fond
Model Checking Contest 2020
10th edition, Paris, France, June 23, 2020
Execution of r165-oct2-158972939000093
Last Updated
Jun 28, 2020

About the Execution of 2019-Gold for SafeBus-COL-20

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15919.310 2233225.00 2260178.00 971.00 FFFF?TFTTFTTFFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fko/mcc2020-input.r165-oct2-158972939000093.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2020-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.........................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is SafeBus-COL-20, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r165-oct2-158972939000093
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 216K
-rw-r--r-- 1 mcc users 3.7K Apr 12 12:11 CTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Apr 12 12:10 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.4K Apr 11 13:51 CTLFireability.txt
-rw-r--r-- 1 mcc users 15K Apr 11 13:51 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 24 05:38 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.0K Mar 24 05:38 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.1K Apr 14 12:50 LTLCardinality.txt
-rw-r--r-- 1 mcc users 20K Apr 28 14:02 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Apr 14 12:50 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Apr 28 14:02 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.2K Apr 10 17:26 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 15K Apr 10 17:26 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 10 00:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 10 00:21 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Apr 10 22:28 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Apr 10 22:28 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 24 05:38 equiv_pt
-rw-r--r-- 1 mcc users 3 Mar 24 05:38 instance
-rw-r--r-- 1 mcc users 5 Mar 24 05:38 iscolored
-rw-r--r-- 1 mcc users 42K Mar 24 05:38 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME SafeBus-COL-20-00
FORMULA_NAME SafeBus-COL-20-01
FORMULA_NAME SafeBus-COL-20-02
FORMULA_NAME SafeBus-COL-20-03
FORMULA_NAME SafeBus-COL-20-04
FORMULA_NAME SafeBus-COL-20-05
FORMULA_NAME SafeBus-COL-20-06
FORMULA_NAME SafeBus-COL-20-07
FORMULA_NAME SafeBus-COL-20-08
FORMULA_NAME SafeBus-COL-20-09
FORMULA_NAME SafeBus-COL-20-10
FORMULA_NAME SafeBus-COL-20-11
FORMULA_NAME SafeBus-COL-20-12
FORMULA_NAME SafeBus-COL-20-13
FORMULA_NAME SafeBus-COL-20-14
FORMULA_NAME SafeBus-COL-20-15

=== Now, execution of the tool begins

BK_START 1590264671236

info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ SafeBus-COL-20 @ 3570 seconds
check_solution: Constraint R795 = 0 is above its equality of -1
check_solution: Constraint R861 = 0 is above its equality of -1
check_solution: Constraint R922 = 0 is above its equality of -1
check_solution: Constraint R923 = 0 is above its equality of -1
check_solution: Constraint R924 = 0 is above its equality of -1
check_solution: Constraint R957 = 0 is above its equality of -1
check_solution: Constraint R958 = 0 is above its equality of -1
check_solution: Constraint R959 = 0 is above its equality of -1
check_solution: Constraint R960 = 0 is above its equality of -1
check_solution: Constraint R961 = 0 is above its equality of -1

Seriously low accuracy found ||*|| = 1 (rel. error 1)

FORMULA SafeBus-COL-20-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA SafeBus-COL-20-04 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 1337
rslt: Output for LTLCardinality @ SafeBus-COL-20

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat May 23 20:11:11 2020
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 214
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 228
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 244
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 263
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 285
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 311
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 3,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 860,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 440,
"visible_transitions": 0
},
"processed": "A (F ((X ((p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + 1 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862)) AND ((p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944) OR G ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))))",
"processed_size": 6027,
"rewrites": 88
},
"result":
{
"edges": 20,
"markings": 21,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 4
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 342
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 2,
"G": 2,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 80,
"taut": 0,
"tconj": 1,
"tdisj": 2,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 40,
"visible_transitions": 0
},
"processed": "A ((G (F ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) OR X (((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883) OR (G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)) AND F ((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883)))))))",
"processed_size": 621,
"rewrites": 88
},
"result":
{
"edges": 204,
"markings": 204,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 11
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 380
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 88
},
"result":
{
"edges": 20,
"markings": 21,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 428
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X (G ((1 <= p1045))))",
"processed_size": 24,
"rewrites": 88
},
"result":
{
"edges": 202,
"markings": 202,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 489
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 489
