fond
Model Checking Contest 2021
11th edition, Paris, France, June 23, 2021
Execution of r140-tall-162089127400189
Last Updated
Jun 28, 2021

About the Execution of ITS-Tools for NeoElection-PT-4

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
464.815 26535.00 24498.00 7078.00 FFFTFFFFFFFFTFTT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2021-input.r140-tall-162089127400189.qcow2', fmt=qcow2 size=4294967296 backing_file='/data/fkordon/mcc2021-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool itstools
Input is NeoElection-PT-4, examination is LTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r140-tall-162089127400189
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 17M
-rw-r--r-- 1 mcc users 1.9M May 5 16:58 CTLCardinality.txt
-rw-r--r-- 1 mcc users 5.8M May 10 09:43 CTLCardinality.xml
-rw-r--r-- 1 mcc users 1.3M May 5 16:58 CTLFireability.txt
-rw-r--r-- 1 mcc users 4.3M May 10 09:43 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 6 14:48 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K May 6 14:48 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 90K Apr 26 07:42 LTLCardinality.txt
-rw-r--r-- 1 mcc users 219K Apr 26 07:42 LTLCardinality.xml
-rw-r--r-- 1 mcc users 54K Apr 26 07:42 LTLFireability.txt
-rw-r--r-- 1 mcc users 155K Apr 26 07:42 LTLFireability.xml
-rw-r--r-- 1 mcc users 92K Mar 27 06:18 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 225K Mar 27 06:18 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 64K Mar 25 07:32 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 181K Mar 25 07:32 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 3.9K Mar 22 09:15 UpperBounds.txt
-rw-r--r-- 1 mcc users 7.7K Mar 22 09:15 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 5 16:51 equiv_col
-rw-r--r-- 1 mcc users 2 May 5 16:51 instance
-rw-r--r-- 1 mcc users 6 May 5 16:51 iscolored
-rw-r--r-- 1 mcc users 2.1M May 5 16:51 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-4-00
FORMULA_NAME NeoElection-PT-4-01
FORMULA_NAME NeoElection-PT-4-02
FORMULA_NAME NeoElection-PT-4-03
FORMULA_NAME NeoElection-PT-4-04
FORMULA_NAME NeoElection-PT-4-05
FORMULA_NAME NeoElection-PT-4-06
FORMULA_NAME NeoElection-PT-4-07
FORMULA_NAME NeoElection-PT-4-08
FORMULA_NAME NeoElection-PT-4-09
FORMULA_NAME NeoElection-PT-4-10
FORMULA_NAME NeoElection-PT-4-11
FORMULA_NAME NeoElection-PT-4-12
FORMULA_NAME NeoElection-PT-4-13
FORMULA_NAME NeoElection-PT-4-14
FORMULA_NAME NeoElection-PT-4-15

=== Now, execution of the tool begins

BK_START 1620941431076

Running Version 0
[2021-05-13 21:30:40] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLFireability, -spotpath, /home/mcc/BenchKit/bin//..//ltlfilt, -z3path, /home/mcc/BenchKit/bin//..//z3/bin/z3, -yices2path, /home/mcc/BenchKit/bin//..//yices/bin/yices, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2021-05-13 21:30:40] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2021-05-13 21:30:40] [INFO ] Load time of PNML (sax parser for PT used): 162 ms
[2021-05-13 21:30:40] [INFO ] Transformed 1830 places.
[2021-05-13 21:30:40] [INFO ] Transformed 2340 transitions.
[2021-05-13 21:30:40] [INFO ] Found NUPN structural information;
[2021-05-13 21:30:40] [INFO ] Completing missing partition info from NUPN : creating a component with [P_crashed_0, P_crashed_1, P_crashed_2, P_crashed_3, P_crashed_4, P_dead_0, P_dead_1, P_dead_2, P_dead_3, P_dead_4, P_electedPrimary_0, P_electedPrimary_1, P_electedPrimary_2, P_electedPrimary_3, P_electedPrimary_4, P_electedSecondary_0, P_electedSecondary_1, P_electedSecondary_2, P_electedSecondary_3, P_electedSecondary_4, P_electionFailed_0, P_electionFailed_1, P_electionFailed_2, P_electionFailed_3, P_electionFailed_4, P_electionInit_0, P_electionInit_1, P_electionInit_2, P_electionInit_3, P_electionInit_4, P_masterList_0_1_0, P_masterList_0_1_1, P_masterList_0_1_2, P_masterList_0_1_3, P_masterList_0_1_4, P_masterList_0_2_0, P_masterList_0_2_1, P_masterList_0_2_2, P_masterList_0_2_3, P_masterList_0_2_4, P_masterList_0_3_0, P_masterList_0_3_1, P_masterList_0_3_2, P_masterList_0_3_3, P_masterList_0_3_4, P_masterList_0_4_0, P_masterList_0_4_1, P_masterList_0_4_2, P_masterList_0_4_3, P_masterList_0_4_4, P_masterList_1_1_0, P_masterList_1_1_1, P_masterList_1_1_2, P_masterList_1_1_3, P_masterList_1_1_4, P_masterList_1_2_0, P_masterList_1_2_1, P_masterList_1_2_2, P_masterList_1_2_3, P_masterList_1_2_4, P_masterList_1_3_0, P_masterList_1_3_1, P_masterList_1_3_2, P_masterList_1_3_3, P_masterList_1_3_4, P_masterList_1_4_0, P_masterList_1_4_1, P_masterList_1_4_2, P_masterList_1_4_3, P_masterList_1_4_4, P_masterList_2_1_0, P_masterList_2_1_1, P_masterList_2_1_2, P_masterList_2_1_3, P_masterList_2_1_4, P_masterList_2_2_0, P_masterList_2_2_1, P_masterList_2_2_2, P_masterList_2_2_3, P_masterList_2_2_4, P_masterList_2_3_0, P_masterList_2_3_1, P_masterList_2_3_2, P_masterList_2_3_3, P_masterList_2_3_4, P_masterList_2_4_0, P_masterList_2_4_1, P_masterList_2_4_2, P_masterList_2_4_3, P_masterList_2_4_4, P_masterList_3_1_0, P_masterList_3_1_1, P_masterList_3_1_2, P_masterList_3_1_3, P_masterList_3_1_4, P_masterList_3_2_0, P_masterList_3_2_1, P_masterList_3_2_2, P_masterList_3_2_3, P_masterList_3_2_4, P_masterList_3_3_0, P_masterList_3_3_1, P_masterList_3_3_2, P_masterList_3_3_3, P_masterList_3_3_4, P_masterList_3_4_0, P_masterList_3_4_1, P_masterList_3_4_2, P_masterList_3_4_3, P_masterList_3_4_4, P_masterList_4_1_0, P_masterList_4_1_1, P_masterList_4_1_2, P_masterList_4_1_3, P_masterList_4_1_4, P_masterList_4_2_0, P_masterList_4_2_1, P_masterList_4_2_2, P_masterList_4_2_3, P_masterList_4_2_4, P_masterList_4_3_0, P_masterList_4_3_1, P_masterList_4_3_2, P_masterList_4_3_3, P_masterList_4_3_4, P_masterList_4_4_0, P_masterList_4_4_1, P_masterList_4_4_2, P_masterList_4_4_3, P_masterList_4_4_4, P_masterState_0_F_0, P_masterState_0_F_1, P_masterState_0_F_2, P_masterState_0_F_3, P_masterState_0_F_4, P_masterState_0_T_0, P_masterState_0_T_1, P_masterState_0_T_2, P_masterState_0_T_3, P_masterState_0_T_4, P_masterState_1_F_0, P_masterState_1_F_1, P_masterState_1_F_2, P_masterState_1_F_3, P_masterState_1_F_4, P_masterState_1_T_0, P_masterState_1_T_1, P_masterState_1_T_2, P_masterState_1_T_3, P_masterState_1_T_4, P_masterState_2_F_0, P_masterState_2_F_1, P_masterState_2_F_2, P_masterState_2_F_3, P_masterState_2_F_4, P_masterState_2_T_0, P_masterState_2_T_1, P_masterState_2_T_2, P_masterState_2_T_3, P_masterState_2_T_4, P_masterState_3_F_0, P_masterState_3_F_1, P_masterState_3_F_2, P_masterState_3_F_3, P_masterState_3_F_4, P_masterState_3_T_0, P_masterState_3_T_1, P_masterState_3_T_2, P_masterState_3_T_3, P_masterState_3_T_4, P_masterState_4_F_0, P_masterState_4_F_1, P_masterState_4_F_2, P_masterState_4_F_3, P_masterState_4_F_4, P_masterState_4_T_0, P_masterState_4_T_1, P_masterState_4_T_2, P_masterState_4_T_3, P_masterState_4_T_4, P_negotiation_0_0_NONE, P_negotiation_0_0_CO, P_negotiation_0_0_DONE, P_negotiation_0_1_NONE, P_negotiation_0_1_CO, P_negotiation_0_1_DONE, P_negotiation_0_2_NONE, P_negotiation_0_2_CO, P_negotiation_0_2_DONE, P_negotiation_0_3_NONE, P_negotiation_0_3_CO, P_negotiation_0_3_DONE, P_negotiation_0_4_NONE, P_negotiation_0_4_CO, P_negotiation_0_4_DONE, P_negotiation_1_0_NONE, P_negotiation_1_0_CO, P_negotiation_1_0_DONE, P_negotiation_1_1_NONE, P_negotiation_1_1_CO, P_negotiation_1_1_DONE, P_negotiation_1_2_NONE, P_negotiation_1_2_CO, P_negotiation_1_2_DONE, P_negotiation_1_3_NONE, P_negotiation_1_3_CO, P_negotiation_1_3_DONE, P_negotiation_1_4_NONE, P_negotiation_1_4_CO, P_negotiation_1_4_DONE, P_negotiation_2_0_NONE, P_negotiation_2_0_CO, P_negotiation_2_0_DONE, P_negotiation_2_1_NONE, P_negotiation_2_1_CO, P_negotiation_2_1_DONE, P_negotiation_2_2_NONE, P_negotiation_2_2_CO, P_negotiation_2_2_DONE, P_negotiation_2_3_NONE, P_negotiation_2_3_CO, P_negotiation_2_3_DONE, P_negotiation_2_4_NONE, P_negotiation_2_4_CO, P_negotiation_2_4_DONE, P_negotiation_3_0_NONE, P_negotiation_3_0_CO, P_negotiation_3_0_DONE, P_negotiation_3_1_NONE, P_negotiation_3_1_CO, P_negotiation_3_1_DONE, P_negotiation_3_2_NONE, P_negotiation_3_2_CO, P_negotiation_3_2_DONE, P_negotiation_3_3_NONE, P_negotiation_3_3_CO, P_negotiation_3_3_DONE, P_negotiation_3_4_NONE, P_negotiation_3_4_CO, P_negotiation_3_4_DONE, P_negotiation_4_0_NONE, P_negotiation_4_0_CO, P_negotiation_4_0_DONE, P_negotiation_4_1_NONE, P_negotiation_4_1_CO, P_negotiation_4_1_DONE, P_negotiation_4_2_NONE, P_negotiation_4_2_CO, P_negotiation_4_2_DONE, P_negotiation_4_3_NONE, P_negotiation_4_3_CO, P_negotiation_4_3_DONE, P_negotiation_4_4_NONE, P_negotiation_4_4_CO, P_negotiation_4_4_DONE, P_network_0_0_AskP_0, P_network_0_0_AskP_1, P_network_0_0_AskP_2, P_network_0_0_AskP_3, P_network_0_0_AskP_4, P_network_0_0_AnsP_0, P_network_0_0_AnsP_1, P_network_0_0_AnsP_2, P_network_0_0_AnsP_3, P_network_0_0_AnsP_4, P_network_0_0_RI_0, P_network_0_0_RI_1, P_network_0_0_RI_2, P_network_0_0_RI_3, P_network_0_0_RI_4, P_network_0_0_AI_0, P_network_0_0_AI_1, P_network_0_0_AI_2, P_network_0_0_AI_3, P_network_0_0_AI_4, P_network_0_0_AnnP_0, P_network_0_0_AnnP_1, P_network_0_0_AnnP_2, P_network_0_0_AnnP_3, P_network_0_0_AnnP_4, P_network_0_0_RP_0, P_network_0_0_RP_1, P_network_0_0_RP_2, P_network_0_0_RP_3, P_network_0_0_RP_4, P_network_0_1_AskP_0, P_network_0_1_AskP_1, P_network_0_1_AskP_2, P_network_0_1_AskP_3, P_network_0_1_AskP_4, P_network_0_1_AnsP_0, P_network_0_1_AnsP_1, P_network_0_1_AnsP_2, P_network_0_1_AnsP_3, P_network_0_1_AnsP_4, P_network_0_1_RI_0, P_network_0_1_RI_1, P_network_0_1_RI_2, P_network_0_1_RI_3, P_network_0_1_RI_4, P_network_0_1_AI_0, P_network_0_1_AI_1, P_network_0_1_AI_2, P_network_0_1_AI_3, P_network_0_1_AI_4, P_network_0_1_AnnP_0, P_network_0_1_AnnP_1, P_network_0_1_AnnP_2, P_network_0_1_AnnP_3, P_network_0_1_AnnP_4, P_network_0_1_RP_0, P_network_0_1_RP_1, P_network_0_1_RP_2, P_network_0_1_RP_3, P_network_0_1_RP_4, P_network_0_2_AskP_0, P_network_0_2_AskP_1, P_network_0_2_AskP_2, P_network_0_2_AskP_3, P_network_0_2_AskP_4, P_network_0_2_AnsP_0, P_network_0_2_AnsP_1, P_network_0_2_AnsP_2, P_network_0_2_AnsP_3, P_network_0_2_AnsP_4, P_network_0_2_RI_0, P_network_0_2_RI_1, P_network_0_2_RI_2, P_network_0_2_RI_3, P_network_0_2_RI_4, P_network_0_2_AI_0, P_network_0_2_AI_1, P_network_0_2_AI_2, P_network_0_2_AI_3, P_network_0_2_AI_4, P_network_0_2_AnnP_0, P_network_0_2_AnnP_1, P_network_0_2_AnnP_2, P_network_0_2_AnnP_3, P_network_0_2_AnnP_4, P_network_0_2_RP_0, P_network_0_2_RP_1, P_network_0_2_RP_2, P_network_0_2_RP_3, P_network_0_2_RP_4, P_network_0_3_AskP_0, P_network_0_3_AskP_1, P_network_0_3_AskP_2, P_network_0_3_AskP_3, P_network_0_3_AskP_4, P_network_0_3_AnsP_0, P_network_0_3_AnsP_1, P_network_0_3_AnsP_2, P_network_0_3_AnsP_3, P_network_0_3_AnsP_4, P_network_0_3_RI_0, P_network_0_3_RI_1, P_network_0_3_RI_2, P_network_0_3_RI_3, P_network_0_3_RI_4, P_network_0_3_AI_0, P_network_0_3_AI_1, P_network_0_3_AI_2, P_network_0_3_AI_3, P_network_0_3_AI_4, P_network_0_3_AnnP_0, P_network_0_3_AnnP_1, P_network_0_3_AnnP_2, P_network_0_3_AnnP_3, P_network_0_3_AnnP_4, P_network_0_3_RP_0, P_network_0_3_RP_1, P_network_0_3_RP_2, P_network_0_3_RP_3, P_network_0_3_RP_4, P_network_0_4_AskP_0, P_network_0_4_AskP_1, P_network_0_4_AskP_2, P_network_0_4_AskP_3, P_network_0_4_AskP_4, P_network_0_4_AnsP_0, P_network_0_4_AnsP_1, P_network_0_4_AnsP_2, P_network_0_4_AnsP_3, P_network_0_4_AnsP_4, P_network_0_4_RI_0, P_network_0_4_RI_1, P_network_0_4_RI_2, P_network_0_4_RI_3, P_network_0_4_RI_4, P_network_0_4_AI_0, P_network_0_4_AI_1, P_network_0_4_AI_2, P_network_0_4_AI_3, P_network_0_4_AI_4, P_network_0_4_AnnP_0, P_network_0_4_AnnP_1, P_network_0_4_AnnP_2, P_network_0_4_AnnP_3, P_network_0_4_AnnP_4, P_network_0_4_RP_0, P_network_0_4_RP_1, P_network_0_4_RP_2, P_network_0_4_RP_3, P_network_0_4_RP_4, P_network_1_0_AskP_0, P_network_1_0_AskP_1, P_network_1_0_AskP_2, P_network_1_0_AskP_3, P_network_1_0_AskP_4, P_network_1_0_AnsP_0, P_network_1_0_AnsP_1, P_network_1_0_AnsP_2, P_network_1_0_AnsP_3, P_network_1_0_AnsP_4, P_network_1_0_RI_0, P_network_1_0_RI_1, P_network_1_0_RI_2, P_network_1_0_RI_3, P_network_1_0_RI_4, P_network_1_0_AI_0, P_network_1_0_AI_1, P_network_1_0_AI_2, P_network_1_0_AI_3, P_network_1_0_AI_4, P_network_1_0_AnnP_0, P_network_1_0_AnnP_1, P_network_1_0_AnnP_2, P_network_1_0_AnnP_3, P_network_1_0_AnnP_4, P_network_1_0_RP_0, P_network_1_0_RP_1, P_network_1_0_RP_2, P_network_1_0_RP_3, P_network_1_0_RP_4, P_network_1_1_AskP_0, P_network_1_1_AskP_1, P_network_1_1_AskP_2, P_network_1_1_AskP_3, P_network_1_1_AskP_4, P_network_1_1_AnsP_0, P_network_1_1_AnsP_1, P_network_1_1_AnsP_2, P_network_1_1_AnsP_3, P_network_1_1_AnsP_4, P_network_1_1_RI_0, P_network_1_1_RI_1, P_network_1_1_RI_2, P_network_1_1_RI_3, P_network_1_1_RI_4, P_network_1_1_AI_0, P_network_1_1_AI_1, P_network_1_1_AI_2, P_network_1_1_AI_3, P_network_1_1_AI_4, P_network_1_1_AnnP_0, P_network_1_1_AnnP_1, P_network_1_1_AnnP_2, P_network_1_1_AnnP_3, P_network_1_1_AnnP_4, P_network_1_1_RP_0, P_network_1_1_RP_1, P_network_1_1_RP_2, P_network_1_1_RP_3, P_network_1_1_RP_4, P_network_1_2_AskP_0, P_network_1_2_AskP_1, P_network_1_2_AskP_2, P_network_1_2_AskP_3, P_network_1_2_AskP_4, P_network_1_2_AnsP_0, P_network_1_2_AnsP_1, P_network_1_2_AnsP_2, P_network_1_2_AnsP_3, P_network_1_2_AnsP_4, P_network_1_2_RI_0, P_network_1_2_RI_1, P_network_1_2_RI_2, P_network_1_2_RI_3, P_network_1_2_RI_4, P_network_1_2_AI_0, P_network_1_2_AI_1, P_network_1_2_AI_2, P_network_1_2_AI_3, P_network_1_2_AI_4, P_network_1_2_AnnP_0, P_network_1_2_AnnP_1, P_network_1_2_AnnP_2, P_network_1_2_AnnP_3, P_network_1_2_AnnP_4, P_network_1_2_RP_0, P_network_1_2_RP_1, P_network_1_2_RP_2, P_network_1_2_RP_3, P_network_1_2_RP_4, P_network_1_3_AskP_0, P_network_1_3_AskP_1, P_network_1_3_AskP_2, P_network_1_3_AskP_3, P_network_1_3_AskP_4, P_network_1_3_AnsP_0, P_network_1_3_AnsP_1, P_network_1_3_AnsP_2, P_network_1_3_AnsP_3, P_network_1_3_AnsP_4, P_network_1_3_RI_0, P_network_1_3_RI_1, P_network_1_3_RI_2, P_network_1_3_RI_3, P_network_1_3_RI_4, P_network_1_3_AI_0, P_network_1_3_AI_1, P_network_1_3_AI_2, P_network_1_3_AI_3, P_network_1_3_AI_4, P_network_1_3_AnnP_0, P_network_1_3_AnnP_1, P_network_1_3_AnnP_2, P_network_1_3_AnnP_3, P_network_1_3_AnnP_4, P_network_1_3_RP_0, P_network_1_3_RP_1, P_network_1_3_RP_2, P_network_1_3_RP_3, P_network_1_3_RP_4, P_network_1_4_AskP_0, P_network_1_4_AskP_1, P_network_1_4_AskP_2, P_network_1_4_AskP_3, P_network_1_4_AskP_4, P_network_1_4_AnsP_0, P_network_1_4_AnsP_1, P_network_1_4_AnsP_2, P_network_1_4_AnsP_3, P_network_1_4_AnsP_4, P_network_1_4_RI_0, P_network_1_4_RI_1, P_network_1_4_RI_2, P_network_1_4_RI_3, P_network_1_4_RI_4, P_network_1_4_AI_0, P_network_1_4_AI_1, P_network_1_4_AI_2, P_network_1_4_AI_3, P_network_1_4_AI_4, P_network_1_4_AnnP_0, P_network_1_4_AnnP_1, P_network_1_4_AnnP_2, P_network_1_4_AnnP_3, P_network_1_4_AnnP_4, P_network_1_4_RP_0, P_network_1_4_RP_1, P_network_1_4_RP_2, P_network_1_4_RP_3, P_network_1_4_RP_4, P_network_2_0_AskP_0, P_network_2_0_AskP_1, P_network_2_0_AskP_2, P_network_2_0_AskP_3, P_network_2_0_AskP_4, P_network_2_0_AnsP_0, P_network_2_0_AnsP_1, P_network_2_0_AnsP_2, P_network_2_0_AnsP_3, P_network_2_0_AnsP_4, P_network_2_0_RI_0, P_network_2_0_RI_1, P_network_2_0_RI_2, P_network_2_0_RI_3, P_network_2_0_RI_4, P_network_2_0_AI_0, P_network_2_0_AI_1, P_network_2_0_AI_2, P_network_2_0_AI_3, P_network_2_0_AI_4, P_network_2_0_AnnP_0, P_network_2_0_AnnP_1, P_network_2_0_AnnP_2, P_network_2_0_AnnP_3, P_network_2_0_AnnP_4, P_network_2_0_RP_0, P_network_2_0_RP_1, P_network_2_0_RP_2, P_network_2_0_RP_3, P_network_2_0_RP_4, P_network_2_1_AskP_0, P_network_2_1_AskP_1, P_network_2_1_AskP_2, P_network_2_1_AskP_3, P_network_2_1_AskP_4, P_network_2_1_AnsP_0, P_network_2_1_AnsP_1, P_network_2_1_AnsP_2, P_network_2_1_AnsP_3, P_network_2_1_AnsP_4, P_network_2_1_RI_0, P_network_2_1_RI_1, P_network_2_1_RI_2, P_network_2_1_RI_3, P_network_2_1_RI_4, P_network_2_1_AI_0, P_network_2_1_AI_1, P_network_2_1_AI_2, P_network_2_1_AI_3, P_network_2_1_AI_4, P_network_2_1_AnnP_0, P_network_2_1_AnnP_1, P_network_2_1_AnnP_2, P_network_2_1_AnnP_3, P_network_2_1_AnnP_4, P_network_2_1_RP_0, P_network_2_1_RP_1, P_network_2_1_RP_2, P_network_2_1_RP_3, P_network_2_1_RP_4, P_network_2_2_AskP_0, P_network_2_2_AskP_1, P_network_2_2_AskP_2, P_network_2_2_AskP_3, P_network_2_2_AskP_4, P_network_2_2_AnsP_0, P_network_2_2_AnsP_1, P_network_2_2_AnsP_2, P_network_2_2_AnsP_3, P_network_2_2_AnsP_4, P_network_2_2_RI_0, P_network_2_2_RI_1, P_network_2_2_RI_2, P_network_2_2_RI_3, P_network_2_2_RI_4, P_network_2_2_AI_0, P_network_2_2_AI_1, P_network_2_2_AI_2, P_network_2_2_AI_3, P_network_2_2_AI_4, P_network_2_2_AnnP_0, P_network_2_2_AnnP_1, P_network_2_2_AnnP_2, P_network_2_2_AnnP_3, P_network_2_2_AnnP_4, P_network_2_2_RP_0, P_network_2_2_RP_1, P_network_2_2_RP_2, P_network_2_2_RP_3, P_network_2_2_RP_4, P_network_2_3_AskP_0, P_network_2_3_AskP_1, P_network_2_3_AskP_2, P_network_2_3_AskP_3, P_network_2_3_AskP_4, P_network_2_3_AnsP_0, P_network_2_3_AnsP_1, P_network_2_3_AnsP_2, P_network_2_3_AnsP_3, P_network_2_3_AnsP_4, P_network_2_3_RI_0, P_network_2_3_RI_1, P_network_2_3_RI_2, P_network_2_3_RI_3, P_network_2_3_RI_4, P_network_2_3_AI_0, P_network_2_3_AI_1, P_network_2_3_AI_2, P_network_2_3_AI_3, P_network_2_3_AI_4, P_network_2_3_AnnP_0, P_network_2_3_AnnP_1, P_network_2_3_AnnP_2, P_network_2_3_AnnP_3, P_network_2_3_AnnP_4, P_network_2_3_RP_0, P_network_2_3_RP_1, P_network_2_3_RP_2, P_network_2_3_RP_3, P_network_2_3_RP_4, P_network_2_4_AskP_0, P_network_2_4_AskP_1, P_network_2_4_AskP_2, P_network_2_4_AskP_3, P_network_2_4_AskP_4, P_network_2_4_AnsP_0, P_network_2_4_AnsP_1, P_network_2_4_AnsP_2, P_network_2_4_AnsP_3, P_network_2_4_AnsP_4, P_network_2_4_RI_0, P_network_2_4_RI_1, P_network_2_4_RI_2, P_network_2_4_RI_3, P_network_2_4_RI_4, P_network_2_4_AI_0, P_network_2_4_AI_1, P_network_2_4_AI_2, P_network_2_4_AI_3, P_network_2_4_AI_4, P_network_2_4_AnnP_0, P_network_2_4_AnnP_1, P_network_2_4_AnnP_2, P_network_2_4_AnnP_3, P_network_2_4_AnnP_4, P_network_2_4_RP_0, P_network_2_4_RP_1, P_network