About the Execution of 2019-Gold for SafeBus-COL-20
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15919.310 | 2233225.00 | 2260178.00 | 971.00 | FFFF?TFTTFTTFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2020-input.r165-oct2-158972939000093.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2020-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.........................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is SafeBus-COL-20, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r165-oct2-158972939000093
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 216K
-rw-r--r-- 1 mcc users 3.7K Apr 12 12:11 CTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Apr 12 12:10 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.4K Apr 11 13:51 CTLFireability.txt
-rw-r--r-- 1 mcc users 15K Apr 11 13:51 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 24 05:38 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.0K Mar 24 05:38 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.1K Apr 14 12:50 LTLCardinality.txt
-rw-r--r-- 1 mcc users 20K Apr 28 14:02 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Apr 14 12:50 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Apr 28 14:02 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.2K Apr 10 17:26 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 15K Apr 10 17:26 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 10 00:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 10 00:21 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Apr 10 22:28 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Apr 10 22:28 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 24 05:38 equiv_pt
-rw-r--r-- 1 mcc users 3 Mar 24 05:38 instance
-rw-r--r-- 1 mcc users 5 Mar 24 05:38 iscolored
-rw-r--r-- 1 mcc users 42K Mar 24 05:38 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME SafeBus-COL-20-00
FORMULA_NAME SafeBus-COL-20-01
FORMULA_NAME SafeBus-COL-20-02
FORMULA_NAME SafeBus-COL-20-03
FORMULA_NAME SafeBus-COL-20-04
FORMULA_NAME SafeBus-COL-20-05
FORMULA_NAME SafeBus-COL-20-06
FORMULA_NAME SafeBus-COL-20-07
FORMULA_NAME SafeBus-COL-20-08
FORMULA_NAME SafeBus-COL-20-09
FORMULA_NAME SafeBus-COL-20-10
FORMULA_NAME SafeBus-COL-20-11
FORMULA_NAME SafeBus-COL-20-12
FORMULA_NAME SafeBus-COL-20-13
FORMULA_NAME SafeBus-COL-20-14
FORMULA_NAME SafeBus-COL-20-15
=== Now, execution of the tool begins
BK_START 1590264671236
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ SafeBus-COL-20 @ 3570 seconds
check_solution: Constraint R795 = 0 is above its equality of -1
check_solution: Constraint R861 = 0 is above its equality of -1
check_solution: Constraint R922 = 0 is above its equality of -1
check_solution: Constraint R923 = 0 is above its equality of -1
check_solution: Constraint R924 = 0 is above its equality of -1
check_solution: Constraint R957 = 0 is above its equality of -1
check_solution: Constraint R958 = 0 is above its equality of -1
check_solution: Constraint R959 = 0 is above its equality of -1
check_solution: Constraint R960 = 0 is above its equality of -1
check_solution: Constraint R961 = 0 is above its equality of -1
Seriously low accuracy found ||*|| = 1 (rel. error 1)
FORMULA SafeBus-COL-20-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA SafeBus-COL-20-04 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 1337
rslt: Output for LTLCardinality @ SafeBus-COL-20
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat May 23 20:11:11 2020
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 214
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 228
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 244
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 263
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 285
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 311
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 3,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 860,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 440,
"visible_transitions": 0
},
"processed": "A (F ((X ((p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + 1 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862)) AND ((p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944) OR G ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))))",
"processed_size": 6027,
"rewrites": 88
},
"result":
{
"edges": 20,
"markings": 21,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 4
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 342
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 2,
"G": 2,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 80,
"taut": 0,
"tconj": 1,
"tdisj": 2,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 40,
"visible_transitions": 0
},
"processed": "A ((G (F ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) OR X (((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883) OR (G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)) AND F ((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883)))))))",
"processed_size": 621,
"rewrites": 88
},
"result":
{
"edges": 204,
"markings": 204,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 11
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 380
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 88
},
"result":
{
"edges": 20,
"markings": 21,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 428
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X (G ((1 <= p1045))))",
"processed_size": 24,
"rewrites": 88
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 489
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 489
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 21,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 21,
"visible_transitions": 0
},
"processed": "(p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + 1 <= p863)",
"processed_size": 151,
"rewrites": 90
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "state space / EG",
"value": true
},
"task":
{
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 861