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 21,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 21,
"visible_transitions": 0
},
"processed": "(p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + 1 <= p863)",
"processed_size": 151,
"rewrites": 90
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "state space / EG",
"value": true
},
"task":
{
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 861
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 570
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 400,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 400,
"visible_transitions": 0
},
"processed": "(p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99 <= 2)",
"processed_size": 2747,
"rewrites": 90
},
"result":
{
"edges": 309,
"markings": 309,
"produced_by": "state space / EG",
"value": false
},
"task":
{
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 1180
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 9,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 570
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 42,
"taut": 0,
"tconj": 0,
"tdisj": 2,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 42,
"visible_transitions": 0
},
"processed": "A (((p863 <= p904) OR (X (TRUE) OR F ((p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))",
"processed_size": 331,
"rewrites": 88
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 684
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 88
},
"result":
{
"edges": 20,
"markings": 21,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 856
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 856
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 21,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 21,
"visible_transitions": 0
},
"processed": "A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))",
"processed_size": 163,
"rewrites": 88
},
"result":
{
"edges": 333,
"markings": 332,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 12,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1141
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 1,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 42,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 21,
"visible_transitions": 0
},
"processed": "A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X (TRUE)) U X (G ((p42 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))",
"processed_size": 328,
"rewrites": 88
},
"result":
{
"edges": 203,
"markings": 203,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 6
},
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1712
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 3,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 41,
"taut": 0,
"tconj": 0,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 41,
"visible_transitions": 0
},
"processed": "A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR X (X (X (F ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))",
"processed_size": 340,
"rewrites": 88
},
"result":
{
"edges": 290847,
"markings": 261469,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 7
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 433620,
"runtime": 2209.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "FALSE : FALSE : A(X(G(**))) : (A(F(**)) AND (A(F(**)) AND A(X(F(**))))) : A(X(F((** OR G(**))))) : A(F((X(*) AND (** OR G(**))))) : A((G(F(**)) OR X((** OR (G(**) AND F(**)))))) : A(X(TRUE)) : TRUE : FALSE : A((** OR (X(TRUE) OR F(*)))) : A(X(TRUE)) : (A(F(G(**))) AND A(G((** OR X(G(**)))))) : A(((** AND X(TRUE)) U X(G(*)))) : A((G(**) OR X(X(X(F(**)))))) : FALSE"
},
"net":
{
"arcs": 77544,
"conflict_clusters": 2,
"places": 1046,
"places_significant": 941,
"singleton_clusters": 0,
"transitions": 10501
},
"result":
{
"preliminary_value": "no no no no unknown yes no yes yes no yes yes no no no no ",
"value": "no no no no unknown yes no yes yes no yes yes no no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 1046, Transitions: 10501
lola: @ trans C_free
lola: @ trans C_refuse
lola: @ trans I_refused
lola: @ trans C_provide
lola: @ trans Gto
lola: @ trans I_ask1
lola: @ trans loss_m
lola: @ trans I_rec1
lola: @ trans I_rec2
lola: @ trans I_emit
lola: @ trans I_ask2
lola: @ trans I_reemit
lola: @ trans I_free
lola: @ trans loss_a
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 11547/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 33472
lola: finding significant places
lola: 1046 places, 10501 transitions, 941 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p42)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005)
lola: after: (0 <= 20)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p916 + p915 + p914 + p913 + p912 + p911 + p910 + p909 + p908 + p907 + p906 + p905)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 <= p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462)
lola: after: (1 <= p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462)
lola: place invariant simplifies atomic proposition
lola: before: (p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000)
lola: after: (1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000)
lola: LP says that atomic proposition is always false: (2 <= p863)
lola: place invariant simplifies atomic proposition
lola: before: (p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: after: (20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: place invariant simplifies atomic proposition
lola: before: (p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: after: (20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)
lola: LP says that atomic proposition is always false: (3 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903)
lola: after: (0 <= 0)
lola: LP says that atomic proposition is always false: (2 <= p904)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p904 <= p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005)
lola: after: (p904 <= 20)
