fond
Model Checking Contest 2021
11th edition, Paris, France, June 23, 2021
Execution of r007-tall-162037989800324
Last Updated
Jun 28, 2021

About the Execution of ITS-Tools for Angiogenesis-PT-05

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
7167.880 2282954.00 2233721.00 15315.80 TFTTFTFFFTFFTTFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2021-input.r007-tall-162037989800324.qcow2', fmt=qcow2 size=4294967296 backing_file='/data/fkordon/mcc2021-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool itstools
Input is Angiogenesis-PT-05, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r007-tall-162037989800324
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 404K
-rw-r--r-- 1 mcc users 16K May 5 16:58 CTLCardinality.txt
-rw-r--r-- 1 mcc users 107K May 10 09:42 CTLCardinality.xml
-rw-r--r-- 1 mcc users 9.1K May 5 16:58 CTLFireability.txt
-rw-r--r-- 1 mcc users 89K May 10 09:42 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 6 14:48 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.5K May 6 14:48 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.0K Apr 26 07:40 LTLCardinality.txt
-rw-r--r-- 1 mcc users 25K Apr 26 07:40 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Apr 26 07:40 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 26 07:40 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 23 01:45 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K Mar 23 01:45 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.7K Mar 22 10:14 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 17K Mar 22 10:14 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Mar 22 09:09 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Mar 22 09:09 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 5 16:51 equiv_col
-rw-r--r-- 1 mcc users 3 May 5 16:51 instance
-rw-r--r-- 1 mcc users 6 May 5 16:51 iscolored
-rw-r--r-- 1 mcc users 33K May 5 16:51 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-00
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-01
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-02
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-03
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-04
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-05
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-06
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-07
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-08
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-09
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-10
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-11
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-12
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-13
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-14
FORMULA_NAME Angiogenesis-PT-05-CTLFireability-15

=== Now, execution of the tool begins

BK_START 1620741760931

Running Version 0
[2021-05-11 14:02:42] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -spotpath, /home/mcc/BenchKit/bin//..//ltlfilt, -z3path, /home/mcc/BenchKit/bin//..//z3/bin/z3, -yices2path, /home/mcc/BenchKit/bin//..//yices/bin/yices, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2021-05-11 14:02:42] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2021-05-11 14:02:42] [INFO ] Load time of PNML (sax parser for PT used): 33 ms
[2021-05-11 14:02:42] [INFO ] Transformed 39 places.
[2021-05-11 14:02:42] [INFO ] Transformed 64 transitions.
[2021-05-11 14:02:42] [INFO ] Parsed PT model containing 39 places and 64 transitions in 69 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 15 ms.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 2 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 2 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
[2021-05-11 14:02:42] [INFO ] Reduced 1 identical enabling conditions.
Support contains 38 out of 39 places. Attempting structural reductions.
Starting structural reductions, iteration 0 : 39/39 places, 64/64 transitions.
Reduce places removed 1 places and 0 transitions.
Iterating post reduction 0 with 1 rules applied. Total rules applied 1 place count 38 transition count 64
Applied a total of 1 rules in 9 ms. Remains 38 /39 variables (removed 1) and now considering 64/64 (removed 0) transitions.
// Phase 1: matrix 64 rows 38 cols
[2021-05-11 14:02:42] [INFO ] Computed 7 place invariants in 7 ms
[2021-05-11 14:02:42] [INFO ] Implicit Places using invariants in 77 ms returned []
// Phase 1: matrix 64 rows 38 cols
[2021-05-11 14:02:42] [INFO ] Computed 7 place invariants in 4 ms
[2021-05-11 14:02:42] [INFO ] Implicit Places using invariants and state equation in 56 ms returned []
Implicit Place search using SMT with State Equation took 158 ms to find 0 implicit places.
// Phase 1: matrix 64 rows 38 cols
[2021-05-11 14:02:42] [INFO ] Computed 7 place invariants in 2 ms
[2021-05-11 14:02:42] [INFO ] Dead Transitions using invariants and state equation in 56 ms returned []
Finished structural reductions, in 1 iterations. Remains : 38/39 places, 64/64 transitions.
[2021-05-11 14:02:43] [INFO ] Flatten gal took : 34 ms
[2021-05-11 14:02:43] [INFO ] Flatten gal took : 12 ms
[2021-05-11 14:02:43] [INFO ] Input system was already deterministic with 64 transitions.
Finished random walk after 5997 steps, including 0 resets, run visited all 86 properties in 22 ms. (steps per millisecond=272 )
Partial Post-agglomeration rule applied 1 times.
Drop transitions removed 1 transitions
Iterating global reduction 0 with 1 rules applied. Total rules applied 1 place count 38 transition count 64
Applied a total of 1 rules in 12 ms. Remains 38 /38 variables (removed 0) and now considering 64/64 (removed 0) transitions.
[2021-05-11 14:02:43] [INFO ] Flatten gal took : 6 ms
[2021-05-11 14:02:43] [INFO ] Flatten gal took : 5 ms
[2021-05-11 14:02:43] [INFO ] Input system was already deterministic with 64 transitions.
[2021-05-11 14:02:43] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:02:43] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:02:43] [INFO ] Time to serialize gal into /tmp/CTLFireability9882013813927186832.gal : 2 ms
[2021-05-11 14:02:43] [INFO ] Time to serialize properties into /tmp/CTLFireability9347449141874687938.ctl : 0 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability9882013813927186832.gal, -t, CGAL, -ctl, /tmp/CTLFireability9347449141874687938.ctl, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability9882013813927186832.gal -t CGAL -ctl /tmp/CTLFireability9347449141874687938.ctl --gen-order FOLLOW
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,0.990205,33420,2,11188,5,155361,6,0,219,155961,0


Converting to forward existential form...Done !
original formula: EF(AG((E(A((((((GStarP3>=1)&&(KdStar>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(KdStarG>=1))||(KdStarGStarP3>=1)) U ((DAGE>=1)||(PtP3P2>=1))) U E((((DAGE>=1)||(KdStarGStarPgStarP3P2>=1))||(KdStarG>=1)) U (((((((KdStarGStarP3kP3>=1)||((KdStarGStar>=1)&&(Pip3>=1)))||((GStarPgP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarG>=1))||((KdStar>=1)&&(Pg>=1))))) + (((((((AktP3<1)&&(PtP3<1))&&((KdStarGStarP3kStar<1)||(Pip2<1)))&&((GStarP3<1)||(KdStar<1)))&&((KdStarGStar<1)||(Pg<1)))&&((Pip3<1)||(Pten<1)))&&((KdStarGStarPgStarP3<1)||(Pip2<1))))))
=> equivalent forward existential formula: [(FwdU(Init,TRUE) * !(E(TRUE U !((E(!((E(!(((DAGE>=1)||(PtP3P2>=1))) U (!((((((GStarP3>=1)&&(KdStar>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(KdStarG>=1))||(KdStarGStarP3>=1))) * !(((DAGE>=1)||(PtP3P2>=1))))) + EG(!(((DAGE>=1)||(PtP3P2>=1)))))) U E((((DAGE>=1)||(KdStarGStarPgStarP3P2>=1))||(KdStarG>=1)) U (((((((KdStarGStarP3kP3>=1)||((KdStarGStar>=1)&&(Pip3>=1)))||((GStarPgP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarG>=1))||((KdStar>=1)&&(Pg>=1))))) + (((((((AktP3<1)&&(PtP3<1))&&((KdStarGStarP3kStar<1)||(Pip2<1)))&&((GStarP3<1)||(KdStar<1)))&&((KdStarGStar<1)||(Pg<1)))&&((Pip3<1)||(Pten<1)))&&((KdStarGStarPgStarP3<1)||(Pip2<1))))))))] != FALSE
Reverse transition relation is NOT exact ! Due to transitions t12, t24, t50, t56, t60, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/59/5/64
(forward)formula 0,1,26.8911,666300,1,0,475,4.23477e+06,169,278,1672,3.58259e+06,583
FORMULA Angiogenesis-PT-05-CTLFireability-03 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is TRUE !

***************************************

Partial Post-agglomeration rule applied 2 times.
Drop transitions removed 2 transitions
Iterating global reduction 0 with 2 rules applied. Total rules applied 2 place count 38 transition count 64
Applied a total of 2 rules in 4 ms. Remains 38 /38 variables (removed 0) and now considering 64/64 (removed 0) transitions.
[2021-05-11 14:03:10] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:03:10] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:03:10] [INFO ] Input system was already deterministic with 64 transitions.
[2021-05-11 14:03:10] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:03:10] [INFO ] Flatten gal took : 7 ms
[2021-05-11 14:03:10] [INFO ] Time to serialize gal into /tmp/CTLFireability15936090225652389152.gal : 1 ms
[2021-05-11 14:03:10] [INFO ] Time to serialize properties into /tmp/CTLFireability18395700549999431287.ctl : 0 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability15936090225652389152.gal, -t, CGAL, -ctl, /tmp/CTLFireability18395700549999431287.ctl, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability15936090225652389152.gal -t CGAL -ctl /tmp/CTLFireability18395700549999431287.ctl --gen-order FOLLOW
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,1.22997,42036,2,13683,5,194422,6,0,219,202741,0


Converting to forward existential form...Done !
original formula: AF(AG((EF((((((((((AktP3<1)&&((KdStarGStar<1)||(P3k<1)))&&(PtP3<1))&&(DAGE<1))&&(KdStarGStarP3kStarP3P2<1))&&((GP3<1)||(KdStar<1)))&&((Gab1<1)||(KdStar<1)))&&(KdStarG<1)) * AG(((GP3>=1)||((KdStar>=1)&&(Pg>=1)))))) + ((((((((((KdStarGStarP3k<1)&&(AktP3<1))&&(DAGE<1))&&(PtP2<1))&&(PtP3P2<1))&&((KdStarGStarPgStar<1)||(Pip2<1)))&&((Pip3<1)||(Pten<1)))&&((GStarP3<1)||(P3k<1)))&&((KdStarGStarPgStarP2>=1)||(KdStarPg>=1)))&&(((((((DAGE>=1)||(GP3>=1))||(KdStarG>=1))||(KdStarPgStarP2>=1))||((Akt>=1)&&(Pip3>=1)))||((Pip3>=1)&&(Pten>=1)))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))))))
=> equivalent forward existential formula: [FwdG(Init,!(!(E(TRUE U !((E(TRUE U (((((((((AktP3<1)&&((KdStarGStar<1)||(P3k<1)))&&(PtP3<1))&&(DAGE<1))&&(KdStarGStarP3kStarP3P2<1))&&((GP3<1)||(KdStar<1)))&&((Gab1<1)||(KdStar<1)))&&(KdStarG<1)) * !(E(TRUE U !(((GP3>=1)||((KdStar>=1)&&(Pg>=1)))))))) + ((((((((((KdStarGStarP3k<1)&&(AktP3<1))&&(DAGE<1))&&(PtP2<1))&&(PtP3P2<1))&&((KdStarGStarPgStar<1)||(Pip2<1)))&&((Pip3<1)||(Pten<1)))&&((GStarP3<1)||(P3k<1)))&&((KdStarGStarPgStarP2>=1)||(KdStarPg>=1)))&&(((((((DAGE>=1)||(GP3>=1))||(KdStarG>=1))||(KdStarPgStarP2>=1))||((Akt>=1)&&(Pip3>=1)))||((Pip3>=1)&&(Pten>=1)))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1))))))))))] = FALSE
Reverse transition relation is NOT exact ! Due to transitions t12, t24, t50, t56, t63, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/59/5/64
(forward)formula 0,0,8.63553,204520,1,0,83,1.0109e+06,156,57,1707,918732,146
FORMULA Angiogenesis-PT-05-CTLFireability-04 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