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 570
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 400,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 400,
"visible_transitions": 0
},
"processed": "(p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99 <= 2)",
"processed_size": 2747,
"rewrites": 90
},
"result":
{
"edges": 309,
"markings": 309,
"produced_by": "state space / EG",
"value": false
},
"task":
{
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 1180
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 9,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 570
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 42,
"taut": 0,
"tconj": 0,
"tdisj": 2,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 42,
"visible_transitions": 0
},
"processed": "A (((p863 <= p904) OR (X (TRUE) OR F ((p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))",
"processed_size": 331,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 684
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 88
},
"result":
{
"edges": 20,
"markings": 21,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 856
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 856
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 21,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 21,
"visible_transitions": 0
},
"processed": "A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))",
"processed_size": 163,
"rewrites": 88
},
"result":
{
"edges": 333,
"markings": 332,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 12,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1141
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 1,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 42,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 21,
"visible_transitions": 0
},
"processed": "A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X (TRUE)) U X (G ((p42 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))",
"processed_size": 328,
"rewrites": 88
},
"result":
{
"edges": 203,
"markings": 203,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 6
},
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1712
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 3,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 41,
"taut": 0,
"tconj": 0,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 41,
"visible_transitions": 0
},
"processed": "A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR X (X (X (F ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))",
"processed_size": 340,
"rewrites": 88
},
"result":
{
"edges": 290847,
"markings": 261469,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 7
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 433620,
"runtime": 2209.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "FALSE : FALSE : A(X(G(**))) : (A(F(**)) AND (A(F(**)) AND A(X(F(**))))) : A(X(F((** OR G(**))))) : A(F((X(*) AND (** OR G(**))))) : A((G(F(**)) OR X((** OR (G(**) AND F(**)))))) : A(X(TRUE)) : TRUE : FALSE : A((** OR (X(TRUE) OR F(*)))) : A(X(TRUE)) : (A(F(G(**))) AND A(G((** OR X(G(**)))))) : A(((** AND X(TRUE)) U X(G(*)))) : A((G(**) OR X(X(X(F(**)))))) : FALSE"
},
"net":
{
"arcs": 77544,
"conflict_clusters": 2,
"places": 1046,
"places_significant": 941,
"singleton_clusters": 0,
"transitions": 10501
},
"result":
{
"preliminary_value": "no no no no unknown yes no yes yes no yes yes no no no no ",
"value": "no no no no unknown yes no yes yes no yes yes no no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 1046, Transitions: 10501
lola: @ trans C_free
lola: @ trans C_refuse
lola: @ trans I_refused
lola: @ trans C_provide
lola: @ trans Gto
lola: @ trans I_ask1
lola: @ trans loss_m
lola: @ trans I_rec1
lola: @ trans I_rec2
lola: @ trans I_emit
lola: @ trans I_ask2
lola: @ trans I_reemit
lola: @ trans I_free
lola: @ trans loss_a
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 11547/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 33472
lola: finding significant places
lola: 1046 places, 10501 transitions, 941 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p42)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005)
lola: after: (0 <= 20)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p916 + p915 + p914 + p913 + p912 + p911 + p910 + p909 + p908 + p907 + p906 + p905)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 <= p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462)
lola: after: (1 <= p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462)
lola: place invariant simplifies atomic proposition
lola: before: (p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000)
lola: after: (1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000)
lola: LP says that atomic proposition is always false: (2 <= p863)
lola: place invariant simplifies atomic proposition
lola: before: (p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: after: (20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: place invariant simplifies atomic proposition
lola: before: (p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: after: (20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: LP says that atomic proposition is always false: (3 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903)
lola: after: (0 <= 0)
lola: LP says that atomic proposition is always false: (2 <= p904)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p904 <= p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005)
lola: after: (p904 <= 20)
lola: LP says that atomic proposition is always true: (p904 <= 20)
lola: LP says that atomic proposition is always false: (3 <= p904)
lola: place invariant simplifies atomic proposition
lola: before: (p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)
lola: after: (20 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)
lola: LP says that atomic proposition is always false: (3 <= p1045)
lola: LP says that atomic proposition is always false: (3 <= p1045)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005)
lola: after: (0 <= 18)