lola: LP says that atomic proposition is always true: (p904 <= 20)
lola: LP says that atomic proposition is always false: (3 <= p904)
lola: place invariant simplifies atomic proposition
lola: before: (p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)
lola: after: (20 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)
lola: LP says that atomic proposition is always false: (3 <= p1045)
lola: LP says that atomic proposition is always false: (3 <= p1045)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1024 + p1023 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005)
lola: after: (0 <= 18)
lola: A (G ((2 <= p42))) : A (NOT(((0 <= 20) OR (() AND F (G (F ((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))))))) : A (X (G ((1 <= p1045)))) : A (((F ((3 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)) AND F ((p863 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) AND F (X ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))) : A (NOT(X (G (NOT(((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)))))))) : A (F ((NOT(X (((p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944) OR G ((2 <= p863))))) AND ((p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944) OR G ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))))) : A ((F (G ((G ((0 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) U (20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))) OR X ((G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)) U (2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))) : A (X (G (F ((F ((0 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99)) OR ((3 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) AND (G ((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99 + 1 <= 0)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862)))))))) : A ((F ((0 <= 0)) OR X (G (((2 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968) AND X (G ((p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)))))))) : A (((p863 + 1 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99) AND (() OR F (X ((1 <= 0)))))) : A ((((p863 <= p904) OR X ((p904 <= 20))) OR NOT(G ((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000))))) : A (X ((G (F ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p41))) U ()))) : A (G (((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p81 + p80 + p79 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p62 + p82 + p99 <= 19) U (((3 <= p1045) U X (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883)))) OR X (((2 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968) U (3 <= p1045))))))) : A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X ((0 <= p42))) U G (NOT(X ((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42)))))) : A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR F (X (X (F (X ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))) : A (X (G ((19 <= 0))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:251
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:374
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 214 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 228 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 244 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 263 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 285 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 311 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((X ((p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + 1 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((X ((p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + 1 <= p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 +... (shortened)
lola: processed formula length: 6027
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 20 edges
lola: ========================================
lola: subprocess 6 will run for 342 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((G (F ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) OR X (((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883) OR (G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((G (F ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968))) OR X (((2 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883) OR (G ((20 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 +... (shortened)
lola: processed formula length: 621
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 11 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 204 markings, 204 edges
lola: ========================================
lola: subprocess 7 will run for 380 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 20 edges
lola: ========================================
lola: subprocess 8 will run for 428 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((1 <= p1045))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((1 <= p1045))))
lola: processed formula length: 24
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 202 markings, 202 edges
lola: ========================================
lola: subprocess 9 will run for 489 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (F ((3 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 9 will run for 489 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((p863 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + 1 <= p863)
lola: processed formula length: 151
lola: 90 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 570 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((3 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p15... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + ... (shortened)
lola: processed formula length: 2747
lola: 90 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 309 markings, 309 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 10 will run for 570 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (((p863 <= p904) OR (X (TRUE) OR F ((p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((p863 <= p904) OR (X (TRUE) OR F ((p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: processed formula length: 331
