000 place invariants in 9 ms
Interrupted random walk after 83031 steps, including 16 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=2000}
FORMULA Philosophers-PT-002000-UpperBounds-04 2000 TECHNIQUES TOPOLOGICAL RANDOM_WALK
Ending property specific reduction for Philosophers-PT-002000-UpperBounds-04 in 42976 ms.
Starting property specific reduction for Philosophers-PT-002000-UpperBounds-05
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:46:26] [INFO ] Computed 4000 place invariants in 21 ms
Incomplete random walk after 10000 steps, including 2 resets, run finished after 4438 ms. (steps per millisecond=2 ) properties (out of 1) seen :632
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1037 ms. (steps per millisecond=9 ) properties (out of 1) seen :1
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:46:32] [INFO ] Computed 4000 place invariants in 21 ms
[2021-06-06 16:46:35] [INFO ] [Real]Absence check using 4000 positive place invariants in 1792 ms returned sat
[2021-06-06 16:46:35] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:46:37] [INFO ] [Real]Absence check using state equation in 1670 ms returned unknown
Current structural bounds on expressions (after SMT) : [2000] Max seen :[632]
Support contains 2000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Performed 2000 Post agglomeration using F-continuation condition.Transition count delta: 2000
Deduced a syphon composed of 2000 places in 2 ms
Reduce places removed 2000 places and 0 transitions.
Iterating global reduction 0 with 4000 rules applied. Total rules applied 4000 place count 8000 transition count 8000
Free-agglomeration rule (complex) applied 2000 times.
Iterating global reduction 0 with 2000 rules applied. Total rules applied 6000 place count 8000 transition count 6000
Reduce places removed 2000 places and 0 transitions.
Drop transitions removed 2000 transitions
Reduce isomorphic transitions removed 2000 transitions.
Iterating post reduction 0 with 4000 rules applied. Total rules applied 10000 place count 6000 transition count 4000
Applied a total of 10000 rules in 2413 ms. Remains 6000 /10000 variables (removed 4000) and now considering 4000/10000 (removed 6000) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/10000 places, 4000/10000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:46:39] [INFO ] Computed 4000 place invariants in 6 ms
Interrupted random walk after 84597 steps, including 16 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=2000}
FORMULA Philosophers-PT-002000-UpperBounds-05 2000 TECHNIQUES TOPOLOGICAL RANDOM_WALK
Ending property specific reduction for Philosophers-PT-002000-UpperBounds-05 in 42980 ms.
Starting property specific reduction for Philosophers-PT-002000-UpperBounds-06
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:47:09] [INFO ] Computed 4000 place invariants in 26 ms
Incomplete random walk after 10000 steps, including 2 resets, run finished after 4361 ms. (steps per millisecond=2 ) properties (out of 1) seen :660
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 1034 ms. (steps per millisecond=9 ) properties (out of 1) seen :1
// Phase 1: matrix 10000 rows 10000 cols
[2021-06-06 16:47:15] [INFO ] Computed 4000 place invariants in 17 ms
[2021-06-06 16:47:18] [INFO ] [Real]Absence check using 4000 positive place invariants in 1790 ms returned sat
[2021-06-06 16:47:18] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2021-06-06 16:47:20] [INFO ] [Real]Absence check using state equation in 1650 ms returned unknown
Current structural bounds on expressions (after SMT) : [2000] Max seen :[660]
Support contains 2000 out of 10000 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 10000/10000 places, 10000/10000 transitions.
Performed 2000 Post agglomeration using F-continuation condition.Transition count delta: 2000
Deduced a syphon composed of 2000 places in 1 ms
Reduce places removed 2000 places and 0 transitions.
Iterating global reduction 0 with 4000 rules applied. Total rules applied 4000 place count 8000 transition count 8000
Free-agglomeration rule (complex) applied 2000 times.
Iterating global reduction 0 with 2000 rules applied. Total rules applied 6000 place count 8000 transition count 6000
Reduce places removed 2000 places and 0 transitions.
Drop transitions removed 2000 transitions
Reduce isomorphic transitions removed 2000 transitions.
Iterating post reduction 0 with 4000 rules applied. Total rules applied 10000 place count 6000 transition count 4000
Applied a total of 10000 rules in 2424 ms. Remains 6000 /10000 variables (removed 4000) and now considering 4000/10000 (removed 6000) transitions.
Finished structural reductions, in 1 iterations. Remains : 6000/10000 places, 4000/10000 transitions.
// Phase 1: matrix 4000 rows 6000 cols
[2021-06-06 16:47:22] [INFO ] Computed 4000 place invariants in 6 ms
Interrupted random walk after 83984 steps, including 16 resets, run timeout after 30001 ms. (steps per millisecond=2 ) properties seen :{0=2000}
FORMULA Philosophers-PT-002000-UpperBounds-06 2000 TECHNIQUES TOPOLOGICAL RANDOM_WALK
Ending property specific reduction for Philosophers-PT-002000-UpperBounds-06 in 42922 ms.
[2021-06-06 16:47:53] [INFO ] Flatten gal took : 611 ms
[2021-06-06 16:47:53] [INFO ] Applying decomposition
[2021-06-06 16:47:54] [INFO ] Flatten gal took : 425 ms
Converted graph to binary with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/convert-linux64, -i, /tmp/graph12975796481552067324.txt, -o, /tmp/graph12975796481552067324.bin, -w, /tmp/graph12975796481552067324.weights], workingDir=null]
Built communities with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/louvain-linux64, /tmp/graph12975796481552067324.bin, -l, -1, -v, -w, /tmp/graph12975796481552067324.weights, -q, 0, -e, 0.001], workingDir=null]
[2021-06-06 16:47:55] [INFO ] Decomposing Gal with order
[2021-06-06 16:47:55] [INFO ] Rewriting arrays to variables to allow decomposition.
[2021-06-06 16:47:59] [INFO ] Removed a total of 1983 redundant transitions.
[2021-06-06 16:48:00] [INFO ] Flatten gal took : 658 ms
[2021-06-06 16:48:04] [INFO ] Fuse similar labels procedure discarded/fused a total of 6778 labels/synchronizations in 295 ms.
[2021-06-06 16:48:06] [INFO ] Time to serialize gal into /tmp/UpperBounds3674243915330325683.gal : 143 ms
[2021-06-06 16:48:06] [INFO ] Time to serialize properties into /tmp/UpperBounds8406379202901017428.prop : 3 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/UpperBounds3674243915330325683.gal, -t, CGAL, -reachable-file, /tmp/UpperBounds8406379202901017428.prop, --nowitness, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-reach command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /tmp/UpperBounds3674243915330325683.gal -t CGAL -reachable-file /tmp/UpperBounds8406379202901017428.prop --nowitness --gen-order FOLLOW
Loading property file /tmp/UpperBounds8406379202901017428.prop.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
petri\_inst\_inst\_mod\_flatf,1.74787e+954,147.36,1317976,2,55321,5,215947,6,0,53969,149279,0
Total reachable state count : 1.747871251722651608014427613116266514227e+954

Verifying 1 reachability properties.
Min sum of variable value : 0
Maximum sum along a path : 1000
Bounds property Philosophers-PT-002000-UpperBounds-02 :0 <= gi26.gi0.gi0.gi0.gu348.Eat_128+gi26.gi0.gi0.gi2.gu1178.Eat_129+gi26.gi0.gi0.gi1.gu360.Eat_126+gi26.gi0.gi0.gi0.gu1179.Eat_127+gi26.gi0.gi1.gi1.gu1180.Eat_132+gi26.gi0.gi1.gi0.gu347.Eat_133+gi26.gi0.gi0.gi2.gu349.Eat_130+gi26.gi0.gi1.gi1.gu346.Eat_131+gi27.gi0.gi1.gi1.gu354.Eat_136+gi27.gi0.gi1.gi0.gu20.Eat_137+gi26.gi0.gi1.gi0.gu1181.Eat_134+gi27.gi0.gi1.gi1.gu352.Eat_135+gi27.gi0.gi0.gi0.gu1182.Eat_140+gi27.gi0.gi0.gi1.gu1074.Eat_141+gi27.gi0.gi1.gi0.gu353.Eat_138+gi27.gi0.gi0.gi0.gu350.Eat_139+gi27.gi0.gi2.gi0.gu1183.Eat_145+gi27.gi0.gi2.gi1.gu374.Eat_144+gi27.gi0.gi2.gi1.gu373.Eat_143+gi27.gi0.gi0.gi1.gu351.Eat_142+gi27.gi1.gi0.gi0.gu370.Eat_149+gi27.gi1.gi0.gi1.gu1184.Eat_148+gi27.gi1.gi0.gi1.gu22.Eat_147+gi27.gi0.gi2.gi0.gu372.Eat_146+gi27.gi1.gi1.gi1.gu1185.Eat_153+gi27.gi1.gi1.gi1.gu377.Eat_152+gi27.gi1.gi0.gi0.gu1186.Eat_151+gi27.gi1.gi0.gi0.gu371.Eat_150+gi57.gi1.gi1.gi0.gu375.Eat_157+gi57.gi1.gi1.gi0.gu1075.Eat_156+gi27.gi1.gi1.gi0.gu376.Eat_155+gi27.gi1.gi1.gi0.gu21.Eat_154+gi57.gi1.gi1.gi1.gu1187.Eat_158+gi57.gi1.gi1.gi1.gu1188.Eat_159+gi57.gi1.gi0.gi2.gu363.Eat_160+gi57.gi1.gi0.gi2.gu1189.Eat_161+gi57.gi1.gi0.gi1.gu1190.Eat_162+gi57.gi1.gi0.gi1.gu362.Eat_163+gi57.gi1.gi0.gi0.gu361.Eat_164+gi57.gi1.gi0.gi0.gu1191.Eat_165+gi57.gi0.gi0.gi0.gu1192.Eat_166+gi57.gi0.gi0.gi0.gu369.Eat_167+gi57.gi0.gi0.gi0.gu23.Eat_168+gi57.gi0.gi0.gi1.gu368.Eat_169+gi57.gi0.gi0.gi1.gu367.Eat_170+gi57.gi0.gi1.gi1.gu366.Eat_171+gi57.gi0.gi1.gi1.gu365.Eat_172+gi57.gi0.gi1.gi1.gu364.Eat_173+gi57.gi0.gi1.gi0.gu1081.Eat_175+gi57.gi0.gi1.gi0.gu24.Eat_174+gi2.gu1193.Eat_177+gi57.gi0.gi1.gi0.gu283.Eat_176+gi2.gu1194.Eat_179+gi2.gu1195.Eat_178+gi2.gu1196.Eat_181+gi2.gu284.Eat_180+gi2.gu1197.Eat_183+gi2.gu281.Eat_182+gi2.gu1198.Eat_185+gi2.gu1082.Eat_184+gi2.gu282.Eat_187+gi2.gu1199.Eat_186+gi2.gu1200.Eat_189+gi2.gu1201.Eat_188+gi25.gi0.gi1.gi2.gu1202.Eat_68+gi25.gi0.gi1.gi1.gu323.Eat_69+gi1.gi0.gi1.gi1.gu322.Eat_66+gi25.gi0.gi1.gi2.gu1203.Eat_67+gi1.gi0.gi1.gi1.gu1204.Eat_64+gi1.gi0.gi1.gi1.gu321.Eat_65+gi1.gi0.gi1.gi0.gu1205.Eat_62+gi1.gi0.gi1.gi0.gu320.Eat_63+gi25.gi0.gi0.gi0.gu1206.Eat_76+gi25.gi0.gi0.gi0.gu1207.Eat_77+gi25.gi0.gi0.gi1.gu325.Eat_74+gi25.gi0.gi0.gi1.gu326.Eat_75+gi25.gi0.gi1.gi0.gu1208.Eat_72+gi25.gi0.gi1.gi0.gu1209.Eat_73+gi25.gi0.gi1.gi1.gu324.Eat_70+gi25.gi0.gi1.gi0.gu13.Eat_71+gi25.gi1.gi1.gi1.gu1210.Eat_85+gi25.gi1.gi1.gi1.gu341.Eat_84+gi25.gi1.gi0.gi1.gu342.Eat_83+gi25.gi1.gi0.gi1.gu340.Eat_82+gi25.gi1.gi0.gi1.gu339.Eat_81+gi25.gi1.gi0.gi0.gu15.Eat_80+gi25.gi1.gi0.gi0.gu1211.Eat_79+gi25.gi1.gi0.gi0.gu14.Eat_78+gi58.gi1.gi1.gi0.gu345.Eat_93+gi58.gi1.gi1.gi0.gu1212.Eat_92+gi58.gi1.gi1.gi1.gu1213.Eat_91+gi58.gi1.gi1.gi1.gu343.Eat_90+gi25.gi1.gi1.gi0.gu1214.Eat_89+gi25.gi1.gi1.gi0.gu1215.Eat_88+gi25.gi1.gi1.gi0.gu982.Eat_87+gi25.gi1.gi1.gi1.gu344.Eat_86+gi58.gi1.gi2.gi0.gu337.Eat_98+gi58.gi1.gi2.gi0.gu1216.Eat_99+gi58.gi1.gi2.gi1.gu1217.Eat_100+gi58.gi1.gi2.gi1.gu1218.Eat_101+gi58.gi1.gi0.gi1.gu1219.Eat_94+gi58.gi1.gi0.gi1.gu336.Eat_95+gi58.gi1.gi0.gi0.gu16.Eat_96+gi58.gi1.gi0.gi0.gu335.Eat_97+gi58.gi0.gi1.gi1.gu1220.Eat_106+gi58.gi0.gi0.gi1.gu338.Eat_107+gi58.gi0.gi0.gi1.gu1221.Eat_108+gi58.gi0.gi0.gi0.gu1222.Eat_109+gi58.gi0.gi1.gi0.gu1223.Eat_102+gi58.gi0.gi1.gi0.gu17.Eat_103+gi58.gi0.gi1.gi0.gu1224.Eat_104+gi58.gi0.gi1.gi1.gu1076.Eat_105+gi26.gi1.gi0.gi1.gu1225.Eat_115+gi26.gi1.gi0.gi1.gu1225.Eat_114+gi26.gi1.gi1.gi0.gu355.Eat_117+gi26.gi1.gi0.gi1.gu1226.Eat_116+gi58.gi0.gi0.gi0.gu357.Eat_111+gi58.gi0.gi0.gi0.gu18.Eat_110+gi26.gi1.gi0.gi0.gu359.Eat_113+gi26.gi1.gi0.gi0.gu358.Eat_112+gi26.gi1.gi1.gi2.gu1227.Eat_123+gi26.gi1.gi1.gi1.gu1228.Eat_122+gi26.gi0.gi0.gi1.gu1229.Eat_125+gi26.gi1.gi1.gi2.gu1230.Eat_124+gi26.gi1.gi1.gi0.gu1231.Eat_119+gi26.gi1.gi1.gi0.gu356.Eat_118+gi26.gi1.gi1.gi1.gu1077.Eat_121+gi26.gi1.gi1.gi1.gu19.Eat_120+gi79.gi0.gi0.gi1.gu1232.Eat_9+gi79.gi0.gi0.gi1.gu1233.Eat_8+gi79.gi0.gi0.gi1.gu1.Eat_7+gi79.gi0.gi0.gi0.gu268.Eat_6+gi0.gu2.Eat_13+gi0.gu1234.Eat_12+gi0.gu1235.Eat_11+gi0.gu269.Eat_10+gi79.gi0.gi1.gi0.gu1236.Eat_1+gi79.gi0.gi0.gi0.gu266.Eat_5+gi79.gi0.gi0.gi0.gu0.Eat_4+gi79.gi0.gi1.gi0.gu267.Eat_3+gi79.gi0.gi1.gi0.gu1236.Eat_2+gi59.gi0.gi0.gi1.gu1237.Eat_24+gi59.gi0.gi0.gi1.gu984.Eat_25+gi0.gu1238.Eat_22+gi0.gu1239.Eat_23+gi59.gi0.gi1.gi0.gu1240.Eat_28+gi59.gi0.gi1.gi0.gu1241.Eat_29+gi59.gi0.gi0.gi0.gu5.Eat_26+gi59.gi0.gi0.gi0.gu1242.Eat_27+gi0.gu1243.Eat_16+gi0.gu263.Eat_17+gi0.gu3.Eat_14+gi0.gu262.Eat_15+gi0.gu264.Eat_20+gi0.gu1244.Eat_21+gi0.gu4.Eat_18+gi0.gu265.Eat_19+gi59.gi1.gi1.gi0.gu258.Eat_39+gi59.gi1.gi0.gi0.gu10.Eat_38+gi59.gi1.gi1.gi0.gu1245.Eat_41+gi59.gi1.gi1.gi0.gu259.Eat_40+gi59.gi1.gi1.gi1.gu1246.Eat_43+gi59.gi1.gi1.gi1.gu260.Eat_42+gi1.gi1.gi1.gi1.gu1247.Eat_45+gi1.gi1.gi1.gi1.gu261.Eat_44+gi59.gi0.gi1.gi1.gu1248.Eat_31+gi59.gi0.gi1.gi1.gu7.Eat_30+gi59.gi1.gi0.gi1.gu1249.Eat_33+gi59.gi0.gi1.gi1.gu6.Eat_32+gi59.gi1.gi0.gi1.gu1250.Eat_35+gi59.gi1.gi0.gi1.gu9.Eat_34+gi59.gi1.gi0.gi0.gu257.Eat_37+gi59.gi1.gi0.gi0.gu8.Eat_36+gi1.gi1.gi0.gi1.gu1251.Eat_54+gi1.gi1.gi0.gi1.gu1252.Eat_55+gi1.gi0.gi0.gi0.gu1253.Eat_56+gi1.gi0.gi0.gi0.gu331.Eat_57+gi1.gi0.gi0.gi0.gu12.Eat_58+gi1.gi0.gi0.gi1.gu332.Eat_59+gi1.gi0.gi0.gi1.gu333.Eat_60+gi1.gi0.gi0.gi1.gu334.Eat_61+gi1.gi1.gi1.gi0.gu327.Eat_46+gi1.gi1.gi1.gi0.gu328.Eat_47+gi1.gi1.gi1.gi0.gu1254.Eat_48+gi1.gi1.gi0.gi2.gu1255.Eat_49+gi1.gi1.gi0.gi2.gu1256.Eat_50+gi1.gi1.gi0.gi0.gu11.Eat_51+gi1.gi1.gi0.gi0.gu329.Eat_52+gi1.gi1.gi0.gi0.gu330.Eat_53+gi4.gi1.gi1.gi0.gu101.Eat_798+gi4.gi0.gi1.gi1.gu1257.Eat_799+gi4.gi0.gi1.gi1.gu518.Eat_800+gi4.gi0.gi1.gi1.gu1258.Eat_801+gi4.gi0.gi1.gi0.gu520.Eat_802+gi4.gi0.gi1.gi0.gu521.Eat_803+gi4.gi0.gi0.gi0.gu519.Eat_804+gi4.gi0.gi0.gi0.gu100.Eat_805+gi4.gi0.gi0.gi1.gu516.Eat_806+gi4.gi0.gi0.gi1.gu517.Eat_807+gi60.gi0.gi0.gi1.gu1259.Eat_808+gi60.gi0.gi0.gi1.gu515.Eat_809+gi60.gi0.gi0.gi1.gu102.Eat_810+gi60.gi0.gi0.gi0.gu1260.Eat_811+gi60.gi0.gi0.gi0.gu103.Eat_812+gi60.gi0.gi1.gi0.gu1261.Eat_813+gi60.gi0.gi1.gi1.gu1262.Eat_815+gi60.gi0.gi1.gi0.gu97.Eat_814+gi60.gi0.gi2.gi0.gu1263.Eat_817+gi60.gi0.gi1.gi1.gu1264.Eat_816+gi60.gi0.gi2.gi0.gu95.Eat_819+gi60.gi0.gi2.gi0.gu96.Eat_818+gi60.gi0.gi2.gi1.gu1265.Eat_821+gi60.gi0.gi2.gi1.gu648.Eat_820+gi60.gi1.gi1.gi1.gu652.Eat_823+gi60.gi1.gi1.gi1.gu647.Eat_822+gi60.gi1.gi1.gi0.gu651.Eat_825+gi60.gi1.gi1.gi0.gu1115.Eat_824+gi60.gi1.gi2.gi0.gu98.Eat_827+gi60.gi1.gi2.gi0.gu650.Eat_826+gi60.gi1.gi2.gi1.gu649.Eat_829+gi60.gi1.gi2.gi0.gu99.Eat_828+gi5.gi0.gi0.gi1.gu529.Eat_768+gi5.gi0.gi0.gi1.gu1266.Eat_769+gi5.gi0.gi0.gi0.gu106.Eat_766+gi5.gi0.gi0.gi0.gu1267.Eat_767+gi5.gi0.gi1.gi0.gu531.Eat_772+gi5.gi0.gi1.gi1.gu1268.Eat_773+gi5.gi0.gi0.gi1.gu1269.Eat_770+gi5.gi0.gi1.gi0.gu530.Eat_771+gi5.gi0.gi1.gi2.gu1270.Eat_776+gi5.gi0.gi1.gi2.gu1271.Eat_777+gi5.gi0.gi1.gi1.gu1272.Eat_774+gi5.gi0.gi1.gi1.gu1272.Eat_775+gi5.gi1.gi0.gi1.gu1273.Eat_780+gi5.gi1.gi0.gi0.gu528.Eat_781+gi5.gi1.gi0.gi1.gu1274.Eat_778+gi5.gi1.gi0.gi1.gu107.Eat_779+gi5.gi1.gi1.gi1.gu525.Eat_785+gi5.gi1.gi1.gi1.gu1275.Eat_784+gi5.gi1.gi0.gi0.gu1114.Eat_783+gi5.gi1.gi0.gi0.gu105.Eat_782+gi5.gi1.gi1.gi0.gu1276.Eat_789+gi5.gi1.gi1.gi0.gu104.Eat_788+gi5.gi1.gi1.gi2.gu527.Eat_787+gi5.gi1.gi1.gi2.gu524.Eat_786+gi4.gi1.gi0.gi0.gu1277.Eat_793+gi4.gi1.gi0.gi1.gu1278.Eat_792+gi4.gi1.gi0.gi1.gu1279.Eat_791+gi5.gi1.gi1.gi0.gu526.Eat_790+gi4.gi1.gi1.gi0.gu1280.Eat_797+gi4.gi1.gi1.gi1.gu1281.Eat_796+gi4.gi1.gi1.gi1.gu523.Eat_795+gi4.gi1.gi0.gi0.gu522.Eat_794+gi55.gi0.gi2.gi0.gu493.Eat_738+gi55.gi0.gi1.gi1.gu90.Eat_739+gi55.gi0.gi1.gi1.gu492.Eat_740+gi55.gi0.gi1.gi1.gu1282.Eat_741+gi55.gi0.gi2.gi1.gu1283.Eat_734+gi55.gi0.gi2.gi1.gu1284.Eat_735+gi55.gi0.gi2.gi0.gu89.Eat_736+gi55.gi0.gi2.gi0.gu494.Eat_737+gi55.gi0.gi0.gi1.gu1285.Eat_746+gi55.gi0.gi0.gi0.gu489.Eat_747+gi55.gi0.gi0.gi0.gu487.Eat_748+gi55.gi1.gi1.gi0.gu88.Eat_749+gi55.gi0.gi1.gi0.gu491.Eat_742+gi55.gi0.gi1.gi0.gu491.Eat_743+gi55.gi0.gi1.gi0.gu490.Eat_744+gi55.gi0.gi0.gi1.gu1110.Eat_745+gi55.gi1.gi2.gi0.gu537.Eat_755+gi55.gi1.gi1.gi2.gu1286.Eat_754+gi55.gi1.gi2.gi0.gu1287.Eat_757+gi55.gi1.gi2.gi0.gu1113.Eat_756+gi55.gi1.gi1.gi1.gu534.Eat_751+gi55.gi1.gi1.gi0.gu488.Eat_750+gi55.gi1.gi1.gi2.gu535.Eat_753+gi55.gi1.gi1.gi1.gu536.Eat_752+gi55.gi1.gi0.gi0.gu1111.Eat_763+gi55.gi1.gi0.gi1.gu533.Eat_762+gi55.gi1.gi0.gi0.gu1288.Eat_765+gi55.gi1.gi0.gi0.gu532.Eat_764+gi55.gi1.gi2.gi1.gu1289.Eat_759+gi55.gi1.gi2.gi1.gu538.Eat_758+gi55.gi1.gi0.gi1.gu1290.Eat_761+gi55.gi1.gi2.gi1.gu1112.Eat_760+gi31.gi1.gi1.gi0.gu503.Eat_708+gi61.gi0.gi1.gi1.gu1291.Eat_709+gi31.gi1.gi1.gi1.gu506.Eat_706+gi31.gi1.gi1.gi0.gu502.Eat_707+gi31.gi1.gi0.gi0.gu1292.Eat_704+gi31.gi1.gi1.gi1.gu505.Eat_705+gi31.gi1.gi0.gi0.gu92.Eat_702+gi31.gi1.gi0.gi0.gu504.Eat_703+gi61.gi0.gi0.gi2.gu500.Eat_716+gi61.gi0.gi0.gi2.gu501.Eat_717+gi61.gi0.gi1.gi0.gu1293.Eat_714+gi61.gi0.gi0.gi2.gu1294.Eat_715+gi61.gi0.gi1.gi2.gu1295.Eat_712+gi61.gi0.gi1.gi0.gu91.Eat_713+gi61.gi0.gi1.gi1.gu1296.Eat_710+gi61.gi0.gi1.gi2.gu1297.Eat_711+gi61.gi1.gi0.gi0.gu1298.Eat_725+gi61.gi1.gi0.gi1.gu496.Eat_724+gi61.gi1.gi0.gi1.gu497.Eat_723+gi61.gi0.gi0.gi1.gu498.Eat_722+gi61.gi0.gi0.gi1.gu1299.Eat_721+gi61.gi0.gi0.gi0.gu94.Eat_720+gi61.gi0.gi0.gi0.gu499.Eat_719+gi61.gi0.gi0.gi0.gu1300.Eat_718+gi61.gi1.gi1.gi0.gu1301.Eat_733+gi61.gi1.gi1.gi0.gu1302.Eat_732+gi61.gi1.gi1.gi1.gu1303.Eat_731+gi61.gi1.gi1.gi1.gu1304.Eat_730+gi61.gi1.gi1.gi1.gu1305.Eat_729+gi61.gi1.gi0.gi2.gu1306.Eat_728+gi61.gi1.gi0.gi2.gu495.Eat_727+gi61.gi1.gi0.gi0.gu93.Eat_726+gi6.gi0.gi0.gi1.gu1307.Eat_935+gi6.gi0.gi0.gi1.gu665.Eat_934+gi6.gi0.gi1.gi0.gu668.Eat_937+gi6.gi0.gi1.gi0.gu667.Eat_936+gi6.gi0.gi1.gi1.gu1308.Eat_939+gi6.gi0.gi1.gi1.gu116.Eat_938+gi6.gi1.gi2.gi1.gu1309.Eat_941+gi6.gi0.gi1.gi1.gu669.Eat_940+gi7.gi1.gi0.gi1.gu664.Eat_927+gi7.gi1.gi0.gi1.gu1310.Eat_926+gi7.gi1.gi1.gi0.gu1311.Eat_929+gi7.gi1.gi1.gi0.gu118.Eat_928+gi7.gi1.gi1.gi1.gu1312.Eat_931+gi7.gi1.gi1.gi1.gu1313.Eat_930+gi6.gi0.gi0.gi0.gu666.Eat_933+gi6.gi0.gi0.gi0.gu117.Eat_932+gi6.gi1.gi1.gi1.gu597.Eat_950+gi6.gi1.gi1.gi0.gu1314.Eat_951+gi6.gi1.gi1.gi0.gu1315.Eat_952+gi65.gi0.gi0.gi2.gu1316.Eat_953+gi65.gi0.gi0.gi2.gu596.Eat_954+gi65.gi0.gi0.gi1.gu595.Eat_955+gi65.gi0.gi0.gi1.gu594.Eat_956+gi65.gi0.gi0.gi0.gu593.Eat_957+gi6.gi1.gi2.gi1.gu1317.Eat_942+gi6.gi1.gi2.gi0.gu600.Eat_943+gi6.gi1.gi2.gi0.gu1318.Eat_944+gi6.gi1.gi0.gi1.gu1319.Eat_945+gi6.gi1.gi0.gi1.gu1320.Eat_946+gi6.gi1.gi0.gi0.gu599.Eat_947+gi6.gi1.gi0.gi0.gu598.Eat_948+gi6.gi1.gi1.gi1.gu1321.Eat_949+gi62.gi0.gi1.gi0.gu123.Eat_905+gi62.gi0.gi1.gi1.gu678.Eat_904+gi62.gi0.gi1.gi1.gu679.Eat_903+gi62.gi1.gi0.gi1.gu1322.Eat_902+gi62.gi0.gi0.gi1.gu680.Eat_909+gi62.gi0.gi0.gi1.gu1323.Eat_908+gi62.gi0.gi1.gi0.gu1324.Eat_907+gi62.gi0.gi1.gi0.gu122.Eat_906+gi62.gi1.gi1.gi0.gu1325.Eat_897+gi62.gi1.gi1.gi1.gu1326.Eat_896+gi62.gi1.gi1.gi1.gu1327.Eat_895+gi62.gi1.gi2.gi0.gu1328.Eat_894+gi62.gi1.gi0.gi1.gu1089.Eat_901+gi62.gi1.gi0.gi0.gu1329.Eat_900+gi62.gi1.gi0.gi0.gu677.Eat_899+gi62.gi1.gi1.gi0.gu676.Eat_898+gi7.gi0.gi1.gi2.gu661.Eat_920+gi7.gi0.gi1.gi1.gu662.Eat_921+gi7.gi0.gi1.gi0.gu1330.Eat_918+gi7.gi0.gi1.gi2.gu1331.Eat_919+gi7.gi1.gi0.gi0.gu119.Eat_924+gi7.gi1.gi0.gi0.gu1332.Eat_925+gi7.gi0.gi1.gi1.gu1333.Eat_922+gi7.gi1.gi0.gi0.gu663.Eat_923+gi7.gi0.gi0.gi0.gu1334.Eat_912+gi7.gi0.gi0.gi0.gu120.Eat_913+gi62.gi0.gi0.gi0.gu1335.Eat_910+gi62.gi0.gi0.gi0.gu121.Eat_911+gi7.gi0.gi0.gi1.gu1336.Eat_916+gi7.gi0.gi1.gi0.gu660.Eat_917+gi7.gi0.gi0.gi0.gu659.Eat_914+gi7.gi0.gi0.gi1.gu1337.Eat_915+gi63.gi0.gi0.gi0.gu1338.Eat_875+gi63.gi0.gi1.gi0.gu1339.Eat_874+gi63.gi0.gi0.gi1.gu1340.Eat_877+gi63.gi0.gi0.gi0.gu644.Eat_876+gi63.gi0.gi1.gi1.gu1341.Eat_871+gi63.gi0.gi1.gi1.gu1342.Eat_870+gi63.gi0.gi1.gi0.gu112.Eat_873+gi63.gi0.gi1.gi0.gu646.Eat_872+gi36.gi2.gi1.gi1.gu641.Eat_867+gi36.gi2.gi1.gi1.gu642.Eat_866+gi36.gi2.gi1.gi0.gu1343.Eat_869+gi36.gi2.gi1.gi0.gu111.Eat_868+gi36.gi2.gi0.gi1.gu1344.Eat_863+gi36.gi2.gi0.gi1.gu638.Eat_862+gi36.gi2.gi1.gi2.gu643.Eat_865+gi36.gi2.gi1.gi2.gu110.Eat_864+gi62.gi1.gi2.gi1.gu674.Eat_890+gi62.gi1.gi2.gi1.gu1345.Eat_891+gi62.gi1.gi2.gi0.gu675.Eat_892+gi62.gi1.gi2.gi0.gu109.Eat_893+gi63.gi1.gi1.gi1.gu1346.Eat_886+gi63.gi1.gi1.gi0.gu1347.Eat_887+gi63.gi1.gi1.gi0.gu108.Eat_888+gi63.gi1.gi1.gi0.gu673.Eat_889+gi63.gi1.gi0.gi1.gu1348.Eat_882+gi63.gi1.gi0.gi2.gu672.Eat_883+gi63.gi1.gi0.gi2.gu1349.Eat_884+gi63.gi1.gi1.gi1.gu1350.Eat_885+gi63.gi0.gi0.gi1.gu645.Eat_878+gi63.gi1.gi0.gi0.gu671.Eat_879+gi63.gi1.gi0.gi0.gu670.Eat_880+gi63.gi1.gi0.gi1.gu1351.Eat_881+gi36.gi1.gi0.gi0.gu656.Eat_845+gi36.gi1.gi0.gi1.gu1352.Eat_844+gi36.gi1.gi0.gi1.gu657.Eat_843+gi36.gi1.gi1.gi0.gu1353.Eat_842+gi36.gi1.gi1.gi0.gu1354.Eat_841+gi36.gi1.gi1.gi0.gu658.Eat_840+gi36.gi1.gi1.gi1.gu1355.Eat_839+gi36.gi1.gi1.gi1.gu1356.Eat_838+gi60.gi1.gi0.gi1.gu1357.Eat_837+gi60.gi1.gi0.gi1.gu1116.Eat_836+gi60.gi1.gi0.gi0.gu115.Eat_835+gi60.gi1.gi0.gi0.gu653.Eat_834+gi60.gi1.gi0.gi0.gu654.Eat_833+gi60.gi1.gi0.gi2.gu1358.Eat_832+gi60.gi1.gi0.gi2.gu655.Eat_831+gi60.gi1.gi2.gi1.gu1359.Eat_830+gi36.gi2.gi0.gi0.gu1360.Eat_860+gi36.gi2.gi0.gi0.gu114.Eat_861+gi36.gi2.gi0.gi2.gu1361.Eat_858+gi36.gi2.gi0.gi2.gu1362.Eat_859+gi36.gi0.gi1.gi1.gu1363.Eat_856+gi36.gi0.gi1.gi1.gu640.Eat_857+gi36.gi0.gi1.gi0.gu1364.Eat_854+gi36.gi0.gi1.gi0.gu639.Eat_855+gi36.gi0.gi0.gi0.gu634.Eat_852+gi36.gi0.gi0.gi0.gu1365.Eat_853+gi36.gi0.gi0.gi1.gu1366.Eat_850+gi36.gi0.gi0.gi0.gu113.Eat_851+gi36.gi0.gi0.gi1.gu637.Eat_848+gi36.gi0.gi0.gi1.gu1117.Eat_849+gi36.gi1.gi0.gi0.gu635.Eat_846+gi36.gi1.gi0.gi0.gu636.Eat_847+gi10.gi1.gi1.gi0.gu764.Eat_1073+gi40.gi0.gi1.gi1.gu763.Eat_1072+gi40.gi0.gi1.gi1.gu1367.Eat_1071+gi40.gi0.gi1.gi0.gu1368.Eat_1070+gi10.gi1.gi1.gi1.gu767.Eat_1077+gi10.gi1.gi1.gi1.gu766.Eat_1076+gi10.gi1.gi1.gi0.gu1094.Eat_1075+gi10.gi1.gi1.gi0.gu765.Eat_1074+gi10.gi1.gi0.gi0.gu148.Eat_1081+gi10.gi1.gi0.gi0.gu759.Eat_1080+gi10.gi1.gi0.gi2.gu1369.Eat_1079+gi10.gi1.gi0.gi2.gu768.Eat_1078+gi10.gi0.gi0.gi0.gu1370.Eat_1085+gi10.gi1.gi0.gi1.gu762.Eat_1084+gi10.gi1.gi0.gi1.gu761.Eat_1083+gi10.gi1.gi0.gi0.gu760.Eat_1082+gi40.gi1.gi0.gi2.gu1096.Eat_1056+gi40.gi1.gi0.gi2.gu146.Eat_1057+gi40.gi1.gi0.gi0.gu1371.Eat_1054+gi40.gi1.gi0.gi0.gu147.Eat_1055+gi40.gi0.gi0.gi2.gu1372.Eat_1060+gi40.gi0.gi0.gi2.gu1373.Eat_1061+gi40.gi1.gi0.gi1.gu618.Eat_1058+gi40.gi1.gi0.gi1.gu619.Eat_1059+gi40.gi0.gi0.gi0.gu1374.Eat_1064+gi40.gi0.gi0.gi1.gu615.Eat_1065+gi40.gi0.gi0.gi2.gu144.Eat_1062+gi40.gi0.gi0.gi0.gu614.Eat_1063+gi40.gi0.gi1.gi0.gu145.Eat_1068+gi40.gi0.gi1.gi0.gu617.Eat_1069+gi40.gi0.gi0.gi1.gu1095.Eat_1066+gi40.gi0.gi0.gi1.gu616.Eat_1067+gi64.gu1375.Eat_1039+gi64.gu142.Eat_1038+gi64.gu1092.Eat_1041+gi64.gu143.Eat_1040+gi64.gu1376.Eat_1043+gi64.gu612.Eat_1042+gi64.gu1377.Eat_1045+gi64.gu613.Eat_1044+gi40.gi1.gi1.gi0.gu1378.Eat_1047+gi64.gu141.Eat_1046+gi40.gi1.gi1.gi2.gu1379.Eat_1049+gi40.gi1.gi1.gi0.gu609.Eat_1048+gi40.gi1.gi1.gi1.gu1380.Eat_1051+gi40.gi1.gi1.gi2.gu1381.Eat_1050+gi40.gi1.gi1.gi1.gu611.Eat_1053+gi40.gi1.gi1.gi1.gu610.Eat_1052+gi9.gi1.gi0.gi1.gu1382.Eat_1022+gi9.gi1.gi0.gi1.gu632.Eat_1023+gi9.gi1.gi0.gi1.gu139.Eat_1024+gi9.gi1.gi1.gi1.gu1093.Eat_1025+gi9.gi1.gi1.gi1.gu631.Eat_1026+gi9.gi1.gi1.gi1.gu1383.Eat_1027+gi9.gi1.gi1.gi0.gu140.Eat_1028+gi9.gi1.gi1.gi0.gu633.Eat_1029+gi9.gi1.gi1.gi0.gu1384.Eat_1030+gi64.gu1385.Eat_1031+gi64.gu628.Eat_1032+gi64.gu1386.Eat_1033+gi64.gu1387.Eat_1034+gi64.gu1388.Eat_1035+gi64.gu629.Eat_1036+gi64.gu630.Eat_1037+gi9.gi0.gi0.gi1.gu1389.Eat_1013+gi9.gi0.gi1.gi0.gu626.Eat_1012+gi9.gi0.gi1.gi0.gu627.Eat_1011+gi9.gi0.gi1.gi1.gu1390.Eat_1010+gi9.gi0.gi1.gi1.gu1391.Eat_1009+gi9.gi0.gi1.gi1.gu1391.Eat_1008+gi66.gi0.gi0.gi1.gu625.Eat_1007+gi66.gi0.gi0.gi1.gu1392.Eat_1006+gi9.gi1.gi0.gi0.gu124.Eat_1021+gi9.gi1.gi0.gi0.gu623.Eat_1020+gi9.gi1.gi0.gi0.gu624.Eat_1019+gi9.gi0.gi0.gi0.gu1393.Eat_1018+gi9.gi0.gi0.gi0.gu620.Eat_1017+gi9.gi0.gi0.gi0.gu1394.Eat_1016+gi9.gi0.gi0.gi1.gu621.Eat_1015+gi9.gi0.gi0.gi1.gu622.Eat_1014+gi66.gi0.gi1.gi0.gu1395.Eat_996+gi66.gi0.gi1.gi1.gu1396.Eat_997+gi66.gi0.gi1.gi0.gu1397.Eat_994+gi66.gi0.gi1.gi0.gu590.Eat_995+gi66.gi1.gi0.gi1.gu1398.Eat_992+gi66.gi1.gi0.gi1.gu592.Eat_993+gi66.gi1.gi0.gi0.gu591.Eat_990+gi66.gi1.gi0.gi1.gu126.Eat_991+gi66.gi0.gi0.gi0.gu588.Eat_1004+gi66.gi0.gi0.gi0.gu589.Eat_1005+gi66.gi0.gi2.gi1.gu1399.Eat_1002+gi66.gi0.gi0.gi0.gu125.Eat_1003+gi66.gi0.gi2.gi0.gu1400.Eat_1000+gi66.gi0.gi2.gi1.gu1401.Eat_1001+gi66.gi0.gi1.gi1.gu1402.Eat_998+gi66.gi0.gi2.gi0.gu1403.Eat_999+gi65.gi2.gi0.gi0.gu1404.Eat_979+gi65.gi2.gi0.gi2.gu1405.Eat_978+gi65.gi2.gi1.gi1.gu1406.Eat_981+gi65.gi2.gi0.gi0.gu586.Eat_980+gi65.gi2.gi0.gi1.gu1407.Eat_975+gi65.gi1.gi0.gi0.gu1408.Eat_974+gi65.gi2.gi0.gi2.gu1090.Eat_977+gi65.gi2.gi0.gi1.gu587.Eat_976+gi66.gi1.gi1.gi0.gu128.Eat_987+gi66.gi1.gi1.gi1.gu1409.Eat_986+gi66.gi1.gi0.gi0.gu585.Eat_989+gi66.gi1.gi1.gi0.gu584.Eat_988+gi65.gi2.gi1.gi0.gu1410.Eat_983+gi65.gi2.gi1.gi1.gu1411.Eat_982+gi66.gi1.gi1.gi1.gu1412.Eat_985+gi65.gi2.gi1.gi0.gu127.Eat_984+gi65.gi0.gi1.gi0.gu606.Eat_962+gi65.gi0.gi1.gi0.gu1413.Eat_963+gi65.gi1.gi1.gi1.gu1414.Eat_964+gi65.gi1.gi1.gi1.gu605.Eat_965+gi65.gi0.gi0.gi0.gu608.Eat_958+gi65.gi0.gi1.gi1.gu1415.Eat_959+gi65.gi0.gi1.gi1.gu1416.Eat_960+gi65.gi0.gi1.gi0.gu607.Eat_961+gi65.gi1.gi1.gi0.gu604.Eat_970+gi65.gi1.gi0.gi1.gu602.Eat_971+gi65.gi1.gi0.gi1.gu601.Eat_972+gi65.gi1.gi0.gi0.gu129.Eat_973+gi65.gi1.gi1.gi2.gu1417.Eat_966+gi65.gi1.gi1.gi2.gu1418.Eat_967+gi65.gi1.gi1.gi0.gu1091.Eat_968+gi65.gi1.gi1.gi0.gu603.Eat_969+gi67.gi0.gi1.gi0.gu1419.Eat_1208+gi67.gi0.gi1.gi0.gu712.Eat_1209+gi67.gi0.gi1.gi1.gu1420.Eat_1206+gi67.gi0.gi1.gi1.gu1138.Eat_1207+gi67.gi0.gi0.gi0.gu1421.Eat_1212+gi67.gi0.gi0.gi0.gu167.Eat_1213+gi67.gi0.gi0.gi1.gu1422.Eat_1210+gi67.gi0.gi0.gi1.gu713.Eat_1211+gi67.gi1.gi0.gi1.gu1423.Eat_1200+gi67.gi1.gi0.gi0.gu165.Eat_1201+gi67.gi1.gi1.gi1.gu1424.Eat_1198+gi67.gi1.gi0.gi1.gu709.Eat_1199+gi67.gi1.gi0.gi2.gu1425.Eat_1204+gi67.gi1.gi0.gi2.gu166.Eat_1205+gi67.gi1.gi0.gi0.gu710.Eat_1202+gi67.gi1.gi0.gi2.gu711.Eat_1203+gi11.gi0.gi1.gi1.gu738.Eat_1193+gi11.gi0.gi1.gi1.gu739.Eat_1192+gi11.gi0.gi1.gi0.gu740.Eat_1191+gi11.gi0.gi1.gi0.gu164.Eat_1190+gi67.gi1.gi1.gi1.gu735.Eat_1197+gi67.gi1.gi1.gi0.gu736.Eat_1196+gi67.gi1.gi1.gi0.gu737.Eat_1195+gi67.gi1.gi1.gi0.gu1426.Eat_1194+gi11.gi0.gi0.gi0.gu743.Eat_1185+gi11.gi0.gi0.gi2.gu744.Eat_1184+gi11.gi0.gi0.gi2.gu1137.Eat_1183+gi11.gi0.gi0.gi2.gu745.Eat_1182+gi11.gi0.gi1.gi0.gu741.Eat_1189+gi11.gi0.gi0.gi1.gu1427.Eat_1188+gi11.gi0.gi0.gi1.gu742.Eat_1187+gi11.gi0.gi0.gi0.gu163.Eat_1186+gi11.gi1.gi0.gi0.gu750.Eat_1174+gi11.gi1.gi1.gi0.gu749.Eat_1175+gi11.gi1.gi1.gi0.gu747.Eat_1176+gi11.gi1.gi1.gi0.gu748.Eat_1177+gi11.gi1.gi1.gi1.gu1428.Eat_1178+gi11.gi1.gi1.gi1.gu162.Eat_1179+gi11.gi1.gi1.gi1.gu746.Eat_1180+gi11.gi1.gi1.gi1.gu746.Eat_1181+gi8.gi1.gi2.gi0.gu753.Eat_1166+gi8.gi1.gi2.gi0.gu1429.Eat_1167+gi8.gi1.gi2.gi1.gu752.Eat_1168+gi8.gi1.gi2.gi1.gu1430.Eat_1169+gi11.gi1.gi0.gi1.gu751.Eat_1170+gi11.gi1.gi0.gi1.gu1431.Eat_1171+gi11.gi1.gi0.gi0.gu1432.Eat_1172+gi11.gi1.gi0.gi0.gu750.Eat_1173+gi8.gi1.gi0.gi1.gu1139.Eat_1159+gi8.gi1.gi1.gi1.gu727.Eat_1158+gi8.gi1.gi0.gi0.gu1433.Eat_1161+gi8.gi1.gi0.gi1.gu1434.Eat_1160+gi8.gi1.gi0.gi0.gu726.Eat_1163+gi8.gi1.gi0.gi0.gu161.Eat_1162+gi8.gi1.gi2.gi2.gu1436.Eat_1165+gi8.gi1.gi2.gi2.gu1435.Eat_1164+gi8.gi0.gi1.gi1.gu1437.Eat_1151+gi8.gi0.gi1.gi0.gu1438.Eat_1150+gi8.gi0.gi1.gi1.gu1439.Eat_1153+gi8.gi0.gi1.gi1.gu728.Eat_1152+gi8.gi1.gi1.gi0.gu159.Eat_1155+gi8.gi1.gi1.gi0.gu160.Eat_1154+gi8.gi1.gi1.gi1.gu1440.Eat_1157+gi8.gi1.gi1.gi0.gu1140.Eat_1156+gi8.gi0.gi0.gi0.gu1441.Eat_1148+