lola: A (G ((2 <= p42))) : A (NOT(((0 <= 20) OR (() AND F (G (F ((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))))))) : A (X (G ((1 <= p1045)))) : A (((F ((3 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)) AND F ((p863 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) AND F (X ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))) : A (NOT(X (G (NOT(((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)))))))) : A (F ((NOT(X (((p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944) OR G ((2 <= p863))))) AND ((p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944) OR G ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))))) : A ((F (G ((G ((0 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) U (20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))) OR X ((G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)) U (2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))) : A (X (G (F ((F ((0 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)) OR ((3 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) AND (G ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99 + 1 <= 0)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862)))))))) : A ((F ((0 <= 0)) OR X (G (((2 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968) AND X (G ((p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)))))))) : A (((p863 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99) AND (() OR F (X ((1 <= 0)))))) : A ((((p863 <= p904) OR X ((p904 <= 20))) OR NOT(G ((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000))))) : A (X ((G (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p41))) U ()))) : A (G (((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99 <= 19) U (((3 <= p1045) U X (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883)))) OR X (((2 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968) U (3 <= p1045))))))) : A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X ((0 <= p42))) U G (NOT(X ((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42)))))) : A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR F (X (X (F (X ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))) : A (X (G ((19 <= 0))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:251
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:374
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 214 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 228 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 244 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 263 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 285 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 311 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((X ((p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + 1 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((X ((p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + 1 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 +... (shortened)
lola: processed formula length: 6027
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 20 edges
lola: ========================================
lola: subprocess 6 will run for 342 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((G (F ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) OR X (((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883) OR (G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((G (F ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) OR X (((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883) OR (G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 +... (shortened)
lola: processed formula length: 621
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 11 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 204 markings, 204 edges
lola: ========================================
lola: subprocess 7 will run for 380 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 20 edges
lola: ========================================
lola: subprocess 8 will run for 428 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((1 <= p1045))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((1 <= p1045))))
lola: processed formula length: 24
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: subprocess 9 will run for 489 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (F ((3 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 9 will run for 489 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((p863 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + 1 <= p863)
lola: processed formula length: 151
lola: 90 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 570 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((3 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p15... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + ... (shortened)
lola: processed formula length: 2747
lola: 90 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 309 markings, 309 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 10 will run for 570 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (((p863 <= p904) OR (X (TRUE) OR F ((p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((p863 <= p904) OR (X (TRUE) OR F ((p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: processed formula length: 331
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 11 will run for 684 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 20 edges
lola: ========================================
lola: subprocess 12 will run for 856 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883)))) AND A (G (((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 12 will run for 856 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))
lola: processed formula length: 163
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 332 markings, 333 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 13 will run for 1141 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X (TRUE)) U X (G ((p42 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X (TRUE)) U X (G ((p42 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: processed formula length: 328