Applied a total of 0 rules in 2 ms. Remains 38 /38 variables (removed 0) and now considering 64/64 (removed 0) transitions.
[2021-05-11 14:03:19] [INFO ] Flatten gal took : 3 ms
[2021-05-11 14:03:19] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:03:19] [INFO ] Input system was already deterministic with 64 transitions.
[2021-05-11 14:03:19] [INFO ] Flatten gal took : 3 ms
[2021-05-11 14:03:19] [INFO ] Flatten gal took : 3 ms
[2021-05-11 14:03:19] [INFO ] Time to serialize gal into /tmp/CTLFireability17984489294694045358.gal : 1 ms
[2021-05-11 14:03:19] [INFO ] Time to serialize properties into /tmp/CTLFireability5548939250865149776.ctl : 1 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability17984489294694045358.gal, -t, CGAL, -ctl, /tmp/CTLFireability5548939250865149776.ctl, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability17984489294694045358.gal -t CGAL -ctl /tmp/CTLFireability5548939250865149776.ctl --gen-order FOLLOW
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,0.953527,35268,2,11096,5,168402,6,0,219,163574,0


Converting to forward existential form...Done !
original formula: EF(((AG(((((KdStarGStarPg<1)&&((Gab1<1)||(KdStar<1)))&&((((((((((((((KdStarGStarP3kP3>=1)||(PtP2>=1))||((DAG>=1)&&(Enz>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarGStarPgStarP2>=1))||((GP3>=1)&&(KdStar>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3k>=1))||(DAGE>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarPgStarP2>=1))) * E((((((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3kStarP3P2>=1))||(KdStarGStarPgP3>=1))||((Pip2>=1)&&(Pten>=1)))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1)) U ((((((((KdStarGStarP3kP3>=1)||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||(DAGE>=1))||(GP3>=1))||(GStarP3kP3>=1))||(KdStarG>=1))))) * AF(((((((KdStarGStarPg<1)&&((KdStarGStarP3<1)||(Pg<1)))&&(KdStarGStarPgStarP2<1))&&((KdStarGStarPgStarP3<1)||(Pip2<1)))||(((((((((GStarP3kP3<1)||(KdStar<1))&&(KdStarGStarP3kP3<1))&&(PtP3<1))&&((GStarP3<1)||(KdStar<1)))&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarG<1))&&((Gab1<1)||(Pip3<1))))&&((((((((KdStarGStarP3kP3>=1)||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(GP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarPg>=1))||((GStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))))) * ((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3>=1))||((Akt>=1)&&(Pip3>=1)))||((GP3>=1)&&(KdStar>=1)))))
=> equivalent forward existential formula: [(((FwdU(Init,TRUE) * ((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3>=1))||((Akt>=1)&&(Pip3>=1)))||((GP3>=1)&&(KdStar>=1)))) * !(E(TRUE U !(((((KdStarGStarPg<1)&&((Gab1<1)||(KdStar<1)))&&((((((((((((((KdStarGStarP3kP3>=1)||(PtP2>=1))||((DAG>=1)&&(Enz>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarGStarPgStarP2>=1))||((GP3>=1)&&(KdStar>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3k>=1))||(DAGE>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarPgStarP2>=1))) * E((((((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3kStarP3P2>=1))||(KdStarGStarPgP3>=1))||((Pip2>=1)&&(Pten>=1)))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1)) U ((((((((KdStarGStarP3kP3>=1)||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||(DAGE>=1))||(GP3>=1))||(GStarP3kP3>=1))||(KdStarG>=1)))))))) * !(EG(!(((((((KdStarGStarPg<1)&&((KdStarGStarP3<1)||(Pg<1)))&&(KdStarGStarPgStarP2<1))&&((KdStarGStarPgStarP3<1)||(Pip2<1)))||(((((((((GStarP3kP3<1)||(KdStar<1))&&(KdStarGStarP3kP3<1))&&(PtP3<1))&&((GStarP3<1)||(KdStar<1)))&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarG<1))&&((Gab1<1)||(Pip3<1))))&&((((((((KdStarGStarP3kP3>=1)||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(GP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarPg>=1))||((GStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1)))))))] != FALSE
Reverse transition relation is NOT exact ! Due to transitions t12, t24, t51, t57, t61, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/59/5/64
Detected timeout of ITS tools.
[2021-05-11 14:03:49] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:03:49] [INFO ] Applying decomposition
[2021-05-11 14:03:49] [INFO ] Flatten gal took : 4 ms
Converted graph to binary with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/convert-linux64, -i, /tmp/graph5795892336531665550.txt, -o, /tmp/graph5795892336531665550.bin, -w, /tmp/graph5795892336531665550.weights], workingDir=null]
Built communities with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/louvain-linux64, /tmp/graph5795892336531665550.bin, -l, -1, -v, -w, /tmp/graph5795892336531665550.weights, -q, 0, -e, 0.001], workingDir=null]
[2021-05-11 14:03:49] [INFO ] Decomposing Gal with order
[2021-05-11 14:03:49] [INFO ] Rewriting arrays to variables to allow decomposition.
[2021-05-11 14:03:49] [INFO ] Removed a total of 39 redundant transitions.
[2021-05-11 14:03:49] [INFO ] Flatten gal took : 65 ms
[2021-05-11 14:03:49] [INFO ] Fuse similar labels procedure discarded/fused a total of 6 labels/synchronizations in 3 ms.
[2021-05-11 14:03:49] [INFO ] Time to serialize gal into /tmp/CTLFireability13562220174217022498.gal : 2 ms
[2021-05-11 14:03:49] [INFO ] Time to serialize properties into /tmp/CTLFireability2744870517192873348.ctl : 1 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability13562220174217022498.gal, -t, CGAL, -ctl, /tmp/CTLFireability2744870517192873348.ctl], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability13562220174217022498.gal -t CGAL -ctl /tmp/CTLFireability2744870517192873348.ctl
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,4.39084,95156,2574,218,175598,3667,213,206135,41,22341,0


Converting to forward existential form...Done !
original formula: EF(((AG(((((i2.u9.KdStarGStarPg<1)&&((i0.u2.Gab1<1)||(i4.u8.KdStar<1)))&&((((((((((((((i4.u3.KdStarGStarP3kP3>=1)||(i6.u13.PtP2>=1))||((i1.u1.DAG>=1)&&(i1.u1.Enz>=1)))||(i6.u13.PtP3P2>=1))||((i4.u8.KdStarGStarP3>=1)&&(i5.u4.Pg>=1)))||((i4.u8.KdStarGStarP3>=1)&&(i4.u3.P3k>=1)))||(i2.u9.KdStarGStarPgStarP2>=1))||((i0.u2.GP3>=1)&&(i4.u8.KdStar>=1)))||(i1.u11.KdStarPgStarP2>=1))||(u6.KdStarGStarP3k>=1))||(i1.u1.DAGE>=1))||((i0.u0.Pip3>=1)&&(i6.u12.Pten>=1)))||(i1.u11.KdStarPg>=1))||(i1.u11.KdStarPgStarP2>=1))) * E((((((((u6.KdStarGStarP3kStarP2>=1)||(i4.u7.KdStarGStarP3kStarP3P2>=1))||(i5.u4.KdStarGStarPgP3>=1))||((i6.u13.Pip2>=1)&&(i6.u12.Pten>=1)))||((i4.u7.KdStarGStarP3kStarP3>=1)&&(i6.u13.Pip2>=1)))||((i0.u2.Gab1>=1)&&(i0.u0.Pip3>=1)))||(i1.u11.KdStarPgStarP2>=1)) U ((((((((i4.u3.KdStarGStarP3kP3>=1)||(i0.u0.AktP3>=1))||((i1.u11.KdStarPgStar>=1)&&(i6.u13.Pip2>=1)))||(i6.u12.PtP3>=1))||(i1.u1.DAGE>=1))||(i0.u2.GP3>=1))||(i4.u3.GStarP3kP3>=1))||(i2.u5.KdStarG>=1))))) * AF(((((((i2.u9.KdStarGStarPg<1)&&((i4.u8.KdStarGStarP3<1)||(i5.u4.Pg<1)))&&(i2.u9.KdStarGStarPgStarP2<1))&&((i5.u10.KdStarGStarPgStarP3<1)||(i6.u13.Pip2<1)))||(((((((((i4.u3.GStarP3kP3<1)||(i4.u8.KdStar<1))&&(i4.u3.KdStarGStarP3kP3<1))&&(i6.u12.PtP3<1))&&((i4.u3.GStarP3<1)||(i4.u8.KdStar<1)))&&(i5.u4.KdStarGStarPgP3<1))&&((i0.u0.Pip3<1)||(i6.u12.Pten<1)))&&(i2.u5.KdStarG<1))&&((i0.u2.Gab1<1)||(i0.u0.Pip3<1))))&&((((((((i4.u3.KdStarGStarP3kP3>=1)||((u6.KdStarGStarP3kStar>=1)&&(i6.u13.Pip2>=1)))||(i0.u2.GP3>=1))||(i2.u9.KdStarGStarPgStarP2>=1))||(i1.u11.KdStarPg>=1))||((i4.u3.GStarP3>=1)&&(i5.u4.Pg>=1)))||((i0.u2.Gab1>=1)&&(i0.u0.Pip3>=1)))||(i1.u11.KdStarPgStarP2>=1))))) * ((((u6.KdStarGStarP3kStarP2>=1)||(i4.u8.KdStarGStarP3>=1))||((i0.u0.Akt>=1)&&(i0.u0.Pip3>=1)))||((i0.u2.GP3>=1)&&(i4.u8.KdStar>=1)))))
=> equivalent forward existential formula: [(((FwdU(Init,TRUE) * ((((u6.KdStarGStarP3kStarP2>=1)||(i4.u8.KdStarGStarP3>=1))||((i0.u0.Akt>=1)&&(i0.u0.Pip3>=1)))||((i0.u2.GP3>=1)&&(i4.u8.KdStar>=1)))) * !(E(TRUE U !(((((i2.u9.KdStarGStarPg<1)&&((i0.u2.Gab1<1)||(i4.u8.KdStar<1)))&&((((((((((((((i4.u3.KdStarGStarP3kP3>=1)||(i6.u13.PtP2>=1))||((i1.u1.DAG>=1)&&(i1.u1.Enz>=1)))||(i6.u13.PtP3P2>=1))||((i4.u8.KdStarGStarP3>=1)&&(i5.u4.Pg>=1)))||((i4.u8.KdStarGStarP3>=1)&&(i4.u3.P3k>=1)))||(i2.u9.KdStarGStarPgStarP2>=1))||((i0.u2.GP3>=1)&&(i4.u8.KdStar>=1)))||(i1.u11.KdStarPgStarP2>=1))||(u6.KdStarGStarP3k>=1))||(i1.u1.DAGE>=1))||((i0.u0.Pip3>=1)&&(i6.u12.Pten>=1)))||(i1.u11.KdStarPg>=1))||(i1.u11.KdStarPgStarP2>=1))) * E((((((((u6.KdStarGStarP3kStarP2>=1)||(i4.u7.KdStarGStarP3kStarP3P2>=1))||(i5.u4.KdStarGStarPgP3>=1))||((i6.u13.Pip2>=1)&&(i6.u12.Pten>=1)))||((i4.u7.KdStarGStarP3kStarP3>=1)&&(i6.u13.Pip2>=1)))||((i0.u2.Gab1>=1)&&(i0.u0.Pip3>=1)))||(i1.u11.KdStarPgStarP2>=1)) U ((((((((i4.u3.KdStarGStarP3kP3>=1)||(i0.u0.AktP3>=1))||((i1.u11.KdStarPgStar>=1)&&(i6.u13.Pip2>=1)))||(i6.u12.PtP3>=1))||(i1.u1.DAGE>=1))||(i0.u2.GP3>=1))||(i4.u3.GStarP3kP3>=1))||(i2.u5.KdStarG>=1)))))))) * !(EG(!(((((((i2.u9.KdStarGStarPg<1)&&((i4.u8.KdStarGStarP3<1)||(i5.u4.Pg<1)))&&(i2.u9.KdStarGStarPgStarP2<1))&&((i5.u10.KdStarGStarPgStarP3<1)||(i6.u13.Pip2<1)))||(((((((((i4.u3.GStarP3kP3<1)||(i4.u8.KdStar<1))&&(i4.u3.KdStarGStarP3kP3<1))&&(i6.u12.PtP3<1))&&((i4.u3.GStarP3<1)||(i4.u8.KdStar<1)))&&(i5.u4.KdStarGStarPgP3<1))&&((i0.u0.Pip3<1)||(i6.u12.Pten<1)))&&(i2.u5.KdStarG<1))&&((i0.u2.Gab1<1)||(i0.u0.Pip3<1))))&&((((((((i4.u3.KdStarGStarP3kP3>=1)||((u6.KdStarGStarP3kStar>=1)&&(i6.u13.Pip2>=1)))||(i0.u2.GP3>=1))||(i2.u9.KdStarGStarPgStarP2>=1))||(i1.u11.KdStarPg>=1))||((i4.u3.GStarP3>=1)&&(i5.u4.Pg>=1)))||((i0.u2.Gab1>=1)&&(i0.u0.Pip3>=1)))||(i1.u11.KdStarPgStarP2>=1)))))))] != FALSE
Reverse transition relation is NOT exact ! Due to transitions i0.u0.t24, i2.u5.t12, i4.u8.t61, i6.t51, i6.u13.t57, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/56/5/61
Detected timeout of ITS tools.
Partial Post-agglomeration rule applied 1 times.
Drop transitions removed 1 transitions
Iterating global reduction 0 with 1 rules applied. Total rules applied 1 place count 38 transition count 64
Applied a total of 1 rules in 4 ms. Remains 38 /38 variables (removed 0) and now considering 64/64 (removed 0) transitions.
[2021-05-11 14:04:19] [INFO ] Flatten gal took : 3 ms
[2021-05-11 14:04:19] [INFO ] Flatten gal took : 3 ms
[2021-05-11 14:04:19] [INFO ] Input system was already deterministic with 64 transitions.
[2021-05-11 14:04:19] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:04:19] [INFO ] Flatten gal took : 4 ms
[2021-05-11 14:04:19] [INFO ] Time to serialize gal into /tmp/CTLFireability14201114582229959311.gal : 1 ms
[2021-05-11 14:04:19] [INFO ] Time to serialize properties into /tmp/CTLFireability1132081404458676401.ctl : 0 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability14201114582229959311.gal, -t, CGAL, -ctl, /tmp/CTLFireability1132081404458676401.ctl, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability14201114582229959311.gal -t CGAL -ctl /tmp/CTLFireability1132081404458676401.ctl --gen-order FOLLOW
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,1.27737,41784,2,13121,5,195389,6,0,219,202984,0