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 11 will run for 684 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 20 edges
lola: ========================================
lola: subprocess 12 will run for 856 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883)))) AND A (G (((p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 12 will run for 856 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p904 + 1 <= p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883))))
lola: processed formula length: 163
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 332 markings, 333 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 13 will run for 1141 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X (TRUE)) U X (G ((p42 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 <= p42) AND X (TRUE)) U X (G ((p42 + 1 <= p965 + p966 + p967 + p984 + p983 + p982 + p981 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968)))))
lola: processed formula length: 328
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 203 markings, 203 edges
lola: ========================================
lola: subprocess 14 will run for 1712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR X (X (X (F ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((G ((p42 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944)) OR X (X (X (F ((1 <= p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044)))))))
lola: processed formula length: 340
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 7 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 261469 markings, 290847 edges
lola: ========================================
lola: subprocess 15 will run for 3420 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: processed formula length: 318
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 334422 markings, 334422 edges, 66884 markings/sec, 0 secs
lola: 665978 markings, 665977 edges, 66311 markings/sec, 5 secs
lola: 997409 markings, 997408 edges, 66286 markings/sec, 10 secs
lola: 1330365 markings, 1330364 edges, 66591 markings/sec, 15 secs
lola: 1665435 markings, 1665435 edges, 67014 markings/sec, 20 secs
lola: 2000247 markings, 2000246 edges, 66962 markings/sec, 25 secs
lola: 2327536 markings, 2327535 edges, 65458 markings/sec, 30 secs
lola: 2656655 markings, 2656655 edges, 65824 markings/sec, 35 secs
lola: 2987264 markings, 2987263 edges, 66122 markings/sec, 40 secs
lola: 3320734 markings, 3320734 edges, 66694 markings/sec, 45 secs
lola: 3654253 markings, 3654252 edges, 66704 markings/sec, 50 secs
lola: 3986610 markings, 3986609 edges, 66471 markings/sec, 55 secs
lola: 4315631 markings, 4315630 edges, 65804 markings/sec, 60 secs
lola: 4646790 markings, 4646790 edges, 66232 markings/sec, 65 secs
lola: 4976602 markings, 4976601 edges, 65962 markings/sec, 70 secs
lola: 5309718 markings, 5309717 edges, 66623 markings/sec, 75 secs
lola: 5642595 markings, 5642594 edges, 66575 markings/sec, 80 secs
lola: 5974177 markings, 5974177 edges, 66316 markings/sec, 85 secs
lola: 6302825 markings, 6302825 edges, 65730 markings/sec, 90 secs
lola: 6631116 markings, 6631115 edges, 65658 markings/sec, 95 secs
lola: 6965421 markings, 6965420 edges, 66861 markings/sec, 100 secs
lola: 7300157 markings, 7300156 edges, 66947 markings/sec, 105 secs
lola: 7638267 markings, 7638266 edges, 67622 markings/sec, 110 secs
lola: 7976821 markings, 7976820 edges, 67711 markings/sec, 115 secs
lola: 8311597 markings, 8311597 edges, 66955 markings/sec, 120 secs
lola: 8643385 markings, 8643384 edges, 66358 markings/sec, 125 secs
lola: 8979981 markings, 8979980 edges, 67319 markings/sec, 130 secs
lola: 9319302 markings, 9319301 edges, 67864 markings/sec, 135 secs
lola: 9660808 markings, 9660807 edges, 68301 markings/sec, 140 secs
lola: 10005871 markings, 10005870 edges, 69013 markings/sec, 145 secs
lola: 10344552 markings, 10344551 edges, 67736 markings/sec, 150 secs
lola: 10683454 markings, 10683453 edges, 67780 markings/sec, 155 secs
lola: 11022465 markings, 11022464 edges, 67802 markings/sec, 160 secs
lola: 11364581 markings, 11364580 edges, 68423 markings/sec, 165 secs
lola: 11705645 markings, 11705644 edges, 68213 markings/sec, 170 secs
lola: 12050519 markings, 12050519 edges, 68975 markings/sec, 175 secs
lola: 12389104 markings, 12389103 edges, 67717 markings/sec, 180 secs
lola: 12725035 markings, 12725034 edges, 67186 markings/sec, 185 secs
lola: 13065356 markings, 13065355 edges, 68064 markings/sec, 190 secs
lola: 13407871 markings, 13407870 edges, 68503 markings/sec, 195 secs
lola: 13751757 markings, 13751756 edges, 68777 markings/sec, 200 secs
lola: 14097105 markings, 14097105 edges, 69070 markings/sec, 205 secs
lola: 14439597 markings, 14439596 edges, 68498 markings/sec, 210 secs
lola: 14777614 markings, 14777613 edges, 67603 markings/sec, 215 secs
lola: 15120009 markings, 15120008 edges, 68479 markings/sec, 220 secs
lola: 15465569 markings, 15465568 edges, 69112 markings/sec, 225 secs
lola: 15823980 markings, 15823980 edges, 71682 markings/sec, 230 secs
lola: 16181521 markings, 16181520 edges, 71508 markings/sec, 235 secs
lola: 16535959 markings, 16535958 edges, 70888 markings/sec, 240 secs
lola: 16893547 markings, 16893546 edges, 71518 markings/sec, 245 secs
lola: 17251925 markings, 17251925 edges, 71676 markings/sec, 250 secs
lola: 17610423 markings, 17610423 edges, 71700 markings/sec, 255 secs
lola: 17970515 markings, 17970515 edges, 72018 markings/sec, 260 secs
lola: 18325458 markings, 18325457 edges, 70989 markings/sec, 265 secs
lola: 18682524 markings, 18682524 edges, 71413 markings/sec, 270 secs
lola: 19041166 markings, 19041165 edges, 71728 markings/sec, 275 secs