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 203 markings, 203 edges
lola: ========================================
lola: subprocess 14 will run for 1712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR X (X (X (F ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR X (X (X (F ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))
lola: processed formula length: 340
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 7 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 261469 markings, 290847 edges
lola: ========================================
lola: subprocess 15 will run for 3420 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: processed formula length: 318
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 334422 markings, 334422 edges, 66884 markings/sec, 0 secs
lola: 665978 markings, 665977 edges, 66311 markings/sec, 5 secs
lola: 997409 markings, 997408 edges, 66286 markings/sec, 10 secs
lola: 1330365 markings, 1330364 edges, 66591 markings/sec, 15 secs
lola: 1665435 markings, 1665435 edges, 67014 markings/sec, 20 secs
lola: 2000247 markings, 2000246 edges, 66962 markings/sec, 25 secs
lola: 2327536 markings, 2327535 edges, 65458 markings/sec, 30 secs
lola: 2656655 markings, 2656655 edges, 65824 markings/sec, 35 secs
lola: 2987264 markings, 2987263 edges, 66122 markings/sec, 40 secs
lola: 3320734 markings, 3320734 edges, 66694 markings/sec, 45 secs
lola: 3654253 markings, 3654252 edges, 66704 markings/sec, 50 secs
lola: 3986610 markings, 3986609 edges, 66471 markings/sec, 55 secs
lola: 4315631 markings, 4315630 edges, 65804 markings/sec, 60 secs
lola: 4646790 markings, 4646790 edges, 66232 markings/sec, 65 secs
lola: 4976602 markings, 4976601 edges, 65962 markings/sec, 70 secs
lola: 5309718 markings, 5309717 edges, 66623 markings/sec, 75 secs
lola: 5642595 markings, 5642594 edges, 66575 markings/sec, 80 secs
lola: 5974177 markings, 5974177 edges, 66316 markings/sec, 85 secs
lola: 6302825 markings, 6302825 edges, 65730 markings/sec, 90 secs
lola: 6631116 markings, 6631115 edges, 65658 markings/sec, 95 secs
lola: 6965421 markings, 6965420 edges, 66861 markings/sec, 100 secs
lola: 7300157 markings, 7300156 edges, 66947 markings/sec, 105 secs
lola: 7638267 markings, 7638266 edges, 67622 markings/sec, 110 secs
lola: 7976821 markings, 7976820 edges, 67711 markings/sec, 115 secs
lola: 8311597 markings, 8311597 edges, 66955 markings/sec, 120 secs
lola: 8643385 markings, 8643384 edges, 66358 markings/sec, 125 secs
lola: 8979981 markings, 8979980 edges, 67319 markings/sec, 130 secs
lola: 9319302 markings, 9319301 edges, 67864 markings/sec, 135 secs
lola: 9660808 markings, 9660807 edges, 68301 markings/sec, 140 secs
lola: 10005871 markings, 10005870 edges, 69013 markings/sec, 145 secs
lola: 10344552 markings, 10344551 edges, 67736 markings/sec, 150 secs
lola: 10683454 markings, 10683453 edges, 67780 markings/sec, 155 secs
lola: 11022465 markings, 11022464 edges, 67802 markings/sec, 160 secs
lola: 11364581 markings, 11364580 edges, 68423 markings/sec, 165 secs
lola: 11705645 markings, 11705644 edges, 68213 markings/sec, 170 secs
lola: 12050519 markings, 12050519 edges, 68975 markings/sec, 175 secs
lola: 12389104 markings, 12389103 edges, 67717 markings/sec, 180 secs
lola: 12725035 markings, 12725034 edges, 67186 markings/sec, 185 secs
lola: 13065356 markings, 13065355 edges, 68064 markings/sec, 190 secs
lola: 13407871 markings, 13407870 edges, 68503 markings/sec, 195 secs
lola: 13751757 markings, 13751756 edges, 68777 markings/sec, 200 secs
lola: 14097105 markings, 14097105 edges, 69070 markings/sec, 205 secs
lola: 14439597 markings, 14439596 edges, 68498 markings/sec, 210 secs
lola: 14777614 markings, 14777613 edges, 67603 markings/sec, 215 secs
lola: 15120009 markings, 15120008 edges, 68479 markings/sec, 220 secs
lola: 15465569 markings, 15465568 edges, 69112 markings/sec, 225 secs
lola: 15823980 markings, 15823980 edges, 71682 markings/sec, 230 secs
lola: 16181521 markings, 16181520 edges, 71508 markings/sec, 235 secs
lola: 16535959 markings, 16535958 edges, 70888 markings/sec, 240 secs
lola: 16893547 markings, 16893546 edges, 71518 markings/sec, 245 secs
lola: 17251925 markings, 17251925 edges, 71676 markings/sec, 250 secs
lola: 17610423 markings, 17610423 edges, 71700 markings/sec, 255 secs
lola: 17970515 markings, 17970515 edges, 72018 markings/sec, 260 secs
lola: 18325458 markings, 18325457 edges, 70989 markings/sec, 265 secs
lola: 18682524 markings, 18682524 edges, 71413 markings/sec, 270 secs
lola: 19041166 markings, 19041165 edges, 71728 markings/sec, 275 secs
lola: 19400103 markings, 19400102 edges, 71787 markings/sec, 280 secs
lola: 19759530 markings, 19759530 edges, 71885 markings/sec, 285 secs
lola: 20104868 markings, 20104867 edges, 69068 markings/sec, 290 secs
lola: 20453150 markings, 20453150 edges, 69656 markings/sec, 295 secs
lola: 20803553 markings, 20803552 edges, 70081 markings/sec, 300 secs
lola: 21153673 markings, 21153673 edges, 70024 markings/sec, 305 secs
lola: 21505899 markings, 21505898 edges, 70445 markings/sec, 310 secs
lola: 21856702 markings, 21856701 edges, 70161 markings/sec, 315 secs
lola: 22205233 markings, 22205232 edges, 69706 markings/sec, 320 secs
lola: 22543582 markings, 22543581 edges, 67670 markings/sec, 325 secs
lola: 22873711 markings, 22873710 edges, 66026 markings/sec, 330 secs
lola: 23219446 markings, 23219445 edges, 69147 markings/sec, 335 secs
lola: 23571948 markings, 23571948 edges, 70500 markings/sec, 340 secs
lola: 23919109 markings, 23919109 edges, 69432 markings/sec, 345 secs
lola: 24264997 markings, 24264997 edges, 69178 markings/sec, 350 secs
lola: 24606436 markings, 24606436 edges, 68288 markings/sec, 355 secs
lola: 24940811 markings, 24940811 edges, 66875 markings/sec, 360 secs
lola: 25277467 markings, 25277466 edges, 67331 markings/sec, 365 secs
lola: 25616329 markings, 25616329 edges, 67772 markings/sec, 370 secs
lola: 25949705 markings, 25949704 edges, 66675 markings/sec, 375 secs