Converting to forward existential form...Done !
original formula: AF(((((((((((KdStarGStarP3kP3<1)&&(PtP3<1))&&(PtP2<1))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPgP3<1))&&(GStarPgP3<1))&&((KdStarGStarPg>=1)||(KdStarPgStarP2>=1)))&&(((((((((KdStarGStarP3k>=1)||(AktP3>=1))||(DAGE>=1))||(KdStarGStarP3kStarP3P2>=1))||(KdStarPgStarP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||((DAG>=1)&&(Enz>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||((KdStar>=1)&&(Pg>=1))))&&((KdStarPgStar<1)||(Pip2<1))) * (((PtP2>=1) + EF(((((((((AktP3>=1)||(KdStarGStarP3kP3>=1))||(PtP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||(DAGE>=1))||(KdStarGStarPgStarP2>=1))||((Gab1>=1)&&(Pip3>=1)))||(KdStarG>=1)))) + ((GStarP3>=1)&&(KdStar>=1)))))
=> equivalent forward existential formula: [FwdG(Init,!(((((((((((KdStarGStarP3kP3<1)&&(PtP3<1))&&(PtP2<1))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPgP3<1))&&(GStarPgP3<1))&&((KdStarGStarPg>=1)||(KdStarPgStarP2>=1)))&&(((((((((KdStarGStarP3k>=1)||(AktP3>=1))||(DAGE>=1))||(KdStarGStarP3kStarP3P2>=1))||(KdStarPgStarP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||((DAG>=1)&&(Enz>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||((KdStar>=1)&&(Pg>=1))))&&((KdStarPgStar<1)||(Pip2<1))) * (((PtP2>=1) + E(TRUE U ((((((((AktP3>=1)||(KdStarGStarP3kP3>=1))||(PtP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||(DAGE>=1))||(KdStarGStarPgStarP2>=1))||((Gab1>=1)&&(Pip3>=1)))||(KdStarG>=1)))) + ((GStarP3>=1)&&(KdStar>=1))))))] = FALSE
Reverse transition relation is NOT exact ! Due to transitions t12, t24, t51, t57, t63, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/59/5/64
Detected timeout of ITS tools.
[2021-05-11 14:04:49] [INFO ] Flatten gal took : 3 ms
[2021-05-11 14:04:49] [INFO ] Applying decomposition
[2021-05-11 14:04:49] [INFO ] Flatten gal took : 3 ms
Converted graph to binary with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/convert-linux64, -i, /tmp/graph15966868053175359958.txt, -o, /tmp/graph15966868053175359958.bin, -w, /tmp/graph15966868053175359958.weights], workingDir=null]
Built communities with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/louvain-linux64, /tmp/graph15966868053175359958.bin, -l, -1, -v, -w, /tmp/graph15966868053175359958.weights, -q, 0, -e, 0.001], workingDir=null]
[2021-05-11 14:04:49] [INFO ] Decomposing Gal with order
[2021-05-11 14:04:49] [INFO ] Rewriting arrays to variables to allow decomposition.
[2021-05-11 14:04:49] [INFO ] Removed a total of 35 redundant transitions.
[2021-05-11 14:04:49] [INFO ] Flatten gal took : 24 ms
[2021-05-11 14:04:49] [INFO ] Fuse similar labels procedure discarded/fused a total of 4 labels/synchronizations in 17 ms.
[2021-05-11 14:04:49] [INFO ] Time to serialize gal into /tmp/CTLFireability11678305859362044280.gal : 2 ms
[2021-05-11 14:04:49] [INFO ] Time to serialize properties into /tmp/CTLFireability6241117804476976067.ctl : 0 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability11678305859362044280.gal, -t, CGAL, -ctl, /tmp/CTLFireability6241117804476976067.ctl], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability11678305859362044280.gal -t CGAL -ctl /tmp/CTLFireability6241117804476976067.ctl
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,1.95421,50632,2488,383,67191,5092,210,222994,52,62031,0


Converting to forward existential form...Done !
original formula: AF(((((((((((i2.u5.KdStarGStarP3kP3<1)&&(i5.u12.PtP3<1))&&(i5.u11.PtP2<1))&&(i2.u7.KdStarGStarP3kStarP3P2<1))&&(i1.u4.KdStarGStarPgP3<1))&&(i1.u4.GStarPgP3<1))&&((i3.u8.KdStarGStarPg>=1)||(u10.KdStarPgStarP2>=1)))&&(((((((((i0.u6.KdStarGStarP3k>=1)||(i5.u0.AktP3>=1))||(i3.u1.DAGE>=1))||(i2.u7.KdStarGStarP3kStarP3P2>=1))||(u10.KdStarPgStarP2>=1))||((i0.u2.KdStarGStar>=1)&&(i2.u5.P3k>=1)))||((i3.u1.DAG>=1)&&(i3.u1.Enz>=1)))||((i0.u2.KdStarGStar>=1)&&(i1.u4.Pg>=1)))||((i2.u5.KdStar>=1)&&(i1.u4.Pg>=1))))&&((u10.KdStarPgStar<1)||(i5.u11.Pip2<1))) * (((i5.u11.PtP2>=1) + EF(((((((((i5.u0.AktP3>=1)||(i2.u5.KdStarGStarP3kP3>=1))||(i5.u11.PtP2>=1))||((i0.u2.KdStarGStar>=1)&&(i2.u5.P3k>=1)))||(i3.u1.DAGE>=1))||(i3.u8.KdStarGStarPgStarP2>=1))||((i0.u3.Gab1>=1)&&(i5.u0.Pip3>=1)))||(i0.u2.KdStarG>=1)))) + ((i2.u5.GStarP3>=1)&&(i2.u5.KdStar>=1)))))
=> equivalent forward existential formula: [FwdG(Init,!(((((((((((i2.u5.KdStarGStarP3kP3<1)&&(i5.u12.PtP3<1))&&(i5.u11.PtP2<1))&&(i2.u7.KdStarGStarP3kStarP3P2<1))&&(i1.u4.KdStarGStarPgP3<1))&&(i1.u4.GStarPgP3<1))&&((i3.u8.KdStarGStarPg>=1)||(u10.KdStarPgStarP2>=1)))&&(((((((((i0.u6.KdStarGStarP3k>=1)||(i5.u0.AktP3>=1))||(i3.u1.DAGE>=1))||(i2.u7.KdStarGStarP3kStarP3P2>=1))||(u10.KdStarPgStarP2>=1))||((i0.u2.KdStarGStar>=1)&&(i2.u5.P3k>=1)))||((i3.u1.DAG>=1)&&(i3.u1.Enz>=1)))||((i0.u2.KdStarGStar>=1)&&(i1.u4.Pg>=1)))||((i2.u5.KdStar>=1)&&(i1.u4.Pg>=1))))&&((u10.KdStarPgStar<1)||(i5.u11.Pip2<1))) * (((i5.u11.PtP2>=1) + E(TRUE U ((((((((i5.u0.AktP3>=1)||(i2.u5.KdStarGStarP3kP3>=1))||(i5.u11.PtP2>=1))||((i0.u2.KdStarGStar>=1)&&(i2.u5.P3k>=1)))||(i3.u1.DAGE>=1))||(i3.u8.KdStarGStarPgStarP2>=1))||((i0.u3.Gab1>=1)&&(i5.u0.Pip3>=1)))||(i0.u2.KdStarG>=1)))) + ((i2.u5.GStarP3>=1)&&(i2.u5.KdStar>=1))))))] = FALSE
Reverse transition relation is NOT exact ! Due to transitions t63, i0.u2.t12, i5.t51, i5.u0.t24, i5.u11.t57, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/57/5/62
Fast SCC detection found an SCC at level 1
Fast SCC detection found a local SCC at level 2
Fast SCC detection found an SCC at level 3
Fast SCC detection found an SCC at level 4
Fast SCC detection found an SCC at level 5
Detected timeout of ITS tools.
[2021-05-11 14:05:19] [INFO ] Flatten gal took : 6 ms
[2021-05-11 14:05:19] [INFO ] Flatten gal took : 5 ms
[2021-05-11 14:05:19] [INFO ] Applying decomposition
[2021-05-11 14:05:19] [INFO ] Flatten gal took : 5 ms
Converted graph to binary with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/convert-linux64, -i, /tmp/graph8134712060245812566.txt, -o, /tmp/graph8134712060245812566.bin, -w, /tmp/graph8134712060245812566.weights], workingDir=null]
Built communities with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202104292328/bin/louvain-linux64, /tmp/graph8134712060245812566.bin, -l, -1, -v, -w, /tmp/graph8134712060245812566.weights, -q, 0, -e, 0.001], workingDir=null]
[2021-05-11 14:05:19] [INFO ] Decomposing Gal with order
[2021-05-11 14:05:19] [INFO ] Rewriting arrays to variables to allow decomposition.
[2021-05-11 14:05:19] [INFO ] Removed a total of 39 redundant transitions.
[2021-05-11 14:05:19] [INFO ] Flatten gal took : 40 ms
[2021-05-11 14:05:19] [INFO ] Fuse similar labels procedure discarded/fused a total of 4 labels/synchronizations in 1 ms.
[2021-05-11 14:05:19] [INFO ] Time to serialize gal into /tmp/CTLFireability4223032353383367267.gal : 2 ms
[2021-05-11 14:05:19] [INFO ] Time to serialize properties into /tmp/CTLFireability4610049497393254548.ctl : 5 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability4223032353383367267.gal, -t, CGAL, -ctl, /tmp/CTLFireability4610049497393254548.ctl], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability4223032353383367267.gal -t CGAL -ctl /tmp/CTLFireability4610049497393254548.ctl
No direction supplied, using forward translation only.
Parsed 14 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,1.44652,39756,1669,219,45729,2808,212,205259,41,15603,0