lola: 19400103 markings, 19400102 edges, 71787 markings/sec, 280 secs
lola: 19759530 markings, 19759530 edges, 71885 markings/sec, 285 secs
lola: 20104868 markings, 20104867 edges, 69068 markings/sec, 290 secs
lola: 20453150 markings, 20453150 edges, 69656 markings/sec, 295 secs
lola: 20803553 markings, 20803552 edges, 70081 markings/sec, 300 secs
lola: 21153673 markings, 21153673 edges, 70024 markings/sec, 305 secs
lola: 21505899 markings, 21505898 edges, 70445 markings/sec, 310 secs
lola: 21856702 markings, 21856701 edges, 70161 markings/sec, 315 secs
lola: 22205233 markings, 22205232 edges, 69706 markings/sec, 320 secs
lola: 22543582 markings, 22543581 edges, 67670 markings/sec, 325 secs
lola: 22873711 markings, 22873710 edges, 66026 markings/sec, 330 secs
lola: 23219446 markings, 23219445 edges, 69147 markings/sec, 335 secs
lola: 23571948 markings, 23571948 edges, 70500 markings/sec, 340 secs
lola: 23919109 markings, 23919109 edges, 69432 markings/sec, 345 secs
lola: 24264997 markings, 24264997 edges, 69178 markings/sec, 350 secs
lola: 24606436 markings, 24606436 edges, 68288 markings/sec, 355 secs
lola: 24940811 markings, 24940811 edges, 66875 markings/sec, 360 secs
lola: 25277467 markings, 25277466 edges, 67331 markings/sec, 365 secs
lola: 25616329 markings, 25616329 edges, 67772 markings/sec, 370 secs
lola: 25949705 markings, 25949704 edges, 66675 markings/sec, 375 secs
lola: 26284653 markings, 26284653 edges, 66990 markings/sec, 380 secs
lola: 26619680 markings, 26619679 edges, 67005 markings/sec, 385 secs
lola: 26956643 markings, 26956643 edges, 67393 markings/sec, 390 secs
lola: 27291279 markings, 27291279 edges, 66927 markings/sec, 395 secs
lola: 27630259 markings, 27630259 edges, 67796 markings/sec, 400 secs
lola: 27962702 markings, 27962701 edges, 66489 markings/sec, 405 secs
lola: 28296209 markings, 28296208 edges, 66701 markings/sec, 410 secs
lola: 28626694 markings, 28626694 edges, 66097 markings/sec, 415 secs
lola: 28963222 markings, 28963221 edges, 67306 markings/sec, 420 secs
lola: 29298675 markings, 29298674 edges, 67091 markings/sec, 425 secs
lola: 29636660 markings, 29636659 edges, 67597 markings/sec, 430 secs
lola: 29972113 markings, 29972112 edges, 67091 markings/sec, 435 secs
lola: 30309436 markings, 30309435 edges, 67465 markings/sec, 440 secs
lola: 30644702 markings, 30644701 edges, 67053 markings/sec, 445 secs
lola: 30979636 markings, 30979636 edges, 66987 markings/sec, 450 secs
lola: 31318292 markings, 31318292 edges, 67731 markings/sec, 455 secs
lola: 31654544 markings, 31654543 edges, 67250 markings/sec, 460 secs
lola: 31990491 markings, 31990491 edges, 67189 markings/sec, 465 secs
lola: 32325884 markings, 32325884 edges, 67079 markings/sec, 470 secs
lola: 32664443 markings, 32664443 edges, 67712 markings/sec, 475 secs
lola: 33001322 markings, 33001321 edges, 67376 markings/sec, 480 secs
lola: 33336791 markings, 33336791 edges, 67094 markings/sec, 485 secs
lola: 33669863 markings, 33669862 edges, 66614 markings/sec, 490 secs
lola: 34003823 markings, 34003822 edges, 66792 markings/sec, 495 secs
lola: 34338400 markings, 34338399 edges, 66915 markings/sec, 500 secs
lola: 34673509 markings, 34673508 edges, 67022 markings/sec, 505 secs
lola: 35013572 markings, 35013571 edges, 68013 markings/sec, 510 secs
lola: 35355393 markings, 35355392 edges, 68364 markings/sec, 515 secs
lola: 35694525 markings, 35694524 edges, 67826 markings/sec, 520 secs
lola: 36031772 markings, 36031772 edges, 67449 markings/sec, 525 secs
lola: 36367622 markings, 36367621 edges, 67170 markings/sec, 530 secs
lola: 36707035 markings, 36707035 edges, 67883 markings/sec, 535 secs
lola: 37040638 markings, 37040637 edges, 66721 markings/sec, 540 secs
lola: 37381315 markings, 37381314 edges, 68135 markings/sec, 545 secs
lola: 37720410 markings, 37720409 edges, 67819 markings/sec, 550 secs
lola: 38051175 markings, 38051175 edges, 66153 markings/sec, 555 secs
lola: 38391012 markings, 38391012 edges, 67967 markings/sec, 560 secs
lola: 38731471 markings, 38731471 edges, 68092 markings/sec, 565 secs
lola: 39073196 markings, 39073195 edges, 68345 markings/sec, 570 secs
lola: 39414776 markings, 39414776 edges, 68316 markings/sec, 575 secs
lola: 39746706 markings, 39746705 edges, 66386 markings/sec, 580 secs
lola: 40077051 markings, 40077050 edges, 66069 markings/sec, 585 secs
lola: 40410299 markings, 40410298 edges, 66650 markings/sec, 590 secs
lola: 40746123 markings, 40746123 edges, 67165 markings/sec, 595 secs
lola: 41082919 markings, 41082919 edges, 67359 markings/sec, 600 secs
lola: 41426351 markings, 41426350 edges, 68686 markings/sec, 605 secs
lola: 41772042 markings, 41772041 edges, 69138 markings/sec, 610 secs
lola: 42109995 markings, 42109995 edges, 67591 markings/sec, 615 secs
lola: 42441941 markings, 42441941 edges, 66389 markings/sec, 620 secs
lola: 42776001 markings, 42776000 edges, 66812 markings/sec, 625 secs
lola: 43108966 markings, 43108965 edges, 66593 markings/sec, 630 secs
lola: 43441664 markings, 43441664 edges, 66540 markings/sec, 635 secs
lola: 43770461 markings, 43770460 edges, 65759 markings/sec, 640 secs
lola: 44099797 markings, 44099797 edges, 65867 markings/sec, 645 secs
lola: 44426932 markings, 44426932 edges, 65427 markings/sec, 650 secs
lola: 44756654 markings, 44756653 edges, 65944 markings/sec, 655 secs
lola: 45089053 markings, 45089052 edges, 66480 markings/sec, 660 secs
lola: 45420912 markings, 45420911 edges, 66372 markings/sec, 665 secs
lola: 45748692 markings, 45748691 edges, 65556 markings/sec, 670 secs
lola: 46076690 markings, 46076689 edges, 65600 markings/sec, 675 secs
lola: 46404321 markings, 46404320 edges, 65526 markings/sec, 680 secs
lola: 46737636 markings, 46737636 edges, 66663 markings/sec, 685 secs
lola: 47071718 markings, 47071717 edges, 66816 markings/sec, 690 secs
lola: 47406151 markings, 47406151 edges, 66887 markings/sec, 695 secs