_2_4_RP_2, P_network_2_4_RP_3, P_network_2_4_RP_4, P_network_3_0_AskP_0, P_network_3_0_AskP_1, P_network_3_0_AskP_2, P_network_3_0_AskP_3, P_network_3_0_AskP_4, P_network_3_0_AnsP_0, P_network_3_0_AnsP_1, P_network_3_0_AnsP_2, P_network_3_0_AnsP_3, P_network_3_0_AnsP_4, P_network_3_0_RI_0, P_network_3_0_RI_1, P_network_3_0_RI_2, P_network_3_0_RI_3, P_network_3_0_RI_4, P_network_3_0_AI_0, P_network_3_0_AI_1, P_network_3_0_AI_2, P_network_3_0_AI_3, P_network_3_0_AI_4, P_network_3_0_AnnP_0, P_network_3_0_AnnP_1, P_network_3_0_AnnP_2, P_network_3_0_AnnP_3, P_network_3_0_AnnP_4, P_network_3_0_RP_0, P_network_3_0_RP_1, P_network_3_0_RP_2, P_network_3_0_RP_3, P_network_3_0_RP_4, P_network_3_1_AskP_0, P_network_3_1_AskP_1, P_network_3_1_AskP_2, P_network_3_1_AskP_3, P_network_3_1_AskP_4, P_network_3_1_AnsP_0, P_network_3_1_AnsP_1, P_network_3_1_AnsP_2, P_network_3_1_AnsP_3, P_network_3_1_AnsP_4, P_network_3_1_RI_0, P_network_3_1_RI_1, P_network_3_1_RI_2, P_network_3_1_RI_3, P_network_3_1_RI_4, P_network_3_1_AI_0, P_network_3_1_AI_1, P_network_3_1_AI_2, P_network_3_1_AI_3, P_network_3_1_AI_4, P_network_3_1_AnnP_0, P_network_3_1_AnnP_1, P_network_3_1_AnnP_2, P_network_3_1_AnnP_3, P_network_3_1_AnnP_4, P_network_3_1_RP_0, P_network_3_1_RP_1, P_network_3_1_RP_2, P_network_3_1_RP_3, P_network_3_1_RP_4, P_network_3_2_AskP_0, P_network_3_2_AskP_1, P_network_3_2_AskP_2, P_network_3_2_AskP_3, P_network_3_2_AskP_4, P_network_3_2_AnsP_0, P_network_3_2_AnsP_1, P_network_3_2_AnsP_2, P_network_3_2_AnsP_3, P_network_3_2_AnsP_4, P_network_3_2_RI_0, P_network_3_2_RI_1, P_network_3_2_RI_2, P_network_3_2_RI_3, P_network_3_2_RI_4, P_network_3_2_AI_0, P_network_3_2_AI_1, P_network_3_2_AI_2, P_network_3_2_AI_3, P_network_3_2_AI_4, P_network_3_2_AnnP_0, P_network_3_2_AnnP_1, P_network_3_2_AnnP_2, P_network_3_2_AnnP_3, P_network_3_2_AnnP_4, P_network_3_2_RP_0, P_network_3_2_RP_1, P_network_3_2_RP_2, P_network_3_2_RP_3, P_network_3_2_RP_4, P_network_3_3_AskP_0, P_network_3_3_AskP_1, P_network_3_3_AskP_2, P_network_3_3_AskP_3, P_network_3_3_AskP_4, P_network_3_3_AnsP_0, P_network_3_3_AnsP_1, P_network_3_3_AnsP_2, P_network_3_3_AnsP_3, P_network_3_3_AnsP_4, P_network_3_3_RI_0, P_network_3_3_RI_1, P_network_3_3_RI_2, P_network_3_3_RI_3, P_network_3_3_RI_4, P_network_3_3_AI_0, P_network_3_3_AI_1, P_network_3_3_AI_2, P_network_3_3_AI_3, P_network_3_3_AI_4, P_network_3_3_AnnP_0, P_network_3_3_AnnP_1, P_network_3_3_AnnP_2, P_network_3_3_AnnP_3, P_network_3_3_AnnP_4, P_network_3_3_RP_0, P_network_3_3_RP_1, P_network_3_3_RP_2, P_network_3_3_RP_3, P_network_3_3_RP_4, P_network_3_4_AskP_0, P_network_3_4_AskP_1, P_network_3_4_AskP_2, P_network_3_4_AskP_3, P_network_3_4_AskP_4, P_network_3_4_AnsP_0, P_network_3_4_AnsP_1, P_network_3_4_AnsP_2, P_network_3_4_AnsP_3, P_network_3_4_AnsP_4, P_network_3_4_RI_0, P_network_3_4_RI_1, P_network_3_4_RI_2, P_network_3_4_RI_3, P_network_3_4_RI_4, P_network_3_4_AI_0, P_network_3_4_AI_1, P_network_3_4_AI_2, P_network_3_4_AI_3, P_network_3_4_AI_4, P_network_3_4_AnnP_0, P_network_3_4_AnnP_1, P_network_3_4_AnnP_2, P_network_3_4_AnnP_3, P_network_3_4_AnnP_4, P_network_3_4_RP_0, P_network_3_4_RP_1, P_network_3_4_RP_2, P_network_3_4_RP_3, P_network_3_4_RP_4, P_network_4_0_AskP_0, P_network_4_0_AskP_1, P_network_4_0_AskP_2, P_network_4_0_AskP_3, P_network_4_0_AskP_4, P_network_4_0_AnsP_0, P_network_4_0_AnsP_1, P_network_4_0_AnsP_2, P_network_4_0_AnsP_3, P_network_4_0_AnsP_4, P_network_4_0_RI_0, P_network_4_0_RI_1, P_network_4_0_RI_2, P_network_4_0_RI_3, P_network_4_0_RI_4, P_network_4_0_AI_0, P_network_4_0_AI_1, P_network_4_0_AI_2, P_network_4_0_AI_3, P_network_4_0_AI_4, P_network_4_0_AnnP_0, P_network_4_0_AnnP_1, P_network_4_0_AnnP_2, P_network_4_0_AnnP_3, P_network_4_0_AnnP_4, P_network_4_0_RP_0, P_network_4_0_RP_1, P_network_4_0_RP_2, P_network_4_0_RP_3, P_network_4_0_RP_4, P_network_4_1_AskP_0, P_network_4_1_AskP_1, P_network_4_1_AskP_2, P_network_4_1_AskP_3, P_network_4_1_AskP_4, P_network_4_1_AnsP_0, P_network_4_1_AnsP_1, P_network_4_1_AnsP_2, P_network_4_1_AnsP_3, P_network_4_1_AnsP_4, P_network_4_1_RI_0, P_network_4_1_RI_1, P_network_4_1_RI_2, P_network_4_1_RI_3, P_network_4_1_RI_4, P_network_4_1_AI_0, P_network_4_1_AI_1, P_network_4_1_AI_2, P_network_4_1_AI_3, P_network_4_1_AI_4, P_network_4_1_AnnP_0, P_network_4_1_AnnP_1, P_network_4_1_AnnP_2, P_network_4_1_AnnP_3, P_network_4_1_AnnP_4, P_network_4_1_RP_0, P_network_4_1_RP_1, P_network_4_1_RP_2, P_network_4_1_RP_3, P_network_4_1_RP_4, P_network_4_2_AskP_0, P_network_4_2_AskP_1, P_network_4_2_AskP_2, P_network_4_2_AskP_3, P_network_4_2_AskP_4, P_network_4_2_AnsP_0, P_network_4_2_AnsP_1, P_network_4_2_AnsP_2, P_network_4_2_AnsP_3, P_network_4_2_AnsP_4, P_network_4_2_RI_0, P_network_4_2_RI_1, P_network_4_2_RI_2, P_network_4_2_RI_3, P_network_4_2_RI_4, P_network_4_2_AI_0, P_network_4_2_AI_1, P_network_4_2_AI_2, P_network_4_2_AI_3, P_network_4_2_AI_4, P_network_4_2_AnnP_0, P_network_4_2_AnnP_1, P_network_4_2_AnnP_2, P_network_4_2_AnnP_3, P_network_4_2_AnnP_4, P_network_4_2_RP_0, P_network_4_2_RP_1, P_network_4_2_RP_2, P_network_4_2_RP_3, P_network_4_2_RP_4, P_network_4_3_AskP_0, P_network_4_3_AskP_1, P_network_4_3_AskP_2, P_network_4_3_AskP_3, P_network_4_3_AskP_4, P_network_4_3_AnsP_0, P_network_4_3_AnsP_1, P_network_4_3_AnsP_2, P_network_4_3_AnsP_3, P_network_4_3_AnsP_4, P_network_4_3_RI_0, P_network_4_3_RI_1, P_network_4_3_RI_2, P_network_4_3_RI_3, P_network_4_3_RI_4, P_network_4_3_AI_0, P_network_4_3_AI_1, P_network_4_3_AI_2, P_network_4_3_AI_3, P_network_4_3_AI_4, P_network_4_3_AnnP_0, P_network_4_3_AnnP_1, P_network_4_3_AnnP_2, P_network_4_3_AnnP_3, P_network_4_3_AnnP_4, P_network_4_3_RP_0, P_network_4_3_RP_1, P_network_4_3_RP_2, P_network_4_3_RP_3, P_network_4_3_RP_4, P_network_4_4_AskP_0, P_network_4_4_AskP_1, P_network_4_4_AskP_2, P_network_4_4_AskP_3, P_network_4_4_AskP_4, P_network_4_4_AnsP_0, P_network_4_4_AnsP_1, P_network_4_4_AnsP_2, P_network_4_4_AnsP_3, P_network_4_4_AnsP_4, P_network_4_4_RI_0, P_network_4_4_RI_1, P_network_4_4_RI_2, P_network_4_4_RI_3, P_network_4_4_RI_4, P_network_4_4_AI_0, P_network_4_4_AI_1, P_network_4_4_AI_2, P_network_4_4_AI_3, P_network_4_4_AI_4, P_network_4_4_AnnP_0, P_network_4_4_AnnP_1, P_network_4_4_AnnP_2, P_network_4_4_AnnP_3, P_network_4_4_AnnP_4, P_network_4_4_RP_0, P_network_4_4_RP_1, P_network_4_4_RP_2, P_network_4_4_RP_3, P_network_4_4_RP_4, P_poll__handlingMessage_0, P_poll__handlingMessage_1, P_poll__handlingMessage_2, P_poll__handlingMessage_3, P_poll__handlingMessage_4, P_poll__networl_0_0_AskP_0, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_3, P_poll__networl_0_0_AskP_4, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_3, P_poll__networl_0_0_AnsP_4, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_3, P_poll__networl_0_0_RI_4, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_3, P_poll__networl_0_0_AI_4, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_3, P_poll__networl_0_0_AnnP_4, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_3, P_poll__networl_0_0_RP_4, P_poll__networl_0_1_AskP_0, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_3, P_poll__networl_0_1_AskP_4, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_3, P_poll__networl_0_1_AnsP_4, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_3, P_poll__networl_0_1_RI_4, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_3, P_poll__networl_0_1_AI_4, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_3, P_poll__networl_0_1_AnnP_4, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_3, P_poll__networl_0_1_RP_4, P_poll__networl_0_2_AskP_0, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_3, P_poll__networl_0_2_AskP_4, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_3, P_poll__networl_0_2_AnsP_4, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_3, P_poll__networl_0_2_RI_4, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_3, P_poll__networl_0_2_AI_4, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_3, P_poll__networl_0_2_AnnP_4, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_3, P_poll__networl_0_2_RP_4, P_poll__networl_0_3_AskP_0, P_poll__networl_0_3_AskP_1, P_poll__networl_0_3_AskP_2, P_poll__networl_0_3_AskP_3, P_poll__networl_0_3_AskP_4, P_poll__networl_0_3_AnsP_0, P_poll__networl_0_3_AnsP_1, P_poll__networl_0_3_AnsP_2, P_poll__networl_0_3_AnsP_3, P_poll__networl_0_3_AnsP_4, P_poll__networl_0_3_RI_0, P_poll__networl_0_3_RI_1, P_poll__networl_0_3_RI_2, P_poll__networl_0_3_RI_3, P_poll__networl_0_3_RI_4, P_poll__networl_0_3_AI_0, P_poll__networl_0_3_AI_1, P_poll__networl_0_3_AI_2, P_poll__networl_0_3_AI_3, P_poll__networl_0_3_AI_4, P_poll__networl_0_3_AnnP_0, P_poll__networl_0_3_AnnP_1, P_poll__networl_0_3_AnnP_2, P_poll__networl_0_3_AnnP_3, P_poll__networl_0_3_AnnP_4, P_poll__networl_0_3_RP_0, P_poll__networl_0_3_RP_1, P_poll__networl_0_3_RP_2, P_poll__networl_0_3_RP_3, P_poll__networl_0_3_RP_4, P_poll__networl_0_4_AskP_0, P_poll__networl_0_4_AskP_1, P_poll__networl_0_4_AskP_2, P_poll__networl_0_4_AskP_3, P_poll__networl_0_4_AskP_4, P_poll__networl_0_4_AnsP_0, P_poll__networl_0_4_AnsP_1, P_poll__networl_0_4_AnsP_2, P_poll__networl_0_4_AnsP_3, P_poll__networl_0_4_AnsP_4, P_poll__networl_0_4_RI_0, P_poll__networl_0_4_RI_1, P_poll__networl_0_4_RI_2, P_poll__networl_0_4_RI_3, P_poll__networl_0_4_RI_4, P_poll__networl_0_4_AI_0, P_poll__networl_0_4_AI_1, P_poll__networl_0_4_AI_2, P_poll__networl_0_4_AI_3, P_poll__networl_0_4_AI_4, P_poll__networl_0_4_AnnP_0, P_poll__networl_0_4_AnnP_1, P_poll__networl_0_4_AnnP_2, P_poll__networl_0_4_AnnP_3, P_poll__networl_0_4_AnnP_4, P_poll__networl_0_4_RP_0, P_poll__networl_0_4_RP_1, P_poll__networl_0_4_RP_2, P_poll__networl_0_4_RP_3, P_poll__networl_0_4_RP_4, P_poll__networl_1_0_AskP_0, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_3, P_poll__networl_1_0_AskP_4, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_3, P_poll__networl_1_0_AnsP_4, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_3, P_poll__networl_1_0_RI_4, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_3, P_poll__networl_1_0_AI_4, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_3, P_poll__networl_1_0_AnnP_4, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_3, P_poll__networl_1_0_RP_4, P_poll__networl_1_1_AskP_0, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_3, P_poll__networl_1_1_AskP_4, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_3, P_poll__networl_1_1_AnsP_4, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_3, P_poll__networl_1_1_RI_4, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_3, P_poll__networl_1_1_AI_4, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_3, P_poll__networl_1_1_AnnP_4, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_3, P_poll__networl_1_1_RP_4, P_poll__networl_1_2_AskP_0, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_3, P_poll__networl_1_2_AskP_4, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_3, P_poll__networl_1_2_AnsP_4, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_3, P_poll__networl_1_2_RI_4, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_3, P_poll__networl_1_2_AI_4, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_3, P_poll__networl_1_2_AnnP_4, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_3, P_poll__networl_1_2_RP_4, P_poll__networl_1_3_AskP_0, P_poll__networl_1_3_AskP_1, P_poll__networl_1_3_AskP_2, P_poll__networl_1_3_AskP_3, P_poll__networl_1_3_AskP_4, P_poll__networl_1_3_AnsP_0, P_poll__networl_1_3_AnsP_1, P_poll__networl_1_3_AnsP_2, P_poll__networl_1_3_AnsP_3, P_poll__networl_1_3_AnsP_4, P_poll__networl_1_3_RI_0, P_poll__networl_1_3_RI_1, P_poll__networl_1_3_RI_2, P_poll__networl_1_3_RI_3, P_poll__networl_1_3_RI_4, P_poll__networl_1_3_AI_0, P_poll__networl_1_3_AI_1, P_poll__networl_1_3_AI_2, P_poll__networl_1_3_AI_3, P_poll__networl_1_3_AI_4, P_poll__networl_1_3_AnnP_0, P_poll__networl_1_3_AnnP_1, P_poll__networl_1_3_AnnP_2, P_poll__networl_1_3_AnnP_3, P_poll__networl_1_3_AnnP_4, P_poll__networl_1_3_RP_0, P_poll__networl_1_3_RP_1, P_poll__networl_1_3_RP_2, P_poll__networl_1_3_RP_3, P_poll__networl_1_3_RP_4, P_poll__networl_1_4_AskP_0, P_poll__networl_1_4_AskP_1, P_poll__networl_1_4_AskP_2, P_poll__networl_1_4_AskP_3, P_poll__networl_1_4_AskP_4, P_poll__networl_1_4_AnsP_0, P_poll__networl_1_4_AnsP_1, P_poll__networl_1_4_AnsP_2, P_poll__networl_1_4_AnsP_3, P_poll__networl_1_4_AnsP_4, P_poll__networl_1_4_RI_0, P_poll__networl_1_4_RI_1, P_poll__networl_1_4_RI_2, P_poll__networl_1_4_RI_3, P_poll__networl_1_4_RI_4, P_poll__networl_1_4_AI_0, P_poll__networl_1_4_AI_1, P_poll__networl_1_4_AI_2, P_poll__networl_1_4_AI_3, P_poll__networl_1_4_AI_4, P_poll__networl_1_4_AnnP_0, P_poll__networl_1_4_AnnP_1, P_poll__networl_1_4_AnnP_2, P_poll__networl_1_4_AnnP_3, P_poll__networl_1_4_AnnP_4, P_poll__networl_1_4_RP_0, P_poll__networl_1_4_RP_1, P_poll__networl_1_4_RP_2, P_poll__networl_1_4_RP_3, P_poll__networl_1_4_RP_4, P_poll__networl_2_0_AskP_0, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_3, P_poll__networl_2_0_AskP_4, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_3, P_poll__networl_2_0_AnsP_4, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_3, P_poll__networl_2_0_RI_4, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_3, P_poll__networl_2_0_AI_4, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_3, P_poll__networl_2_0_AnnP_4, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_3, P_poll__networl_2_0_RP_4, P_poll__networl_2_1_AskP_0, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_3, P_poll__networl_2_1_AskP_4, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_3, P_poll__networl_2_1_AnsP_4, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_3, P_poll__networl_2_1_RI_4, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_3, P_poll__networl_2_1_AI_4, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_3, P_poll__networl_2_1_AnnP_4, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_3, P_poll__networl_2_1_RP_4, P_poll__networl_2_2_AskP_0, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_3, P_poll__networl_2_2_AskP_4, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_3, P_poll__networl_2_2_AnsP_4, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_3, P_poll__networl_2_2_RI_4, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_3, P_poll__networl_2_2_AI_4, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_3, P_poll__networl_2_2_AnnP_4, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_3, P_poll__networl_2_2_RP_4, P_poll__networl_2_3_AskP_0, P_poll__networl_2_3_AskP_1, P_poll__networl_2_3_AskP_2, P_poll__networl_2_3_AskP_3, P_poll__networl_2_3_AskP_4, P_poll__networl_2_3_AnsP_0, P_poll__networl_2_3_AnsP_1, P_poll__networl_2_3_AnsP_2, P_poll__networl_2_3_AnsP_3, P_poll__networl_2_3_AnsP_4, P_poll__networl_2_3_RI_0, P_poll__networl_2_3_RI_1, P_poll__networl_2_3_RI_2, P_poll__networl_2_3_RI_3, P_poll__networl_2_3_RI_4, P_poll__networl_2_3_AI_0, P_poll__networl_2_3_AI_1, P_poll__networl_2_3_AI_2, P_poll__networl_2_3_AI_3, P_poll__networl_2_3_AI_4, P_poll__networl_2_3_AnnP_0, P_poll__networl_2_3_AnnP_1, P_poll__networl_2_3_AnnP_2, P_poll__networl_2_3_AnnP_3, P_poll__networl_2_3_AnnP_4, P_poll__networl_2_3_RP_0, P_poll__networl_2_3_RP_1, P_poll__networl_2_3_RP_2, P_poll__networl_2_3_RP_3, P_poll__networl_2_3_RP_4, P_poll__networl_2_4_AskP_0, P_poll__networl_2_4_AskP_1, P_poll__networl_2_4_AskP_2, P_poll__networl_2_4_AskP_3, P_poll__networl_2_4_AskP_4, P_poll__networl_2_4_AnsP_0, P_poll__networl_2_4_AnsP_1, P_poll__networl_2_4_AnsP_2, P_poll__networl_2_4_AnsP_3, P_poll__networl_2_4_AnsP_4, P_poll__networl_2_4_RI_0, P_poll__networl_2_4_RI_1, P_poll__networl_2_4_RI_2, P_poll__networl_2_4_RI_3, P_poll__networl_2_4_RI_4, P_poll__networl_2_4_AI_0, P_poll__networl_2_4_AI_1, P_poll__networl_2_4_AI_2, P_poll__networl_2_4_AI_3, P_poll__networl_2_4_AI_4, P_poll__networl_2_4_AnnP_0, P_poll__networl_2_4_AnnP_1, P_poll__networl_2_4_AnnP_2, P_poll__networl_2_4_AnnP_3, P_poll__networl_2_4_AnnP_4, P_poll__networl_2_4_RP_0, P_poll__networl_2_4_RP_1, P_poll__networl_2_4_RP_2, P_poll__networl_2_4_RP_3, P_poll__networl_2_4_RP_4, P_poll__networl_3_0_AskP_0, P_poll__networl_3_0_AskP_1, P_poll__networl_3_0_AskP_2, P_poll__networl_3_0_AskP_3, P_poll__networl_3_0_AskP_4, P_poll__networl_3_0_AnsP_0, P_poll__networl_3_0_AnsP_1, P_poll__networl_3_0_AnsP_2, P_poll__networl_3_0_AnsP_3, P_poll__networl_3_0_AnsP_4, P_poll__networl_3_0_RI_0, P_poll__networl_3_0_RI_1, P_poll__networl_3_0_RI_2, P_poll__networl_3_0_RI_3, P_poll__networl_3_0_RI_4, P_poll__networl_3_0_AI_0, P_poll__networl_3_0_AI_1, P_poll__networl_3_0_AI_2, P_poll__networl_3_0_AI_3, P_poll__networl_3_0_AI_4, P_poll__networl_3_0_AnnP_0, P_poll__networl_3_0_AnnP_1, P_poll__networl_3_0_AnnP_2, P_poll__networl_3_0_AnnP_3, P_poll__networl_3_0_AnnP_4, P_poll__networl_3_0_RP_0, P_poll__networl_3_0_RP_1, P_poll__networl_3_0_RP_2, P_poll__networl_3_0_RP_3, P_poll__networl_3_0_RP_4, P_poll__networl_3_1_AskP_0, P_poll__networl_3_1_AskP_1, P_poll__networl_3_1_AskP_2, P_poll__networl_3_1_AskP_3, P_poll__networl_3_1_AskP_4, P_poll__networl_3_1_AnsP_0, P_poll__networl_3_1_AnsP_1, P_poll__networl_3_1_AnsP_2, P_poll__networl_3_1_AnsP_3, P_poll__networl_3_1_AnsP_4, P_poll__networl_3_1_RI_0, P_poll__networl_3_1_RI_1, P_poll__networl_3_1_RI_2, P_poll__networl_3_1_RI_3, P_poll__networl_3_1_RI_4, P_poll__networl_3_1_AI_0, P_poll__networl_3_1_AI_1, P_poll__networl_3_1_AI_2, P_poll__networl_3_1_AI_3, P_poll__networl_3_1_AI_4, P_poll__networl_3_1_AnnP_0, P_poll__networl_3_1_AnnP_1, P_poll__networl_3_1_AnnP_2, P_poll__networl_3_1_AnnP_3, P_poll__networl_3_1_AnnP_4, P_poll__networl_3_1_RP_0, P_poll__networl_3_1_RP_1, P_poll__networl_3_1_RP_2, P_poll__networl_3_1_RP_3, P_poll__networl_3_1_RP_4, P_poll__networl_3_2_AskP_0, P_poll__networl_3_2_AskP_1, P_poll__networl_3_2_AskP_2, P_poll__networl_3_2_AskP_3, P_poll__networl_3_2_AskP_4, P_poll__networl_3_2_AnsP_0, P_poll__networl_3_2_AnsP_1, P_poll__networl_3_2_AnsP_2, P_poll__networl_3_2_AnsP_3, P_poll__networl_3_2_AnsP_4, P_poll