Converting to forward existential form...Done !
original formula: E(((((AX(!(A(((i3.u8.KdStarGStarPgStarP3P2>=1)||(i1.u5.KdStarGStarP3kStarP2>=1)) U (((((i4.u12.PtP3>=1)||((i4.u10.Akt>=1)&&(i4.u10.Pip3>=1)))||(i2.u7.KdStarGStarPgStarP2>=1))||(i0.u4.KdStarGStarP3>=1))&&(((i0.u2.KdStarGStarP3kP3>=1)||(i4.u13.PtP3P2>=1))||((i0.u4.KdStar>=1)&&(i3.u11.Pg>=1))))))) + (i2.u0.DAGE>=1)) + (i3.u11.KdStarGStarPgP3>=1)) + ((i1.u1.GP3>=1)&&(i0.u4.KdStar>=1))) + ((i4.u10.Pip3>=1)&&(i4.u12.Pten>=1))) U !(EX((!(AX((i3.u11.KdStarGStarPgP3>=1))) * (!(AG((((i1.u5.KdStarGStarP3kStarP2>=1)||(i4.u12.PtP3>=1))||((i4.u10.Akt>=1)&&(i4.u10.Pip3>=1))))) + !(AX((((((i2.u7.KdStarGStarPg>=1)||(i1.u1.GP3>=1))||((i0.u4.KdStarGStarP3>=1)&&(i0.u2.P3k>=1)))||(i3.u8.KdStarGStarPgStarP3P2>=1))||(u9.KdStarPgStarP2>=1)))))))))
=> equivalent forward existential formula: [(FwdU(Init,((((!(EX(!(!(!((E(!((((((i4.u12.PtP3>=1)||((i4.u10.Akt>=1)&&(i4.u10.Pip3>=1)))||(i2.u7.KdStarGStarPgStarP2>=1))||(i0.u4.KdStarGStarP3>=1))&&(((i0.u2.KdStarGStarP3kP3>=1)||(i4.u13.PtP3P2>=1))||((i0.u4.KdStar>=1)&&(i3.u11.Pg>=1))))) U (!(((i3.u8.KdStarGStarPgStarP3P2>=1)||(i1.u5.KdStarGStarP3kStarP2>=1))) * !((((((i4.u12.PtP3>=1)||((i4.u10.Akt>=1)&&(i4.u10.Pip3>=1)))||(i2.u7.KdStarGStarPgStarP2>=1))||(i0.u4.KdStarGStarP3>=1))&&(((i0.u2.KdStarGStarP3kP3>=1)||(i4.u13.PtP3P2>=1))||((i0.u4.KdStar>=1)&&(i3.u11.Pg>=1))))))) + EG(!((((((i4.u12.PtP3>=1)||((i4.u10.Akt>=1)&&(i4.u10.Pip3>=1)))||(i2.u7.KdStarGStarPgStarP2>=1))||(i0.u4.KdStarGStarP3>=1))&&(((i0.u2.KdStarGStarP3kP3>=1)||(i4.u13.PtP3P2>=1))||((i0.u4.KdStar>=1)&&(i3.u11.Pg>=1)))))))))))) + (i2.u0.DAGE>=1)) + (i3.u11.KdStarGStarPgP3>=1)) + ((i1.u1.GP3>=1)&&(i0.u4.KdStar>=1))) + ((i4.u10.Pip3>=1)&&(i4.u12.Pten>=1)))) * !(EX((!(!(EX(!((i3.u11.KdStarGStarPgP3>=1))))) * (!(!(E(TRUE U !((((i1.u5.KdStarGStarP3kStarP2>=1)||(i4.u12.PtP3>=1))||((i4.u10.Akt>=1)&&(i4.u10.Pip3>=1))))))) + !(!(EX(!((((((i2.u7.KdStarGStarPg>=1)||(i1.u1.GP3>=1))||((i0.u4.KdStarGStarP3>=1)&&(i0.u2.P3k>=1)))||(i3.u8.KdStarGStarPgStarP3P2>=1))||(u9.KdStarPgStarP2>=1)))))))))))] != FALSE
Reverse transition relation is NOT exact ! Due to transitions i0.u4.t61, i1.u3.t12, i4.t51, i4.u10.t24, i4.u13.t57, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/57/5/62
ITS-tools command line returned an error code 139
[2021-05-11 14:14:56] [INFO ] Flatten gal took : 6 ms
[2021-05-11 14:14:56] [INFO ] Time to serialize gal into /tmp/CTLFireability6266312663724803433.gal : 1 ms
[2021-05-11 14:14:56] [INFO ] Time to serialize properties into /tmp/CTLFireability14118927611937519327.ctl : 3 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability6266312663724803433.gal, -t, CGAL, -ctl, /tmp/CTLFireability14118927611937519327.ctl, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability6266312663724803433.gal -t CGAL -ctl /tmp/CTLFireability14118927611937519327.ctl --gen-order FOLLOW
No direction supplied, using forward translation only.
Parsed 14 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,0.987822,35428,2,11096,5,168402,6,0,219,163574,0


Converting to forward existential form...Done !
original formula: E(((((AX(!(A(((KdStarGStarPgStarP3P2>=1)||(KdStarGStarP3kStarP2>=1)) U (((((PtP3>=1)||((Akt>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarP3>=1))&&(((KdStarGStarP3kP3>=1)||(PtP3P2>=1))||((KdStar>=1)&&(Pg>=1))))))) + (DAGE>=1)) + (KdStarGStarPgP3>=1)) + ((GP3>=1)&&(KdStar>=1))) + ((Pip3>=1)&&(Pten>=1))) U !(EX((!(AX((KdStarGStarPgP3>=1))) * (!(AG((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||((Akt>=1)&&(Pip3>=1))))) + !(AX((((((KdStarGStarPg>=1)||(GP3>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarGStarPgStarP3P2>=1))||(KdStarPgStarP2>=1)))))))))
=> equivalent forward existential formula: [(FwdU(Init,((((!(EX(!(!(!((E(!((((((PtP3>=1)||((Akt>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarP3>=1))&&(((KdStarGStarP3kP3>=1)||(PtP3P2>=1))||((KdStar>=1)&&(Pg>=1))))) U (!(((KdStarGStarPgStarP3P2>=1)||(KdStarGStarP3kStarP2>=1))) * !((((((PtP3>=1)||((Akt>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarP3>=1))&&(((KdStarGStarP3kP3>=1)||(PtP3P2>=1))||((KdStar>=1)&&(Pg>=1))))))) + EG(!((((((PtP3>=1)||((Akt>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarP3>=1))&&(((KdStarGStarP3kP3>=1)||(PtP3P2>=1))||((KdStar>=1)&&(Pg>=1)))))))))))) + (DAGE>=1)) + (KdStarGStarPgP3>=1)) + ((GP3>=1)&&(KdStar>=1))) + ((Pip3>=1)&&(Pten>=1)))) * !(EX((!(!(EX(!((KdStarGStarPgP3>=1))))) * (!(!(E(TRUE U !((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||((Akt>=1)&&(Pip3>=1))))))) + !(!(EX(!((((((KdStarGStarPg>=1)||(GP3>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarGStarPgStarP3P2>=1))||(KdStarPgStarP2>=1)))))))))))] != FALSE
Reverse transition relation is NOT exact ! Due to transitions t12, t24, t51, t57, t61, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/59/5/64
(forward)formula 0,1,282.568,2565436,1,0,367,1.38454e+07,12,201,763,1.85565e+07,81
FORMULA Angiogenesis-PT-05-CTLFireability-00 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is TRUE !

***************************************

original formula: ((EF(((((KdStarGStarPgP3>=1)||(KdStarGStarPgStarP3P2>=1))||(KdStarG>=1))||(KdStarGStarP3>=1))) * AX(AG(EF(((((((((((KdStarGStarP3kP3<1)&&((Pip2<1)||(Pten<1)))&&((KdStarGStarP3<1)||(Pg<1)))&&(GStarP3kP3<1))&&((KdStarGStar<1)||(Pg<1)))&&(KdStarG<1))&&(KdStarPg<1))&&((KdStarGStarPgStarP3<1)||(Pip2<1)))&&(KdStarPgStarP2<1))&&((GStarP3<1)||(P3k<1))))))) * EX(AX(((((A(((((((KdStarGStarP3kP3<1)&&(PtP3<1))&&(GP3<1))&&(KdStarGStarPgStarP2<1))&&((KdStarGStar<1)||(Pg<1)))&&((GStarP3<1)||(Pg<1))) U ((((KdStarGStarP3kStarP2<1)&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarPg<1))) + ((((((KdStarGStarPgStar<1)||(Pip2<1))&&(KdStarGStarP3kP3<1))&&((KdStarGStarP3<1)||(Pg<1)))&&(KdStarGStarPgStarP2<1))&&(KdStarG<1))) + AG((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((GStarP3kP3>=1)&&(KdStar>=1)))||((GStarP3>=1)&&(KdStar>=1)))||((KdStarGStar>=1)&&(Pip3>=1)))||((Akt>=1)&&(Pip3>=1)))||((KdStarGStarP3>=1)&&(P3k>=1))))) + (GStarPgP3>=1)) + ((((((KdStarGStarP3kStar<1)||(Pip2<1))&&((DAG<1)||(Enz<1)))&&(KdStarGStarPgStarP2<1))&&(KdStarG<1))&&((GStarP3<1)||(P3k<1)))))))
=> equivalent forward existential formula: (([(Init * !(E(TRUE U ((((KdStarGStarPgP3>=1)||(KdStarGStarPgStarP3P2>=1))||(KdStarG>=1))||(KdStarGStarP3>=1)))))] = FALSE * [(FwdU(EY(Init),TRUE) * !(E(TRUE U ((((((((((KdStarGStarP3kP3<1)&&((Pip2<1)||(Pten<1)))&&((KdStarGStarP3<1)||(Pg<1)))&&(GStarP3kP3<1))&&((KdStarGStar<1)||(Pg<1)))&&(KdStarG<1))&&(KdStarPg<1))&&((KdStarGStarPgStarP3<1)||(Pip2<1)))&&(KdStarPgStarP2<1))&&((GStarP3<1)||(P3k<1))))))] = FALSE) * [(Init * !(EX(!(EX(!(((((!((E(!(((((KdStarGStarP3kStarP2<1)&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarPg<1))) U (!(((((((KdStarGStarP3kP3<1)&&(PtP3<1))&&(GP3<1))&&(KdStarGStarPgStarP2<1))&&((KdStarGStar<1)||(Pg<1)))&&((GStarP3<1)||(Pg<1)))) * !(((((KdStarGStarP3kStarP2<1)&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarPg<1))))) + EG(!(((((KdStarGStarP3kStarP2<1)&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarPg<1)))))) + ((((((KdStarGStarPgStar<1)||(Pip2<1))&&(KdStarGStarP3kP3<1))&&((KdStarGStarP3<1)||(Pg<1)))&&(KdStarGStarPgStarP2<1))&&(KdStarG<1))) + !(E(TRUE U !((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((GStarP3kP3>=1)&&(KdStar>=1)))||((GStarP3>=1)&&(KdStar>=1)))||((KdStarGStar>=1)&&(Pip3>=1)))||((Akt>=1)&&(Pip3>=1)))||((KdStarGStarP3>=1)&&(P3k>=1))))))) + (GStarPgP3>=1)) + ((((((KdStarGStarP3kStar<1)||(Pip2<1))&&((DAG<1)||(Enz<1)))&&(KdStarGStarPgStarP2<1))&&(KdStarG<1))&&((GStarP3<1)||(P3k<1))))))))))] = FALSE)
(forward)formula 1,0,303.616,2565436,1,0,367,1.38454e+07,37,201,1063,1.85565e+07,178
FORMULA Angiogenesis-PT-05-CTLFireability-01 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

original formula: (EG(EX(EF((((((KdStarGStar>=1)&&(P3k>=1))||(KdStarGStarP3kStarP3P2>=1))||((GStarP3>=1)&&(Pg>=1)))||(KdStarGStarP3>=1))))) * (EG((((((AktP3>=1)||(PtP3>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP3P2>=1))||((GStarP3>=1)&&(P3k>=1)))) + EF(AX(AG((((((((((AktP3<1)&&(KdStarGStarP3kStarP2<1))&&(PtP3<1))&&((KdStarGStar<1)||(P3k<1)))&&(KdStarGStarP3kStarP3P2<1))&&(GP3<1))&&(GStarP3kP3<1))&&(KdStarGStarPgStarP2<1))&&(KdStarPgStarP2<1)))))))
=> equivalent forward existential formula: ([FwdG((Init * EG(EX(E(TRUE U (((((KdStarGStar>=1)&&(P3k>=1))||(KdStarGStarP3kStarP3P2>=1))||((GStarP3>=1)&&(Pg>=1)))||(KdStarGStarP3>=1)))))),(((((AktP3>=1)||(PtP3>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP3P2>=1))||((GStarP3>=1)&&(P3k>=1))))] != FALSE + [(FwdU((Init * EG(EX(E(TRUE U (((((KdStarGStar>=1)&&(P3k>=1))||(KdStarGStarP3kStarP3P2>=1))||((GStarP3>=1)&&(Pg>=1)))||(KdStarGStarP3>=1)))))),TRUE) * !(EX(!(!(E(TRUE U !((((((((((AktP3<1)&&(KdStarGStarP3kStarP2<1))&&(PtP3<1))&&((KdStarGStar<1)||(P3k<1)))&&(KdStarGStarP3kStarP3P2<1))&&(GP3<1))&&(GStarP3kP3<1))&&(KdStarGStarPgStarP2<1))&&(KdStarPgStarP2<1)))))))))] != FALSE)
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
(forward)formula 2,1,306.625,2565436,1,0,367,1.38454e+07,54,201,1126,1.85565e+07,205
FORMULA Angiogenesis-PT-05-CTLFireability-02 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is TRUE !