lola: 26284653 markings, 26284653 edges, 66990 markings/sec, 380 secs
lola: 26619680 markings, 26619679 edges, 67005 markings/sec, 385 secs
lola: 26956643 markings, 26956643 edges, 67393 markings/sec, 390 secs
lola: 27291279 markings, 27291279 edges, 66927 markings/sec, 395 secs
lola: 27630259 markings, 27630259 edges, 67796 markings/sec, 400 secs
lola: 27962702 markings, 27962701 edges, 66489 markings/sec, 405 secs
lola: 28296209 markings, 28296208 edges, 66701 markings/sec, 410 secs
lola: 28626694 markings, 28626694 edges, 66097 markings/sec, 415 secs
lola: 28963222 markings, 28963221 edges, 67306 markings/sec, 420 secs
lola: 29298675 markings, 29298674 edges, 67091 markings/sec, 425 secs
lola: 29636660 markings, 29636659 edges, 67597 markings/sec, 430 secs
lola: 29972113 markings, 29972112 edges, 67091 markings/sec, 435 secs
lola: 30309436 markings, 30309435 edges, 67465 markings/sec, 440 secs
lola: 30644702 markings, 30644701 edges, 67053 markings/sec, 445 secs
lola: 30979636 markings, 30979636 edges, 66987 markings/sec, 450 secs
lola: 31318292 markings, 31318292 edges, 67731 markings/sec, 455 secs
lola: 31654544 markings, 31654543 edges, 67250 markings/sec, 460 secs
lola: 31990491 markings, 31990491 edges, 67189 markings/sec, 465 secs
lola: 32325884 markings, 32325884 edges, 67079 markings/sec, 470 secs
lola: 32664443 markings, 32664443 edges, 67712 markings/sec, 475 secs
lola: 33001322 markings, 33001321 edges, 67376 markings/sec, 480 secs
lola: 33336791 markings, 33336791 edges, 67094 markings/sec, 485 secs
lola: 33669863 markings, 33669862 edges, 66614 markings/sec, 490 secs
lola: 34003823 markings, 34003822 edges, 66792 markings/sec, 495 secs
lola: 34338400 markings, 34338399 edges, 66915 markings/sec, 500 secs
lola: 34673509 markings, 34673508 edges, 67022 markings/sec, 505 secs
lola: 35013572 markings, 35013571 edges, 68013 markings/sec, 510 secs
lola: 35355393 markings, 35355392 edges, 68364 markings/sec, 515 secs
lola: 35694525 markings, 35694524 edges, 67826 markings/sec, 520 secs
lola: 36031772 markings, 36031772 edges, 67449 markings/sec, 525 secs
lola: 36367622 markings, 36367621 edges, 67170 markings/sec, 530 secs
lola: 36707035 markings, 36707035 edges, 67883 markings/sec, 535 secs
lola: 37040638 markings, 37040637 edges, 66721 markings/sec, 540 secs
lola: 37381315 markings, 37381314 edges, 68135 markings/sec, 545 secs
lola: 37720410 markings, 37720409 edges, 67819 markings/sec, 550 secs
lola: 38051175 markings, 38051175 edges, 66153 markings/sec, 555 secs
lola: 38391012 markings, 38391012 edges, 67967 markings/sec, 560 secs
lola: 38731471 markings, 38731471 edges, 68092 markings/sec, 565 secs
lola: 39073196 markings, 39073195 edges, 68345 markings/sec, 570 secs
lola: 39414776 markings, 39414776 edges, 68316 markings/sec, 575 secs
lola: 39746706 markings, 39746705 edges, 66386 markings/sec, 580 secs
lola: 40077051 markings, 40077050 edges, 66069 markings/sec, 585 secs
lola: 40410299 markings, 40410298 edges, 66650 markings/sec, 590 secs
lola: 40746123 markings, 40746123 edges, 67165 markings/sec, 595 secs
lola: 41082919 markings, 41082919 edges, 67359 markings/sec, 600 secs
lola: 41426351 markings, 41426350 edges, 68686 markings/sec, 605 secs
lola: 41772042 markings, 41772041 edges, 69138 markings/sec, 610 secs
lola: 42109995 markings, 42109995 edges, 67591 markings/sec, 615 secs
lola: 42441941 markings, 42441941 edges, 66389 markings/sec, 620 secs
lola: 42776001 markings, 42776000 edges, 66812 markings/sec, 625 secs
lola: 43108966 markings, 43108965 edges, 66593 markings/sec, 630 secs
lola: 43441664 markings, 43441664 edges, 66540 markings/sec, 635 secs
lola: 43770461 markings, 43770460 edges, 65759 markings/sec, 640 secs
lola: 44099797 markings, 44099797 edges, 65867 markings/sec, 645 secs
lola: 44426932 markings, 44426932 edges, 65427 markings/sec, 650 secs
lola: 44756654 markings, 44756653 edges, 65944 markings/sec, 655 secs
lola: 45089053 markings, 45089052 edges, 66480 markings/sec, 660 secs
lola: 45420912 markings, 45420911 edges, 66372 markings/sec, 665 secs
lola: 45748692 markings, 45748691 edges, 65556 markings/sec, 670 secs
lola: 46076690 markings, 46076689 edges, 65600 markings/sec, 675 secs
lola: 46404321 markings, 46404320 edges, 65526 markings/sec, 680 secs
lola: 46737636 markings, 46737636 edges, 66663 markings/sec, 685 secs
lola: 47071718 markings, 47071717 edges, 66816 markings/sec, 690 secs
lola: 47406151 markings, 47406151 edges, 66887 markings/sec, 695 secs
lola: 47736987 markings, 47736986 edges, 66167 markings/sec, 700 secs
lola: 48068470 markings, 48068469 edges, 66297 markings/sec, 705 secs
lola: 48400984 markings, 48400984 edges, 66503 markings/sec, 710 secs
lola: 48730895 markings, 48730894 edges, 65982 markings/sec, 715 secs
lola: 49063211 markings, 49063210 edges, 66463 markings/sec, 720 secs
lola: 49395660 markings, 49395659 edges, 66490 markings/sec, 725 secs
lola: 49721797 markings, 49721796 edges, 65227 markings/sec, 730 secs
lola: 50049119 markings, 50049118 edges, 65464 markings/sec, 735 secs
lola: 50377845 markings, 50377844 edges, 65745 markings/sec, 740 secs
lola: 50708077 markings, 50708076 edges, 66046 markings/sec, 745 secs
lola: 51039214 markings, 51039213 edges, 66227 markings/sec, 750 secs
lola: 51375887 markings, 51375887 edges, 67335 markings/sec, 755 secs
lola: 51709913 markings, 51709912 edges, 66805 markings/sec, 760 secs
lola: 52042661 markings, 52042660 edges, 66550 markings/sec, 765 secs
lola: 52374619 markings, 52374618 edges, 66392 markings/sec, 770 secs
lola: 52706502 markings, 52706501 edges, 66377 markings/sec, 775 secs
lola: 53043144 markings, 53043143 edges, 67328 markings/sec, 780 secs
lola: 53382141 markings, 53382140 edges, 67799 markings/sec, 785 secs
lola: 53718318 markings, 53718318 edges, 67235 markings/sec, 790 secs
lola: 54056892 markings, 54056892 edges, 67715 markings/sec, 795 secs
lola: 54397393 markings, 54397392 edges, 68100 markings/sec, 800 secs
lola: 54735873 markings, 54735872 edges, 67696 markings/sec, 805 secs
lola: 55070006 markings, 55070005 edges, 66827 markings/sec, 810 secs