__networl_3_2_RI_0, P_poll__networl_3_2_RI_1, P_poll__networl_3_2_RI_2, P_poll__networl_3_2_RI_3, P_poll__networl_3_2_RI_4, P_poll__networl_3_2_AI_0, P_poll__networl_3_2_AI_1, P_poll__networl_3_2_AI_2, P_poll__networl_3_2_AI_3, P_poll__networl_3_2_AI_4, P_poll__networl_3_2_AnnP_0, P_poll__networl_3_2_AnnP_1, P_poll__networl_3_2_AnnP_2, P_poll__networl_3_2_AnnP_3, P_poll__networl_3_2_AnnP_4, P_poll__networl_3_2_RP_0, P_poll__networl_3_2_RP_1, P_poll__networl_3_2_RP_2, P_poll__networl_3_2_RP_3, P_poll__networl_3_2_RP_4, P_poll__networl_3_3_AskP_0, P_poll__networl_3_3_AskP_1, P_poll__networl_3_3_AskP_2, P_poll__networl_3_3_AskP_3, P_poll__networl_3_3_AskP_4, P_poll__networl_3_3_AnsP_0, P_poll__networl_3_3_AnsP_1, P_poll__networl_3_3_AnsP_2, P_poll__networl_3_3_AnsP_3, P_poll__networl_3_3_AnsP_4, P_poll__networl_3_3_RI_0, P_poll__networl_3_3_RI_1, P_poll__networl_3_3_RI_2, P_poll__networl_3_3_RI_3, P_poll__networl_3_3_RI_4, P_poll__networl_3_3_AI_0, P_poll__networl_3_3_AI_1, P_poll__networl_3_3_AI_2, P_poll__networl_3_3_AI_3, P_poll__networl_3_3_AI_4, P_poll__networl_3_3_AnnP_0, P_poll__networl_3_3_AnnP_1, P_poll__networl_3_3_AnnP_2, P_poll__networl_3_3_AnnP_3, P_poll__networl_3_3_AnnP_4, P_poll__networl_3_3_RP_0, P_poll__networl_3_3_RP_1, P_poll__networl_3_3_RP_2, P_poll__networl_3_3_RP_3, P_poll__networl_3_3_RP_4, P_poll__networl_3_4_AskP_0, P_poll__networl_3_4_AskP_1, P_poll__networl_3_4_AskP_2, P_poll__networl_3_4_AskP_3, P_poll__networl_3_4_AskP_4, P_poll__networl_3_4_AnsP_0, P_poll__networl_3_4_AnsP_1, P_poll__networl_3_4_AnsP_2, P_poll__networl_3_4_AnsP_3, P_poll__networl_3_4_AnsP_4, P_poll__networl_3_4_RI_0, P_poll__networl_3_4_RI_1, P_poll__networl_3_4_RI_2, P_poll__networl_3_4_RI_3, P_poll__networl_3_4_RI_4, P_poll__networl_3_4_AI_0, P_poll__networl_3_4_AI_1, P_poll__networl_3_4_AI_2, P_poll__networl_3_4_AI_3, P_poll__networl_3_4_AI_4, P_poll__networl_3_4_AnnP_0, P_poll__networl_3_4_AnnP_1, P_poll__networl_3_4_AnnP_2, P_poll__networl_3_4_AnnP_3, P_poll__networl_3_4_AnnP_4, P_poll__networl_3_4_RP_0, P_poll__networl_3_4_RP_1, P_poll__networl_3_4_RP_2, P_poll__networl_3_4_RP_3, P_poll__networl_3_4_RP_4, P_poll__networl_4_0_AskP_0, P_poll__networl_4_0_AskP_1, P_poll__networl_4_0_AskP_2, P_poll__networl_4_0_AskP_3, P_poll__networl_4_0_AskP_4, P_poll__networl_4_0_AnsP_0, P_poll__networl_4_0_AnsP_1, P_poll__networl_4_0_AnsP_2, P_poll__networl_4_0_AnsP_3, P_poll__networl_4_0_AnsP_4, P_poll__networl_4_0_RI_0, P_poll__networl_4_0_RI_1, P_poll__networl_4_0_RI_2, P_poll__networl_4_0_RI_3, P_poll__networl_4_0_RI_4, P_poll__networl_4_0_AI_0, P_poll__networl_4_0_AI_1, P_poll__networl_4_0_AI_2, P_poll__networl_4_0_AI_3, P_poll__networl_4_0_AI_4, P_poll__networl_4_0_AnnP_0, P_poll__networl_4_0_AnnP_1, P_poll__networl_4_0_AnnP_2, P_poll__networl_4_0_AnnP_3, P_poll__networl_4_0_AnnP_4, P_poll__networl_4_0_RP_0, P_poll__networl_4_0_RP_1, P_poll__networl_4_0_RP_2, P_poll__networl_4_0_RP_3, P_poll__networl_4_0_RP_4, P_poll__networl_4_1_AskP_0, P_poll__networl_4_1_AskP_1, P_poll__networl_4_1_AskP_2, P_poll__networl_4_1_AskP_3, P_poll__networl_4_1_AskP_4, P_poll__networl_4_1_AnsP_0, P_poll__networl_4_1_AnsP_1, P_poll__networl_4_1_AnsP_2, P_poll__networl_4_1_AnsP_3, P_poll__networl_4_1_AnsP_4, P_poll__networl_4_1_RI_0, P_poll__networl_4_1_RI_1, P_poll__networl_4_1_RI_2, P_poll__networl_4_1_RI_3, P_poll__networl_4_1_RI_4, P_poll__networl_4_1_AI_0, P_poll__networl_4_1_AI_1, P_poll__networl_4_1_AI_2, P_poll__networl_4_1_AI_3, P_poll__networl_4_1_AI_4, P_poll__networl_4_1_AnnP_0, P_poll__networl_4_1_AnnP_1, P_poll__networl_4_1_AnnP_2, P_poll__networl_4_1_AnnP_3, P_poll__networl_4_1_AnnP_4, P_poll__networl_4_1_RP_0, P_poll__networl_4_1_RP_1, P_poll__networl_4_1_RP_2, P_poll__networl_4_1_RP_3, P_poll__networl_4_1_RP_4, P_poll__networl_4_2_AskP_0, P_poll__networl_4_2_AskP_1, P_poll__networl_4_2_AskP_2, P_poll__networl_4_2_AskP_3, P_poll__networl_4_2_AskP_4, P_poll__networl_4_2_AnsP_0, P_poll__networl_4_2_AnsP_1, P_poll__networl_4_2_AnsP_2, P_poll__networl_4_2_AnsP_3, P_poll__networl_4_2_AnsP_4, P_poll__networl_4_2_RI_0, P_poll__networl_4_2_RI_1, P_poll__networl_4_2_RI_2, P_poll__networl_4_2_RI_3, P_poll__networl_4_2_RI_4, P_poll__networl_4_2_AI_0, P_poll__networl_4_2_AI_1, P_poll__networl_4_2_AI_2, P_poll__networl_4_2_AI_3, P_poll__networl_4_2_AI_4, P_poll__networl_4_2_AnnP_0, P_poll__networl_4_2_AnnP_1, P_poll__networl_4_2_AnnP_2, P_poll__networl_4_2_AnnP_3, P_poll__networl_4_2_AnnP_4, P_poll__networl_4_2_RP_0, P_poll__networl_4_2_RP_1, P_poll__networl_4_2_RP_2, P_poll__networl_4_2_RP_3, P_poll__networl_4_2_RP_4, P_poll__networl_4_3_AskP_0, P_poll__networl_4_3_AskP_1, P_poll__networl_4_3_AskP_2, P_poll__networl_4_3_AskP_3, P_poll__networl_4_3_AskP_4, P_poll__networl_4_3_AnsP_0, P_poll__networl_4_3_AnsP_1, P_poll__networl_4_3_AnsP_2, P_poll__networl_4_3_AnsP_3, P_poll__networl_4_3_AnsP_4, P_poll__networl_4_3_RI_0, P_poll__networl_4_3_RI_1, P_poll__networl_4_3_RI_2, P_poll__networl_4_3_RI_3, P_poll__networl_4_3_RI_4, P_poll__networl_4_3_AI_0, P_poll__networl_4_3_AI_1, P_poll__networl_4_3_AI_2, P_poll__networl_4_3_AI_3, P_poll__networl_4_3_AI_4, P_poll__networl_4_3_AnnP_0, P_poll__networl_4_3_AnnP_1, P_poll__networl_4_3_AnnP_2, P_poll__networl_4_3_AnnP_3, P_poll__networl_4_3_AnnP_4, P_poll__networl_4_3_RP_0, P_poll__networl_4_3_RP_1, P_poll__networl_4_3_RP_2, P_poll__networl_4_3_RP_3, P_poll__networl_4_3_RP_4, P_poll__networl_4_4_AskP_0, P_poll__networl_4_4_AskP_1, P_poll__networl_4_4_AskP_2, P_poll__networl_4_4_AskP_3, P_poll__networl_4_4_AskP_4, P_poll__networl_4_4_AnsP_0, P_poll__networl_4_4_AnsP_1, P_poll__networl_4_4_AnsP_2, P_poll__networl_4_4_AnsP_3, P_poll__networl_4_4_AnsP_4, P_poll__networl_4_4_RI_0, P_poll__networl_4_4_RI_1, P_poll__networl_4_4_RI_2, P_poll__networl_4_4_RI_3, P_poll__networl_4_4_RI_4, P_poll__networl_4_4_AI_0, P_poll__networl_4_4_AI_1, P_poll__networl_4_4_AI_2, P_poll__networl_4_4_AI_3, P_poll__networl_4_4_AI_4, P_poll__networl_4_4_AnnP_0, P_poll__networl_4_4_AnnP_1, P_poll__networl_4_4_AnnP_2, P_poll__networl_4_4_AnnP_3, P_poll__networl_4_4_AnnP_4, P_poll__networl_4_4_RP_0, P_poll__networl_4_4_RP_1, P_poll__networl_4_4_RP_2, P_poll__networl_4_4_RP_3, P_poll__networl_4_4_RP_4, P_poll__pollEnd_0, P_poll__pollEnd_1, P_poll__pollEnd_2, P_poll__pollEnd_3, P_poll__pollEnd_4, P_poll__waitingMessage_0, P_poll__waitingMessage_1, P_poll__waitingMessage_2, P_poll__waitingMessage_3, P_poll__waitingMessage_4, P_polling_0, P_polling_1, P_polling_2, P_polling_3, P_polling_4, P_sendAnnPs__broadcasting_0_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_3, P_sendAnnPs__broadcasting_0_4, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_3, P_sendAnnPs__broadcasting_1_4, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_3, P_sendAnnPs__broadcasting_2_4, P_sendAnnPs__broadcasting_3_1, P_sendAnnPs__broadcasting_3_2, P_sendAnnPs__broadcasting_3_3, P_sendAnnPs__broadcasting_3_4, P_sendAnnPs__broadcasting_4_1, P_sendAnnPs__broadcasting_4_2, P_sendAnnPs__broadcasting_4_3, P_sendAnnPs__broadcasting_4_4, P_stage_0_NEG, P_stage_0_PRIM, P_stage_0_SEC, P_stage_1_NEG, P_stage_1_PRIM, P_stage_1_SEC, P_stage_2_NEG, P_stage_2_PRIM, P_stage_2_SEC, P_stage_3_NEG, P_stage_3_PRIM, P_stage_3_SEC, P_stage_4_NEG, P_stage_4_PRIM, P_stage_4_SEC, P_startNeg__broadcasting_0_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_3, P_startNeg__broadcasting_0_4, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_3, P_startNeg__broadcasting_1_4, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_3, P_startNeg__broadcasting_2_4, P_startNeg__broadcasting_3_1, P_startNeg__broadcasting_3_2, P_startNeg__broadcasting_3_3, P_startNeg__broadcasting_3_4, P_startNeg__broadcasting_4_1, P_startNeg__broadcasting_4_2, P_startNeg__broadcasting_4_3, P_startNeg__broadcasting_4_4]
[2021-05-13 21:30:40] [INFO ] Parsed PT model containing 1830 places and 2340 transitions in 222 ms.
Parsed 16 properties from file /home/mcc/execution/LTLFireability.xml in 19 ms.
Working with output stream class java.io.PrintStream
[2021-05-13 21:30:40] [INFO ] Initial state test concluded for 1 properties.
Deduced a syphon composed of 1687 places in 7 ms
Reduce places removed 1699 places and 2213 transitions.
Reduce places removed 9 places and 0 transitions.
FORMULA NeoElection-PT-4-09 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-10 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-12 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-13 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-15 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-00 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-02 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-04 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-08 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-4-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 50 out of 122 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 122/122 places, 127/127 transitions.
Reduce places removed 12 places and 0 transitions.