***************************************

original formula: (E((((((PtP2>=1)||(KdStarGStarPgStarP2>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||((Gab1>=1)&&(KdStar>=1)))&&((((((PtP3>=1)||((KdStarGStar>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(KdStar>=1)))||(KdStarGStarPg>=1))||(KdStarPg>=1))||((GStarP3>=1)&&(P3k>=1)))) U A(!(EF((((((((((GStarP3kP3>=1)&&(KdStar>=1))||(PtP3>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(KdStarGStarPgStarP2>=1))||((GP3>=1)&&(KdStar>=1)))||(KdStarGP3>=1))||(KdStarGStarP3>=1)))) U (EF((((KdStarGStarP3kStarP3>=1)&&(Pip2>=1))&&(((PtP3>=1)||(KdStarGStarPgP3>=1))||(KdStarPgStarP2>=1)))) + A((((((((((DAGE>=1)||(KdStarGStarPg>=1))||(PtP3P2>=1))||((Pip2>=1)&&(Pten>=1)))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarGStarP3>=1))&&(((((((KdStarGStarP3kP3>=1)||(DAGE>=1))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||(GStarP3kP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))) U AX(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1))))))) * AX((((((((((((KdStarGStarP3kP3>=1)||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||((GStarP3>=1)&&(KdStar>=1)))||(PtP3P2>=1))||((DAG>=1)&&(Enz>=1)))||((Pip2>=1)&&(Pten>=1)))||((Gab1>=1)&&(KdStar>=1)))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(((GStarPgP3<1)||(KdStar<1))&&(KdStarG<1)))))
=> equivalent forward existential formula: ([(Init * !(E((((((PtP2>=1)||(KdStarGStarPgStarP2>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||((Gab1>=1)&&(KdStar>=1)))&&((((((PtP3>=1)||((KdStarGStar>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(KdStar>=1)))||(KdStarGStarPg>=1))||(KdStarPg>=1))||((GStarP3>=1)&&(P3k>=1)))) U !((E(!((E(TRUE U (((KdStarGStarP3kStarP3>=1)&&(Pip2>=1))&&(((PtP3>=1)||(KdStarGStarPgP3>=1))||(KdStarPgStarP2>=1)))) + !((E(!(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1)))))) U (!((((((((((DAGE>=1)||(KdStarGStarPg>=1))||(PtP3P2>=1))||((Pip2>=1)&&(Pten>=1)))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarGStarP3>=1))&&(((((((KdStarGStarP3kP3>=1)||(DAGE>=1))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||(GStarP3kP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1)))) * !(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1)))))))) + EG(!(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1))))))))))) U (!(!(E(TRUE U (((((((((GStarP3kP3>=1)&&(KdStar>=1))||(PtP3>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(KdStarGStarPgStarP2>=1))||((GP3>=1)&&(KdStar>=1)))||(KdStarGP3>=1))||(KdStarGStarP3>=1))))) * !((E(TRUE U (((KdStarGStarP3kStarP3>=1)&&(Pip2>=1))&&(((PtP3>=1)||(KdStarGStarPgP3>=1))||(KdStarPgStarP2>=1)))) + !((E(!(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1)))))) U (!((((((((((DAGE>=1)||(KdStarGStarPg>=1))||(PtP3P2>=1))||((Pip2>=1)&&(Pten>=1)))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarGStarP3>=1))&&(((((((KdStarGStarP3kP3>=1)||(DAGE>=1))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||(GStarP3kP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1)))) * !(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1)))))))) + EG(!(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1))))))))))))) + EG(!((E(TRUE U (((KdStarGStarP3kStarP3>=1)&&(Pip2>=1))&&(((PtP3>=1)||(KdStarGStarPgP3>=1))||(KdStarPgStarP2>=1)))) + !((E(!(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1)))))) U (!((((((((((DAGE>=1)||(KdStarGStarPg>=1))||(PtP3P2>=1))||((Pip2>=1)&&(Pten>=1)))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarGStarP3>=1))&&(((((((KdStarGStarP3kP3>=1)||(DAGE>=1))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||(GStarP3kP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1)))) * !(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1)))))))) + EG(!(!(EX(!(((KdStarGStarP3k>=1)||(KdStarGStarPgP3>=1)))))))))))))))))] = FALSE * [(EY(Init) * !((((((((((((KdStarGStarP3kP3>=1)||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||((GStarP3>=1)&&(KdStar>=1)))||(PtP3P2>=1))||((DAG>=1)&&(Enz>=1)))||((Pip2>=1)&&(Pten>=1)))||((Gab1>=1)&&(KdStar>=1)))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(((GStarPgP3<1)||(KdStar<1))&&(KdStarG<1)))))] = FALSE)
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
(forward)formula 3,1,317.657,2565436,1,0,367,1.38454e+07,72,201,1204,1.85565e+07,306
FORMULA Angiogenesis-PT-05-CTLFireability-05 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is TRUE !

***************************************

original formula: (A((KdStarGStarPg<1) U EG((E(((((((KdStarGStarP3k<1)&&(KdStarGStarP3kStarP3P2<1))&&((GP3<1)||(KdStar<1)))&&(KdStarGStarPgStarP3P2<1))&&((Pip3<1)||(PtP2<1)))&&(KdStarPgStarP2<1)) U AG(((((((((((GStarP3kP3>=1)&&(KdStar>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(PtP3>=1))||(KdStarGStarP3kStarP3P2>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP3P2>=1))||(KdStarPg>=1))||(KdStarPgStarP2>=1)))) * A((KdStarGStarP3kP3<1) U E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1))))))) * E(A(AX((((((((((KdStarGStarP3k>=1)||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(KdStarGStarPgP3>=1))||(PtP3P2>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(PtP2>=1)))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1)))&&(((((((((((((((AktP3>=1)||(KdStarGStarP3kStarP2>=1))||(PtP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarG>=1))||((GStarP3>=1)&&(Pg>=1)))||(KdStarGP3>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(PtP3>=1))||((DAG>=1)&&(Enz>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||(GStarPgP3>=1))||((Gab1>=1)&&(KdStar>=1)))||((KdStarGStar>=1)&&(Pg>=1))))) U !(AF(((((((GStarP3>=1)&&(KdStar>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))))) U ((((KdStarGStar>=1)&&(P3k>=1))||((Pip3>=1)&&(Pten>=1)))||((Gab1>=1)&&(Pip3>=1)))))
=> equivalent forward existential formula: [(FwdU((Init * !((E(!(EG((E(((((((KdStarGStarP3k<1)&&(KdStarGStarP3kStarP3P2<1))&&((GP3<1)||(KdStar<1)))&&(KdStarGStarPgStarP3P2<1))&&((Pip3<1)||(PtP2<1)))&&(KdStarPgStarP2<1)) U !(E(TRUE U !(((((((((((GStarP3kP3>=1)&&(KdStar>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(PtP3>=1))||(KdStarGStarP3kStarP3P2>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP3P2>=1))||(KdStarPg>=1))||(KdStarPgStarP2>=1)))))) * !((E(!(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))) U (!((KdStarGStarP3kP3<1)) * !(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))))) + EG(!(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))))))))) U (!((KdStarGStarPg<1)) * !(EG((E(((((((KdStarGStarP3k<1)&&(KdStarGStarP3kStarP3P2<1))&&((GP3<1)||(KdStar<1)))&&(KdStarGStarPgStarP3P2<1))&&((Pip3<1)||(PtP2<1)))&&(KdStarPgStarP2<1)) U !(E(TRUE U !(((((((((((GStarP3kP3>=1)&&(KdStar>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(PtP3>=1))||(KdStarGStarP3kStarP3P2>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP3P2>=1))||(KdStarPg>=1))||(KdStarPgStarP2>=1)))))) * !((E(!(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))) U (!((KdStarGStarP3kP3<1)) * !(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))))) + EG(!(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))))))))))) + EG(!(EG((E(((((((KdStarGStarP3k<1)&&(KdStarGStarP3kStarP3P2<1))&&((GP3<1)||(KdStar<1)))&&(KdStarGStarPgStarP3P2<1))&&((Pip3<1)||(PtP2<1)))&&(KdStarPgStarP2<1)) U !(E(TRUE U !(((((((((((GStarP3kP3>=1)&&(KdStar>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(PtP3>=1))||(KdStarGStarP3kStarP3P2>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP3P2>=1))||(KdStarPg>=1))||(KdStarPgStarP2>=1)))))) * !((E(!(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))) U (!((KdStarGStarP3kP3<1)) * !(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))))) + EG(!(E(((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(DAGE>=1))||((KdStarGStar>=1)&&(Pip3>=1)))||(KdStarGStarPg>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))||(KdStarG>=1)) U ((((((KdStarGStarP3kStar>=1)&&(Pip2>=1))||(PtP2>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3>=1)))))))))))))),!((E(!(!(!(EG(!(((((((GStarP3>=1)&&(KdStar>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))))))) U (!(!(EX(!((((((((((KdStarGStarP3k>=1)||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(KdStarGStarPgP3>=1))||(PtP3P2>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(PtP2>=1)))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1)))&&(((((((((((((((AktP3>=1)||(KdStarGStarP3kStarP2>=1))||(PtP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarG>=1))||((GStarP3>=1)&&(Pg>=1)))||(KdStarGP3>=1))||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(PtP3>=1))||((DAG>=1)&&(Enz>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||(GStarPgP3>=1))||((Gab1>=1)&&(KdStar>=1)))||((KdStarGStar>=1)&&(Pg>=1)))))))) * !(!(!(EG(!(((((((GStarP3>=1)&&(KdStar>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))))))))) + EG(!(!(!(EG(!(((((((GStarP3>=1)&&(KdStar>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))))))))))) * ((((KdStarGStar>=1)&&(P3k>=1))||((Pip3>=1)&&(Pten>=1)))||((Gab1>=1)&&(Pip3>=1))))] != FALSE
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
(forward)formula 4,0,396.364,2834420,1,0,590,1.54734e+07,52,351,1023,1.91705e+07,693
FORMULA Angiogenesis-PT-05-CTLFireability-06 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

original formula: EG(!(EX(EF(EG((KdStarGStarPgStarP3P2>=1))))))
=> equivalent forward existential formula: [FwdG(Init,!(EX(E(TRUE U EG((KdStarGStarPgStarP3P2>=1))))))] != FALSE
(forward)formula 5,0,399.338,2834420,1,0,606,1.54734e+07,62,364,1025,1.91705e+07,725
FORMULA Angiogenesis-PT-05-CTLFireability-07 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