gi8.gi0.gi1.gi0.gu729.Eat_1149+gi8.gi0.gi0.gi0.gu1442.Eat_1146+gi8.gi0.gi0.gi0.gu137.Eat_1147+gi8.gi0.gi0.gi1.gu1141.Eat_1144+gi8.gi0.gi0.gi1.gu730.Eat_1145+gi68.gi1.gi1.gi0.gu1443.Eat_1142+gi8.gi0.gi0.gi1.gu138.Eat_1143+gi68.gi1.gi1.gi1.gu1444.Eat_1140+gi68.gi1.gi1.gi0.gu732.Eat_1141+gi68.gi1.gi0.gi0.gu731.Eat_1138+gi68.gi1.gi1.gi1.gu1445.Eat_1139+gi68.gi1.gi0.gi1.gu733.Eat_1136+gi68.gi1.gi0.gi0.gu734.Eat_1137+gi68.gi1.gi2.gi1.gu1446.Eat_1134+gi68.gi1.gi0.gi1.gu1447.Eat_1135+gi68.gi1.gi2.gi1.gu1448.Eat_1133+gi68.gi1.gi2.gi0.gu769.Eat_1132+gi68.gi1.gi2.gi0.gu1449.Eat_1131+gi68.gi0.gi0.gi1.gu1450.Eat_1130+gi68.gi0.gi0.gi1.gu1451.Eat_1129+gi68.gi0.gi0.gi0.gu1452.Eat_1128+gi68.gi0.gi0.gi0.gu135.Eat_1127+gi68.gi0.gi0.gi0.gu1453.Eat_1126+gi68.gi0.gi1.gi0.gu771.Eat_1125+gi68.gi0.gi1.gi0.gu772.Eat_1124+gi68.gi0.gi1.gi1.gu1454.Eat_1123+gi68.gi0.gi1.gi1.gu770.Eat_1122+gi41.gi0.gi1.gi1.gu1455.Eat_1121+gi41.gi0.gi1.gi1.gu136.Eat_1120+gi41.gi0.gi1.gi1.gu1456.Eat_1119+gi41.gi0.gi1.gi2.gu775.Eat_1118+gi41.gi0.gi0.gi0.gu134.Eat_1114+gi41.gi0.gi1.gi0.gu776.Eat_1115+gi41.gi0.gi1.gi0.gu1098.Eat_1116+gi41.gi0.gi1.gi2.gu1457.Eat_1117+gi41.gi0.gi0.gi1.gu774.Eat_1110+gi41.gi0.gi0.gi1.gu1097.Eat_1111+gi41.gi0.gi0.gi0.gu1458.Eat_1112+gi41.gi0.gi0.gi0.gu773.Eat_1113+gi41.gi1.gi1.gi0.gu778.Eat_1106+gi41.gi1.gi1.gi0.gu781.Eat_1107+gi41.gi0.gi0.gi2.gu1459.Eat_1108+gi41.gi0.gi0.gi2.gu780.Eat_1109+gi41.gi1.gi0.gi2.gu1460.Eat_1102+gi41.gi1.gi1.gi1.gu779.Eat_1103+gi41.gi1.gi1.gi1.gu1099.Eat_1104+gi41.gi1.gi1.gi1.gu777.Eat_1105+gi41.gi1.gi0.gi0.gu755.Eat_1099+gi41.gi1.gi0.gi0.gu130.Eat_1098+gi41.gi1.gi0.gi2.gu756.Eat_1101+gi41.gi1.gi0.gi0.gu1100.Eat_1100+gi10.gi0.gi1.gi0.gu1461.Eat_1095+gi10.gi0.gi1.gi0.gu1462.Eat_1094+gi41.gi1.gi0.gi1.gu754.Eat_1097+gi41.gi1.gi0.gi1.gu1463.Eat_1096+gi10.gi0.gi1.gi1.gu1464.Eat_1091+gi10.gi0.gi0.gi1.gu1465.Eat_1090+gi10.gi0.gi1.gi1.gu1466.Eat_1093+gi10.gi0.gi1.gi1.gu758.Eat_1092+gi10.gi0.gi0.gi0.gu132.Eat_1087+gi10.gi0.gi0.gi0.gu131.Eat_1086+gi10.gi0.gi0.gi1.gu133.Eat_1089+gi10.gi0.gi0.gi1.gu757.Eat_1088+gi22.gi1.gi0.gi0.gu298.Eat_260+gi22.gi1.gi1.gi0.gu1467.Eat_261+gi22.gi1.gi0.gi1.gu1468.Eat_258+gi22.gi1.gi0.gi0.gu1469.Eat_259+gi22.gi2.gi0.gi0.gu300.Eat_256+gi22.gi1.gi0.gi1.gu1470.Eat_257+gi22.gi2.gi0.gi1.gu302.Eat_254+gi22.gi2.gi0.gi0.gu299.Eat_255+gi22.gi0.gi1.gi0.gu38.Eat_268+gi22.gi0.gi1.gi0.gu39.Eat_269+gi22.gi0.gi1.gi2.gu1471.Eat_266+gi22.gi0.gi1.gi2.gu1472.Eat_267+gi22.gi1.gi1.gi1.gu297.Eat_264+gi22.gi1.gi1.gi1.gu1083.Eat_265+gi22.gi1.gi1.gi0.gu37.Eat_262+gi22.gi1.gi1.gi1.gu1473.Eat_263+gi22.gi0.gi0.gi0.gu1474.Eat_277+gi22.gi0.gi0.gi0.gu316.Eat_276+gi22.gi0.gi0.gi0.gu1475.Eat_275+gi22.gi0.gi0.gi1.gu1476.Eat_274+gi22.gi0.gi0.gi1.gu317.Eat_273+gi22.gi0.gi0.gi1.gu318.Eat_272+gi22.gi0.gi1.gi1.gu319.Eat_271+gi22.gi0.gi1.gi1.gu296.Eat_270+gi24.gi1.gi0.gi2.gu1477.Eat_285+gi24.gi1.gi0.gi2.gu313.Eat_284+gi24.gi1.gi1.gi1.gu1478.Eat_283+gi24.gi1.gi1.gi1.gu314.Eat_282+gi24.gi1.gi1.gi1.gu1479.Eat_281+gi24.gi1.gi1.gi0.gu1480.Eat_280+gi24.gi1.gi1.gi0.gu36.Eat_279+gi24.gi1.gi1.gi0.gu315.Eat_278+gi24.gi0.gi1.gi1.gu41.Eat_290+gi24.gi0.gi1.gi1.gu310.Eat_291+gi24.gi0.gi1.gi0.gu309.Eat_292+gi24.gi0.gi1.gi0.gu42.Eat_293+gi24.gi1.gi0.gi1.gu1087.Eat_286+gi24.gi1.gi0.gi1.gu312.Eat_287+gi24.gi1.gi0.gi0.gu1481.Eat_288+gi24.gi1.gi0.gi0.gu311.Eat_289+gi24.gi0.gi0.gi1.gu1482.Eat_298+gi24.gi0.gi0.gi1.gu1483.Eat_299+gi24.gi0.gi0.gi1.gu1484.Eat_300+gi69.gi1.gi1.gi1.gu1485.Eat_301+gi24.gi0.gi1.gi2.gu1486.Eat_294+gi24.gi0.gi1.gi2.gu1487.Eat_295+gi24.gi0.gi0.gi0.gu308.Eat_296+gi24.gi0.gi0.gi0.gu1488.Eat_297+gi69.gi1.gi0.gi0.gu1489.Eat_307+gi69.gi1.gi0.gi0.gu429.Eat_306+gi69.gi1.gi0.gi1.gu430.Eat_309+gi69.gi1.gi0.gi0.gu432.Eat_308+gi69.gi1.gi1.gi0.gu1490.Eat_303+gi69.gi1.gi1.gi1.gu1491.Eat_302+gi69.gi1.gi1.gi0.gu40.Eat_305+gi69.gi1.gi1.gi0.gu1088.Eat_304+gi69.gi0.gi0.gi1.gu437.Eat_315+gi69.gi0.gi0.gi1.gu434.Eat_314+gi69.gi0.gi0.gi2.gu1492.Eat_317+gi69.gi0.gi0.gi2.gu438.Eat_316+gi69.gi1.gi0.gi1.gu435.Eat_311+gi69.gi1.gi0.gi1.gu431.Eat_310+gi69.gi0.gi0.gi0.gu433.Eat_313+gi69.gi0.gi0.gi0.gu1493.Eat_312+gi2.gu277.Eat_192+gi70.gi1.gi1.gi0.gu1494.Eat_193+gi2.gu27.Eat_190+gi2.gu276.Eat_191+gi70.gi1.gi1.gi1.gu26.Eat_196+gi70.gi1.gi1.gi2.gu280.Eat_197+gi70.gi1.gi1.gi0.gu278.Eat_194+gi70.gi1.gi1.gi1.gu279.Eat_195+gi70.gi1.gi2.gi0.gu1495.Eat_200+gi70.gi1.gi2.gi1.gu1496.Eat_201+gi70.gi1.gi1.gi2.gu1497.Eat_198+gi70.gi1.gi2.gi0.gu1079.Eat_199+gi70.gi1.gi0.gi0.gu275.Eat_204+gi70.gi1.gi0.gi2.gu1498.Eat_205+gi70.gi1.gi2.gi1.gu1078.Eat_202+gi70.gi1.gi0.gi0.gu25.Eat_203+gi70.gi0.gi1.gi2.gu1499.Eat_209+gi70.gi1.gi0.gi1.gu1080.Eat_208+gi70.gi1.gi0.gi1.gu30.Eat_207+gi70.gi1.gi0.gi2.gu1500.Eat_206+gi70.gi0.gi1.gi0.gu294.Eat_213+gi70.gi0.gi1.gi1.gu1501.Eat_212+gi70.gi0.gi1.gi1.gu295.Eat_211+gi70.gi0.gi1.gi2.gu1502.Eat_210+gi70.gi0.gi0.gi1.gu29.Eat_217+gi70.gi0.gi0.gi1.gu290.Eat_216+gi70.gi0.gi1.gi0.gu291.Eat_215+gi70.gi0.gi1.gi0.gu1503.Eat_214+gi23.gi0.gi2.gi0.gu292.Eat_221+gi70.gi0.gi0.gi0.gu1504.Eat_220+gi70.gi0.gi0.gi0.gu28.Eat_219+gi70.gi0.gi0.gi0.gu293.Eat_218+gi23.gi0.gi2.gi0.gu288.Eat_222+gi23.gi0.gi2.gi1.gu1505.Eat_223+gi23.gi0.gi2.gi1.gu287.Eat_224+gi23.gi0.gi2.gi1.gu1506.Eat_225+gi23.gi0.gi1.gi1.gu1507.Eat_226+gi23.gi0.gi1.gi1.gu1508.Eat_227+gi23.gi0.gi1.gi0.gu1509.Eat_228+gi23.gi0.gi1.gi0.gu289.Eat_229+gi23.gi0.gi0.gi1.gu1510.Eat_230+gi23.gi0.gi0.gi1.gu1511.Eat_231+gi23.gi0.gi0.gi0.gu33.Eat_232+gi23.gi0.gi0.gi0.gu32.Eat_233+gi23.gi0.gi0.gi2.gu285.Eat_234+gi23.gi0.gi0.gi2.gu1512.Eat_235+gi23.gi1.gi0.gi0.gu1513.Eat_236+gi23.gi1.gi0.gi0.gu31.Eat_237+gi23.gi1.gi0.gi1.gu1514.Eat_239+gi23.gi1.gi0.gi1.gu286.Eat_238+gi23.gi1.gi1.gi2.gu1515.Eat_241+gi23.gi1.gi0.gi1.gu1516.Eat_240+gi23.gi1.gi1.gi0.gu35.Eat_243+gi23.gi1.gi1.gi2.gu307.Eat_242+gi23.gi1.gi1.gi1.gu1517.Eat_245+gi23.gi1.gi1.gi0.gu306.Eat_244+gi22.gi2.gi1.gi1.gu303.Eat_247+gi23.gi1.gi1.gi1.gu304.Eat_246+gi22.gi2.gi1.gi0.gu1518.Eat_249+gi22.gi2.gi1.gi1.gu305.Eat_248+gi22.gi2.gi1.gi0.gu34.Eat_251+gi22.gi2.gi1.gi0.gu301.Eat_250+gi22.gi2.gi0.gi1.gu1519.Eat_253+gi22.gi2.gi0.gi1.gu1084.Eat_252+gi29.gi0.gi0.gi0.gu472.Eat_397+gi29.gi0.gi0.gi1.gu473.Eat_396+gi29.gi0.gi0.gi1.gu474.Eat_395+gi29.gi0.gi0.gi2.gu1520.Eat_394+gi29.gi0.gi0.gi2.gu1521.Eat_393+gi29.gi1.gi1.gi1.gu1522.Eat_392+gi29.gi1.gi1.gi1.gu1058.Eat_391+gi29.gi1.gi1.gi0.gu1523.Eat_390+gi29.gi1.gi1.gi0.gu470.Eat_389+gi29.gi1.gi1.gi0.gu1524.Eat_388+gi29.gi1.gi0.gi2.gu1525.Eat_387+gi29.gi1.gi0.gi2.gu471.Eat_386+gi29.gi1.gi0.gi2.gu53.Eat_385+gi29.gi1.gi0.gi0.gu54.Eat_384+gi29.gi1.gi0.gi0.gu1057.Eat_383+gi29.gi1.gi0.gi1.gu55.Eat_382+gi30.gi1.gi1.gi1.gu478.Eat_412+gi30.gi0.gi2.gi0.gu51.Eat_413+gi30.gi1.gi1.gi0.gu1526.Eat_410+gi30.gi1.gi1.gi1.gu52.Eat_411+gi30.gi1.gi1.gi0.gu50.Eat_408+gi30.gi1.gi1.gi0.gu481.Eat_409+gi30.gi1.gi0.gi1.gu1527.Eat_406+gi30.gi1.gi0.gi1.gu480.Eat_407+gi30.gi1.gi0.gi0.gu476.Eat_404+gi30.gi1.gi0.gi0.gu1528.Eat_405+gi29.gi0.gi1.gi0.gu475.Eat_402+gi29.gi0.gi1.gi0.gu1056.Eat_403+gi29.gi0.gi1.gi1.gu477.Eat_400+gi29.gi0.gi1.gi0.gu1529.Eat_401+gi29.gi0.gi0.gi0.gu1054.Eat_398+gi29.gi0.gi1.gi1.gu1055.Eat_399+gi71.gi1.gi1.gi1.gu1530.Eat_427+gi30.gi0.gi1.gi1.gu1067.Eat_426+gi71.gi1.gi1.gi1.gu1531.Eat_429+gi71.gi1.gi1.gi1.gu484.Eat_428+gi30.gi0.gi1.gi0.gu1532.Eat_423+gi30.gi0.gi0.gi0.gu57.Eat_422+gi30.gi0.gi1.gi1.gu486.Eat_425+gi30.gi0.gi1.gi0.gu485.Eat_424+gi30.gi0.gi0.gi1.gu1066.Eat_419+gi30.gi0.gi2.gi1.gu1533.Eat_418+gi30.gi0.gi0.gi0.gu483.Eat_421+gi30.gi0.gi0.gi1.gu482.Eat_420+gi30.gi0.gi2.gi2.gu1534.Eat_415+gi30.gi0.gi2.gi0.gu479.Eat_414+gi30.gi0.gi2.gi1.gu1535.Eat_417+gi30.gi0.gi2.gi2.gu1536.Eat_416+gi71.gi0.gi0.gi0.gu1537.Eat_442+gi71.gi0.gi0.gi1.gu379.Eat_443+gi71.gi0.gi0.gi1.gu1538.Eat_444+gi71.gi0.gi0.gi1.gu1539.Eat_445+gi71.gi1.gi0.gi1.gu1540.Eat_438+gi71.gi1.gi0.gi1.gu56.Eat_439+gi71.gi1.gi0.gi1.gu1541.Eat_440+gi71.gi0.gi0.gi0.gu378.Eat_441+gi71.gi1.gi0.gi2.gu1542.Eat_434+gi71.gi1.gi0.gi2.gu1543.Eat_435+gi71.gi1.gi0.gi0.gu1544.Eat_436+gi71.gi1.gi0.gi0.gu381.Eat_437+gi71.gi1.gi1.gi2.gu1545.Eat_430+gi71.gi1.gi1.gi2.gu1546.Eat_431+gi71.gi1.gi1.gi0.gu1065.Eat_432+gi71.gi1.gi1.gi0.gu380.Eat_433+gi3.gi0.gi2.gi1.gu445.Eat_329+gi3.gi0.gi2.gi1.gu47.Eat_328+gi3.gi0.gi2.gi2.gu446.Eat_327+gi3.gi0.gi2.gi2.gu1547.Eat_326+gi3.gi0.gi1.gi1.gu1548.Eat_333+gi3.gi0.gi1.gi0.gu46.Eat_332+gi3.gi0.gi1.gi0.gu447.Eat_331+gi3.gi0.gi2.gi1.gu444.Eat_330+gi69.gi0.gi1.gi1.gu1085.Eat_321+gi69.gi0.gi1.gi0.gu440.Eat_320+gi69.gi0.gi1.gi0.gu441.Eat_319+gi69.gi0.gi0.gi2.gu436.Eat_318+gi3.gi0.gi2.gi0.gu1549.Eat_325+gi3.gi0.gi2.gi0.gu442.Eat_324+gi69.gi0.gi1.gi1.gu443.Eat_323+gi69.gi0.gi1.gi1.gu439.Eat_322+gi3.gi1.gi0.gi0.gu452.Eat_344+gi3.gi1.gi1.gi0.gu453.Eat_345+gi3.gi1.gi0.gi1.gu45.Eat_342+gi3.gi1.gi0.gi0.gu451.Eat_343+gi3.gi1.gi1.gi1.gu1550.Eat_348+gi3.gi1.gi1.gi2.gu1551.Eat_349+gi3.gi1.gi1.gi0.gu1552.Eat_346+gi3.gi1.gi1.gi1.gu454.Eat_347+gi3.gi0.gi0.gi1.gu1553.Eat_336+gi3.gi0.gi0.gi1.gu1554.Eat_337+gi3.gi0.gi1.gi1.gu44.Eat_334+gi3.gi0.gi1.gi1.gu448.Eat_335+gi3.gi1.gi0.gi