Iterating post reduction 0 with 12 rules applied. Total rules applied 12 place count 110 transition count 127
Discarding 5 places :
Symmetric choice reduction at 1 with 5 rule applications. Total rules 17 place count 105 transition count 116
Iterating global reduction 1 with 5 rules applied. Total rules applied 22 place count 105 transition count 116
Applied a total of 22 rules in 17 ms. Remains 105 /122 variables (removed 17) and now considering 116/127 (removed 11) transitions.
[2021-05-13 21:30:40] [INFO ] Flow matrix only has 107 transitions (discarded 9 similar events)
// Phase 1: matrix 107 rows 105 cols
[2021-05-13 21:30:40] [INFO ] Computed 23 place invariants in 11 ms
[2021-05-13 21:30:40] [INFO ] Implicit Places using invariants in 148 ms returned [10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 31]
Discarding 13 places :
Implicit Place search using SMT only with invariants took 175 ms to find 13 implicit places.
[2021-05-13 21:30:40] [INFO ] Flow matrix only has 107 transitions (discarded 9 similar events)
// Phase 1: matrix 107 rows 92 cols
[2021-05-13 21:30:40] [INFO ] Computed 10 place invariants in 3 ms
[2021-05-13 21:30:40] [INFO ] Dead Transitions using invariants and state equation in 83 ms returned []
Starting structural reductions, iteration 1 : 92/122 places, 116/127 transitions.
Applied a total of 0 rules in 2 ms. Remains 92 /92 variables (removed 0) and now considering 116/116 (removed 0) transitions.
[2021-05-13 21:30:40] [INFO ] Flow matrix only has 107 transitions (discarded 9 similar events)
// Phase 1: matrix 107 rows 92 cols
[2021-05-13 21:30:40] [INFO ] Computed 10 place invariants in 2 ms
[2021-05-13 21:30:40] [INFO ] Dead Transitions using invariants and state equation in 62 ms returned []
Finished structural reductions, in 2 iterations. Remains : 92/122 places, 116/127 transitions.
[2021-05-13 21:30:41] [INFO ] Flatten gal took : 37 ms
[2021-05-13 21:30:41] [INFO ] Flatten gal took : 17 ms
[2021-05-13 21:30:41] [INFO ] Input system was already deterministic with 116 transitions.
Finished random walk after 139 steps, including 0 resets, run visited all 9 properties in 5 ms. (steps per millisecond=27 )
Running Spot : CommandLine [args=[/home/mcc/BenchKit/bin//..//ltl2tgba, --hoaf=tv, -f, !(X((F(G(p1))&&p0)))], workingDir=/home/mcc/execution]
Support contains 16 out of 92 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 92/92 places, 116/116 transitions.
Discarding 13 places :
Symmetric choice reduction at 0 with 13 rule applications. Total rules 13 place count 79 transition count 78
Iterating global reduction 0 with 13 rules applied. Total rules applied 26 place count 79 transition count 78
Applied a total of 26 rules in 5 ms. Remains 79 /92 variables (removed 13) and now considering 78/116 (removed 38) transitions.
[2021-05-13 21:30:41] [INFO ] Flow matrix only has 69 transitions (discarded 9 similar events)
// Phase 1: matrix 69 rows 79 cols
[2021-05-13 21:30:41] [INFO ] Computed 10 place invariants in 2 ms
[2021-05-13 21:30:41] [INFO ] Implicit Places using invariants in 41 ms returned [10, 11, 12]
Discarding 3 places :
Implicit Place search using SMT only with invariants took 42 ms to find 3 implicit places.
[2021-05-13 21:30:41] [INFO ] Flow matrix only has 69 transitions (discarded 9 similar events)
// Phase 1: matrix 69 rows 76 cols
[2021-05-13 21:30:41] [INFO ] Computed 7 place invariants in 1 ms
[2021-05-13 21:30:41] [INFO ] Dead Transitions using invariants and state equation in 56 ms returned []
Starting structural reductions, iteration 1 : 76/92 places, 78/116 transitions.
Applied a total of 0 rules in 2 ms. Remains 76 /76 variables (removed 0) and now considering 78/78 (removed 0) transitions.
[2021-05-13 21:30:41] [INFO ] Flow matrix only has 69 transitions (discarded 9 similar events)
// Phase 1: matrix 69 rows 76 cols
[2021-05-13 21:30:41] [INFO ] Computed 7 place invariants in 2 ms
[2021-05-13 21:30:41] [INFO ] Dead Transitions using invariants and state equation in 44 ms returned []
Finished structural reductions, in 2 iterations. Remains : 76/92 places, 78/116 transitions.
Stuttering acceptance computed with spot in 215 ms :[(OR (NOT p0) (NOT p1)), (OR (NOT p1) (NOT p0)), true, (NOT p1)]
Running random walk in product with property : NeoElection-PT-4-01 automaton TGBA [mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={} source=1 dest: 2}, { cond=p0, acceptance={} source=1 dest: 3}], [{ cond=true, acceptance={0} source=2 dest: 2}], [{ cond=(NOT p1), acceptance={0} source=3 dest: 3}, { cond=p1, acceptance={} source=3 dest: 3}]], initial=0, aps=[p0:(AND (OR (EQ s12 0) (EQ s52 0)) (OR (EQ s48 0) (EQ s55 0)) (OR (EQ s30 0) (EQ s53 0)) (OR (EQ s26 0) (EQ s53 0)) (OR (EQ s19 0) (EQ s52 0)) (OR (EQ s16 0) (EQ s52 0)) (OR (EQ s44 0) (EQ s55 0)) (OR (EQ s51 0) (EQ s55 0)) (OR (EQ s22 0) (EQ s53 0)) (OR (EQ s40 0) (EQ s54 0)) (OR (EQ s37 0) (EQ s54 0)) (OR (EQ s33 0) (EQ s54 0))), p1:(OR (AND (EQ s12 1) (EQ s52 1)) (AND (EQ s48 1) (EQ s55 1)) (AND (EQ s30 1) (EQ s53 1)) (AND (EQ s26 1) (EQ s53 1)) (AND (EQ s19 1) (EQ s52 1)) (AND (EQ s16 1) (EQ s52 1)) (AND (EQ s44 1) (EQ s55 1)) (AND (EQ s51 1) (EQ s55 1)) (AND (EQ s22 1) (EQ s53 1)) (AND (EQ s40 1) (EQ s54 1)) (AND (EQ s37 1) (EQ s54 1)) (AND (EQ s33 1) (EQ s54 1)))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic], stateDesc=[null, null, null, null][false, false, false, false]]
Stuttering criterion allowed to conclude after 168 steps with 0 reset in 3 ms.
FORMULA NeoElection-PT-4-01 FALSE TECHNIQUES STUTTER_TEST
Treatment of property NeoElection-PT-4-01 finished in 411 ms.
Running Spot : CommandLine [args=[/home/mcc/BenchKit/bin//..//ltl2tgba, --hoaf=tv, -f, !(X(F(p0)))], workingDir=/home/mcc/execution]
Support contains 4 out of 92 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 92/92 places, 116/116 transitions.
Discarding 13 places :
Symmetric choice reduction at 0 with 13 rule applications. Total rules 13 place count 79 transition count 78
Iterating global reduction 0 with 13 rules applied. Total rules applied 26 place count 79 transition count 78
Applied a total of 26 rules in 5 ms. Remains 79 /92 variables (removed 13) and now considering 78/116 (removed 38) transitions.
[2021-05-13 21:30:41] [INFO ] Flow matrix only has 69 transitions (discarded 9 similar events)
// Phase 1: matrix 69 rows 79 cols
[2021-05-13 21:30:41] [INFO ] Computed 10 place invariants in 0 ms
[2021-05-13 21:30:41] [INFO ] Implicit Places using invariants in 82 ms returned [10, 11, 12]
Discarding 3 places :
Implicit Place search using SMT only with invariants took 82 ms to find 3 implicit places.
[2021-05-13 21:30:41] [INFO ] Flow matrix only has 69 transitions (discarded 9 similar events)
// Phase 1: matrix 69 rows 76 cols
[2021-05-13 21:30:41] [INFO ] Computed 7 place invariants in 0 ms
[2021-05-13 21:30:41] [INFO ] Dead Transitions using invariants and state equation in 60 ms returned []
Starting structural reductions, iteration 1 : 76/92 places, 78/116 transitions.
Applied a total of 0 rules in 2 ms. Remains 76 /76 variables (removed 0) and now considering 78/78 (removed 0) transitions.
[2021-05-13 21:30:41] [INFO ] Flow matrix only has 69 transitions (discarded 9 similar events)
// Phase 1: matrix 69 rows 76 cols
[2021-05-13 21:30:41] [INFO ] Computed 7 place invariants in 0 ms
[2021-05-13 21:30:41] [INFO ] Dead Transitions using invariants and state equation in 55 ms returned []
Finished structural reductions, in 2 iterations. Remains : 76/92 places, 78/116 transitions.
Stuttering acceptance computed with spot in 59 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : NeoElection-PT-4-03 automaton TGBA [mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(OR (EQ s60 1) (EQ s63 1) (EQ s61 1) (EQ s62 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, deterministic, no-univ-branch, unambiguous, semi-deterministic, very-weak, weak, inherently-weak], stateDesc=[null, null][false, false]]
Product exploration explored 100000 steps with 7819 reset in 275 ms.
Product exploration explored 100000 steps with 7882 reset in 182 ms.
Knowledge obtained : [(NOT p0)]
Stuttering acceptance computed with spot in 48 ms :[(NOT p0), (NOT p0)]
Product exploration explored 100000 steps with 7847 reset in 143 ms.
Product exploration explored 100000 steps with 7843 reset in 187 ms.
Applying partial POR strategy [false, true]
Stuttering acceptance computed with spot in 58 ms :[(NOT p0), (NOT p0)]
Support contains 4 out of 76 places. Attempting structural reductions.
Property had overlarge support with respect to TGBA, discarding it for now.
Starting structural reductions, iteration 0 : 76/76 places, 78/78 transitions.
Performed 4 Post agglomeration using F-continuation condition.Transition count delta: 0
Iterating post reduction 0 with 4 rules applied. Total rules applied 4 place count 76 transition count 78
Performed 8 Post agglomeration using F-continuation condition.Transition count delta: 0
Deduced a syphon composed of 12 places in 1 ms
Iterating global reduction 1 with 8 rules applied. Total rules applied 12 place count 76 transition count 78
Deduced a syphon composed of 12 places in 0 ms
Applied a total of 12 rules in 34 ms. Remains 76 /76 variables (removed 0) and now considering 78/78 (removed 0) transitions.
[2021-05-13 21:30:42] [INFO ] Redundant transitions in 1 ms returned []
[2021-05-13 21:30:42] [INFO ] Flow matrix only has 69 transitions (discarded 9 similar events)
// Phase 1: matrix 69 rows 76 cols
[2021-05-13 21:30:42] [INFO ] Computed 7 place invariants in 0 ms
[2021-05-13 21:30:42] [INFO ] Dead Transitions using invariants and state equation in 57 ms returned []
Finished structural reductions, in 1 iterations. Remains : 76/76 places, 78/78 transitions.
Product exploration explored 100000 steps with 19197 reset in 479 ms.
Product exploration explored 100000 steps with 19097 reset in 262 ms.
[2021-05-13 21:30:43] [INFO ] Flatten gal took : 8 ms
[2021-05-13 21:30:43] [INFO ] Flatten gal took : 6 ms
[2021-05-13 21:30:43] [INFO ] Time to serialize gal into /tmp/LTL5183818507507274107.gal : 6 ms
[2021-05-13 21:30:43] [INFO ] Time to serialize properties into /tmp/LTL3506731144918316879.ltl : 0 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ltl-linux64, --gc-threshold, 2000000, -i, /tmp/LTL5183818507507274107.gal, -t, CGAL, -LTL, /tmp/LTL3506731144918316879.ltl, -c, -stutter-deadlock, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ltl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/LTL5183818507507274107.gal -t CGAL -LTL /tmp/LTL3506731144918316879.ltl -c -stutter-deadlock --gen-order FOLLOW
Read 1 LTL properties
Checking formula 0 : !((X(F("((((P_polling_1==1)||(P_polling_4==1))||(P_polling_2==1))||(P_polling_3==1))"))))
Formula 0 simplified : !XF"((((P_polling_1==1)||(P_polling_4==1))||(P_polling_2==1))||(P_polling_3==1))"
Reverse transition relation is NOT exact ! Due to transitions t4, t7, t10, t11, t12, t29, t30, t81, t82, t83, t84, t85, t86, t87, t88, t89, t90, t102, t105, t108, t111, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :1/56/21/78
Computing Next relation with stutter on 1 deadlock states
2 unique states visited
0 strongly connected components in search stack
1 transitions explored
2 items max in DFS search stack
484 ticks for the emptiness check
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
STATS,0,4.85333,151072,1,0,254,776325,181,130,2498,662792,325
no accepting run found
Formula 0 is TRUE no accepting run found.
FORMULA NeoElection-PT-4-03 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Treatment of property NeoElection-PT-4-03 finished in 7729 ms.