original formula: EF(((AG(((((KdStarGStarPg<1)&&((Gab1<1)||(KdStar<1)))&&((((((((((((((KdStarGStarP3kP3>=1)||(PtP2>=1))||((DAG>=1)&&(Enz>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarGStarPgStarP2>=1))||((GP3>=1)&&(KdStar>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3k>=1))||(DAGE>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarPgStarP2>=1))) * E((((((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3kStarP3P2>=1))||(KdStarGStarPgP3>=1))||((Pip2>=1)&&(Pten>=1)))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1)) U ((((((((KdStarGStarP3kP3>=1)||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||(DAGE>=1))||(GP3>=1))||(GStarP3kP3>=1))||(KdStarG>=1))))) * AF(((((((KdStarGStarPg<1)&&((KdStarGStarP3<1)||(Pg<1)))&&(KdStarGStarPgStarP2<1))&&((KdStarGStarPgStarP3<1)||(Pip2<1)))||(((((((((GStarP3kP3<1)||(KdStar<1))&&(KdStarGStarP3kP3<1))&&(PtP3<1))&&((GStarP3<1)||(KdStar<1)))&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarG<1))&&((Gab1<1)||(Pip3<1))))&&((((((((KdStarGStarP3kP3>=1)||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(GP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarPg>=1))||((GStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))))) * ((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3>=1))||((Akt>=1)&&(Pip3>=1)))||((GP3>=1)&&(KdStar>=1)))))
=> equivalent forward existential formula: [(((FwdU(Init,TRUE) * ((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3>=1))||((Akt>=1)&&(Pip3>=1)))||((GP3>=1)&&(KdStar>=1)))) * !(E(TRUE U !(((((KdStarGStarPg<1)&&((Gab1<1)||(KdStar<1)))&&((((((((((((((KdStarGStarP3kP3>=1)||(PtP2>=1))||((DAG>=1)&&(Enz>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarGStarPgStarP2>=1))||((GP3>=1)&&(KdStar>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3k>=1))||(DAGE>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarPg>=1))||(KdStarPgStarP2>=1))) * E((((((((KdStarGStarP3kStarP2>=1)||(KdStarGStarP3kStarP3P2>=1))||(KdStarGStarPgP3>=1))||((Pip2>=1)&&(Pten>=1)))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1)) U ((((((((KdStarGStarP3kP3>=1)||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||(DAGE>=1))||(GP3>=1))||(GStarP3kP3>=1))||(KdStarG>=1)))))))) * !(EG(!(((((((KdStarGStarPg<1)&&((KdStarGStarP3<1)||(Pg<1)))&&(KdStarGStarPgStarP2<1))&&((KdStarGStarPgStarP3<1)||(Pip2<1)))||(((((((((GStarP3kP3<1)||(KdStar<1))&&(KdStarGStarP3kP3<1))&&(PtP3<1))&&((GStarP3<1)||(KdStar<1)))&&(KdStarGStarPgP3<1))&&((Pip3<1)||(Pten<1)))&&(KdStarG<1))&&((Gab1<1)||(Pip3<1))))&&((((((((KdStarGStarP3kP3>=1)||((KdStarGStarP3kStar>=1)&&(Pip2>=1)))||(GP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarPg>=1))||((GStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1)))))))] != FALSE
(forward)formula 6,0,626.988,4949112,1,0,1021,3.15212e+07,22,572,945,3.07933e+07,60
FORMULA Angiogenesis-PT-05-CTLFireability-08 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

original formula: AF(!(E(((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(DAGE>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1)) U !(EF(AX((KdStarGStarP3kStarP2>=1)))))))
=> equivalent forward existential formula: [FwdG(Init,!(!(E(((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(DAGE>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1)) U !(E(TRUE U !(EX(!((KdStarGStarP3kStarP2>=1))))))))))] = FALSE
(forward)formula 7,1,633.354,4949112,1,0,1021,3.15212e+07,33,572,953,3.07933e+07,98
FORMULA Angiogenesis-PT-05-CTLFireability-09 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is TRUE !

***************************************

original formula: EX(AG(EF((((((AktP3>=1)||(KdStarPg>=1)) + AF((KdStarGStarPgStarP3P2>=1))) + ((KdStarGStarP3>=1)&&(P3k>=1))) + ((GStarP3>=1)&&(P3k>=1))))))
=> equivalent forward existential formula: [(EY(Init) * !(E(TRUE U !(E(TRUE U (((((AktP3>=1)||(KdStarPg>=1)) + !(EG(!((KdStarGStarPgStarP3P2>=1))))) + ((KdStarGStarP3>=1)&&(P3k>=1))) + ((GStarP3>=1)&&(P3k>=1))))))))] != FALSE
(forward)formula 8,0,674.641,4949112,1,0,1021,3.15212e+07,42,572,1028,3.07933e+07,619
FORMULA Angiogenesis-PT-05-CTLFireability-10 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

original formula: ((A(((((((((((((PtP2>=1)||((Akt>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarP3kP3>=1))||(AktP3>=1))||(PtP3P2>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(GStarP3kP3>=1))||((Gab1>=1)&&(Pip3>=1)))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1))) U ((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))) + !(EF(EG((((KdStarGStar>=1)&&(Pip3>=1))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1))))))) + (!(EF(((((((((((((((((KdStarGStarP3k<1)&&(KdStarGStarP3kP3<1))&&((KdStarGStar<1)||(P3k<1)))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPg<1))&&(GP3<1))&&((KdStarGStarP3<1)||(P3k<1)))&&((Gab1<1)||(KdStar<1)))&&(KdStarG<1))||((GStarP3>=1)&&(KdStar>=1)))||(KdStarGStarPg>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarGStarPgP3>=1))||((GStarPgP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStar>=1)&&(Pg>=1))))) * !(AX(((((Gab1>=1)&&(Pip3>=1))||(KdStarPgStarP2>=1)) + AX((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(KdStarGStarP3kP3>=1))||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))))))))
=> equivalent forward existential formula: ([(FwdU((Init * !((!((E(!(((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))) U (!(((((((((((((PtP2>=1)||((Akt>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarP3kP3>=1))||(AktP3>=1))||(PtP3P2>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(GStarP3kP3>=1))||((Gab1>=1)&&(Pip3>=1)))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1)))) * !(((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))))) + EG(!(((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1)))))) + !(E(TRUE U EG((((KdStarGStar>=1)&&(Pip3>=1))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1))))))))),TRUE) * ((((((((((((((((KdStarGStarP3k<1)&&(KdStarGStarP3kP3<1))&&((KdStarGStar<1)||(P3k<1)))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPg<1))&&(GP3<1))&&((KdStarGStarP3<1)||(P3k<1)))&&((Gab1<1)||(KdStar<1)))&&(KdStarG<1))||((GStarP3>=1)&&(KdStar>=1)))||(KdStarGStarPg>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarGStarPgP3>=1))||((GStarPgP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStar>=1)&&(Pg>=1))))] = FALSE * [((Init * !((!((E(!(((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))) U (!(((((((((((((PtP2>=1)||((Akt>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarP3kP3>=1))||(AktP3>=1))||(PtP3P2>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(GStarP3kP3>=1))||((Gab1>=1)&&(Pip3>=1)))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1)))) * !(((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1))))) + EG(!(((((KdStarGStarP3kStarP2>=1)||(PtP3>=1))||(KdStarGStarPgStarP3P2>=1))||(KdStarGP3>=1)))))) + !(E(TRUE U EG((((KdStarGStar>=1)&&(Pip3>=1))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1))))))))) * !(EX(!(((((Gab1>=1)&&(Pip3>=1))||(KdStarPgStarP2>=1)) + !(EX(!((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(KdStarGStarP3kP3>=1))||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))))))))))] = FALSE)
(forward)formula 9,0,790.319,5275732,1,0,1083,3.44274e+07,60,576,1077,3.23449e+07,1189
FORMULA Angiogenesis-PT-05-CTLFireability-11 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

