MCC 2012

This form is a summary description of the model entitled "AI Planning" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P / T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

The net models the equipment (displays, canvases, documents, and lamps) of a smart conference room of the University of Rostock. It was derived from a proprietary description format that was used by an AI planning tool to generated plans to bring the room in a desired state, for instance displaying a document on a certain canvas while switching off the lights. This problem can be expressed as a reachability problem.
An example for a reachable marking is

LightOn. $<$ Lamp1 \mid TRUE $>=1$ AND
LightOn. $<$ Lamp2|TRUE $>=1$ AND
DocShown. $<$ Doc1|LW3|TRUE $>=1$ AND
DocShown. $<$ Doc2|LW1|TRUE $>=1$ AND
CanvasDown. $<$ VD1|TRUE $>=1$

Scaling parameter

This model is not parameterized.

Size of the model

number of places: 126
number of transitions: 128
number of arcs: 652

Structural properties

ordinary - all arcs have multiplicity one \boldsymbol{X} (a)
simple free choice - all transitions sharing a common input place have no other input place
simple free choice - all transitions sharing a common input place have no other input place
$X(b)$
$X(b)$
extended free choice - all transitions sharing a common input place have the same input places
extended free choice - all transitions sharing a common input place have the same input places
\boldsymbol{X} (c)
\boldsymbol{X} (c)
state machine - every transition has exactly one input place and exactly one output place
state machine - every transition has exactly one input place and exactly one output place
\boldsymbol{X} (d)
\boldsymbol{X} (d)
marked graph - every place has exactly one input transition and exactly one output transition
marked graph - every place has exactly one input transition and exactly one output transition
$\boldsymbol{X}(\mathrm{e})$
$\boldsymbol{X}(\mathrm{e})$
connected - there is an undirected path between every two nodes (places or transitions)
connected - there is an undirected path between every two nodes (places or transitions)
\boldsymbol{X} (f)
\boldsymbol{X} (f)
strongly connected - there is a directed path between every two nodes (places or transitions)
strongly connected - there is a directed path between every two nodes (places or transitions)
$\boldsymbol{X}(\mathrm{g})$
$\boldsymbol{X}(\mathrm{g})$
source place(s) - one or more places have no input transitions
source place(s) - one or more places have no input transitions $\boldsymbol{\ell}(\mathrm{h})$
source transition(s) - one or more transitions have no input places $\boldsymbol{X}(\mathrm{i})$
sink transitions(s) - one or more transitions have no output places $\boldsymbol{X}(\mathrm{j})$
loop-free - no transition has an input place that is also an output place $\boldsymbol{X}(\mathrm{k})$
conservative - for each transition, the number of input arcs equals the number of output arcs $\boldsymbol{X}(1)$
subconservative - for each transition, the number of input arcs equals or exceeds the number of output arcs $\boldsymbol{X}(\mathrm{m})$
nested units - places are structured into hierarchically nested sequential units ${ }^{(\mathrm{n})}$ x

Behavioural properties

safe - in every reachable marking, there is no more than one token on a place (o)
dead place(s) - one or more places have no token in any reachable marking (p)
dead transition(s) - one or more transitions cannot fire from any reachable marking \boldsymbol{X} (q)
deadlock - there exists a reachable marking from which no transition can be fired ?
reversible - from every reachable marking, there is a transition path going back to the initial marking ?
live - for every transition t, from every reachable marking, one can reach a marking in which t can fire ?

Size of the marking graph

number of reachable markings:

$$
\geq 4.97832 \mathrm{e}+16^{(\mathrm{r})}
$$

number of transition firings: max. number of tokens per place:
max. number of tokens per marking: ≥ 77?

[^0]
[^0]: ${ }^{(a)} 240$ arcs are not simple free choice, e.g., the arc from place "p1" (which has 8 outgoing transitions) to transition "t41" (which has 2 input places).
 (b) transitions " t 48 " and " t 41 " share a common input place "p1", but only the former transition has input place "p70".
 (c) 84 transitions are not of a state machine, e.g., transition " $t 1$ ".
 (d) 90 places are not of a marked graph, e.g., place "p1".
 (e) 12 places are not connected to place "p10", e.g., place "p27"; 12 transitions are not connected to place "p10", e.g., transition "t127".
 ${ }^{(f)}$ the net is not connected and, thus, not strongly connected.
 ${ }^{(\mathrm{g})}$ stated by CÆSAR.BDD version 1.7.
 ${ }^{(h)}$ there exist 26 sink places, e.g., place "p111".
 ${ }^{(i)}$ stated by CÆSAR.BDD version 1.7 .
 ${ }^{(j)}$ stated by CÆSAR.BDD version 1.7.
 ${ }^{(k)} 68$ transitions are not loop free, e.g., transition "t 1 ".
 ${ }^{(1)} 68$ transitions are not conservative, e.g., transition "t1".
 (m) 68 transitions are not subconservative, e.g., transition " $t 1$ ".
 ${ }^{(n)}$ the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
 ${ }^{\left({ }^{(}\right)}$firing transition "t 20 " puts a token in place " p 88 " although this place already has a token in the current marking.
 ${ }^{(p)}$ stated by CÆSAR.BDD version 3.3.
 (q) stated by CÆSAR.BDD version 2.0 .
 ${ }^{(r)}$ stated by CÆSAR.BDD version 3.3.