Running Spot : CommandLine [args=[/home/mcc/BenchKit/bin//..//ltl2tgba, --hoaf=tv, -f, !(F(G((X((p1 U p2))||p0))))], workingDir=/home/mcc/execution]
Support contains 8 out of 92 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 92/92 places, 116/116 transitions.
Discarding 9 places :
Symmetric choice reduction at 0 with 9 rule applications. Total rules 9 place count 83 transition count 82
Iterating global reduction 0 with 9 rules applied. Total rules applied 18 place count 83 transition count 82
Applied a total of 18 rules in 4 ms. Remains 83 /92 variables (removed 9) and now considering 82/116 (removed 34) transitions.
[2021-05-13 21:30:49] [INFO ] Flow matrix only has 73 transitions (discarded 9 similar events)
// Phase 1: matrix 73 rows 83 cols
[2021-05-13 21:30:49] [INFO ] Computed 10 place invariants in 0 ms
[2021-05-13 21:30:49] [INFO ] Implicit Places using invariants in 39 ms returned [10, 11, 12]
Discarding 3 places :
Implicit Place search using SMT only with invariants took 47 ms to find 3 implicit places.
[2021-05-13 21:30:49] [INFO ] Flow matrix only has 73 transitions (discarded 9 similar events)
// Phase 1: matrix 73 rows 80 cols
[2021-05-13 21:30:49] [INFO ] Computed 7 place invariants in 1 ms
[2021-05-13 21:30:49] [INFO ] Dead Transitions using invariants and state equation in 40 ms returned []
Starting structural reductions, iteration 1 : 80/92 places, 82/116 transitions.
Applied a total of 0 rules in 1 ms. Remains 80 /80 variables (removed 0) and now considering 82/82 (removed 0) transitions.
[2021-05-13 21:30:49] [INFO ] Flow matrix only has 73 transitions (discarded 9 similar events)
// Phase 1: matrix 73 rows 80 cols
[2021-05-13 21:30:49] [INFO ] Computed 7 place invariants in 0 ms
[2021-05-13 21:30:49] [INFO ] Dead Transitions using invariants and state equation in 45 ms returned []
Finished structural reductions, in 2 iterations. Remains : 80/92 places, 82/116 transitions.
Stuttering acceptance computed with spot in 5293 ms :[(AND (NOT p0) (NOT p2)), (AND (NOT p0) (NOT p2))]
Running random walk in product with property : NeoElection-PT-4-05 automaton TGBA [mat=[[{ cond=true, acceptance={} source=0 dest: 0}, { cond=(NOT p0), acceptance={0} source=0 dest: 1}], [{ cond=(AND (NOT p2) (NOT p1)), acceptance={} source=1 dest: 0}, { cond=(AND (NOT p0) (NOT p2)), acceptance={0} source=1 dest: 1}, { cond=(AND p0 (NOT p2) p1), acceptance={} source=1 dest: 1}]], initial=0, aps=[p0:(OR (EQ s57 1) (EQ s58 1) (EQ s56 1) (EQ s59 1)), p2:(AND (OR (EQ s67 1) (EQ s71 1) (EQ s75 1) (EQ s79 1)) (OR (EQ s57 1) (EQ s58 1) (EQ s56 1) (EQ s59 1))), p1:(OR (EQ s67 1) (EQ s71 1) (EQ s75 1) (EQ s79 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch], stateDesc=[null, null][false, false]]
Stuttering criterion allowed to conclude after 168 steps with 0 reset in 1 ms.
FORMULA NeoElection-PT-4-05 FALSE TECHNIQUES STUTTER_TEST
Treatment of property NeoElection-PT-4-05 finished in 5458 ms.
Running Spot : CommandLine [args=[/home/mcc/BenchKit/bin//..//ltl2tgba, --hoaf=tv, -f, !(G(!p0))], workingDir=/home/mcc/execution]
Support contains 4 out of 92 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 92/92 places, 116/116 transitions.
Reduce places removed 1 places and 1 transitions.
Drop transitions removed 3 transitions
Trivial Post-agglo rules discarded 3 transitions
Performed 3 trivial Post agglomeration. Transition count delta: 3
Iterating post reduction 0 with 3 rules applied. Total rules applied 3 place count 91 transition count 112
Reduce places removed 3 places and 0 transitions.
Iterating post reduction 1 with 3 rules applied. Total rules applied 6 place count 88 transition count 112
Performed 4 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 4 Pre rules applied. Total rules applied 6 place count 88 transition count 108
Deduced a syphon composed of 4 places in 0 ms
Reduce places removed 4 places and 0 transitions.
Iterating global reduction 2 with 8 rules applied. Total rules applied 14 place count 84 transition count 108
Discarding 9 places :
Symmetric choice reduction at 2 with 9 rule applications. Total rules 23 place count 75 transition count 74
Iterating global reduction 2 with 9 rules applied. Total rules applied 32 place count 75 transition count 74
Performed 8 Post agglomeration using F-continuation condition.Transition count delta: 8
Deduced a syphon composed of 8 places in 0 ms
Reduce places removed 8 places and 0 transitions.
Iterating global reduction 2 with 16 rules applied. Total rules applied 48 place count 67 transition count 66
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 2 with 1 rules applied. Total rules applied 49 place count 66 transition count 65
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 2 with 1 rules applied. Total rules applied 50 place count 65 transition count 64
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 2 with 1 rules applied. Total rules applied 51 place count 64 transition count 63
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 2 with 1 rules applied. Total rules applied 52 place count 63 transition count 62
Applied a total of 52 rules in 80 ms. Remains 63 /92 variables (removed 29) and now considering 62/116 (removed 54) transitions.
[2021-05-13 21:30:54] [INFO ] Flow matrix only has 53 transitions (discarded 9 similar events)
// Phase 1: matrix 53 rows 63 cols
[2021-05-13 21:30:54] [INFO ] Computed 10 place invariants in 0 ms
[2021-05-13 21:30:54] [INFO ] Implicit Places using invariants in 45 ms returned [6, 7, 8]
Discarding 3 places :
Implicit Place search using SMT only with invariants took 46 ms to find 3 implicit places.
[2021-05-13 21:30:54] [INFO ] Redundant transitions in 1 ms returned []
[2021-05-13 21:30:54] [INFO ] Flow matrix only has 53 transitions (discarded 9 similar events)
// Phase 1: matrix 53 rows 60 cols
[2021-05-13 21:30:54] [INFO ] Computed 7 place invariants in 0 ms
[2021-05-13 21:30:54] [INFO ] Dead Transitions using invariants and state equation in 43 ms returned []
Starting structural reductions, iteration 1 : 60/92 places, 62/116 transitions.
Applied a total of 0 rules in 3 ms. Remains 60 /60 variables (removed 0) and now considering 62/62 (removed 0) transitions.
[2021-05-13 21:30:54] [INFO ] Redundant transitions in 1 ms returned []
[2021-05-13 21:30:54] [INFO ] Flow matrix only has 53 transitions (discarded 9 similar events)
// Phase 1: matrix 53 rows 60 cols
[2021-05-13 21:30:54] [INFO ] Computed 7 place invariants in 6 ms
[2021-05-13 21:30:54] [INFO ] Dead Transitions using invariants and state equation in 33 ms returned []
Finished structural reductions, in 2 iterations. Remains : 60/92 places, 62/116 transitions.
Stuttering acceptance computed with spot in 33 ms :[true, p0]
Running random walk in product with property : NeoElection-PT-4-06 automaton TGBA [mat=[[{ cond=true, acceptance={0} source=0 dest: 0}], [{ cond=p0, acceptance={} source=1 dest: 0}, { cond=(NOT p0), acceptance={} source=1 dest: 1}]], initial=1, aps=[p0:(OR (EQ s53 1) (EQ s55 1) (EQ s57 1) (EQ s59 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, complete, deterministic, no-univ-branch, unambiguous, semi-deterministic, stutter-invariant, terminal, very-weak, weak, inherently-weak], stateDesc=[null, null][true, true]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 0 ms.
FORMULA NeoElection-PT-4-06 FALSE TECHNIQUES STUTTER_TEST
Treatment of property NeoElection-PT-4-06 finished in 259 ms.
Running Spot : CommandLine [args=[/home/mcc/BenchKit/bin//..//ltl2tgba, --hoaf=tv, -f, !(X(G((p0&&F(p1)))))], workingDir=/home/mcc/execution]
Support contains 28 out of 92 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 92/92 places, 116/116 transitions.
Applied a total of 0 rules in 2 ms. Remains 92 /92 variables (removed 0) and now considering 116/116 (removed 0) transitions.
[2021-05-13 21:30:55] [INFO ] Flow matrix only has 107 transitions (discarded 9 similar events)
// Phase 1: matrix 107 rows 92 cols
[2021-05-13 21:30:55] [INFO ] Computed 10 place invariants in 1 ms
[2021-05-13 21:30:55] [INFO ] Implicit Places using invariants in 32 ms returned []
[2021-05-13 21:30:55] [INFO ] Flow matrix only has 107 transitions (discarded 9 similar events)
// Phase 1: matrix 107 rows 92 cols
[2021-05-13 21:30:55] [INFO ] Computed 10 place invariants in 7 ms
[2021-05-13 21:30:55] [INFO ] State equation strengthened by 27 read => feed constraints.
[2021-05-13 21:30:55] [INFO ] Implicit Places using invariants and state equation in 93 ms returned []
Implicit Place search using SMT with State Equation took 127 ms to find 0 implicit places.
[2021-05-13 21:30:55] [INFO ] Flow matrix only has 107 transitions (discarded 9 similar events)
// Phase 1: matrix 107 rows 92 cols
[2021-05-13 21:30:55] [INFO ] Computed 10 place invariants in 1 ms
[2021-05-13 21:30:55] [INFO ] Dead Transitions using invariants and state equation in 49 ms returned []
Finished structural reductions, in 1 iterations. Remains : 92/92 places, 116/116 transitions.
Stuttering acceptance computed with spot in 87 ms :[(OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), true, (NOT p1)]
Running random walk in product with property : NeoElection-PT-4-07 automaton TGBA [mat=[[{ cond=true, acceptance={} source=0 dest: 1}], [{ cond=p0, acceptance={} source=1 dest: 1}, { cond=(NOT p0), acceptance={} source=1 dest: 2}, { cond=(AND p0 (NOT p1)), acceptance={} source=1 dest: 3}], [{ cond=true, acceptance={0} source=2 dest: 2}], [{ cond=(NOT p1), acceptance={0} source=3 dest: 3}]], initial=0, aps=[p0:(OR (EQ s69 1) (EQ s70 1) (EQ s68 1) (EQ s71 1)), p1:(OR (AND (EQ s9 1) (EQ s17 1) (EQ s53 1) (EQ s66 1)) (AND (EQ s5 1) (EQ s10 1) (EQ s30 1) (EQ s64 1)) (AND (EQ s6 1) (EQ s13 1) (EQ s38 1) (EQ s65 1)) (AND (EQ s6 1) (EQ s15 1) (EQ s42 1) (EQ s65 1)) (AND (EQ s4 1) (EQ s10 1) (EQ s22 1) (EQ s64 1)) (AND (EQ s7 1) (EQ s14 1) (EQ s38 1) (EQ s65 1)) (AND (EQ s5 1) (EQ s11 1) (EQ s22 1) (EQ s64 1)) (AND (EQ s5 1) (EQ s11 1) (EQ s30 1) (EQ s64 1)) (AND (EQ s9 1) (EQ s16 1) (EQ s53 1) (EQ s66 1)) (AND (EQ s4 1) (EQ s12 1) (EQ s30 1) (EQ s64 1)) (AND (EQ s7 1) (EQ s14 1) (EQ s42 1) (EQ s65 1)) (AND (EQ s6 1) (EQ s15 1) (EQ s38 1) (EQ s65 1)) (AND (EQ s4 1) (EQ s10 1) (EQ s26 1) (EQ s64 1)) (AND (EQ s5 1) (EQ s10 1) (EQ s26 1) (EQ s64 1)) (AND (EQ s5 1) (EQ s12 1) (EQ s26 1) (EQ s64 1)) (AND (EQ s7 1) (EQ s13 1) (EQ s38 1) (EQ s65 1)) (AND (EQ s5 1) (EQ s11 1) (EQ s26 1) (EQ s64 1)) (AND (EQ s4 1) (EQ s12 1) (EQ s26 1) (EQ s64 1)) (AND (EQ s8 1) (EQ s18 1) (EQ s53 1) (EQ s66 1)) (AND (EQ s7 1) (EQ s15 1) (EQ s42 1) (EQ s65 1)) (AND (EQ s6 1) (EQ s14 1) (EQ s38 1) (EQ s65 1)) (AND (EQ s4 1) (EQ s11 1) (EQ s26 1) (EQ s64 1)) (AND (EQ s8 1) (EQ s17 1) (EQ s53 1) (EQ s66 1)) (AND (EQ s4 1) (EQ s12 1) (EQ s22 1) (EQ s64 1)) (AND (EQ s4 1) (EQ s11 1) (EQ s30 1) (EQ s64 1)) (AND (EQ s9 1) (EQ s18 1) (EQ s53 1) (EQ s66 1)) (AND (EQ s7 1) (EQ s15 1) (EQ s38 1) (EQ s65 1)) (AND (EQ s5 1) (EQ s12 1) (EQ s30 1) (EQ s64 1)) (AND (EQ s5 1) (EQ s10 1) (EQ s22 1) (EQ s64 1)) (AND (EQ s4 1) (EQ s11 1) (EQ s22 1) (EQ s64 1)) (AND (EQ s6 1) (EQ s14 1) (EQ s42 1) (EQ s65 1)) (AND (EQ s8 1) (EQ s16 1) (EQ s53 1) (EQ s66 1)) (AND (EQ s7 1) (EQ s13 1) (EQ s42 1) (EQ s65 1)) (AND (EQ s5 1) (EQ s12 1) (EQ s22 1) (EQ s64 1)) (AND (EQ s6 1) (EQ s13 1) (EQ s42 1) (EQ s65 1)) (AND (EQ s4 1) (EQ s10 1) (EQ s30 1) (EQ s64 1)))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, very-weak, weak, inherently-weak], stateDesc=[null, null, null, null][false, false, false, false]]
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 1 ms.