lola: 47736987 markings, 47736986 edges, 66167 markings/sec, 700 secs
lola: 48068470 markings, 48068469 edges, 66297 markings/sec, 705 secs
lola: 48400984 markings, 48400984 edges, 66503 markings/sec, 710 secs
lola: 48730895 markings, 48730894 edges, 65982 markings/sec, 715 secs
lola: 49063211 markings, 49063210 edges, 66463 markings/sec, 720 secs
lola: 49395660 markings, 49395659 edges, 66490 markings/sec, 725 secs
lola: 49721797 markings, 49721796 edges, 65227 markings/sec, 730 secs
lola: 50049119 markings, 50049118 edges, 65464 markings/sec, 735 secs
lola: 50377845 markings, 50377844 edges, 65745 markings/sec, 740 secs
lola: 50708077 markings, 50708076 edges, 66046 markings/sec, 745 secs
lola: 51039214 markings, 51039213 edges, 66227 markings/sec, 750 secs
lola: 51375887 markings, 51375887 edges, 67335 markings/sec, 755 secs
lola: 51709913 markings, 51709912 edges, 66805 markings/sec, 760 secs
lola: 52042661 markings, 52042660 edges, 66550 markings/sec, 765 secs
lola: 52374619 markings, 52374618 edges, 66392 markings/sec, 770 secs
lola: 52706502 markings, 52706501 edges, 66377 markings/sec, 775 secs
lola: 53043144 markings, 53043143 edges, 67328 markings/sec, 780 secs
lola: 53382141 markings, 53382140 edges, 67799 markings/sec, 785 secs
lola: 53718318 markings, 53718318 edges, 67235 markings/sec, 790 secs
lola: 54056892 markings, 54056892 edges, 67715 markings/sec, 795 secs
lola: 54397393 markings, 54397392 edges, 68100 markings/sec, 800 secs
lola: 54735873 markings, 54735872 edges, 67696 markings/sec, 805 secs
lola: 55070006 markings, 55070005 edges, 66827 markings/sec, 810 secs
lola: 55404086 markings, 55404085 edges, 66816 markings/sec, 815 secs
lola: 55738431 markings, 55738430 edges, 66869 markings/sec, 820 secs
lola: 56071784 markings, 56071784 edges, 66671 markings/sec, 825 secs
lola: 56410723 markings, 56410722 edges, 67788 markings/sec, 830 secs
lola: 56751118 markings, 56751117 edges, 68079 markings/sec, 835 secs
lola: 57090937 markings, 57090936 edges, 67964 markings/sec, 840 secs
lola: 57429697 markings, 57429696 edges, 67752 markings/sec, 845 secs
lola: 57767372 markings, 57767372 edges, 67535 markings/sec, 850 secs
lola: 58103745 markings, 58103744 edges, 67275 markings/sec, 855 secs
lola: 58443775 markings, 58443774 edges, 68006 markings/sec, 860 secs
lola: 58784379 markings, 58784378 edges, 68121 markings/sec, 865 secs
lola: 59124111 markings, 59124110 edges, 67946 markings/sec, 870 secs
lola: 59459860 markings, 59459859 edges, 67150 markings/sec, 875 secs
lola: 59792941 markings, 59792940 edges, 66616 markings/sec, 880 secs
lola: 60126558 markings, 60126557 edges, 66723 markings/sec, 885 secs
lola: 60462474 markings, 60462474 edges, 67183 markings/sec, 890 secs
lola: 60800069 markings, 60800068 edges, 67519 markings/sec, 895 secs
lola: 61138855 markings, 61138855 edges, 67757 markings/sec, 900 secs
lola: 61479775 markings, 61479774 edges, 68184 markings/sec, 905 secs
lola: 61825539 markings, 61825538 edges, 69153 markings/sec, 910 secs
lola: 62173457 markings, 62173457 edges, 69584 markings/sec, 915 secs
lola: 62522932 markings, 62522931 edges, 69895 markings/sec, 920 secs
lola: 62869669 markings, 62869668 edges, 69347 markings/sec, 925 secs
lola: 63203984 markings, 63203983 edges, 66863 markings/sec, 930 secs
lola: 63532523 markings, 63532522 edges, 65708 markings/sec, 935 secs
lola: 63863032 markings, 63863032 edges, 66102 markings/sec, 940 secs
lola: 64198129 markings, 64198128 edges, 67019 markings/sec, 945 secs
lola: 64534044 markings, 64534043 edges, 67183 markings/sec, 950 secs
lola: 64865338 markings, 64865337 edges, 66259 markings/sec, 955 secs
lola: 65201804 markings, 65201803 edges, 67293 markings/sec, 960 secs
lola: 65535364 markings, 65535364 edges, 66712 markings/sec, 965 secs
lola: 65864894 markings, 65864894 edges, 65906 markings/sec, 970 secs
lola: 66197504 markings, 66197503 edges, 66522 markings/sec, 975 secs
lola: 66534242 markings, 66534241 edges, 67348 markings/sec, 980 secs
lola: 66871800 markings, 66871799 edges, 67512 markings/sec, 985 secs
lola: 67207424 markings, 67207423 edges, 67125 markings/sec, 990 secs
lola: 67541960 markings, 67541960 edges, 66907 markings/sec, 995 secs
lola: 67877539 markings, 67877539 edges, 67116 markings/sec, 1000 secs
lola: 68213819 markings, 68213818 edges, 67256 markings/sec, 1005 secs
lola: 68427479 markings, 68427478 edges, 42732 markings/sec, 1010 secs
lola: 68570000 markings, 68570000 edges, 28504 markings/sec, 1015 secs
lola: 68571503 markings, 68571503 edges, 301 markings/sec, 1020 secs
lola: 68571522 markings, 68571521 edges, 4 markings/sec, 1025 secs
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (((1 <= p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1004 + p1003 + p1002 + p1001 + p1000) OR G ((p863 <= p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944))))))
lola: processed formula length: 318
lola: 88 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 343921 markings, 343920 edges, 68784 markings/sec, 0 secs
lola: 688051 markings, 688050 edges, 68826 markings/sec, 5 secs
lola: 1032605 markings, 1032604 edges, 68911 markings/sec, 10 secs
lola: 1379050 markings, 1379049 edges, 69289 markings/sec, 15 secs
lola: 1725814 markings, 1725814 edges, 69353 markings/sec, 20 secs
lola: 2070863 markings, 2070862 edges, 69010 markings/sec, 25 secs
lola: 2410674 markings, 2410673 edges, 67962 markings/sec, 30 secs
lola: 2749995 markings, 2749995 edges, 67864 markings/sec, 35 secs
lola: 3091777 markings, 3091777 edges, 68356 markings/sec, 40 secs
lola: 3434844 markings, 3434843 edges, 68613 markings/sec, 45 secs
lola: 3778573 markings, 3778572 edges, 68746 markings/sec, 50 secs
lola: 4118356 markings, 4118356 edges, 67957 markings/sec, 55 secs
lola: 4457261 markings, 4457260 edges, 67781 markings/sec, 60 secs
lola: 4796651 markings, 4796650 edges, 67878 markings/sec, 65 secs