lola: 55404086 markings, 55404085 edges, 66816 markings/sec, 815 secs
lola: 55738431 markings, 55738430 edges, 66869 markings/sec, 820 secs
lola: 56071784 markings, 56071784 edges, 66671 markings/sec, 825 secs
lola: 56410723 markings, 56410722 edges, 67788 markings/sec, 830 secs
lola: 56751118 markings, 56751117 edges, 68079 markings/sec, 835 secs
lola: 57090937 markings, 57090936 edges, 67964 markings/sec, 840 secs
lola: 57429697 markings, 57429696 edges, 67752 markings/sec, 845 secs
lola: 57767372 markings, 57767372 edges, 67535 markings/sec, 850 secs
lola: 58103745 markings, 58103744 edges, 67275 markings/sec, 855 secs
lola: 58443775 markings, 58443774 edges, 68006 markings/sec, 860 secs
lola: 58784379 markings, 58784378 edges, 68121 markings/sec, 865 secs
lola: 59124111 markings, 59124110 edges, 67946 markings/sec, 870 secs
lola: 59459860 markings, 59459859 edges, 67150 markings/sec, 875 secs
lola: 59792941 markings, 59792940 edges, 66616 markings/sec, 880 secs
lola: 60126558 markings, 60126557 edges, 66723 markings/sec, 885 secs
lola: 60462474 markings, 60462474 edges, 67183 markings/sec, 890 secs
lola: 60800069 markings, 60800068 edges, 67519 markings/sec, 895 secs
lola: 61138855 markings, 61138855 edges, 67757 markings/sec, 900 secs
lola: 61479775 markings, 61479774 edges, 68184 markings/sec, 905 secs
lola: 61825539 markings, 61825538 edges, 69153 markings/sec, 910 secs
lola: 62173457 markings, 62173457 edges, 69584 markings/sec, 915 secs
lola: 62522932 markings, 62522931 edges, 69895 markings/sec, 920 secs
lola: 62869669 markings, 62869668 edges, 69347 markings/sec, 925 secs
lola: 63203984 markings, 63203983 edges, 66863 markings/sec, 930 secs
lola: 63532523 markings, 63532522 edges, 65708 markings/sec, 935 secs
lola: 63863032 markings, 63863032 edges, 66102 markings/sec, 940 secs
lola: 64198129 markings, 64198128 edges, 67019 markings/sec, 945 secs
lola: 64534044 markings, 64534043 edges, 67183 markings/sec, 950 secs
lola: 64865338 markings, 64865337 edges, 66259 markings/sec, 955 secs
lola: 65201804 markings, 65201803 edges, 67293 markings/sec, 960 secs
lola: 65535364 markings, 65535364 edges, 66712 markings/sec, 965 secs
lola: 65864894 markings, 65864894 edges, 65906 markings/sec, 970 secs
lola: 66197504 markings, 66197503 edges, 66522 markings/sec, 975 secs
lola: 66534242 markings, 66534241 edges, 67348 markings/sec, 980 secs
lola: 66871800 markings, 66871799 edges, 67512 markings/sec, 985 secs
lola: 67207424 markings, 67207423 edges, 67125 markings/sec, 990 secs
lola: 67541960 markings, 67541960 edges, 66907 markings/sec, 995 secs
lola: 67877539 markings, 67877539 edges, 67116 markings/sec, 1000 secs
lola: 68213819 markings, 68213818 edges, 67256 markings/sec, 1005 secs
lola: 68427479 markings, 68427478 edges, 42732 markings/sec, 1010 secs
lola: 68570000 markings, 68570000 edges, 28504 markings/sec, 1015 secs
lola: 68571503 markings, 68571503 edges, 301 markings/sec, 1020 secs
lola: 68571522 markings, 68571521 edges, 4 markings/sec, 1025 secs
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: processed formula length: 318
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 343921 markings, 343920 edges, 68784 markings/sec, 0 secs
lola: 688051 markings, 688050 edges, 68826 markings/sec, 5 secs
lola: 1032605 markings, 1032604 edges, 68911 markings/sec, 10 secs
lola: 1379050 markings, 1379049 edges, 69289 markings/sec, 15 secs
lola: 1725814 markings, 1725814 edges, 69353 markings/sec, 20 secs
lola: 2070863 markings, 2070862 edges, 69010 markings/sec, 25 secs
lola: 2410674 markings, 2410673 edges, 67962 markings/sec, 30 secs
lola: 2749995 markings, 2749995 edges, 67864 markings/sec, 35 secs
lola: 3091777 markings, 3091777 edges, 68356 markings/sec, 40 secs
lola: 3434844 markings, 3434843 edges, 68613 markings/sec, 45 secs
lola: 3778573 markings, 3778572 edges, 68746 markings/sec, 50 secs
lola: 4118356 markings, 4118356 edges, 67957 markings/sec, 55 secs
lola: 4457261 markings, 4457260 edges, 67781 markings/sec, 60 secs
lola: 4796651 markings, 4796650 edges, 67878 markings/sec, 65 secs
lola: 5135067 markings, 5135066 edges, 67683 markings/sec, 70 secs
lola: 5476477 markings, 5476477 edges, 68282 markings/sec, 75 secs
lola: 5818285 markings, 5818284 edges, 68362 markings/sec, 80 secs
lola: 6158926 markings, 6158925 edges, 68128 markings/sec, 85 secs
lola: 6497478 markings, 6497477 edges, 67710 markings/sec, 90 secs
lola: 6831703 markings, 6831702 edges, 66845 markings/sec, 95 secs
lola: 7171120 markings, 7171120 edges, 67883 markings/sec, 100 secs
lola: 7513446 markings, 7513445 edges, 68465 markings/sec, 105 secs
lola: 7857061 markings, 7857060 edges, 68723 markings/sec, 110 secs
lola: 8198383 markings, 8198382 edges, 68264 markings/sec, 115 secs
lola: 8539307 markings, 8539306 edges, 68185 markings/sec, 120 secs
lola: 8880387 markings, 8880386 edges, 68216 markings/sec, 125 secs
lola: 9222944 markings, 9222943 edges, 68511 markings/sec, 130 secs
lola: 9566148 markings, 9566147 edges, 68641 markings/sec, 135 secs
lola: 9910561 markings, 9910561 edges, 68883 markings/sec, 140 secs
lola: 10252535 markings, 10252534 edges, 68395 markings/sec, 145 secs
lola: 10593959 markings, 10593959 edges, 68285 markings/sec, 150 secs
lola: 10936274 markings, 10936273 edges, 68463 markings/sec, 155 secs
lola: 11280148 markings, 11280148 edges, 68775 markings/sec, 160 secs
lola: 11624865 markings, 11624864 edges, 68943 markings/sec, 165 secs
lola: 11969958 markings, 11969957 edges, 69019 markings/sec, 170 secs
lola: 12312881 markings, 12312880 edges, 68585 markings/sec, 175 secs
lola: 12655120 markings, 12655119 edges, 68448 markings/sec, 180 secs
lola: 12998481 markings, 12998480 edges, 68672 markings/sec, 185 secs
lola: 13343281 markings, 13343281 edges, 68960 markings/sec, 190 secs
lola: 13688441 markings, 13688440 edges, 69032 markings/sec, 195 secs
lola: 14033903 markings, 14033902 edges, 69092 markings/sec, 200 secs
lola: 14375476 markings, 14375475 edges, 68315 markings/sec, 205 secs