1.gu1086.Eat_340+gi3.gi1.gi0.gi1.gu450.Eat_341+gi3.gi0.gi0.gi0.gu43.Eat_338+gi3.gi0.gi0.gi0.gu449.Eat_339+gi72.gi0.gi0.gi1.gu1555.Eat_359+gi72.gi0.gi0.gi0.gu459.Eat_358+gi72.gi0.gi0.gi1.gu1556.Eat_361+gi72.gi0.gi0.gi1.gu1061.Eat_360+gi72.gi0.gi1.gi1.gu460.Eat_363+gi72.gi0.gi1.gi1.gu1557.Eat_362+gi72.gi0.gi1.gi0.gu49.Eat_365+gi72.gi0.gi1.gi0.gu461.Eat_364+gi3.gi1.gi2.gi1.gu1559.Eat_351+gi3.gi1.gi1.gi2.gu1060.Eat_350+gi3.gi1.gi2.gi0.gu455.Eat_353+gi3.gi1.gi2.gi1.gu1560.Eat_352+gi3.gi1.gi2.gi0.gu1561.Eat_355+gi3.gi1.gi2.gi0.gu456.Eat_354+gi72.gi0.gi0.gi0.gu457.Eat_357+gi72.gi0.gi0.gi0.gu458.Eat_356+gi72.gi1.gi0.gi0.gu1562.Eat_374+gi72.gi1.gi1.gi1.gu469.Eat_375+gi72.gi1.gi1.gi1.gu1059.Eat_376+gi72.gi1.gi1.gi1.gu468.Eat_377+gi72.gi1.gi1.gi0.gu466.Eat_378+gi72.gi1.gi1.gi0.gu48.Eat_379+gi72.gi1.gi1.gi0.gu467.Eat_380+gi29.gi1.gi0.gi1.gu465.Eat_381+gi72.gi0.gi1.gi0.gu1558.Eat_366+gi72.gi1.gi2.gi0.gu464.Eat_367+gi72.gi1.gi2.gi0.gu463.Eat_368+gi72.gi1.gi2.gi1.gu1563.Eat_369+gi72.gi1.gi2.gi1.gu1564.Eat_370+gi72.gi1.gi0.gi1.gu1565.Eat_371+gi72.gi1.gi0.gi1.gu1566.Eat_372+gi72.gi1.gi0.gi0.gu462.Eat_373+gi73.gi1.gi0.gi1.gu421.Eat_531+gi73.gi1.gi0.gi0.gu422.Eat_530+gi74.gi0.gi1.gi0.gu423.Eat_533+gi73.gi1.gi0.gi1.gu1567.Eat_532+gi73.gi1.gi0.gi2.gu1568.Eat_527+gi73.gi1.gi1.gi1.gu1569.Eat_526+gi73.gi1.gi0.gi0.gu1570.Eat_529+gi73.gi1.gi0.gi2.gu1571.Eat_528+gi74.gi0.gi0.gi0.gu1572.Eat_539+gi74.gi0.gi0.gi0.gu1573.Eat_538+gi74.gi0.gi0.gi1.gu1574.Eat_541+gi74.gi0.gi0.gi1.gu418.Eat_540+gi74.gi0.gi1.gi0.gu420.Eat_535+gi74.gi0.gi1.gi0.gu71.Eat_534+gi74.gi0.gi1.gi1.gu1575.Eat_537+gi74.gi0.gi1.gi1.gu419.Eat_536+gi73.gi2.gi1.gi1.gu1576.Eat_514+gi73.gi2.gi1.gi0.gu415.Eat_515+gi73.gi2.gi1.gi0.gu1577.Eat_516+gi73.gi2.gi0.gi1.gu414.Eat_517+gi73.gi0.gi1.gi1.gu1578.Eat_510+gi73.gi0.gi1.gi2.gu417.Eat_511+gi73.gi0.gi1.gi2.gu416.Eat_512+gi73.gi2.gi1.gi1.gu1068.Eat_513+gi73.gi1.gi1.gi0.gu1579.Eat_522+gi73.gi1.gi1.gi0.gu69.Eat_523+gi73.gi1.gi1.gi0.gu411.Eat_524+gi73.gi1.gi1.gi1.gu410.Eat_525+gi73.gi2.gi0.gi1.gu414.Eat_518+gi73.gi2.gi0.gi1.gu413.Eat_519+gi73.gi2.gi0.gi0.gu412.Eat_520+gi73.gi2.gi0.gi0.gu70.Eat_521+gi54.gi1.gi0.gi2.gu1580.Eat_565+gi54.gi1.gi0.gi2.gu560.Eat_564+gi54.gi1.gi0.gi0.gu1581.Eat_563+gi54.gi1.gi0.gi0.gu68.Eat_562+gi54.gi1.gi1.gi1.gu1582.Eat_561+gi54.gi1.gi1.gi1.gu561.Eat_560+gi54.gi1.gi1.gi0.gu1583.Eat_559+gi54.gi1.gi1.gi0.gu425.Eat_558+gi54.gi0.gi1.gi1.gu1584.Eat_573+gi54.gi0.gi1.gi1.gu1585.Eat_572+gi54.gi0.gi0.gi0.gu562.Eat_571+gi54.gi0.gi0.gi0.gu1070.Eat_570+gi54.gi0.gi0.gi1.gu1586.Eat_569+gi54.gi0.gi0.gi1.gu563.Eat_568+gi54.gi1.gi0.gi1.gu1071.Eat_567+gi54.gi1.gi0.gi1.gu1587.Eat_566+gi74.gi1.gi0.gi0.gu1588.Eat_548+gi74.gi1.gi0.gi1.gu1589.Eat_549+gi74.gi1.gi0.gi0.gu428.Eat_546+gi74.gi1.gi0.gi0.gu66.Eat_547+gi74.gi1.gi0.gi2.gu67.Eat_544+gi74.gi1.gi0.gi2.gu1590.Eat_545+gi74.gi0.gi0.gi1.gu1591.Eat_542+gi74.gi1.gi0.gi2.gu1592.Eat_543+gi74.gi1.gi1.gi1.gu1593.Eat_556+gi74.gi1.gi1.gi1.gu424.Eat_557+gi74.gi1.gi1.gi0.gu1594.Eat_554+gi74.gi1.gi1.gi1.gu1072.Eat_555+gi74.gi1.gi1.gi2.gu1595.Eat_552+gi74.gi1.gi1.gi0.gu427.Eat_553+gi74.gi1.gi0.gi1.gu426.Eat_550+gi74.gi1.gi1.gi2.gu1073.Eat_551+gi28.gi1.gi1.gi0.gu1596.Eat_463+gi28.gi0.gi1.gi1.gu1597.Eat_462+gi28.gi1.gi1.gi1.gu1598.Eat_465+gi28.gi1.gi1.gi0.gu395.Eat_464+gi28.gi1.gi0.gi0.gu1599.Eat_467+gi28.gi1.gi1.gi1.gu1600.Eat_466+gi28.gi1.gi0.gi0.gu59.Eat_469+gi28.gi1.gi0.gi0.gu58.Eat_468+gi28.gi1.gi0.gi2.gu392.Eat_471+gi28.gi1.gi0.gi2.gu1062.Eat_470+gi28.gi1.gi0.gi1.gu1063.Eat_473+gi28.gi1.gi0.gi1.gu391.Eat_472+gi75.gi0.gi1.gi2.gu1601.Eat_475+gi75.gi0.gi1.gi2.gu393.Eat_474+gi75.gi0.gi1.gi1.gu1602.Eat_477+gi75.gi0.gi1.gi1.gu394.Eat_476+gi71.gi0.gi1.gi0.gu1603.Eat_446+gi71.gi0.gi1.gi0.gu60.Eat_447+gi71.gi0.gi1.gi1.gu388.Eat_448+gi71.gi0.gi1.gi1.gu389.Eat_449+gi71.gi0.gi1.gi1.gu389.Eat_450+gi28.gi0.gi0.gi1.gu390.Eat_451+gi28.gi0.gi0.gi1.gu1604.Eat_452+gi28.gi0.gi0.gi1.gu1605.Eat_453+gi28.gi0.gi0.gi0.gu384.Eat_454+gi28.gi0.gi0.gi0.gu384.Eat_455+gi28.gi0.gi0.gi0.gu385.Eat_456+gi28.gi0.gi1.gi0.gu382.Eat_457+gi28.gi0.gi1.gi0.gu383.Eat_458+gi28.gi0.gi1.gi2.gu1064.Eat_459+gi28.gi0.gi1.gi2.gu387.Eat_460+gi28.gi0.gi1.gi1.gu386.Eat_461+gi75.gi1.gi1.gi0.gu409.Eat_497+gi75.gi1.gi1.gi1.gu1606.Eat_496+gi75.gi1.gi1.gi1.gu1607.Eat_495+gi75.gi1.gi0.gi2.gu399.Eat_494+gi73.gi0.gi0.gi2.gu1608.Eat_501+gi73.gi0.gi0.gi2.gu408.Eat_500+gi75.gi1.gi1.gi0.gu1609.Eat_499+gi75.gi1.gi1.gi0.gu1069.Eat_498+gi73.gi0.gi0.gi0.gu62.Eat_505+gi73.gi0.gi0.gi1.gu406.Eat_504+gi73.gi0.gi0.gi1.gu1610.Eat_503+gi73.gi0.gi0.gi1.gu407.Eat_502+gi73.gi0.gi1.gi1.gu404.Eat_509+gi73.gi0.gi1.gi0.gu1611.Eat_508+gi73.gi0.gi1.gi0.gu61.Eat_507+gi73.gi0.gi0.gi0.gu405.Eat_506+gi75.gi0.gi1.gi0.gu400.Eat_480+gi75.gi0.gi0.gi0.gu401.Eat_481+gi75.gi0.gi1.gi0.gu1612.Eat_478+gi75.gi0.gi1.gi0.gu65.Eat_479+gi75.gi0.gi0.gi1.gu1613.Eat_484+gi75.gi0.gi0.gi2.gu1614.Eat_485+gi75.gi0.gi0.gi0.gu402.Eat_482+gi75.gi0.gi0.gi1.gu403.Eat_483+gi75.gi1.gi0.gi0.gu64.Eat_488+gi75.gi1.gi0.gi0.gu396.Eat_489+gi75.gi0.gi0.gi2.gu1615.Eat_486+gi75.gi1.gi0.gi0.gu63.Eat_487+gi75.gi1.gi0.gi2.gu1616.Eat_492+gi75.gi1.gi0.gi2.gu399.Eat_493+gi75.gi1.gi0.gi1.gu397.Eat_490+gi75.gi1.gi0.gi1.gu398.Eat_491+gi34.gi0.gi1.gi1.gu1617.Eat_666+gi34.gi0.gi1.gi1.gu1618.Eat_667+gi76.gi0.gi0.gi0.gu575.Eat_668+gi76.gi0.gi0.gi0.gu576.Eat_669+gi34.gi0.gi0.gi2.gu1619.Eat_662+gi34.gi0.gi1.gi0.gu1620.Eat_663+gi34.gi0.gi1.gi0.gu86.Eat_664+gi34.gi0.gi1.gi0.gu574.Eat_665+gi34.gi0.gi0.gi0.gu572.Eat_658+gi34.gi0.gi0.gi1.gu573.Eat_659+gi34.gi0.gi0.gi1.gu1621.Eat_660+gi34.gi0.gi0.gi2.gu1622.Eat_661+gi34.gi0.gi2.gi1.gu1623.Eat_654+gi34.gi0.gi2.gi1.gu1624.Eat_655+gi34.gi0.gi0.gi0.gu571.Eat_656+gi34.gi0.gi0.gi0.gu87.Eat_657+gi34.gi1.gi2.gi0.gu581.Eat_651+gi34.gi1.gi2.gi0.gu1106.Eat_650+gi34.gi0.gi2.gi0.gu1625.Eat_653+gi34.gi0.gi2.gi0.gu82.Eat_652+gi34.gi1.gi1.gi1.gu579.Eat_647+gi34.gi1.gi1.gi1.gu1626.Eat_646+gi34.gi1.gi2.gi1.gu580.Eat_649+gi34.gi1.gi2.gi1.gu1627.Eat_648+gi34.gi1.gi1.gi0.gu1628.Eat_643+gi34.gi1.gi0.gi0.gu83.Eat_642+gi34.gi1.gi1.gi0.gu1629.Eat_645+gi34.gi1.gi1.gi0.gu578.Eat_644+gi34.gi1.gi0.gi2.gu1630.Eat_639+gi34.gi1.gi0.gi1.gu577.Eat_638+gi34.gi1.gi0.gi0.gu84.Eat_641+gi34.gi1.gi0.gi2.gu85.Eat_640+gi31.gi1.gi0.gi1.gu1631.Eat_700+gi31.gi1.gi0.gi1.gu508.Eat_701+gi31.gi0.gi0.gi0.gu1632.Eat_698+gi31.gi0.gi0.gi0.gu507.Eat_699+gi31.gi0.gi0.gi1.gu1633.Eat_696+gi31.gi0.gi0.gi1.gu511.Eat_697+gi31.gi0.gi1.gi0.gu510.Eat_694+gi31.gi0.gi0.gi1.gu509.Eat_695+gi31.gi0.gi1.gi1.gu1634.Eat_692+gi31.gi0.gi1.gi0.gu1109.Eat_693+gi31.gi0.gi1.gi1.gu1635.Eat_690+gi31.gi0.gi1.gi1.gu1108.Eat_691+gi76.gi1.gi0.gi1.gu514.Eat_688+gi76.gi1.gi0.gi1.gu513.Eat_689+gi76.gi1.gi0.gi2.gu1636.Eat_686+gi76.gi1.gi0.gi2.gu512.Eat_687+gi76.gi1.gi0.gi0.gu1637.Eat_685+gi76.gi1.gi0.gi0.gu80.Eat_684+gi76.gi1.gi1.gi1.gu570.Eat_683+gi76.gi1.gi1.gi1.gu1638.Eat_682+gi76.gi1.gi1.gi0.gu81.Eat_681+gi76.gi1.gi1.gi0.gu569.Eat_680+gi76.gi0.gi1.gi1.gu1639.Eat_679+gi76.gi0.gi1.gi1.gu1107.Eat_678+gi76.gi0.gi1.gi1.gu566.Eat_677+gi76.gi0.gi1.gi0.gu567.Eat_676+gi76.gi0.gi1.gi0.gu568.Eat_675+gi76.gi0.gi1.gi2.gu1640.Eat_674+gi76.gi0.gi1.gi2.gu564.Eat_673+gi76.gi0.gi0.gi1.gu1641.Eat_672+gi76.gi0.gi0.gi1.gu565.Eat_671+gi76.gi0.gi0.gi1.gu1642.Eat_670+gi32.gi0.gi0.gi2.gu1643.Eat_598+gi32.gi0.gi0.gi2.gu551.Eat_599+gi32.gi0.gi0.gi1.gu78.Eat_600+gi32.gi0.gi0.gi1.gu550.Eat_601+gi32.gi0.gi1.gi0.gu79.Eat_602+gi32.gi0.gi1.gi0.gu549.Eat_603+gi32.gi0.gi1.gi1.gu1644.Eat_604+gi32.gi0.gi1.gi1.gu1645.Eat_605+gi33.gi0.gi1.gi1.gu1646.Eat_590+gi33.gi0.gi1.gi1.gu1647.Eat_591+gi33.gi0.gi0.gi1.gu548.Eat_592+gi33.gi0.gi0.gi1.gu1648.Eat_593+gi33.gi0.gi0.gi0.gu1649.Eat_594+gi33.gi0.gi0.gi0.gu76.Eat_595+gi32.gi0.gi0.gi0.gu547.Eat_596+gi32.gi0.gi0.gi0.gu77.Eat_597+gi33.gi1.gi1.gi0.gu75.Eat_583+gi33.gi1.gi0.gi0.gu553.Eat_582+gi33.gi1.gi1.gi1.gu559.Eat_585+gi33.gi1.gi1.gi0.gu558.Eat_584+gi33.gi0.gi1.gi0.gu556.Eat_587+gi33.gi1.gi1.gi1.gu1650.Eat_586+gi33.gi0.gi1.gi0.gu1651.Eat_589+gi33.gi0.gi1.gi0.gu557.Eat_588+gi54.gi0.gi1.gi0.gu555.Eat_575+gi54.gi0.gi1.gi0.gu555.Eat_574+gi33.gi1.gi0.gi1.gu1652.Eat_577+gi54.gi0.gi1.gi0.gu554.Eat_576+gi33.gi1.gi0.gi1.gu552.Eat_579+gi33.gi1.gi0.gi1.gu1653.Eat_578+gi33.gi1.gi0.gi0.gu1654.Eat_581+gi33.gi1.gi0.gi0.gu74.Eat_580+gi35.gi0.gi0.gi1.gu1655.Eat_632+gi35.gi0.gi0.gi2.gu1658.Eat_633+gi35.gi0.gi1.gi1.gu1656.Eat_630+gi35.gi0.gi0.gi1.gu1105.Eat_631+gi35.gi0.gi0.gi0.gu1657.Eat_636+gi34.gi1.gi0.gi1.gu583.Eat_637+gi35.gi0.gi0.gi2.gu582.Eat_634+gi35.gi0.gi0.gi0.gu73.Eat_635+gi35.gi1.gi1.gi0.gu1659.Eat_624+gi35.gi1.gi1.gi0.gu1660.Eat_625+gi35.gi1.gi1.gi1.gu544.Eat_622+gi35.gi1.gi1.gi1.gu1661.Eat_623+gi35.gi0.gi1.gi0.gu1662.Eat_628+gi35.gi0.gi1.gi1.gu1663.Eat_629+gi35.gi0.gi1.gi0.gu1664.Eat_626+gi35.gi0.gi1.gi0.gu72.Eat_627+gi32.gi1.gi0.gi1.gu545.Eat_617+gi32.gi1.gi0.gi1.gu546.Eat_616+gi32.gi1.gi0.gi0.gu1665.Eat_615+gi32.gi1.gi0.gi0.gu539.Eat_614+gi35.gi1.gi0.gi1.gu1666.Eat_621+gi35.gi1.gi0.gi1.gu1667.Eat_620+gi35.gi1.gi0.gi0.gu1104.Eat_619+gi35.gi1.gi0.gi0.gu1668.Eat_618+gi32.gi1