original formula: A((((((AktP3<1)&&(KdStarG<1)) * EF(((((((((KdStarGStarPgStar<1)||(Pip2<1))&&(DAGE<1))&&((GStarP3<1)||(KdStar<1)))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPgStarP2<1))&&(KdStarGP3<1))&&(KdStarPgStarP2<1)))) * A((((DAGE>=1)||(KdStarGStarP3kStarP3P2>=1))&&((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||((GStarP3>=1)&&(KdStar>=1)))||(GStarP3kP3>=1))||(GStarPgP3>=1))||(KdStarGStarPgStarP3P2>=1))) U ((((((((((KdStarGStarP3kP3>=1)||(KdStarGStarPgP3>=1))||(GP3>=1))||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarG>=1))||(KdStarGP3>=1))||(KdStarGStarP3>=1))||((DAG>=1)&&(Enz>=1))))) * ((GStarP3<1)||(P3k<1))) U (((AF(EX(((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))) + AF((AG((((((DAGE>=1)||(KdStarGStarPg>=1))||(KdStarPg>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))) + (((KdStarGStarP3kStarP2<1)&&((Akt<1)||(Pip3<1))) * AG(((((((KdStarGStarP3k>=1)||(KdStarGStarP3kStarP2>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(Pg>=1)))))))) + EG((((((((((((((((KdStarGStarP3k<1)&&((KdStarGStarPgStar<1)||(Pip2<1)))&&(KdStarGStarP3kStarP3P2<1))&&((Akt<1)||(Pip3<1)))&&(KdStarGStarPgP3<1))&&((GP3<1)||(KdStar<1)))&&(GStarPgP3<1))&&((Gab1<1)||(Pip3<1)))&&(KdStarPgStarP2<1))||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3P2>=1))||(KdStarGStarPgP3>=1))||((KdStar>=1)&&(Pg>=1)))||((GStarP3>=1)&&(P3k>=1))))) + (((((((((AktP3>=1)||(PtP3>=1))||(DAGE>=1))||(GStarP3kP3>=1))||(GStarPgP3>=1))||(KdStarG>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((GStarP3>=1)&&(Pg>=1))) * ((((((((((AG(((GStarP3>=1)&&(P3k>=1))) + (KdStarGStarP3kP3>=1)) + (KdStarGStarP3kStarP2>=1)) + (GP3>=1)) + (KdStarGStarPgStarP3P2>=1)) + (KdStarGStarPg>=1)) + (KdStarGStarPgStarP2>=1)) + ((KdStarGStar>=1)&&(Pip3>=1))) + ((KdStarPgStar>=1)&&(Pip2>=1))) + ((GStarP3>=1)&&(KdStar>=1))) + ((((((((((KdStarGStarP3k>=1)||(DAGE>=1))||(PtP2>=1))||(KdStarGStarPgP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1)))&&((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||(PtP3P2>=1))||((GStarP3kP3>=1)&&(KdStar>=1)))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1))))))))
=> equivalent forward existential formula: [((Init * !(EG(!((((!(EG(!(EX(((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))))) + !(EG(!((!(E(TRUE U !((((((DAGE>=1)||(KdStarGStarPg>=1))||(KdStarPg>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))))) + (((KdStarGStarP3kStarP2<1)&&((Akt<1)||(Pip3<1))) * !(E(TRUE U !(((((((KdStarGStarP3k>=1)||(KdStarGStarP3kStarP2>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(Pg>=1)))))))))))) + EG((((((((((((((((KdStarGStarP3k<1)&&((KdStarGStarPgStar<1)||(Pip2<1)))&&(KdStarGStarP3kStarP3P2<1))&&((Akt<1)||(Pip3<1)))&&(KdStarGStarPgP3<1))&&((GP3<1)||(KdStar<1)))&&(GStarPgP3<1))&&((Gab1<1)||(Pip3<1)))&&(KdStarPgStarP2<1))||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3P2>=1))||(KdStarGStarPgP3>=1))||((KdStar>=1)&&(Pg>=1)))||((GStarP3>=1)&&(P3k>=1))))) + (((((((((AktP3>=1)||(PtP3>=1))||(DAGE>=1))||(GStarP3kP3>=1))||(GStarPgP3>=1))||(KdStarG>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((GStarP3>=1)&&(Pg>=1))) * ((((((((((!(E(TRUE U !(((GStarP3>=1)&&(P3k>=1))))) + (KdStarGStarP3kP3>=1)) + (KdStarGStarP3kStarP2>=1)) + (GP3>=1)) + (KdStarGStarPgStarP3P2>=1)) + (KdStarGStarPg>=1)) + (KdStarGStarPgStarP2>=1)) + ((KdStarGStar>=1)&&(Pip3>=1))) + ((KdStarPgStar>=1)&&(Pip2>=1))) + ((GStarP3>=1)&&(KdStar>=1))) + ((((((((((KdStarGStarP3k>=1)||(DAGE>=1))||(PtP2>=1))||(KdStarGStarPgP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1)))&&((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||(PtP3P2>=1))||((GStarP3kP3>=1)&&(KdStar>=1)))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1))))))))))) * !(E(!((((!(EG(!(EX(((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))))) + !(EG(!((!(E(TRUE U !((((((DAGE>=1)||(KdStarGStarPg>=1))||(KdStarPg>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))))) + (((KdStarGStarP3kStarP2<1)&&((Akt<1)||(Pip3<1))) * !(E(TRUE U !(((((((KdStarGStarP3k>=1)||(KdStarGStarP3kStarP2>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(Pg>=1)))))))))))) + EG((((((((((((((((KdStarGStarP3k<1)&&((KdStarGStarPgStar<1)||(Pip2<1)))&&(KdStarGStarP3kStarP3P2<1))&&((Akt<1)||(Pip3<1)))&&(KdStarGStarPgP3<1))&&((GP3<1)||(KdStar<1)))&&(GStarPgP3<1))&&((Gab1<1)||(Pip3<1)))&&(KdStarPgStarP2<1))||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3P2>=1))||(KdStarGStarPgP3>=1))||((KdStar>=1)&&(Pg>=1)))||((GStarP3>=1)&&(P3k>=1))))) + (((((((((AktP3>=1)||(PtP3>=1))||(DAGE>=1))||(GStarP3kP3>=1))||(GStarPgP3>=1))||(KdStarG>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((GStarP3>=1)&&(Pg>=1))) * ((((((((((!(E(TRUE U !(((GStarP3>=1)&&(P3k>=1))))) + (KdStarGStarP3kP3>=1)) + (KdStarGStarP3kStarP2>=1)) + (GP3>=1)) + (KdStarGStarPgStarP3P2>=1)) + (KdStarGStarPg>=1)) + (KdStarGStarPgStarP2>=1)) + ((KdStarGStar>=1)&&(Pip3>=1))) + ((KdStarPgStar>=1)&&(Pip2>=1))) + ((GStarP3>=1)&&(KdStar>=1))) + ((((((((((KdStarGStarP3k>=1)||(DAGE>=1))||(PtP2>=1))||(KdStarGStarPgP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1)))&&((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||(PtP3P2>=1))||((GStarP3kP3>=1)&&(KdStar>=1)))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1)))))))) U (!((((((AktP3<1)&&(KdStarG<1)) * E(TRUE U ((((((((KdStarGStarPgStar<1)||(Pip2<1))&&(DAGE<1))&&((GStarP3<1)||(KdStar<1)))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPgStarP2<1))&&(KdStarGP3<1))&&(KdStarPgStarP2<1)))) * !((E(!(((((((((((KdStarGStarP3kP3>=1)||(KdStarGStarPgP3>=1))||(GP3>=1))||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarG>=1))||(KdStarGP3>=1))||(KdStarGStarP3>=1))||((DAG>=1)&&(Enz>=1)))) U (!((((DAGE>=1)||(KdStarGStarP3kStarP3P2>=1))&&((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||((GStarP3>=1)&&(KdStar>=1)))||(GStarP3kP3>=1))||(GStarPgP3>=1))||(KdStarGStarPgStarP3P2>=1)))) * !(((((((((((KdStarGStarP3kP3>=1)||(KdStarGStarPgP3>=1))||(GP3>=1))||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarG>=1))||(KdStarGP3>=1))||(KdStarGStarP3>=1))||((DAG>=1)&&(Enz>=1)))))) + EG(!(((((((((((KdStarGStarP3kP3>=1)||(KdStarGStarPgP3>=1))||(GP3>=1))||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarG>=1))||(KdStarGP3>=1))||(KdStarGStarP3>=1))||((DAG>=1)&&(Enz>=1)))))))) * ((GStarP3<1)||(P3k<1)))) * !((((!(EG(!(EX(((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))))) + !(EG(!((!(E(TRUE U !((((((DAGE>=1)||(KdStarGStarPg>=1))||(KdStarPg>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))))) + (((KdStarGStarP3kStarP2<1)&&((Akt<1)||(Pip3<1))) * !(E(TRUE U !(((((((KdStarGStarP3k>=1)||(KdStarGStarP3kStarP2>=1))||(KdStarGStarPgP3>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||((GStarP3>=1)&&(Pg>=1)))))))))))) + EG((((((((((((((((KdStarGStarP3k<1)&&((KdStarGStarPgStar<1)||(Pip2<1)))&&(KdStarGStarP3kStarP3P2<1))&&((Akt<1)||(Pip3<1)))&&(KdStarGStarPgP3<1))&&((GP3<1)||(KdStar<1)))&&(GStarPgP3<1))&&((Gab1<1)||(Pip3<1)))&&(KdStarPgStarP2<1))||(AktP3>=1))||((KdStarPgStar>=1)&&(Pip2>=1)))||(PtP3P2>=1))||(KdStarGStarPgP3>=1))||((KdStar>=1)&&(Pg>=1)))||((GStarP3>=1)&&(P3k>=1))))) + (((((((((AktP3>=1)||(PtP3>=1))||(DAGE>=1))||(GStarP3kP3>=1))||(GStarPgP3>=1))||(KdStarG>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((GStarP3>=1)&&(Pg>=1))) * ((((((((((!(E(TRUE U !(((GStarP3>=1)&&(P3k>=1))))) + (KdStarGStarP3kP3>=1)) + (KdStarGStarP3kStarP2>=1)) + (GP3>=1)) + (KdStarGStarPgStarP3P2>=1)) + (KdStarGStarPg>=1)) + (KdStarGStarPgStarP2>=1)) + ((KdStarGStar>=1)&&(Pip3>=1))) + ((KdStarPgStar>=1)&&(Pip2>=1))) + ((GStarP3>=1)&&(KdStar>=1))) + ((((((((((KdStarGStarP3k>=1)||(DAGE>=1))||(PtP2>=1))||(KdStarGStarPgP3>=1))||(KdStarGStarPgStarP2>=1))||(KdStarGP3>=1))||(KdStarPgStarP2>=1))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1)))&&((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||(PtP3P2>=1))||((GStarP3kP3>=1)&&(KdStar>=1)))||((DAG>=1)&&(Enz>=1)))||((GStarP3>=1)&&(P3k>=1))))))))))))] != FALSE
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
Using saturation style SCC detection
Fast SCC detection found a local SCC at level 0
(forward)formula 10,1,1039.98,6234444,1,0,1502,4.06052e+07,59,880,1037,3.8288e+07,1198
FORMULA Angiogenesis-PT-05-CTLFireability-12 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is TRUE !

***************************************

original formula: (AX((!(EX(AF((((KdStarGStarP3kP3>=1)||(PtP3>=1))||((GStarP3>=1)&&(Pg>=1)))))) * ((((((((AX(((((((KdStarGStarPg>=1)||(KdStarGStarPgP3>=1))||(PtP3P2>=1))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarGStarP3>=1))) * EG((((((((KdStarGStarP3k>=1)||((KdStarGStar>=1)&&(Pip3>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarGStarPgStarP3P2>=1))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPg>=1))||((Pip3>=1)&&(PtP2>=1))))) * (((DAGE>=1)||((GStarP3>=1)&&(Pg>=1))) + E(((((KdStarPgStar>=1)&&(Pip2>=1))||(KdStarGStarPg>=1))||(KdStarPgStarP2>=1)) U ((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||((GStarPgP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP2>=1))||((KdStar>=1)&&(Pg>=1)))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1)))||(KdStarGStarP3>=1))||((GStarP3>=1)&&(P3k>=1)))))) * E((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(AktP3>=1))||(KdStarGStarP3kStarP3P2>=1))||(KdStarGStarPgStarP2>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarG>=1))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))||(KdStarGP3>=1)) U E(((((((((((DAGE>=1)||(PtP3>=1))||((GStarPgP3>=1)&&(KdStar>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(PtP2>=1)))||(KdStarG>=1))||(KdStarGP3>=1)) U ((((((KdStarPgStar>=1)&&(Pip2>=1))||((Pip2>=1)&&(Pten>=1)))||(KdStarGStarPgStarP2>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarGP3>=1))))) + ((KdStar>=1)&&(Pg>=1))) + ((KdStarPgStar>=1)&&(Pip2>=1))) + ((GStarP3>=1)&&(KdStar>=1))) + (KdStarGStarPgP3>=1)) + (KdStarGStarPgStarP2>=1)))) + AF((A(!(E(((((GStarP3kP3>=1)&&(KdStar>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(GStarPgP3>=1)) U (((((((((KdStarGStarP3k>=1)||((GStarP3kP3>=1)&&(KdStar>=1)))||((KdStarGStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||((KdStarGStar>=1)&&(P3k>=1)))||(KdStarGStarPgStarP2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1)))) U (((((((((((((((KdStarGStarPgStar<1)||(Pip2<1))&&(KdStarGStarP3kStarP2<1))&&(KdStarGStarP3kStarP3P2<1))&&((GStarPgP3<1)||(KdStar<1)))&&((KdStarGStarP3<1)||(P3k<1)))&&(GStarPgP3<1))&&(KdStarG<1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(DAGE>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStar>=1)&&(Pg>=1)))) * (((((KdStarGStarP3kStarP3P2>=1)||((GStarPgP3>=1)&&(KdStar>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarPgStarP2>=1)) + AX((((((((((KdStarGStarP3kP3<1)&&((KdStarGStarP3kStar<1)||(Pip2<1)))&&(KdStarGStarP3kStarP2<1))&&(PtP2<1))&&(KdStarGStarPgP3<1))&&(GStarP3kP3<1))&&((GStarP3<1)||(Pg<1)))&&(KdStarPgStarP2<1))||((((((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||((Gab1>=1)&&(KdStar>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarGP3>=1))&&((((KdStarGStarP3kStarP2>=1)||(KdStarGStarPgP3>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarPgStarP2>=1)))))))))
=> equivalent forward existential formula: [FwdG((Init * !(!(EX(!((!(EX(!(EG(!((((KdStarGStarP3kP3>=1)||(PtP3>=1))||((GStarP3>=1)&&(Pg>=1)))))))) * ((((((((!(EX(!(((((((KdStarGStarPg>=1)||(KdStarGStarPgP3>=1))||(PtP3P2>=1))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarGStarP3>=1))))) * EG((((((((KdStarGStarP3k>=1)||((KdStarGStar>=1)&&(Pip3>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarGStarPgStarP3P2>=1))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPg>=1))||((Pip3>=1)&&(PtP2>=1))))) * (((DAGE>=1)||((GStarP3>=1)&&(Pg>=1))) + E(((((KdStarPgStar>=1)&&(Pip2>=1))||(KdStarGStarPg>=1))||(KdStarPgStarP2>=1)) U ((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||((GStarPgP3>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP2>=1))||((KdStar>=1)&&(Pg>=1)))||((KdStarGStarPgStarP3>=1)&&(Pip2>=1)))||(KdStarGStarP3>=1))||((GStarP3>=1)&&(P3k>=1)))))) * E((((((((((KdStarGStarPgStar>=1)&&(Pip2>=1))||(AktP3>=1))||(KdStarGStarP3kStarP3P2>=1))||(KdStarGStarPgStarP2>=1))||((KdStarGStarP3>=1)&&(P3k>=1)))||(KdStarG>=1))||((KdStarGStarP3kStarP3>=1)&&(Pip2>=1)))||(KdStarGP3>=1)) U E(((((((((((DAGE>=1)||(PtP3>=1))||((GStarPgP3>=1)&&(KdStar>=1)))||(PtP3P2>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((Pip3>=1)&&(PtP2>=1)))||(KdStarG>=1))||(KdStarGP3>=1)) U ((((((KdStarPgStar>=1)&&(Pip2>=1))||((Pip2>=1)&&(Pten>=1)))||(KdStarGStarPgStarP2>=1))||((Pip3>=1)&&(Pten>=1)))||(KdStarGP3>=1))))) + ((KdStar>=1)&&(Pg>=1))) + ((KdStarPgStar>=1)&&(Pip2>=1))) + ((GStarP3>=1)&&(KdStar>=1))) + (KdStarGStarPgP3>=1)) + (KdStarGStarPgStarP2>=1)))))))),!((!((E(!((((((((((((((((KdStarGStarPgStar<1)||(Pip2<1))&&(KdStarGStarP3kStarP2<1))&&(KdStarGStarP3kStarP3P2<1))&&((GStarPgP3<1)||(KdStar<1)))&&((KdStarGStarP3<1)||(P3k<1)))&&(GStarPgP3<1))&&(KdStarG<1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(DAGE>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStar>=1)&&(Pg>=1)))) U (!(!(E(((((GStarP3kP3>=1)&&(KdStar>=1))||((KdStarGStarP3>=1)&&(Pg>=1)))||(GStarPgP3>=1)) U (((((((((KdStarGStarP3k>=1)||((GStarP3kP3>=1)&&(KdStar>=1)))||((KdStarGStarPgStar>=1)&&(Pip2>=1)))||(PtP3>=1))||((KdStarGStar>=1)&&(P3k>=1)))||(KdStarGStarPgStarP2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarPgStarP2>=1))))) * !((((((((((((((((KdStarGStarPgStar<1)||(Pip2<1))&&(KdStarGStarP3kStarP2<1))&&(KdStarGStarP3kStarP3P2<1))&&((GStarPgP3<1)||(KdStar<1)))&&((KdStarGStarP3<1)||(P3k<1)))&&(GStarPgP3<1))&&(KdStarG<1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(DAGE>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStar>=1)&&(Pg>=1)))))) + EG(!((((((((((((((((KdStarGStarPgStar<1)||(Pip2<1))&&(KdStarGStarP3kStarP2<1))&&(KdStarGStarP3kStarP3P2<1))&&((GStarPgP3<1)||(KdStar<1)))&&((KdStarGStarP3<1)||(P3k<1)))&&(GStarPgP3<1))&&(KdStarG<1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||(DAGE>=1))||(KdStarGStarPgP3>=1))||((DAG>=1)&&(Enz>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStar>=1)&&(Pg>=1))))))) * (((((KdStarGStarP3kStarP3P2>=1)||((GStarPgP3>=1)&&(KdStar>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarPgStarP2>=1)) + !(EX(!((((((((((KdStarGStarP3kP3<1)&&((KdStarGStarP3kStar<1)||(Pip2<1)))&&(KdStarGStarP3kStarP2<1))&&(PtP2<1))&&(KdStarGStarPgP3<1))&&(GStarP3kP3<1))&&((GStarP3<1)||(Pg<1)))&&(KdStarPgStarP2<1))||((((((((((KdStarGStarP3k>=1)||(KdStarGStarP3kP3>=1))||((Akt>=1)&&(Pip3>=1)))||(KdStarGStarPgStarP2>=1))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||((Gab1>=1)&&(KdStar>=1)))||((Gab1>=1)&&(Pip3>=1)))||(KdStarGP3>=1))&&((((KdStarGStarP3kStarP2>=1)||(KdStarGStarPgP3>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarPgStarP2>=1)))))))))))] = FALSE
(forward)formula 11,1,1121.01,6835828,1,0,1835,4.46401e+07,108,1061,1167,4.31053e+07,1878
FORMULA Angiogenesis-PT-05-CTLFireability-13 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is TRUE !
Detected timeout of ITS tools.
[2021-05-11 14:35:48] [INFO ] Flatten gal took : 6 ms
[2021-05-11 14:35:48] [INFO ] Input system was already deterministic with 64 transitions.
[2021-05-11 14:35:48] [INFO ] Transformed 38 places.
[2021-05-11 14:35:48] [INFO ] Transformed 64 transitions.
Running greatSPN : CommandLine [args=[/home/mcc/BenchKit/bin//..//greatspn//bin/pinvar, /home/mcc/execution/gspn], workingDir=/home/mcc/execution]
Run of greatSPN captured in /home/mcc/execution/outPut.txt
Running greatSPN : CommandLine [args=[/home/mcc/BenchKit/bin//..//greatspn//bin/RGMEDD2, /home/mcc/execution/gspn, -META, -varord-only], workingDir=/home/mcc/execution]
Run of greatSPN captured in /home/mcc/execution/outPut.txt
Using order generated by GreatSPN with heuristic : META
[2021-05-11 14:35:48] [INFO ] Time to serialize gal into /tmp/CTLFireability6450284047541642320.gal : 1 ms
[2021-05-11 14:35:48] [INFO ] Time to serialize properties into /tmp/CTLFireability5814524505083513920.ctl : 1 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /tmp/CTLFireability6450284047541642320.gal, -t, CGAL, -ctl, /tmp/CTLFireability5814524505083513920.ctl, --load-order, /home/mcc/execution/model.ord, --gen-order, FOLLOW], workingDir=/home/mcc/execution]