lola: 14717488 markings, 14717488 edges, 68402 markings/sec, 210 secs
lola: 15059653 markings, 15059653 edges, 68433 markings/sec, 215 secs
lola: 15402267 markings, 15402266 edges, 68523 markings/sec, 220 secs
lola: 15746839 markings, 15746839 edges, 68914 markings/sec, 225 secs
lola: 16091389 markings, 16091388 edges, 68910 markings/sec, 230 secs
lola: 16434433 markings, 16434432 edges, 68609 markings/sec, 235 secs
lola: 16777609 markings, 16777608 edges, 68635 markings/sec, 240 secs
lola: 17119404 markings, 17119403 edges, 68359 markings/sec, 245 secs
lola: 17461379 markings, 17461378 edges, 68395 markings/sec, 250 secs
lola: 17804563 markings, 17804562 edges, 68637 markings/sec, 255 secs
lola: 18151792 markings, 18151791 edges, 69446 markings/sec, 260 secs
lola: 18491112 markings, 18491112 edges, 67864 markings/sec, 265 secs
lola: 18823608 markings, 18823607 edges, 66499 markings/sec, 270 secs
lola: 19155560 markings, 19155560 edges, 66390 markings/sec, 275 secs
lola: 19497004 markings, 19497004 edges, 68289 markings/sec, 280 secs
lola: 19832871 markings, 19832871 edges, 67173 markings/sec, 285 secs
lola: 20160234 markings, 20160233 edges, 65473 markings/sec, 290 secs
lola: 20486863 markings, 20486863 edges, 65326 markings/sec, 295 secs
lola: 20817525 markings, 20817524 edges, 66132 markings/sec, 300 secs
lola: 21146068 markings, 21146067 edges, 65709 markings/sec, 305 secs
lola: 21478023 markings, 21478023 edges, 66391 markings/sec, 310 secs
lola: 21808517 markings, 21808516 edges, 66099 markings/sec, 315 secs
lola: 22137469 markings, 22137468 edges, 65790 markings/sec, 320 secs
lola: 22470951 markings, 22470950 edges, 66696 markings/sec, 325 secs
lola: 22806532 markings, 22806532 edges, 67116 markings/sec, 330 secs
lola: 23139973 markings, 23139972 edges, 66688 markings/sec, 335 secs
lola: 23477170 markings, 23477169 edges, 67439 markings/sec, 340 secs
lola: 23811924 markings, 23811923 edges, 66951 markings/sec, 345 secs
lola: 24144845 markings, 24144844 edges, 66584 markings/sec, 350 secs
lola: 24477793 markings, 24477792 edges, 66590 markings/sec, 355 secs
lola: 24813383 markings, 24813382 edges, 67118 markings/sec, 360 secs
lola: 25149314 markings, 25149313 edges, 67186 markings/sec, 365 secs
lola: 25486129 markings, 25486128 edges, 67363 markings/sec, 370 secs
lola: 25819995 markings, 25819994 edges, 66773 markings/sec, 375 secs
lola: 26153317 markings, 26153317 edges, 66664 markings/sec, 380 secs
lola: 26487479 markings, 26487478 edges, 66832 markings/sec, 385 secs
lola: 26823275 markings, 26823274 edges, 67159 markings/sec, 390 secs
lola: 27159710 markings, 27159710 edges, 67287 markings/sec, 395 secs
lola: 27496333 markings, 27496332 edges, 67325 markings/sec, 400 secs
lola: 27832246 markings, 27832245 edges, 67183 markings/sec, 405 secs
lola: 28163643 markings, 28163642 edges, 66279 markings/sec, 410 secs
lola: 28499202 markings, 28499201 edges, 67112 markings/sec, 415 secs
lola: 28835249 markings, 28835248 edges, 67209 markings/sec, 420 secs
lola: 29173305 markings, 29173305 edges, 67611 markings/sec, 425 secs
lola: 29511769 markings, 29511768 edges, 67693 markings/sec, 430 secs
lola: 29847455 markings, 29847454 edges, 67137 markings/sec, 435 secs
lola: 30177127 markings, 30177126 edges, 65934 markings/sec, 440 secs
lola: 30509889 markings, 30509888 edges, 66552 markings/sec, 445 secs
lola: 30843473 markings, 30843473 edges, 66717 markings/sec, 450 secs
lola: 31180057 markings, 31180056 edges, 67317 markings/sec, 455 secs
lola: 31512542 markings, 31512541 edges, 66497 markings/sec, 460 secs
lola: 31843748 markings, 31843747 edges, 66241 markings/sec, 465 secs
lola: 32175481 markings, 32175480 edges, 66347 markings/sec, 470 secs
lola: 32507578 markings, 32507577 edges, 66419 markings/sec, 475 secs
lola: 32840677 markings, 32840677 edges, 66620 markings/sec, 480 secs
lola: 33175223 markings, 33175222 edges, 66909 markings/sec, 485 secs
lola: 33510884 markings, 33510884 edges, 67132 markings/sec, 490 secs
lola: 33842797 markings, 33842796 edges, 66383 markings/sec, 495 secs
lola: 34175750 markings, 34175749 edges, 66591 markings/sec, 500 secs
lola: 34508288 markings, 34508288 edges, 66508 markings/sec, 505 secs
lola: 34845398 markings, 34845397 edges, 67422 markings/sec, 510 secs
lola: 35184210 markings, 35184210 edges, 67762 markings/sec, 515 secs
lola: 35525403 markings, 35525402 edges, 68239 markings/sec, 520 secs
lola: 35862497 markings, 35862496 edges, 67419 markings/sec, 525 secs
lola: 36200794 markings, 36200794 edges, 67659 markings/sec, 530 secs
lola: 36539548 markings, 36539547 edges, 67751 markings/sec, 535 secs
lola: 36878413 markings, 36878413 edges, 67773 markings/sec, 540 secs
lola: 37217117 markings, 37217117 edges, 67741 markings/sec, 545 secs
lola: 37557456 markings, 37557455 edges, 68068 markings/sec, 550 secs
lola: 37896154 markings, 37896154 edges, 67740 markings/sec, 555 secs
lola: 38235010 markings, 38235010 edges, 67771 markings/sec, 560 secs
lola: 38573975 markings, 38573974 edges, 67793 markings/sec, 565 secs
lola: 38911560 markings, 38911560 edges, 67517 markings/sec, 570 secs
lola: 39253186 markings, 39253186 edges, 68325 markings/sec, 575 secs
lola: 39590496 markings, 39590496 edges, 67462 markings/sec, 580 secs
lola: 39922811 markings, 39922810 edges, 66463 markings/sec, 585 secs
lola: 40255523 markings, 40255522 edges, 66542 markings/sec, 590 secs
lola: 40587550 markings, 40587549 edges, 66405 markings/sec, 595 secs
lola: 40920417 markings, 40920416 edges, 66573 markings/sec, 600 secs
lola: 41256978 markings, 41256977 edges, 67312 markings/sec, 605 secs
lola: 41591586 markings, 41591586 edges, 66922 markings/sec, 610 secs
lola: 41923018 markings, 41923017 edges, 66286 markings/sec, 615 secs
lola: 42255078 markings, 42255077 edges, 66412 markings/sec, 620 secs
lola: 42588400 markings, 42588399 edges, 66664 markings/sec, 625 secs
lola: 42922986 markings, 42922986 edges, 66917 markings/sec, 630 secs
lola: 43258309 markings, 43258308 edges, 67065 markings/sec, 635 secs
lola: 43592422 markings, 43592421 edges, 66823 markings/sec, 640 secs