.gi1.gi0.gu541.Eat_609+gi32.gi1.gi1.gi0.gu542.Eat_608+gi32.gi1.gi1.gi1.gu543.Eat_607+gi32.gi1.gi1.gi1.gu1103.Eat_606+gi32.gi1.gi2.gi1.gu1102.Eat_613+gi32.gi1.gi2.gi1.gu540.Eat_612+gi32.gi1.gi2.gi0.gu1669.Eat_611+gi32.gi1.gi2.gi0.gu1101.Eat_610+gi17.gi0.gi0.gi1.gu1670.Eat_1770+gi17.gi0.gi0.gi1.gu228.Eat_1771+gi17.gi0.gi1.gi0.gu1170.Eat_1772+gi17.gi0.gi1.gi0.gu916.Eat_1773+gi17.gi2.gi0.gi0.gu1671.Eat_1766+gi17.gi2.gi0.gi0.gu917.Eat_1767+gi17.gi0.gi0.gi0.gu227.Eat_1768+gi17.gi0.gi0.gi0.gu1672.Eat_1769+gi17.gi2.gi0.gi1.gu914.Eat_1762+gi17.gi2.gi0.gi1.gu1673.Eat_1763+gi17.gi2.gi0.gi1.gu1674.Eat_1764+gi17.gi2.gi0.gi0.gu1169.Eat_1765+gi17.gi2.gi1.gi2.gu924.Eat_1758+gi17.gi2.gi1.gi2.gu915.Eat_1759+gi17.gi2.gi1.gi1.gu1675.Eat_1760+gi17.gi2.gi1.gi1.gu1676.Eat_1761+gi18.gi0.gi1.gi0.gu912.Eat_1787+gi18.gi0.gi1.gi0.gu911.Eat_1786+gi18.gi0.gi1.gi2.gu913.Eat_1789+gi18.gi0.gi1.gi2.gu1677.Eat_1788+gi17.gi1.gi0.gi1.gu1678.Eat_1783+gi17.gi1.gi0.gi1.gu1679.Eat_1782+gi17.gi1.gi0.gi0.gu1680.Eat_1785+gi17.gi1.gi0.gi0.gu229.Eat_1784+gi17.gi1.gi1.gi2.gu1681.Eat_1779+gi17.gi1.gi1.gi2.gu908.Eat_1778+gi17.gi1.gi1.gi0.gu1171.Eat_1781+gi17.gi1.gi1.gi0.gu910.Eat_1780+gi17.gi0.gi1.gi1.gu907.Eat_1775+gi17.gi0.gi1.gi1.gu1682.Eat_1774+gi17.gi1.gi1.gi1.gu1172.Eat_1777+gi17.gi1.gi1.gi1.gu909.Eat_1776+gi77.gi0.gi2.gi0.gu1683.Eat_1740+gi77.gi0.gi2.gi0.gu931.Eat_1741+gi77.gi0.gi2.gi1.gu1684.Eat_1738+gi77.gi0.gi2.gi1.gu930.Eat_1739+gi77.gi0.gi1.gi1.gu933.Eat_1736+gi77.gi0.gi1.gi1.gu1685.Eat_1737+gi77.gi0.gi1.gi0.gu1686.Eat_1734+gi77.gi0.gi1.gi1.gu932.Eat_1735+gi77.gi0.gi0.gi1.gu928.Eat_1732+gi77.gi0.gi1.gi0.gu929.Eat_1733+gi77.gi0.gi0.gi0.gu230.Eat_1730+gi77.gi0.gi0.gi1.gu927.Eat_1731+gi77.gi0.gi0.gi2.gu1687.Eat_1728+gi77.gi0.gi0.gi0.gu1688.Eat_1729+gi85.gi0.gi0.gi1.gu1689.Eat_1726+gi77.gi0.gi0.gi2.gu1157.Eat_1727+gi17.gi2.gi1.gi0.gu1690.Eat_1757+gi17.gi2.gi1.gi0.gu233.Eat_1756+gi17.gi2.gi1.gi0.gu925.Eat_1755+gi77.gi1.gi0.gi2.gu926.Eat_1754+gi77.gi1.gi0.gi2.gu1691.Eat_1753+gi77.gi1.gi0.gi1.gu232.Eat_1752+gi77.gi1.gi0.gi1.gu1692.Eat_1751+gi77.gi1.gi0.gi0.gu918.Eat_1750+gi77.gi1.gi0.gi0.gu918.Eat_1749+gi77.gi1.gi0.gi0.gu231.Eat_1748+gi77.gi1.gi1.gi0.gu919.Eat_1747+gi77.gi1.gi1.gi0.gu920.Eat_1746+gi77.gi1.gi1.gi2.gu921.Eat_1745+gi77.gi1.gi1.gi2.gu1693.Eat_1744+gi77.gi1.gi1.gi1.gu922.Eat_1743+gi77.gi1.gi1.gi1.gu923.Eat_1742+gi21.gi0.gi1.gi1.gu891.Eat_1830+gi21.gi0.gi1.gi2.gu1694.Eat_1831+gi21.gi0.gi1.gi2.gu1695.Eat_1832+gi48.gi0.gi0.gi1.gu1696.Eat_1833+gi48.gi0.gi0.gi1.gu1697.Eat_1834+gi48.gi0.gi0.gi1.gu893.Eat_1835+gi48.gi0.gi0.gi0.gu1698.Eat_1836+gi48.gi0.gi0.gi0.gu892.Eat_1837+gi21.gi0.gi0.gi1.gu1699.Eat_1822+gi21.gi0.gi0.gi1.gu1700.Eat_1823+gi21.gi0.gi0.gi0.gu1701.Eat_1824+gi21.gi0.gi0.gi0.gu889.Eat_1825+gi21.gi0.gi1.gi0.gu1702.Eat_1826+gi21.gi0.gi1.gi0.gu252.Eat_1827+gi21.gi0.gi1.gi0.gu253.Eat_1828+gi21.gi0.gi1.gi1.gu890.Eat_1829+gi48.gi1.gi1.gi0.gu1044.Eat_1847+gi48.gi1.gi1.gi0.gu1703.Eat_1846+gi48.gi1.gi1.gi1.gu1704.Eat_1849+gi48.gi1.gi1.gi1.gu1705.Eat_1848+gi48.gi1.gi0.gi2.gu250.Eat_1851+gi48.gi1.gi0.gi2.gu1163.Eat_1850+gi48.gi1.gi0.gi0.gu1041.Eat_1853+gi48.gi1.gi0.gi2.gu1043.Eat_1852+gi48.gi0.gi1.gi0.gu1706.Eat_1839+gi48.gi0.gi1.gi0.gu1047.Eat_1838+gi48.gi0.gi1.gi1.gu1707.Eat_1841+gi48.gi0.gi1.gi1.gu1046.Eat_1840+gi48.gi1.gi1.gi2.gu1708.Eat_1843+gi48.gi0.gi1.gi1.gu251.Eat_1842+gi48.gi1.gi1.gi2.gu1709.Eat_1845+gi48.gi1.gi1.gi2.gu1045.Eat_1844+gi18.gi1.gi1.gi1.gu1175.Eat_1800+gi18.gi1.gi1.gi1.gu1710.Eat_1801+gi18.gi1.gi1.gi2.gu1711.Eat_1798+gi18.gi1.gi1.gi2.gu1712.Eat_1799+gi18.gi1.gi0.gi1.gu906.Eat_1804+gi18.gi1.gi0.gi1.gu1713.Eat_1805+gi18.gi1.gi1.gi0.gu1714.Eat_1802+gi18.gi1.gi1.gi0.gu905.Eat_1803+gi18.gi0.gi0.gi0.gu902.Eat_1792+gi18.gi0.gi0.gi0.gu903.Eat_1793+gi18.gi0.gi1.gi1.gu1715.Eat_1790+gi18.gi0.gi1.gi1.gu1174.Eat_1791+gi18.gi0.gi0.gi1.gu1716.Eat_1796+gi18.gi1.gi1.gi2.gu904.Eat_1797+gi18.gi0.gi0.gi1.gu1717.Eat_1794+gi18.gi0.gi0.gi1.gu1173.Eat_1795+gi21.gi1.gi0.gi0.gu254.Eat_1817+gi21.gi1.gi0.gi0.gu899.Eat_1816+gi21.gi1.gi1.gi1.gu900.Eat_1815+gi21.gi1.gi1.gi1.gu896.Eat_1814+gi21.gi0.gi0.gi1.gu901.Eat_1821+gi21.gi1.gi0.gi1.gu1718.Eat_1820+gi21.gi1.gi0.gi1.gu1719.Eat_1819+gi21.gi1.gi0.gi0.gu898.Eat_1818+gi21.gi1.gi1.gi0.gu894.Eat_1809+gi18.gi1.gi0.gi0.gu1720.Eat_1808+gi18.gi1.gi0.gi0.gu256.Eat_1807+gi18.gi1.gi0.gi0.gu895.Eat_1806+gi21.gi1.gi1.gi2.gu1176.Eat_1813+gi21.gi1.gi1.gi2.gu1177.Eat_1812+gi21.gi1.gi1.gi2.gu897.Eat_1811+gi21.gi1.gi1.gi0.gu255.Eat_1810+gi52.gi1.gi0.gi0.gu1721.Eat_1891+gi78.gu1722.Eat_1890+gi52.gi1.gi0.gi0.gu1038.Eat_1893+gi52.gi1.gi0.gi0.gu245.Eat_1892+gi78.gu1723.Eat_1887+gi78.gu1039.Eat_1886+gi78.gu1724.Eat_1889+gi78.gu1040.Eat_1888+gi52.gi1.gi1.gi0.gu243.Eat_1899+gi52.gi1.gi1.gi0.gu1035.Eat_1898+gi52.gi1.gi1.gi2.gu244.Eat_1901+gi52.gi1.gi1.gi2.gu1725.Eat_1900+gi52.gi1.gi0.gi1.gu1726.Eat_1895+gi52.gi1.gi0.gi1.gu1037.Eat_1894+gi52.gi1.gi1.gi1.gu1036.Eat_1897+gi52.gi1.gi1.gi1.gu1727.Eat_1896+gi52.gi0.gi0.gi0.gu1728.Eat_1906+gi52.gi0.gi1.gi1.gu1729.Eat_1907+gi52.gi0.gi1.gi1.gu1020.Eat_1908+gi52.gi0.gi1.gi0.gu1021.Eat_1909+gi52.gi0.gi0.gi1.gu1730.Eat_1902+gi52.gi0.gi0.gi1.gu1019.Eat_1903+gi52.gi0.gi0.gi0.gu1731.Eat_1904+gi52.gi0.gi0.gi0.gu242.Eat_1905+gi52.gi0.gi2.gi0.gu1152.Eat_1914+gi20.gi0.gi0.gi0.gu241.Eat_1915+gi20.gi0.gi0.gi0.gu1732.Eat_1916+gi20.gi0.gi0.gi1.gu1733.Eat_1917+gi52.gi0.gi1.gi0.gu1017.Eat_1910+gi52.gi0.gi2.gi1.gu1018.Eat_1911+gi52.gi0.gi2.gi1.gu1734.Eat_1912+gi52.gi0.gi2.gi0.gu240.Eat_1913+gi53.gi0.gi1.gi0.gu1735.Eat_1861+gi53.gi0.gi1.gi0.gu1164.Eat_1860+gi53.gi0.gi1.gi0.gu1051.Eat_1859+gi53.gi0.gi1.gi1.gu1052.Eat_1858+gi53.gi0.gi1.gi1.gu1736.Eat_1857+gi48.gi1.gi0.gi1.gu1053.Eat_1856+gi48.gi1.gi0.gi1.gu1737.Eat_1855+gi48.gi1.gi0.gi0.gu1042.Eat_1854+gi53.gi1.gi1.gi1.gu1738.Eat_1869+gi53.gi1.gi1.gi0.gu1166.Eat_1868+gi53.gi1.gi1.gi0.gu1167.Eat_1867+gi53.gi1.gi1.gi0.gu1739.Eat_1866+gi53.gi0.gi0.gi0.gu1048.Eat_1865+gi53.gi0.gi0.gi0.gu1049.Eat_1864+gi53.gi0.gi0.gi1.gu1050.Eat_1863+gi53.gi0.gi0.gi1.gu1165.Eat_1862+gi53.gi1.gi0.gi0.gu1033.Eat_1876+gi53.gi1.gi0.gi0.gu1740.Eat_1877+gi53.gi1.gi0.gi1.gu1741.Eat_1874+gi53.gi1.gi0.gi0.gu1032.Eat_1875+gi53.gi1.gi1.gi2.gu1742.Eat_1872+gi53.gi1.gi0.gi1.gu249.Eat_1873+gi53.gi1.gi1.gi1.gu1168.Eat_1870+gi53.gi1.gi1.gi2.gu1034.Eat_1871+gi78.gu1029.Eat_1884+gi78.gu1743.Eat_1885+gi78.gu1028.Eat_1882+gi78.gu248.Eat_1883+gi78.gu246.Eat_1880+gi78.gu1031.Eat_1881+gi78.gu1030.Eat_1878+gi78.gu247.Eat_1879+gi51.gi0.gi1.gi1.gu1744.Eat_1951+gi51.gi1.gi1.gi1.gu1148.Eat_1950+gi51.gi0.gi1.gi1.gu1013.Eat_1953+gi51.gi0.gi1.gi1.gu1012.Eat_1952+gi51.gi0.gi1.gi0.gu1014.Eat_1955+gi51.gi0.gi1.gi0.gu1745.Eat_1954+gi51.gi0.gi0.gi1.gu1015.Eat_1957+gi51.gi0.gi0.gi1.gu1016.Eat_1956+gi51.gi0.gi0.gi0.gu1007.Eat_1959+gi51.gi0.gi0.gi0.gu1008.Eat_1958+gi50.gi2.gi1.gi0.gu1746.Eat_1961+gi51.gi0.gi0.gi0.gu273.Eat_1960+gi50.gi2.gi1.gi1.gu1010.Eat_1963+gi50.gi2.gi1.gi0.gu1009.Eat_1962+gi50.gi2.gi0.gi1.gu1747.Eat_1965+gi50.gi2.gi1.gi1.gu1011.Eat_1964+gi50.gi2.gi0.gi1.gu1748.Eat_1966+gi50.gi2.gi0.gi0.gu1749.Eat_1967+gi50.gi2.gi0.gi0.gu988.Eat_1968+gi50.gi0.gi0.gi0.gu987.Eat_1969+gi50.gi0.gi0.gi0.gu986.Eat_1970+gi50.gi0.gi0.gi1.gu1750.Eat_1971+gi50.gi0.gi0.gi1.gu1751.Eat_1972+gi50.gi0.gi0.gi1.gu272.Eat_1973+gi50.gi0.gi1.gi0.gu985.Eat_1974+gi50.gi0.gi1.gi0.gu1752.Eat_1975+gi50.gi0.gi1.gi1.gu992.Eat_1976+gi50.gi0.gi1.gi1.gu1753.Eat_1977+gi50.gi1.gi0.gi1.gu1754.Eat_1978+gi50.gi1.gi0.gi1.gu991.Eat_1979+gi50.gi1.gi0.gi0.gu990.Eat_1980+gi50.gi1.gi0.gi0.gu989.Eat_1981+gi20.gi0.gi1.gi1.gu1755.Eat_1921+gi20.gi0.gi1.gi1.gu1026.Eat_1920+gi20.gi0.gi0.gi1.gu274.Eat_1919+gi20.gi0.gi0.gi1.gu1756.Eat_1918+gi20.gi0.gi1.gi0.gu1027.Eat_1925+gi20.gi0.gi1.gi0.gu1757.Eat_1924+gi20.gi0.gi1.gi2.gu1758.Eat_1923+gi20.gi0.gi1.gi2.gu1759.Eat_1922+gi20.gi1.gi1.gi0.gu1022.Eat_1929+gi20.gi1.gi1.gi1.gu1023.Eat_1928+gi20.gi1.gi1.gi1.gu1154.Eat_1927+gi20.gi1.gi1.gi1.gu1024.Eat_1926+gi20.gi1.gi0.gi0.gu1760.Eat_1933+gi20.gi1.gi0.gi1.gu1761.Eat_1932+gi20.gi1.gi0.gi1.gu1025.Eat_1931+gi20.gi1.gi1.gi0.gu1762.Eat_1930+gi20.gi1.gi0.gi2.gu1153.Eat_1936+gi20.gi1.gi0.gi2.gu1004.Eat_1937+gi20.gi1.gi0.gi0.gu1002.Eat_1934+gi20.gi1.gi0.gi2.gu1003.Eat_1935+gi51.gi1.gi0.gi1.gu1763.Eat_1940+gi51.gi1.gi0.gi0.gu1764.Eat_1941+gi51.gi1.gi0.gi1.gu1005.Eat_1938+gi51.gi1.gi0.gi1.gu1006.Eat_1939+gi51.gi1.gi0.gi2.gu1765.Eat_1944+gi51.gi1.gi1.gi0.gu1000.Eat_1945+gi51.gi1.gi0.gi0.gu999.Eat_1942+gi51.gi1.gi0.gi2.gu1766.Eat_1943+gi51.gi1.gi1.gi1.gu1767.Eat_1948+gi51.gi1.gi1.gi1.gu1001.Eat_1949+gi51.gi1.gi1.gi0.gu1768.Eat_1946+gi51.gi1.gi1.gi0.gu1769.Eat_1947+gi79.gi0.gi1.gi1.gu1770.Eat_1999+gi79.gi1.gi0.gi1.gu1149.Eat_1998+gi79.gi0.gi1.gi1.gu983.Eat_2000+gi79.gi1.gi0.gi2.gu1150.Eat_1994+gi79.gi1.gi0.gi2.gu996.Eat_1995+gi79.gi1.gi0.gi1.gu997.Eat_1996+gi79.gi1.gi0.gi1.gu995.Eat_1997+gi79.gi1.gi1.gi1.gu1771.Eat_1990+gi79.gi1.gi0.gi0.gu1772.Eat_1991+gi79.gi1.gi0.gi0.gu271.Eat_1992+gi79.gi1.gi0.gi0.gu998.Eat_1993+gi79.gi1.gi1.gi0.gu1773.Eat_1986+gi79.gi1.gi1.gi0.gu993.Eat_1987+gi79.gi1.gi1