its-ctl command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202104292328/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /tmp/CTLFireability6450284047541642320.gal -t CGAL -ctl /tmp/CTLFireability5814524505083513920.ctl --load-order /home/mcc/execution/model.ord --gen-order FOLLOW
Successfully loaded order from file /home/mcc/execution/model.ord
No direction supplied, using forward translation only.
Parsed 2 CTL formulae.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,4.27349e+07,1.12647,37148,2,6159,5,168551,6,0,219,173293,0


Converting to forward existential form...Done !
original formula: A(AX(!(A((((KdStarGStarPg>=1)||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1)) U (((((((((((KdStarGStarPgP3>=1)||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarG>=1))||((GStarP3>=1)&&(P3k>=1)))||(PtP3>=1))||((GStarP3>=1)&&(P3k>=1)))&&((((((((((((GStarP3kP3>=1)&&(KdStar>=1))||((KdStarGStarPgStar>=1)&&(Pip2>=1)))||(KdStarGStarP3kStarP2>=1))||((Pip3>=1)&&(PtP2>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||((Akt>=1)&&(Pip3>=1)))||(GStarPgP3>=1))||(KdStarPg>=1))||(KdStarGStarP3>=1)))))) U AG((((AktP3>=1)||(PtP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))))
=> equivalent forward existential formula: [((Init * !(EG(!(!(E(TRUE U !((((AktP3>=1)||(PtP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))))))))) * !(E(!(!(E(TRUE U !((((AktP3>=1)||(PtP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1))))))) U (!(!(EX(!(!(!((E(!((((((((((((KdStarGStarPgP3>=1)||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarG>=1))||((GStarP3>=1)&&(P3k>=1)))||(PtP3>=1))||((GStarP3>=1)&&(P3k>=1)))&&((((((((((((GStarP3kP3>=1)&&(KdStar>=1))||((KdStarGStarPgStar>=1)&&(Pip2>=1)))||(KdStarGStarP3kStarP2>=1))||((Pip3>=1)&&(PtP2>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||((Akt>=1)&&(Pip3>=1)))||(GStarPgP3>=1))||(KdStarPg>=1))||(KdStarGStarP3>=1)))) U (!((((KdStarGStarPg>=1)||((DAG>=1)&&(Enz>=1)))||(KdStarPg>=1))) * !((((((((((((KdStarGStarPgP3>=1)||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarG>=1))||((GStarP3>=1)&&(P3k>=1)))||(PtP3>=1))||((GStarP3>=1)&&(P3k>=1)))&&((((((((((((GStarP3kP3>=1)&&(KdStar>=1))||((KdStarGStarPgStar>=1)&&(Pip2>=1)))||(KdStarGStarP3kStarP2>=1))||((Pip3>=1)&&(PtP2>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||((Akt>=1)&&(Pip3>=1)))||(GStarPgP3>=1))||(KdStarPg>=1))||(KdStarGStarP3>=1)))))) + EG(!((((((((((((KdStarGStarPgP3>=1)||((Pip2>=1)&&(Pten>=1)))||((GP3>=1)&&(KdStar>=1)))||((Gab1>=1)&&(KdStar>=1)))||(KdStarGStarPgStarP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))||(KdStarG>=1))||((GStarP3>=1)&&(P3k>=1)))||(PtP3>=1))||((GStarP3>=1)&&(P3k>=1)))&&((((((((((((GStarP3kP3>=1)&&(KdStar>=1))||((KdStarGStarPgStar>=1)&&(Pip2>=1)))||(KdStarGStarP3kStarP2>=1))||((Pip3>=1)&&(PtP2>=1)))||(KdStarPgStarP2>=1))||(KdStarGStarP3kP3>=1))||(KdStarGStarP3kStarP2>=1))||((Akt>=1)&&(Pip3>=1)))||(GStarPgP3>=1))||(KdStarPg>=1))||(KdStarGStarP3>=1)))))))))))) * !(!(E(TRUE U !((((AktP3>=1)||(PtP3P2>=1))||((KdStarGStar>=1)&&(Pg>=1)))))))))))] != FALSE
Reverse transition relation is NOT exact ! Due to transitions t12, t24, t51, t57, t61, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :0/59/5/64
(forward)formula 0,0,265.156,2572964,1,0,325,1.47067e+07,23,178,982,1.72411e+07,373
FORMULA Angiogenesis-PT-05-CTLFireability-14 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************

original formula: AF(((((((((((KdStarGStarP3kP3<1)&&(PtP3<1))&&(PtP2<1))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPgP3<1))&&(GStarPgP3<1))&&((KdStarGStarPg>=1)||(KdStarPgStarP2>=1)))&&(((((((((KdStarGStarP3k>=1)||(AktP3>=1))||(DAGE>=1))||(KdStarGStarP3kStarP3P2>=1))||(KdStarPgStarP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||((DAG>=1)&&(Enz>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||((KdStar>=1)&&(Pg>=1))))&&((KdStarPgStar<1)||(Pip2<1))) * (((PtP2>=1) + EF(((((((((AktP3>=1)||(KdStarGStarP3kP3>=1))||(PtP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||(DAGE>=1))||(KdStarGStarPgStarP2>=1))||((Gab1>=1)&&(Pip3>=1)))||(KdStarG>=1)))) + ((GStarP3>=1)&&(KdStar>=1)))))
=> equivalent forward existential formula: [FwdG(Init,!(((((((((((KdStarGStarP3kP3<1)&&(PtP3<1))&&(PtP2<1))&&(KdStarGStarP3kStarP3P2<1))&&(KdStarGStarPgP3<1))&&(GStarPgP3<1))&&((KdStarGStarPg>=1)||(KdStarPgStarP2>=1)))&&(((((((((KdStarGStarP3k>=1)||(AktP3>=1))||(DAGE>=1))||(KdStarGStarP3kStarP3P2>=1))||(KdStarPgStarP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||((DAG>=1)&&(Enz>=1)))||((KdStarGStar>=1)&&(Pg>=1)))||((KdStar>=1)&&(Pg>=1))))&&((KdStarPgStar<1)||(Pip2<1))) * (((PtP2>=1) + E(TRUE U ((((((((AktP3>=1)||(KdStarGStarP3kP3>=1))||(PtP2>=1))||((KdStarGStar>=1)&&(P3k>=1)))||(DAGE>=1))||(KdStarGStarPgStarP2>=1))||((Gab1>=1)&&(Pip3>=1)))||(KdStarG>=1)))) + ((GStarP3>=1)&&(KdStar>=1))))))] = FALSE
(forward)formula 1,0,293.158,2572964,1,0,453,1.47067e+07,31,297,1014,1.72411e+07,515
FORMULA Angiogenesis-PT-05-CTLFireability-15 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Formula is FALSE !

***************************************


BK_STOP 1620744043885

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ CTLFireability = StateSpace ]]
+ /home/mcc/BenchKit/bin//..//runeclipse.sh /home/mcc/execution CTLFireability -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ cut -d . -f 9
++ ls /home/mcc/BenchKit/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202104292328.jar
+ VERSION=0
+ echo 'Running Version 0'
+ /home/mcc/BenchKit/bin//..//itstools/its-tools -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination CTLFireability -spotpath /home/mcc/BenchKit/bin//..//ltlfilt -z3path /home/mcc/BenchKit/bin//..//z3/bin/z3 -yices2path /home/mcc/BenchKit/bin//..//yices/bin/yices -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600 -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss128m -Xms40m -Xmx16000m

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Angiogenesis-PT-05"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool itstools"
echo " Input is Angiogenesis-PT-05, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r007-tall-162037989800324"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Angiogenesis-PT-05.tgz
mv Angiogenesis-PT-05 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;