lola: 43924124 markings, 43924123 edges, 66340 markings/sec, 645 secs
lola: 44257518 markings, 44257517 edges, 66679 markings/sec, 650 secs
lola: 44591571 markings, 44591571 edges, 66811 markings/sec, 655 secs
lola: 44927452 markings, 44927452 edges, 67176 markings/sec, 660 secs
lola: 45259115 markings, 45259114 edges, 66333 markings/sec, 665 secs
lola: 45588367 markings, 45588366 edges, 65850 markings/sec, 670 secs
lola: 45914126 markings, 45914126 edges, 65152 markings/sec, 675 secs
lola: 46243097 markings, 46243097 edges, 65794 markings/sec, 680 secs
lola: 46572681 markings, 46572680 edges, 65917 markings/sec, 685 secs
lola: 46903390 markings, 46903390 edges, 66142 markings/sec, 690 secs
lola: 47237051 markings, 47237051 edges, 66732 markings/sec, 695 secs
lola: 47573293 markings, 47573293 edges, 67248 markings/sec, 700 secs
lola: 47907069 markings, 47907068 edges, 66755 markings/sec, 705 secs
lola: 48243072 markings, 48243071 edges, 67201 markings/sec, 710 secs
lola: 48579551 markings, 48579550 edges, 67296 markings/sec, 715 secs
lola: 48917268 markings, 48917268 edges, 67543 markings/sec, 720 secs
lola: 49255685 markings, 49255684 edges, 67683 markings/sec, 725 secs
lola: 49591115 markings, 49591114 edges, 67086 markings/sec, 730 secs
lola: 49925585 markings, 49925584 edges, 66894 markings/sec, 735 secs
lola: 50261919 markings, 50261918 edges, 67267 markings/sec, 740 secs
lola: 50598832 markings, 50598831 edges, 67383 markings/sec, 745 secs
lola: 50936919 markings, 50936918 edges, 67617 markings/sec, 750 secs
lola: 51276608 markings, 51276608 edges, 67938 markings/sec, 755 secs
lola: 51611923 markings, 51611922 edges, 67063 markings/sec, 760 secs
lola: 51948508 markings, 51948507 edges, 67317 markings/sec, 765 secs
lola: 52285135 markings, 52285134 edges, 67325 markings/sec, 770 secs
lola: 52623482 markings, 52623482 edges, 67669 markings/sec, 775 secs
lola: 52962318 markings, 52962318 edges, 67767 markings/sec, 780 secs
lola: 53301799 markings, 53301798 edges, 67896 markings/sec, 785 secs
lola: 53636771 markings, 53636770 edges, 66994 markings/sec, 790 secs
lola: 53972848 markings, 53972848 edges, 67215 markings/sec, 795 secs
lola: 54310538 markings, 54310538 edges, 67538 markings/sec, 800 secs
lola: 54648703 markings, 54648702 edges, 67633 markings/sec, 805 secs
lola: 54988095 markings, 54988094 edges, 67878 markings/sec, 810 secs
lola: 55327554 markings, 55327554 edges, 67892 markings/sec, 815 secs
lola: 55663604 markings, 55663604 edges, 67210 markings/sec, 820 secs
lola: 56000433 markings, 56000433 edges, 67366 markings/sec, 825 secs
lola: 56339201 markings, 56339200 edges, 67754 markings/sec, 830 secs
lola: 56677886 markings, 56677885 edges, 67737 markings/sec, 835 secs
lola: 57012409 markings, 57012408 edges, 66905 markings/sec, 840 secs
lola: 57350680 markings, 57350679 edges, 67654 markings/sec, 845 secs
lola: 57684150 markings, 57684150 edges, 66694 markings/sec, 850 secs
lola: 58018715 markings, 58018714 edges, 66913 markings/sec, 855 secs
lola: 58357875 markings, 58357874 edges, 67832 markings/sec, 860 secs
lola: 58698344 markings, 58698343 edges, 68094 markings/sec, 865 secs
lola: 59038088 markings, 59038088 edges, 67949 markings/sec, 870 secs
lola: 59369396 markings, 59369396 edges, 66262 markings/sec, 875 secs
lola: 59702581 markings, 59702580 edges, 66637 markings/sec, 880 secs
lola: 60036750 markings, 60036750 edges, 66834 markings/sec, 885 secs
lola: 60371733 markings, 60371732 edges, 66997 markings/sec, 890 secs
lola: 60708414 markings, 60708413 edges, 67336 markings/sec, 895 secs
lola: 61046570 markings, 61046569 edges, 67631 markings/sec, 900 secs
lola: 61381410 markings, 61381409 edges, 66968 markings/sec, 905 secs
lola: 61712923 markings, 61712923 edges, 66303 markings/sec, 910 secs
lola: 62044839 markings, 62044838 edges, 66383 markings/sec, 915 secs
lola: 62376149 markings, 62376148 edges, 66262 markings/sec, 920 secs
lola: 62706308 markings, 62706308 edges, 66032 markings/sec, 925 secs
lola: 63040877 markings, 63040876 edges, 66914 markings/sec, 930 secs
lola: 63376394 markings, 63376394 edges, 67103 markings/sec, 935 secs
lola: 63708635 markings, 63708634 edges, 66448 markings/sec, 940 secs
lola: 64043325 markings, 64043325 edges, 66938 markings/sec, 945 secs
lola: 64378397 markings, 64378397 edges, 67014 markings/sec, 950 secs
lola: 64714424 markings, 64714423 edges, 67205 markings/sec, 955 secs
lola: 65051935 markings, 65051935 edges, 67502 markings/sec, 960 secs
lola: 65387125 markings, 65387124 edges, 67038 markings/sec, 965 secs
lola: 65719388 markings, 65719387 edges, 66453 markings/sec, 970 secs
lola: 66054642 markings, 66054641 edges, 67051 markings/sec, 975 secs
lola: 66391099 markings, 66391098 edges, 67291 markings/sec, 980 secs
lola: 66728648 markings, 66728648 edges, 67510 markings/sec, 985 secs
lola: 67069760 markings, 67069759 edges, 68222 markings/sec, 990 secs
lola: 67405039 markings, 67405038 edges, 67056 markings/sec, 995 secs
lola: 67743617 markings, 67743616 edges, 67716 markings/sec, 1000 secs
lola: 68079693 markings, 68079693 edges, 67215 markings/sec, 1005 secs
lola: 68348137 markings, 68348137 edges, 53689 markings/sec, 1010 secs
lola: 68547191 markings, 68547722 edges, 39811 markings/sec, 1015 secs
lola: Child process aborted or communication problem between parent and child process
lola: RESULT
lola:
SUMMARY: no no no no unknown yes no yes yes no yes yes no no no no
lola:
preliminary result: no no no no unknown yes no yes yes no yes yes no no no no
lola: memory consumption: 433620 KB
lola: time consumption: 2209 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished
BK_STOP 1590266904461
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="SafeBus-COL-20"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is SafeBus-COL-20, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r165-oct2-158972939000093"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/SafeBus-COL-20.tgz
mv SafeBus-COL-20 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;