FORMULA NeoElection-PT-4-07 FALSE TECHNIQUES STUTTER_TEST
Treatment of property NeoElection-PT-4-07 finished in 279 ms.
Running Spot : CommandLine [args=[/home/mcc/BenchKit/bin//..//ltl2tgba, --hoaf=tv, -f, !(G(F(p0)))], workingDir=/home/mcc/execution]
Support contains 2 out of 92 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 92/92 places, 116/116 transitions.
Reduce places removed 1 places and 1 transitions.
Drop transitions removed 3 transitions
Trivial Post-agglo rules discarded 3 transitions
Performed 3 trivial Post agglomeration. Transition count delta: 3
Iterating post reduction 0 with 3 rules applied. Total rules applied 3 place count 91 transition count 112
Reduce places removed 3 places and 0 transitions.
Iterating post reduction 1 with 3 rules applied. Total rules applied 6 place count 88 transition count 112
Performed 4 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 4 Pre rules applied. Total rules applied 6 place count 88 transition count 108
Deduced a syphon composed of 4 places in 0 ms
Reduce places removed 4 places and 0 transitions.
Iterating global reduction 2 with 8 rules applied. Total rules applied 14 place count 84 transition count 108
Discarding 13 places :
Symmetric choice reduction at 2 with 13 rule applications. Total rules 27 place count 71 transition count 70
Iterating global reduction 2 with 13 rules applied. Total rules applied 40 place count 71 transition count 70
Performed 3 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 3 Pre rules applied. Total rules applied 40 place count 71 transition count 67
Deduced a syphon composed of 3 places in 0 ms
Reduce places removed 3 places and 0 transitions.
Iterating global reduction 2 with 6 rules applied. Total rules applied 46 place count 68 transition count 67
Performed 8 Post agglomeration using F-continuation condition.Transition count delta: 8
Deduced a syphon composed of 8 places in 0 ms
Reduce places removed 8 places and 0 transitions.
Iterating global reduction 2 with 16 rules applied. Total rules applied 62 place count 60 transition count 59
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 2 with 1 rules applied. Total rules applied 63 place count 59 transition count 58
Reduce places removed 1 places and 0 transitions.
Iterating post reduction 2 with 1 rules applied. Total rules applied 64 place count 58 transition count 58
Performed 6 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 6 Pre rules applied. Total rules applied 64 place count 58 transition count 52
Deduced a syphon composed of 6 places in 0 ms
Reduce places removed 6 places and 0 transitions.
Iterating global reduction 3 with 12 rules applied. Total rules applied 76 place count 52 transition count 52
Performed 3 Post agglomeration using F-continuation condition.Transition count delta: 3
Deduced a syphon composed of 3 places in 0 ms
Reduce places removed 3 places and 0 transitions.
Iterating global reduction 3 with 6 rules applied. Total rules applied 82 place count 49 transition count 49
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 3 with 1 rules applied. Total rules applied 83 place count 48 transition count 48
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 3 with 1 rules applied. Total rules applied 84 place count 47 transition count 47
Reduce places removed 1 places and 0 transitions.
Iterating post reduction 3 with 1 rules applied. Total rules applied 85 place count 46 transition count 47
Performed 2 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 4 with 2 Pre rules applied. Total rules applied 85 place count 46 transition count 45
Deduced a syphon composed of 2 places in 0 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 4 with 4 rules applied. Total rules applied 89 place count 44 transition count 45
Performed 3 Post agglomeration using F-continuation condition.Transition count delta: 3
Deduced a syphon composed of 3 places in 0 ms
Reduce places removed 3 places and 0 transitions.
Iterating global reduction 4 with 6 rules applied. Total rules applied 95 place count 41 transition count 42
Discarding 1 places :
Symmetric choice reduction at 4 with 1 rule applications. Total rules 96 place count 40 transition count 41
Iterating global reduction 4 with 1 rules applied. Total rules applied 97 place count 40 transition count 41
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 4 with 1 rules applied. Total rules applied 98 place count 39 transition count 40
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 4 with 1 rules applied. Total rules applied 99 place count 38 transition count 39
Reduce places removed 1 places and 0 transitions.
Iterating post reduction 4 with 1 rules applied. Total rules applied 100 place count 37 transition count 39
Performed 2 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 5 with 2 Pre rules applied. Total rules applied 100 place count 37 transition count 37
Deduced a syphon composed of 2 places in 0 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 5 with 4 rules applied. Total rules applied 104 place count 35 transition count 37
Performed 2 Post agglomeration using F-continuation condition.Transition count delta: 2
Deduced a syphon composed of 2 places in 0 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 5 with 4 rules applied. Total rules applied 108 place count 33 transition count 35
Discarding 1 places :
Symmetric choice reduction at 5 with 1 rule applications. Total rules 109 place count 32 transition count 34
Iterating global reduction 5 with 1 rules applied. Total rules applied 110 place count 32 transition count 34
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Deduced a syphon composed of 1 places in 0 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 5 with 2 rules applied. Total rules applied 112 place count 31 transition count 33
Applied a total of 112 rules in 26 ms. Remains 31 /92 variables (removed 61) and now considering 33/116 (removed 83) transitions.
[2021-05-13 21:30:55] [INFO ] Flow matrix only has 24 transitions (discarded 9 similar events)
// Phase 1: matrix 24 rows 31 cols
[2021-05-13 21:30:55] [INFO ] Computed 7 place invariants in 1 ms
[2021-05-13 21:30:55] [INFO ] Implicit Places using invariants in 35 ms returned [6, 7, 8]
Discarding 3 places :
Implicit Place search using SMT only with invariants took 35 ms to find 3 implicit places.
[2021-05-13 21:30:55] [INFO ] Redundant transitions in 0 ms returned []
[2021-05-13 21:30:55] [INFO ] Flow matrix only has 24 transitions (discarded 9 similar events)
// Phase 1: matrix 24 rows 28 cols
[2021-05-13 21:30:55] [INFO ] Computed 4 place invariants in 0 ms
[2021-05-13 21:30:55] [INFO ] Dead Transitions using invariants and state equation in 17 ms returned []
Starting structural reductions, iteration 1 : 28/92 places, 33/116 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 27 transition count 32
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 27 transition count 32
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Deduced a syphon composed of 1 places in 0 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 0 with 2 rules applied. Total rules applied 4 place count 26 transition count 31
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 5 place count 25 transition count 29
Iterating global reduction 0 with 1 rules applied. Total rules applied 6 place count 25 transition count 29
Applied a total of 6 rules in 3 ms. Remains 25 /28 variables (removed 3) and now considering 29/33 (removed 4) transitions.
[2021-05-13 21:30:55] [INFO ] Flow matrix only has 21 transitions (discarded 8 similar events)
// Phase 1: matrix 21 rows 25 cols
[2021-05-13 21:30:55] [INFO ] Computed 4 place invariants in 0 ms
[2021-05-13 21:30:55] [INFO ] Implicit Places using invariants in 31 ms returned []
[2021-05-13 21:30:55] [INFO ] Flow matrix only has 21 transitions (discarded 8 similar events)
// Phase 1: matrix 21 rows 25 cols
[2021-05-13 21:30:55] [INFO ] Computed 4 place invariants in 0 ms
[2021-05-13 21:30:55] [INFO ] State equation strengthened by 11 read => feed constraints.
[2021-05-13 21:30:55] [INFO ] Implicit Places using invariants and state equation in 23 ms returned []
Implicit Place search using SMT with State Equation took 56 ms to find 0 implicit places.
Finished structural reductions, in 2 iterations. Remains : 25/92 places, 29/116 transitions.
Stuttering acceptance computed with spot in 50 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : NeoElection-PT-4-14 automaton TGBA [mat=[[{ cond=true, acceptance={} source=0 dest: 0}, { cond=(NOT p0), acceptance={} source=0 dest: 1}], [{ cond=(NOT p0), acceptance={0} source=1 dest: 1}]], initial=0, aps=[p0:(OR (NEQ s20 1) (NEQ s23 1))], nbAcceptance=1, properties=[trans-labels, explicit-labels, trans-acc, no-univ-branch, stutter-invariant, very-weak, weak, inherently-weak], stateDesc=[null, null][true, true]]
Product exploration explored 100000 steps with 6088 reset in 195 ms.
Product exploration explored 100000 steps with 6070 reset in 195 ms.
Knowledge obtained : [p0]
Stuttering acceptance computed with spot in 48 ms :[(NOT p0), (NOT p0)]
Product exploration explored 100000 steps with 6189 reset in 154 ms.
Product exploration explored 100000 steps with 6078 reset in 164 ms.
[2021-05-13 21:30:56] [INFO ] Flatten gal took : 2 ms
[2021-05-13 21:30:56] [INFO ] Flatten gal took : 2 ms
[2021-05-13 21:30:56] [INFO ] Time to serialize gal into /tmp/LTL6880710516275312932.gal : 0 ms
[2021-05-13 21:30:56] [INFO ] Time to serialize properties into /tmp/LTL1154139125074073888.ltl : 0 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ltl-linux64, --gc-threshold, 2000000, -i, /tmp/LTL6880710516275312932.gal, -t, CGAL, -LTL, /tmp/LTL1154139125074073888.ltl, -c, -stutter-deadlock, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ltl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/LTL6880710516275312932.gal -t CGAL -LTL /tmp/LTL1154139125074073888.ltl -c -stutter-deadlock --gen-order FOLLOW
Read 1 LTL properties
Checking formula 0 : !((G(F("((P_network_3_4_AnsP_0!=1)||(P_poll__handlingMessage_3!=1))"))))
Formula 0 simplified : !GF"((P_network_3_4_AnsP_0!=1)||(P_poll__handlingMessage_3!=1))"
Reverse transition relation is NOT exact ! Due to transitions t7, t0.t92.t12, t0.t92.t11, t1.t93.t29, t1.t93.t30, t1.t93.t51.t87, t0.t92.t48.t86, t53.t0.t92.t81, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :1/20/8/29
Computing Next relation with stutter on 1 deadlock states
70 unique states visited
0 strongly connected components in search stack
72 transitions explored
38 items max in DFS search stack
28 ticks for the emptiness check
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
STATS,0,0.287289,25944,1,0,589,51501,87,376,790,63668,1627
no accepting run found
Formula 0 is TRUE no accepting run found.
FORMULA NeoElection-PT-4-14 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Treatment of property NeoElection-PT-4-14 finished in 1355 ms.
All properties solved without resorting to model-checking.

BK_STOP 1620941457611

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ LTLFireability = StateSpace ]]
+ /home/mcc/BenchKit/bin//..//runeclipse.sh /home/mcc/execution LTLFireability -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ cut -d . -f 9
++ ls /home/mcc/BenchKit/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202104292328.jar
+ VERSION=0
+ echo 'Running Version 0'
+ /home/mcc/BenchKit/bin//..//itstools/its-tools -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination LTLFireability -spotpath /home/mcc/BenchKit/bin//..//ltlfilt -z3path /home/mcc/BenchKit/bin//..//z3/bin/z3 -yices2path /home/mcc/BenchKit/bin//..//yices/bin/yices -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600 -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss128m -Xms40m -Xmx16000m

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-4"
export BK_EXAMINATION="LTLFireability"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool itstools"
echo " Input is NeoElection-PT-4, examination is LTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r140-tall-162089127400189"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-4.tgz
mv NeoElection-PT-4 execution
cd execution
if [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "UpperBounds" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] || [ "LTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;