.gi0.gu270.Eat_1988+gi79.gi1.gi1.gi1.gu1774.Eat_1989+gi50.gi1.gi1.gi1.gu1775.Eat_1982+gi50.gi1.gi1.gi1.gu1776.Eat_1983+gi50.gi1.gi1.gi0.gu1151.Eat_1984+gi50.gi1.gi1.gi0.gu994.Eat_1985+gi38.gi1.gi0.gi0.gu1777.Eat_1224+gi38.gi1.gi0.gi1.gu151.Eat_1225+gi38.gi0.gi1.gi0.gu150.Eat_1222+gi38.gi1.gi0.gi0.gu1778.Eat_1223+gi38.gi1.gi0.gi2.gu1779.Eat_1228+gi38.gi1.gi1.gi0.gu1780.Eat_1229+gi38.gi1.gi0.gi1.gu707.Eat_1226+gi38.gi1.gi0.gi2.gu708.Eat_1227+gi38.gi0.gi0.gi0.gu704.Eat_1216+gi38.gi0.gi0.gi1.gu705.Eat_1217+gi38.gi0.gi0.gi0.gu1781.Eat_1214+gi38.gi0.gi0.gi0.gu149.Eat_1215+gi38.gi0.gi1.gi1.gu1782.Eat_1220+gi38.gi0.gi1.gi0.gu1134.Eat_1221+gi38.gi0.gi0.gi1.gu1783.Eat_1218+gi38.gi0.gi1.gi1.gu706.Eat_1219+gi80.gi0.gi1.gi1.gu1784.Eat_1241+gi80.gi0.gi0.gi1.gu1785.Eat_1240+gi80.gi0.gi0.gi1.gu1135.Eat_1239+gi80.gi0.gi0.gi0.gu154.Eat_1238+gi80.gi0.gi1.gi0.gu1786.Eat_1245+gi80.gi0.gi1.gi0.gu724.Eat_1244+gi80.gi0.gi1.gi0.gu725.Eat_1243+gi80.gi0.gi1.gi1.gu153.Eat_1242+gi38.gi1.gi1.gi1.gu1787.Eat_1233+gi38.gi1.gi1.gi1.gu152.Eat_1232+gi38.gi1.gi1.gi0.gu1788.Eat_1231+gi38.gi1.gi1.gi0.gu1136.Eat_1230+gi80.gi0.gi0.gi0.gu723.Eat_1237+gi80.gi0.gi0.gi2.gu1789.Eat_1236+gi80.gi0.gi0.gi2.gu1790.Eat_1235+gi38.gi1.gi1.gi1.gu722.Eat_1234+gi80.gi1.gi1.gi0.gu1791.Eat_1254+gi80.gi1.gi1.gi0.gu1792.Eat_1255+gi39.gi1.gi1.gi1.gu718.Eat_1256+gi39.gi1.gi1.gi1.gu717.Eat_1257+gi39.gi1.gi1.gi0.gu721.Eat_1258+gi39.gi1.gi1.gi0.gu1793.Eat_1259+gi39.gi1.gi0.gi0.gu719.Eat_1260+gi39.gi1.gi0.gi0.gu157.Eat_1261+gi80.gi1.gi0.gi1.gu1147.Eat_1246+gi80.gi1.gi0.gi1.gu715.Eat_1247+gi80.gi1.gi0.gi1.gu714.Eat_1248+gi80.gi1.gi0.gi0.gu1794.Eat_1249+gi80.gi1.gi0.gi0.gu156.Eat_1250+gi80.gi1.gi1.gi1.gu716.Eat_1251+gi80.gi1.gi1.gi1.gu1795.Eat_1252+gi80.gi1.gi1.gi0.gu155.Eat_1253+gi39.gi0.gi0.gi0.gu691.Eat_1271+gi39.gi0.gi0.gi0.gu1796.Eat_1270+gi39.gi0.gi0.gi1.gu1797.Eat_1273+gi39.gi0.gi0.gi0.gu690.Eat_1272+gi39.gi0.gi1.gi1.gu688.Eat_1275+gi39.gi0.gi0.gi1.gu1798.Eat_1274+gi39.gi0.gi1.gi2.gu1799.Eat_1277+gi39.gi0.gi1.gi1.gu689.Eat_1276+gi39.gi1.gi0.gi1.gu686.Eat_1263+gi39.gi1.gi0.gi1.gu720.Eat_1262+gi39.gi1.gi2.gi2.gu687.Eat_1265+gi39.gi1.gi2.gi2.gu1800.Eat_1264+gi39.gi1.gi2.gi0.gu1801.Eat_1267+gi39.gi1.gi2.gi0.gu158.Eat_1266+gi39.gi1.gi2.gi1.gu1802.Eat_1269+gi39.gi1.gi2.gi1.gu685.Eat_1268+gi13.gi0.gi0.gi0.gu1803.Eat_1292+gi13.gi0.gi0.gi0.gu1804.Eat_1293+gi13.gi0.gi0.gi1.gu1805.Eat_1290+gi13.gi0.gi0.gi1.gu1806.Eat_1291+gi13.gi1.gi1.gi0.gu179.Eat_1288+gi13.gi1.gi1.gi0.gu1807.Eat_1289+gi13.gi1.gi1.gi1.gu1808.Eat_1286+gi13.gi1.gi1.gi0.gu180.Eat_1287+gi13.gi1.gi0.gi1.gu681.Eat_1284+gi13.gi1.gi1.gi1.gu682.Eat_1285+gi13.gi1.gi0.gi0.gu1809.Eat_1282+gi13.gi1.gi0.gi1.gu1810.Eat_1283+gi39.gi0.gi1.gi0.gu684.Eat_1280+gi13.gi1.gi0.gi0.gu181.Eat_1281+gi39.gi0.gi1.gi2.gu182.Eat_1278+gi39.gi0.gi1.gi0.gu683.Eat_1279+gi37.gi0.gi2.gi0.gu702.Eat_1309+gi37.gi0.gi2.gi1.gu1811.Eat_1308+gi37.gi0.gi2.gi1.gu177.Eat_1307+gi37.gi0.gi0.gi0.gu1812.Eat_1306+gi37.gi0.gi0.gi0.gu176.Eat_1305+gi37.gi0.gi0.gi1.gu1813.Eat_1304+gi37.gi0.gi0.gi1.gu703.Eat_1303+gi37.gi0.gi1.gi1.gu1814.Eat_1302+gi37.gi0.gi1.gi1.gu1815.Eat_1301+gi37.gi0.gi1.gi0.gu698.Eat_1300+gi37.gi0.gi1.gi0.gu178.Eat_1299+gi13.gi0.gi1.gi1.gu1146.Eat_1298+gi13.gi0.gi1.gi1.gu1816.Eat_1297+gi13.gi0.gi1.gi1.gu699.Eat_1296+gi13.gi0.gi1.gi0.gu700.Eat_1295+gi13.gi0.gi1.gi0.gu701.Eat_1294+gi37.gi2.gi1.gi0.gu1817.Eat_1322+gi37.gi2.gi0.gi0.gu696.Eat_1323+gi37.gi2.gi0.gi0.gu1818.Eat_1324+gi37.gi2.gi0.gi0.gu186.Eat_1325+gi37.gi1.gi0.gi0.gu1145.Eat_1318+gi37.gi2.gi1.gi1.gu697.Eat_1319+gi37.gi2.gi1.gi1.gu1819.Eat_1320+gi37.gi2.gi1.gi0.gu185.Eat_1321+gi37.gi1.gi1.gi0.gu1820.Eat_1314+gi37.gi1.gi0.gi1.gu1144.Eat_1315+gi37.gi1.gi0.gi1.gu1821.Eat_1316+gi37.gi1.gi0.gi0.gu692.Eat_1317+gi37.gi0.gi2.gi0.gu694.Eat_1310+gi37.gi1.gi1.gi1.gu1822.Eat_1311+gi37.gi1.gi1.gi1.gu1823.Eat_1312+gi37.gi1.gi1.gi0.gu693.Eat_1313+gi46.gi1.gi0.gi1.gu864.Eat_1339+gi46.gi0.gi1.gi0.gu861.Eat_1338+gi46.gi1.gi0.gi0.gu862.Eat_1341+gi46.gi1.gi0.gi1.gu183.Eat_1340+gi46.gi0.gi1.gi1.gu1824.Eat_1335+gi46.gi0.gi1.gi1.gu1825.Eat_1334+gi46.gi0.gi1.gi0.gu861.Eat_1337+gi46.gi0.gi1.gi0.gu1826.Eat_1336+gi46.gi0.gi0.gi2.gu1827.Eat_1331+gi46.gi0.gi0.gi2.gu866.Eat_1330+gi46.gi0.gi0.gi0.gu1828.Eat_1333+gi46.gi0.gi0.gi0.gu184.Eat_1332+gi37.gi2.gi0.gi1.gu867.Eat_1327+gi37.gi2.gi0.gi1.gu695.Eat_1326+gi46.gi0.gi0.gi1.gu865.Eat_1329+gi46.gi0.gi0.gi1.gu868.Eat_1328+gi46.gi1.gi1.gi0.gu870.Eat_1345+gi46.gi1.gi1.gi0.gu871.Eat_1344+gi46.gi1.gi0.gi0.gu1829.Eat_1343+gi46.gi1.gi0.gi0.gu863.Eat_1342+gi46.gi1.gi1.gi1.gu872.Eat_1349+gi46.gi1.gi1.gi1.gu873.Eat_1348+gi46.gi1.gi1.gi2.gu1830.Eat_1347+gi46.gi1.gi1.gi2.gu1142.Eat_1346+gi47.gi0.gi2.gi2.gu1831.Eat_1353+gi47.gi0.gi2.gi2.gu1832.Eat_1352+gi47.gi0.gi2.gi1.gu869.Eat_1351+gi47.gi0.gi2.gi1.gu170.Eat_1350+gi47.gi0.gi0.gi1.gu1833.Eat_1357+gi47.gi0.gi0.gi1.gu1143.Eat_1356+gi47.gi0.gi2.gi0.gu169.Eat_1355+gi47.gi0.gi2.gi0.gu1834.Eat_1354+gi47.gi0.gi0.gi0.gu1835.Eat_1360+gi47.gi0.gi1.gi0.gu881.Eat_1361+gi47.gi0.gi0.gi0.gu880.Eat_1358+gi47.gi0.gi0.gi0.gu168.Eat_1359+gi47.gi0.gi1.gi1.gu883.Eat_1364+gi47.gi1.gi0.gi2.gu1836.Eat_1365+gi47.gi0.gi1.gi0.gu1837.Eat_1362+gi47.gi0.gi1.gi1.gu882.Eat_1363+gi47.gi1.gi0.gi0.gu874.Eat_1368+gi47.gi1.gi0.gi0.gu875.Eat_1369+gi47.gi1.gi0.gi2.gu1838.Eat_1366+gi47.gi1.gi0.gi2.gu1838.Eat_1367+gi47.gi1.gi1.gi0.gu878.Eat_1372+gi47.gi1.gi1.gi0.gu879.Eat_1373+gi47.gi1.gi0.gi1.gu876.Eat_1370+gi47.gi1.gi0.gi1.gu877.Eat_1371+gi47.gi1.gi1.gi1.gu175.Eat_1375+gi47.gi1.gi1.gi0.gu1839.Eat_1374+gi12.gi1.gi0.gi1.gu888.Eat_1377+gi47.gi1.gi1.gi1.gu887.Eat_1376+gi12.gi1.gi0.gi1.gu1840.Eat_1379+gi12.gi1.gi0.gi1.gu1841.Eat_1378+gi12.gi1.gi0.gi0.gu174.Eat_1381+gi12.gi1.gi0.gi0.gu1842.Eat_1380+gi12.gi1.gi1.gi1.gu884.Eat_1383+gi12.gi1.gi1.gi1.gu1843.Eat_1382+gi12.gi1.gi1.gi0.gu173.Eat_1385+gi12.gi1.gi1.gi0.gu1844.Eat_1384+gi12.gi0.gi1.gi0.gu886.Eat_1387+gi12.gi1.gi1.gi0.gu885.Eat_1386+gi12.gi0.gi1.gi1.gu1845.Eat_1389+gi12.gi0.gi1.gi0.gu1846.Eat_1388+gi12.gi0.gi1.gi1.gu1847.Eat_1390+gi12.gi0.gi1.gi1.gu1848.Eat_1391+gi12.gi0.gi0.gi1.gu1849.Eat_1392+gi12.gi0.gi0.gi1.gu172.Eat_1393+gi12.gi0.gi0.gi1.gu1850.Eat_1394+gi12.gi0.gi0.gi0.gu840.Eat_1395+gi12.gi0.gi0.gi0.gu171.Eat_1396+gi45.gi1.gi0.gi1.gu1851.Eat_1397+gi45.gi1.gi0.gi1.gu1126.Eat_1398+gi45.gi1.gi0.gi0.gu839.Eat_1399+gi45.gi1.gi0.gi0.gu1852.Eat_1400+gi45.gi1.gi0.gi2.gu838.Eat_1401+gi45.gi1.gi0.gi2.gu1853.Eat_1402+gi45.gi1.gi1.gi1.gu1854.Eat_1403+gi45.gi1.gi1.gi1.gu1127.Eat_1404+gi45.gi1.gi1.gi1.gu836.Eat_1405+gi45.gi0.gi0.gi0.gu1855.Eat_1413+gi45.gi0.gi0.gi0.gu846.Eat_1412+gi45.gi0.gi0.gi0.gu847.Eat_1411+gi45.gi0.gi0.gi1.gu848.Eat_1410+gi45.gi0.gi0.gi1.gu200.Eat_1409+gi45.gi0.gi0.gi1.gu201.Eat_1408+gi45.gi1.gi1.gi0.gu849.Eat_1407+gi45.gi1.gi1.gi0.gu837.Eat_1406+gi14.gi0.gi2.gi0.gu842.Eat_1421+gi14.gi0.gi2.gi0.gu1856.Eat_1420+gi14.gi0.gi2.gi2.gu202.Eat_1419+gi14.gi0.gi2.gi2.gu843.Eat_1418+gi45.gi0.gi1.gi0.gu844.Eat_1417+gi45.gi0.gi1.gi0.gu845.Eat_1416+gi45.gi0.gi1.gi1.gu1857.Eat_1415+gi45.gi0.gi1.gi1.gu1858.Eat_1414+gi14.gi0.gi1.gi1.gu854.Eat_1428+gi14.gi0.gi1.gi1.gu196.Eat_1429+gi14.gi0.gi0.gi1.gu857.Eat_1426+gi14.gi0.gi0.gi1.gu853.Eat_1427+gi14.gi0.gi0.gi0.gu856.Eat_1424+gi14.gi0.gi0.gi0.gu194.Eat_1425+gi14.gi0.gi2.gi1.gu841.Eat_1422+gi14.gi0.gi2.gi1.gu195.Eat_1423+gi14.gi1.gi0.gi1.gu851.Eat_1436+gi14.gi1.gi0.gi1.gu198.Eat_1437+gi14.gi1.gi0.gi0.gu850.Eat_1434+gi14.gi1.gi0.gi0.gu199.Eat_1435+gi14.gi0.gi1.gi0.gu1859.Eat_1432+gi14.gi1.gi0.gi0.gu1860.Eat_1433+gi14.gi0.gi1.gi1.gu855.Eat_1430+gi14.gi0.gi1.gi0.gu197.Eat_1431+gi14.gi1.gi2.gi0.gu1861.Eat_1443+gi14.gi1.gi1.gi1.gu1862.Eat_1442+gi14.gi1.gi2.gi1.gu1863.Eat_1445+gi14.gi1.gi2.gi0.gu860.Eat_1444+gi14.gi1.gi1.gi0.gu1864.Eat_1439+gi14.gi1.gi1.gi0.gu852.Eat_1438+gi14.gi1.gi1.gi1.gu1124.Eat_1441+gi14.gi1.gi1.gi1.gu1125.Eat_1440+gi43.gi0.gi1.gi0.gu858.Eat_1451+gi43.gi0.gi1.gi1.gu859.Eat_1450+gi43.gi0.gi0.gi0.gu1865.Eat_1453+gi43.gi0.gi1.gi0.gu1123.Eat_1452+gi43.gi0.gi1.gi2.gu1866.Eat_1447+gi14.gi1.gi2.gi1.gu1867.Eat_1446+gi43.gi0.gi1.gi1.gu1868.Eat_1449+gi43.gi0.gi1.gi2.gu204.Eat_1448+gi43.gi0.gi2.gi0.gu1869.Eat_1458+gi43.gi0.gi2.gi0.gu1870.Eat_1459+gi43.gi0.gi2.gi1.gu813.Eat_1460+gi43.gi0.gi2.gi1.gu813.Eat_1461+gi43.gi0.gi0.gi0.gu812.Eat_1454+gi43.gi0.gi0.gi1.gu811.Eat_1455+gi43.gi0.gi0.gi1.gu1871.Eat_1456+gi43.gi0.gi2.gi0.gu810.Eat_1457+gi43.gi1.gi1.gi1.gu1872.Eat_1466+gi43.gi1.gi0.gi0.gu1873.Eat_1467+gi43.gi1.gi0.gi0.gu817.Eat_1468+gi43.gi1.gi0.gi1.gu1121.Eat_1469+gi43.gi0.gi2.gi1.gu815.Eat_1462+gi43.gi1.gi1.gi0.gu814.Eat_1463+gi43.gi1.gi1.gi0.gu203.Eat_1464+gi43.gi1.gi1.gi1.gu1122.Eat_1465+gi44.gu1874.Eat_1495+gi44.gu1875.Eat_1494+gi81.gu1876.Eat_1497+gi44.gu1877.Eat_1496+gi81.gu1878.Eat_1499+gi81.gu1118.Eat_1498+gi81.gu828.Eat_1501+gi81.gu826.Eat_1500+gi44.gu1879.Eat_1487+gi44.gu1880.Eat_1486+gi44.gu824.Eat_1489+gi44.gu1881.Eat_1488+gi44.gu1882.Eat_1491+gi44.gu1119.Eat_1490+gi44.gu1120.Eat_1493+gi44.gu825.Eat_1492+gi44.gu1883.Eat_1478+gi44.gu821.Eat_1479+gi44.gu189.Eat_1480+gi44.gu820.Eat_1481+gi44.gu188.Eat_1482+gi44.gu823.Eat_1483+gi44.gu1884.Eat_1484+gi44.gu822.Eat_1485+gi43.gi1.gi0.gi1.gu816.Eat_1470+gi43.gi1.gi0.gi1.gu1885.Eat_1471+gi43.gi1.gi2.gi0.gu187.Eat_1472+gi43.gi1.gi2.gi0.gu818.Eat_1473+gi43.gi1.gi2.gi0.gu1886.Eat_1474+gi43.gi1.gi2.gi1.gu1887.Eat_1475+gi43.gi1.gi2.gi1.gu1888.Eat_1476+gi44.gu819.Eat_1477+gi16.gu1889.Eat_1529+gi16.gu1890.Eat_1528+gi16.gu1891.Eat_1527+gi16.gu1132.Eat_1526+gi42.gi0.gi1.gi2.gu1892.Eat_1533+gi42.gi0.gi1.gi1.gu788.Eat_1532+gi42.gi0.gi1.gi1.gu1893.Eat_1531+gi16.gu789.Eat_1530+gi16.gu785.Eat_1521+gi16.gu786.Eat_1520+gi16.gu787.Eat_1519+gi16.gu191.Eat_1518+gi16.gu190.Eat_1525+gi16.gu782.Eat_1524+gi16.gu783.Eat_1523+gi16.gu784.Eat_1522+gi81.gu193.Eat_1512+gi16.gu1894.Eat_1513+gi81.gu1895.Eat_1510+gi81.gu192.Eat_1511+gi16.gu834.Eat_1516+gi16.gu835.Eat_1517+gi16.gu832.Eat_1514+gi16.gu833.Eat_1515+gi81.gu1896.Eat_1504+gi81.gu829.Eat_1505+gi81.gu827.Eat_1502+gi81.gu1897.Eat_1503+gi81.gu1133.Eat_1508+gi81.gu831.Eat_1509+gi81.gu1898.Eat_1506+gi81.gu830.Eat_1507+gi83.gi0.gi0.gi1.gu224.Eat_1563+gi83.gi0.gi1.gi0.gu800.Eat_1562+gi83.gi0.gi0.gi0.gu801.Eat_1565+gi83.gi0.gi0.gi1.gu799.Eat_1564+gi83.gi0.gi1.gi1.gu802.Eat_1559+gi42.gi1.gi0.gi0.gu1899.Eat_1558+gi83.gi0.gi1.gi0.gu1900.Eat_1561+gi83.gi0.gi1.gi1.gu1130.Eat_1560+gi42.gi1.gi0.gi1.gu1901.Eat_1555+gi42.gi1.gi0.gi1.gu797.Eat_1554+gi42.gi1.gi0.gi0.gu1902.Eat_1557+gi42.gi1.gi0.gi0.gu225.Eat_1556+gi42.gi1.gi1.gi0.gu798.Eat_1551+gi42.gi1.gi1.gi1.gu1903.Eat_1550+gi42.gi1.gi1.gi0.gu1904.Eat_1553+gi42.gi1.gi1.gi0.gu226.Eat_1552+gi42.gi1.gi2.gi0.gu793.Eat_1546+gi42.gi1.gi2.gi0.gu794.Eat_1547+gi42.gi1.gi2.gi0.gu220.Eat_1548+gi42.gi1.gi1.gi1.gu792.Eat_1549+gi42.gi0.gi0.gi2.gu1905.Eat_1542+gi42.gi0.gi0.gi2.gu795.Eat_1543+gi42.gi1.gi2.gi1.gu796.Eat_1544+gi42.gi1.gi2.gi1.gu1906.Eat_1545+gi42.gi0.gi0.gi1.gu1131.Eat_1538+gi42.gi0.gi0.gi1.gu790.Eat_1539+gi42.gi0.gi0.gi0.gu1907.Eat_1540+gi42.gi0.gi0.gi0.gu221.Eat_1541+gi42.gi0.gi1.gi2.gu1908.Eat_1534+gi42.gi0.gi1.gi0.gu222.Eat_1535+gi42.gi0.gi1.gi0.gu223.Eat_1536+gi42.gi0.gi0.gi1.gu791.Eat_1537+gi49.gi0.gi1.gi0.gu978.Eat_1597+gi49.gi0.gi1.gi0.gu977.Eat_1596+gi49.gi0.gi1.gi1.gu1909.Eat_1595+gi49.gi0.gi1.gi1.gu1910.Eat_1594+gi49.gi0.gi0.gi0.gu1911.Eat_1593+gi49.gi0.gi0.gi0.gu218.Eat_1592+gi49.gi0.gi0.gi1.gu1912.Eat_1591+gi49.gi0.gi0.gi1.gu1913.Eat_1590+gi49.gi1.gi1.gi1.gu980.Eat_1589+gi49.gi1.gi1.gi1.gu979.Eat_1588+gi49.gi1.gi1.gi0.gu1914.Eat_1587+gi49.gi1.gi1.gi0.gu219.Eat_1586+gi49.gi1.gi1.gi2.gu1915.Eat_1585+gi49.gi1.gi1.gi2.gu1916.Eat_1584+gi49.gi1.gi0.gi1.gu981.Eat_1583+gi49.gi1.gi0.gi1.gu807.Eat_1582+gi49.gi1.gi0.gi0.gu806.Eat_1580+gi49.gi1.gi0.gi0.gu1917.Eat_1581+gi83.gi1.gi0.gi1.gu1918.Eat_1578+gi83.gi1.gi0.gi1.gu805.Eat_1579+gi83.gi1.gi0.gi0.gu808.Eat_1576+gi83.gi1.gi0.gi0.gu809.Eat_1577+gi83.gi1.gi1.gi0.gu1919.Eat_1574+gi83.gi1.gi1.gi0.gu1920.Eat_1575+gi83.gi1.gi1.gi1.gu1129.Eat_1572+gi83.gi1.gi1.gi1.gu1921.Eat_1573+gi83.gi0.gi2.gi0.gu1922.Eat_1570+gi83.gi1.gi1.gi1.gu803.Eat_1571+gi83.gi0.gi2.gi1.gu1923.Eat_1568+gi83.gi0.gi2.gi0.gu1924.Eat_1569+gi83.gi0.gi0.gi0.gu217.Eat_1566+gi83.gi0.gi2.gi1.gu804.Eat_1567+gi82.gi1.gi0.gi0.gu216.Eat_1614+gi82.gi1.gi0.gi0.gu1925.Eat_1615+gi82.gi1.gi0.gi2.gu1926.Eat_1616+gi82.gi1.gi0.gi2.gu1927.Eat_1617+gi82.gi1.gi0.gi2.gu1928.Eat_1618+gi82.gi1.gi1.gi0.gu1929.Eat_1619+gi82.gi1.gi1.gi0.gu968.Eat_1620+gi82.gi1.gi1.gi0.gu1930.Eat_1621+gi82.gi1.gi1.gi1.gu1128.Eat_1622+gi82.gi1.gi1.gi1.gu967.Eat_1623+gi82.gi1.gi1.gi1.gu1931.Eat_1624+gi84.gu1932.Eat_1625+gi84.gu214.Eat_1626+gi84.gu966.Eat_1627+gi84.gu1933.Eat_1628+gi84.gu215.Eat_1629+gi82.gi0.gi0.gi1.gu1935.Eat_1599+gi82.gi0.gi0.gi1.gu976.Eat_1598+gi82.gi0.gi0.gi0.gu1936.Eat_1601+gi82.gi0.gi0.gi0.gu213.Eat_1600+gi82.gi0.gi0.gi2.gu974.Eat_1603+gi82.gi0.gi0.gi2.gu1937.Eat_1602+gi82.gi0.gi1.gi2.gu1938.Eat_1605+gi82.gi0.gi1.gi2.gu975.Eat_1604+gi82.gi0.gi1.gi1.gu972.Eat_1607+gi82.gi0.gi1.gi1.gu1939.Eat_1606+gi82.gi0.gi1.gi0.gu211.Eat_1609+gi82.gi0.gi1.gi1.gu973.Eat_1608+gi82.gi0.gi1.gi0.gu969.Eat_1611+gi82.gi0.gi1.gi0.gu212.Eat_1610+gi82.gi1.gi0.gi1.gu970.Eat_1613+gi82.gi1.gi0.gi1.gu971.Eat_1612+gi15.gi0.gi1.gi0.gu210.Eat_1648+gi15.gi0.gi1.gi0.gu959.Eat_1649+gi15.gi0.gi0.gi1.gu1941.Eat_1646+gi15.gi0.gi1.gi0.gu1940.Eat_1647+gi15.gi1.gi0.gi2.gu1942.Eat_1652+gi15.gi1.gi0.gi2.gu961.Eat_1653+gi15.gi0.gi1.gi1.gu960.Eat_1650+gi15.gi0.gi1.gi1.gu1943.Eat_1651+gi15.gi1.gi0.gi1.gu1944.Eat_1656+gi15.gi1.gi0.gi1.gu957.Eat_1657+gi15.gi1.gi0.gi0.gu209.Eat_1654+gi15.gi1.gi0.gi0.gu956.Eat_1655+gi15.gi1.gi2.gi0.gu1159.Eat_1660+gi15.gi1.gi2.gi0.gu958.Eat_1661+gi15.gi1.gi2.gi1.gu1945.Eat_1658+gi15.gi1.gi2.gi1.gu1158.Eat_1659+gi84.gu1946.Eat_1633+gi84.gu1947.Eat_1632+gi84.gu207.Eat_1631+gi84.gu1934.Eat_1630+gi84.gu963.Eat_1637+gi84.gu964.Eat_1636+gi84.gu208.Eat_1635+gi84.gu965.Eat_1634+gi84.gu1948.Eat_1641+gi84.gu1949.Eat_1640+gi84.gu1950.Eat_1639+gi84.gu205.Eat_1638+gi15.gi0.gi0.gi1.gu1951.Eat_1645+gi15.gi0.gi0.gi0.gu1952.Eat_1644+gi15.gi0.gi0.gi0.gu206.Eat_1643+gi15.gi0.gi0.gi0.gu962.Eat_1642+gi56.gi0.gi1.gi2.gu1953.Eat_1682+gi56.gi0.gi1.gi2.gu1162.Eat_1683+gi56.gi0.gi0.gi0.gu237.Eat_1684+gi56.gi0.gi0.gi0.gu950.Eat_1685+gi56.gi0.gi1.gi1.gu951.Eat_1678+gi56.gi0.gi1.gi1.gu949.Eat_1679+gi56.gi0.gi1.gi0.gu948.Eat_1680+gi56.gi0.gi1.gi0.gu238.Eat_1681+gi56.gi0.gi0.gi1.gu1954.Eat_1690+gi19.gu1955.Eat_1691+gi19.gu1956.Eat_1692+gi19.gu1957.Eat_1693+gi56.gi0.gi0.gi2.gu1958.Eat_1686+gi56.gi0.gi0.gi2.gu1959.Eat_1687+gi56.gi0.gi0.gi1.gu1960.Eat_1688+gi56.gi0.gi0.gi1.gu239.Eat_1689+gi56.gi1.gi1.gi0.gu953.Eat_1667+gi15.gi1.gi1.gi1.gu952.Eat_1666+gi56.gi1.gi1.gi0.gu955.Eat_1669+gi56.gi1.gi1.gi0.gu953.Eat_1668+gi15.gi1.gi1.gi0.gu1961.Eat_1663+gi15.gi1.gi1.gi0.gu1161.Eat_1662+gi15.gi1.gi1.gi1.gu1962.Eat_1665+gi15.gi1.gi1.gi0.gu1963.Eat_1664+gi56.gi1.gi0.gi1.gu1964.Eat_1675+gi56.gi1.gi0.gi1.gu1965.Eat_1674+gi56.gi1.gi0.gi0.gu1160.Eat_1677+gi56.gi1.gi0.gi0.gu1966.Eat_1676+gi56.gi1.gi1.gi1.gu1967.Eat_1671+gi56.gi1.gi1.gi1.gu954.Eat_1670+gi56.gi1.gi0.gi1.gu1968.Eat_1673+gi56.gi1.gi1.gi1.gu236.Eat_1672+gi85.gi0.gi1.gi0.gu235.Eat_1716+gi85.gi0.gi1.gi0.gu936.Eat_1717+gi85.gi1.gi0.gi0.gu1969.Eat_1714+gi85.gi1.gi0.gi0.gu934.Eat_1715+gi85.gi1.gi0.gi1.gu1970.Eat_1712+gi85.gi1.gi0.gi1.gu937.Eat_1713+gi85.gi1.gi1.gi0.gu1971.Eat_1710+gi85.gi1.gi0.gi1.gu1156.Eat_1711+gi85.gi0.gi0.gi0.gu939.Eat_1724+gi85.gi0.gi0.gi1.gu1972.Eat_1725+gi85.gi0.gi0.gi2.gu1973.Eat_1722+gi85.gi0.gi0.gi0.gu938.Eat_1723+gi85.gi0.gi1.gi1.gu1974.Eat_1720+gi85.gi0.gi0.gi2.gu1975.Eat_1721+gi85.gi0.gi1.gi0.gu935.Eat_1718+gi85.gi0.gi1.gi1.gu940.Eat_1719+gi19.gu945.Eat_1701+gi19.gu1976.Eat_1700+gi19.gu946.Eat_1699+gi19.gu947.Eat_1698+gi19.gu1977.Eat_1697+gi19.gu234.Eat_1696+gi19.gu944.Eat_1695+gi19.gu1978.Eat_1694+gi85.gi1.gi1.gi0.gu942.Eat_1709+gi85.gi1.gi1.gi0.gu1979.Eat_1708+gi85.gi1.gi1.gi1.gu1980.Eat_1707+gi85.gi1.gi1.gi1.gu943.Eat_1706+gi19.gu1981.Eat_1705+gi19.gu1982.Eat_1704+gi19.gu1155.Eat_1703+gi19.gu941.Eat_1702 <= 1000
FORMULA Philosophers-PT-002000-UpperBounds-02 1000 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
Philosophers-PT-002000-UpperBounds-02,0,149.092,1317976,1,0,7,215947,9,1,85971,149279,4

BK_STOP 1622998238453

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ UpperBounds = StateSpace ]]
+ /home/mcc/BenchKit/bin//..//runeclipse.sh /home/mcc/execution UpperBounds -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ cut -d . -f 9
++ ls /home/mcc/BenchKit/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202104292328.jar
+ VERSION=0
+ echo 'Running Version 0'
+ /home/mcc/BenchKit/bin//..//itstools/its-tools -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination UpperBounds -spotpath /home/mcc/BenchKit/bin//..//ltlfilt -z3path /home/mcc/BenchKit/bin//..//z3/bin/z3 -yices2path /home/mcc/BenchKit/bin//..//yices/bin/yices -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600 -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss128m -Xms40m -Xmx16000m

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-002000"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool itstools"
echo " Input is Philosophers-PT-002000, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r140-tall-162298996000163"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-002000.tgz
mv Philosophers-PT-002000 execution
cd execution
if [ "UpperBounds" = "ReachabilityDeadlock" ] || [ "UpperBounds" = "UpperBounds" ] || [ "UpperBounds" = "QuasiLiveness" ] || [ "UpperBounds" = "StableMarking" ] || [ "UpperBounds" = "Liveness" ] || [ "UpperBounds" = "OneSafe" ] || [ "UpperBounds" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' UpperBounds.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "UpperBounds" = "ReachabilityDeadlock" ] || [ "UpperBounds" = "QuasiLiveness" ] || [ "UpperBounds" = "StableMarking" ] || [ "UpperBounds" = "Liveness" ] || [ "UpperBounds" = "OneSafe" ] ; then
echo "FORMULA_NAME UpperBounds"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;