lola: 5135067 markings, 5135066 edges, 67683 markings/sec, 70 secs
lola: 5476477 markings, 5476477 edges, 68282 markings/sec, 75 secs
lola: 5818285 markings, 5818284 edges, 68362 markings/sec, 80 secs
lola: 6158926 markings, 6158925 edges, 68128 markings/sec, 85 secs
lola: 6497478 markings, 6497477 edges, 67710 markings/sec, 90 secs
lola: 6831703 markings, 6831702 edges, 66845 markings/sec, 95 secs
lola: 7171120 markings, 7171120 edges, 67883 markings/sec, 100 secs
lola: 7513446 markings, 7513445 edges, 68465 markings/sec, 105 secs
lola: 7857061 markings, 7857060 edges, 68723 markings/sec, 110 secs
lola: 8198383 markings, 8198382 edges, 68264 markings/sec, 115 secs
lola: 8539307 markings, 8539306 edges, 68185 markings/sec, 120 secs
lola: 8880387 markings, 8880386 edges, 68216 markings/sec, 125 secs
lola: 9222944 markings, 9222943 edges, 68511 markings/sec, 130 secs
lola: 9566148 markings, 9566147 edges, 68641 markings/sec, 135 secs
lola: 9910561 markings, 9910561 edges, 68883 markings/sec, 140 secs
lola: 10252535 markings, 10252534 edges, 68395 markings/sec, 145 secs
lola: 10593959 markings, 10593959 edges, 68285 markings/sec, 150 secs
lola: 10936274 markings, 10936273 edges, 68463 markings/sec, 155 secs
lola: 11280148 markings, 11280148 edges, 68775 markings/sec, 160 secs
lola: 11624865 markings, 11624864 edges, 68943 markings/sec, 165 secs
lola: 11969958 markings, 11969957 edges, 69019 markings/sec, 170 secs
lola: 12312881 markings, 12312880 edges, 68585 markings/sec, 175 secs
lola: 12655120 markings, 12655119 edges, 68448 markings/sec, 180 secs
lola: 12998481 markings, 12998480 edges, 68672 markings/sec, 185 secs
lola: 13343281 markings, 13343281 edges, 68960 markings/sec, 190 secs
lola: 13688441 markings, 13688440 edges, 69032 markings/sec, 195 secs
lola: 14033903 markings, 14033902 edges, 69092 markings/sec, 200 secs
lola: 14375476 markings, 14375475 edges, 68315 markings/sec, 205 secs
lola: 14717488 markings, 14717488 edges, 68402 markings/sec, 210 secs
lola: 15059653 markings, 15059653 edges, 68433 markings/sec, 215 secs
lola: 15402267 markings, 15402266 edges, 68523 markings/sec, 220 secs
lola: 15746839 markings, 15746839 edges, 68914 markings/sec, 225 secs
lola: 16091389 markings, 16091388 edges, 68910 markings/sec, 230 secs
lola: 16434433 markings, 16434432 edges, 68609 markings/sec, 235 secs
lola: 16777609 markings, 16777608 edges, 68635 markings/sec, 240 secs
lola: 17119404 markings, 17119403 edges, 68359 markings/sec, 245 secs
lola: 17461379 markings, 17461378 edges, 68395 markings/sec, 250 secs
lola: 17804563 markings, 17804562 edges, 68637 markings/sec, 255 secs
lola: 18151792 markings, 18151791 edges, 69446 markings/sec, 260 secs
lola: 18491112 markings, 18491112 edges, 67864 markings/sec, 265 secs
lola: 18823608 markings, 18823607 edges, 66499 markings/sec, 270 secs
lola: 19155560 markings, 19155560 edges, 66390 markings/sec, 275 secs
lola: 19497004 markings, 19497004 edges, 68289 markings/sec, 280 secs
lola: 19832871 markings, 19832871 edges, 67173 markings/sec, 285 secs
lola: 20160234 markings, 20160233 edges, 65473 markings/sec, 290 secs
lola: 20486863 markings, 20486863 edges, 65326 markings/sec, 295 secs
lola: 20817525 markings, 20817524 edges, 66132 markings/sec, 300 secs
lola: 21146068 markings, 21146067 edges, 65709 markings/sec, 305 secs
lola: 21478023 markings, 21478023 edges, 66391 markings/sec, 310 secs
lola: 21808517 markings, 21808516 edges, 66099 markings/sec, 315 secs
lola: 22137469 markings, 22137468 edges, 65790 markings/sec, 320 secs
lola: 22470951 markings, 22470950 edges, 66696 markings/sec, 325 secs
lola: 22806532 markings, 22806532 edges, 67116 markings/sec, 330 secs
lola: 23139973 markings, 23139972 edges, 66688 markings/sec, 335 secs
lola: 23477170 markings, 23477169 edges, 67439 markings/sec, 340 secs
lola: 23811924 markings, 23811923 edges, 66951 markings/sec, 345 secs
lola: 24144845 markings, 24144844 edges, 66584 markings/sec, 350 secs
lola: 24477793 markings, 24477792 edges, 66590 markings/sec, 355 secs
lola: 24813383 markings, 24813382 edges, 67118 markings/sec, 360 secs
lola: 25149314 markings, 25149313 edges, 67186 markings/sec, 365 secs
lola: 25486129 markings, 25486128 edges, 67363 markings/sec, 370 secs
lola: 25819995 markings, 25819994 edges, 66773 markings/sec, 375 secs
lola: 26153317 markings, 26153317 edges, 66664 markings/sec, 380 secs
lola: 26487479 markings, 26487478 edges, 66832 markings/sec, 385 secs
lola: 26823275 markings, 26823274 edges, 67159 markings/sec, 390 secs
lola: 27159710 markings, 27159710 edges, 67287 markings/sec, 395 secs
lola: 27496333 markings, 27496332 edges, 67325 markings/sec, 400 secs
lola: 27832246 markings, 27832245 edges, 67183 markings/sec, 405 secs
lola: 28163643 markings, 28163642 edges, 66279 markings/sec, 410 secs
lola: 28499202 markings, 28499201 edges, 67112 markings/sec, 415 secs
lola: 28835249 markings, 28835248 edges, 67209 markings/sec, 420 secs
lola: 29173305 markings, 29173305 edges, 67611 markings/sec, 425 secs
lola: 29511769 markings, 29511768 edges, 67693 markings/sec, 430 secs
lola: 29847455 markings, 29847454 edges, 67137 markings/sec, 435 secs
lola: 30177127 markings, 30177126 edges, 65934 markings/sec, 440 secs
lola: 30509889 markings, 30509888 edges, 66552 markings/sec, 445 secs
lola: 30843473 markings, 30843473 edges, 66717 markings/sec, 450 secs
lola: 31180057 markings, 31180056 edges, 67317 markings/sec, 455 secs
lola: 31512542 markings, 31512541 edges, 66497 markings/sec, 460 secs
lola: 31843748 markings, 31843747 edges, 66241 markings/sec, 465 secs
lola: 32175481 markings, 32175480 edges, 66347 markings/sec, 470 secs
lola: 32507578 markings, 32507577 edges, 66419 markings/sec, 475 secs
lola: 32840677 markings, 32840677 edges, 66620 markings/sec, 480 secs
lola: 33175223 markings, 33175222 edges, 66909 markings/sec, 485 secs
lola: 33510884 markings, 33510884 edges, 67132 markings/sec, 490 secs
lola: 33842797 markings, 33842796 edges, 66383 markings/sec, 495 secs
lola: 34175750 markings, 34175749 edges, 66591 markings/sec, 500 secs
lola: 34508288 markings, 34508288 edges, 66508 markings/sec, 505 secs
lola: 34845398 markings, 34845397 edges, 67422 markings/sec, 510 secs
lola: 35184210 markings, 35184210 edges, 67762 markings/sec, 515 secs
lola: 35525403 markings, 35525402 edges, 68239 markings/sec, 520 secs
lola: 35862497 markings, 35862496 edges, 67419 markings/sec, 525 secs
lola: 36200794 markings, 36200794 edges, 67659 markings/sec, 530 secs
lola: 36539548 markings, 36539547 edges, 67751 markings/sec, 535 secs
lola: 36878413 markings, 36878413 edges, 67773 markings/sec, 540 secs
lola: 37217117 markings, 37217117 edges, 67741 markings/sec, 545 secs
lola: 37557456 markings, 37557455 edges, 68068 markings/sec, 550 secs
lola: 37896154 markings, 37896154 edges, 67740 markings/sec, 555 secs
lola: 38235010 markings, 38235010 edges, 67771 markings/sec, 560 secs
lola: 38573975 markings, 38573974 edges, 67793 markings/sec, 565 secs
lola: 38911560 markings, 38911560 edges, 67517 markings/sec, 570 secs
lola: 39253186 markings, 39253186 edges, 68325 markings/sec, 575 secs
lola: 39590496 markings, 39590496 edges, 67462 markings/sec, 580 secs
lola: 39922811 markings, 39922810 edges, 66463 markings/sec, 585 secs
lola: 40255523 markings, 40255522 edges, 66542 markings/sec, 590 secs
lola: 40587550 markings, 40587549 edges, 66405 markings/sec, 595 secs
lola: 40920417 markings, 40920416 edges, 66573 markings/sec, 600 secs
lola: 41256978 markings, 41256977 edges, 67312 markings/sec, 605 secs
lola: 41591586 markings, 41591586 edges, 66922 markings/sec, 610 secs
lola: 41923018 markings, 41923017 edges, 66286 markings/sec, 615 secs
lola: 42255078 markings, 42255077 edges, 66412 markings/sec, 620 secs
lola: 42588400 markings, 42588399 edges, 66664 markings/sec, 625 secs
lola: 42922986 markings, 42922986 edges, 66917 markings/sec, 630 secs
lola: 43258309 markings, 43258308 edges, 67065 markings/sec, 635 secs
lola: 43592422 markings, 43592421 edges, 66823 markings/sec, 640 secs
lola: 43924124 markings, 43924123 edges, 66340 markings/sec, 645 secs
lola: 44257518 markings, 44257517 edges, 66679 markings/sec, 650 secs
lola: 44591571 markings, 44591571 edges, 66811 markings/sec, 655 secs
lola: 44927452 markings, 44927452 edges, 67176 markings/sec, 660 secs
lola: 45259115 markings, 45259114 edges, 66333 markings/sec, 665 secs
lola: 45588367 markings, 45588366 edges, 65850 markings/sec, 670 secs
lola: 45914126 markings, 45914126 edges, 65152 markings/sec, 675 secs
lola: 46243097 markings, 46243097 edges, 65794 markings/sec, 680 secs
lola: 46572681 markings, 46572680 edges, 65917 markings/sec, 685 secs
lola: 46903390 markings, 46903390 edges, 66142 markings/sec, 690 secs
lola: 47237051 markings, 47237051 edges, 66732 markings/sec, 695 secs
lola: 47573293 markings, 47573293 edges, 67248 markings/sec, 700 secs
lola: 47907069 markings, 47907068 edges, 66755 markings/sec, 705 secs
lola: 48243072 markings, 48243071 edges, 67201 markings/sec, 710 secs
lola: 48579551 markings, 48579550 edges, 67296 markings/sec, 715 secs
lola: 48917268 markings, 48917268 edges, 67543 markings/sec, 720 secs
lola: 49255685 markings, 49255684 edges, 67683 markings/sec, 725 secs
lola: 49591115 markings, 49591114 edges, 67086 markings/sec, 730 secs
lola: 49925585 markings, 49925584 edges, 66894 markings/sec, 735 secs
lola: 50261919 markings, 50261918 edges, 67267 markings/sec, 740 secs
lola: 50598832 markings, 50598831 edges, 67383 markings/sec, 745 secs
lola: 50936919 markings, 50936918 edges, 67617 markings/sec, 750 secs
lola: 51276608 markings, 51276608 edges, 67938 markings/sec, 755 secs
lola: 51611923 markings, 51611922 edges, 67063 markings/sec, 760 secs
lola: 51948508 markings, 51948507 edges, 67317 markings/sec, 765 secs
lola: 52285135 markings, 52285134 edges, 67325 markings/sec, 770 secs
lola: 52623482 markings, 52623482 edges, 67669 markings/sec, 775 secs
lola: 52962318 markings, 52962318 edges, 67767 markings/sec, 780 secs
lola: 53301799 markings, 53301798 edges, 67896 markings/sec, 785 secs
lola: 53636771 markings, 53636770 edges, 66994 markings/sec, 790 secs
lola: 53972848 markings, 53972848 edges, 67215 markings/sec, 795 secs
lola: 54310538 markings, 54310538 edges, 67538 markings/sec, 800 secs
lola: 54648703 markings, 54648702 edges, 67633 markings/sec, 805 secs
lola: 54988095 markings, 54988094 edges, 67878 markings/sec, 810 secs
lola: 55327554 markings, 55327554 edges, 67892 markings/sec, 815 secs
lola: 55663604 markings, 55663604 edges, 67210 markings/sec, 820 secs
lola: 56000433 markings, 56000433 edges, 67366 markings/sec, 825 secs
lola: 56339201 markings, 56339200 edges, 67754 markings/sec, 830 secs
lola: 56677886 markings, 56677885 edges, 67737 markings/sec, 835 secs
lola: 57012409 markings, 57012408 edges, 66905 markings/sec, 840 secs
lola: 57350680 markings, 57350679 edges, 67654 markings/sec, 845 secs
lola: 57684150 markings, 57684150 edges, 66694 markings/sec, 850 secs
lola: 58018715 markings, 58018714 edges, 66913 markings/sec, 855 secs
lola: 58357875 markings, 58357874 edges, 67832 markings/sec, 860 secs
lola: 58698344 markings, 58698343 edges, 68094 markings/sec, 865 secs
lola: 59038088 markings, 59038088 edges, 67949 markings/sec, 870 secs
lola: 59369396 markings, 59369396 edges, 66262 markings/sec, 875 secs
lola: 59702581 markings, 59702580 edges, 66637 markings/sec, 880 secs
lola: 60036750 markings, 60036750 edges, 66834 markings/sec, 885 secs
lola: 60371733 markings, 60371732 edges, 66997 markings/sec, 890 secs
lola: 60708414 markings, 60708413 edges, 67336 markings/sec, 895 secs
lola: 61046570 markings, 61046569 edges, 67631 markings/sec, 900 secs
lola: 61381410 markings, 61381409 edges, 66968 markings/sec, 905 secs
lola: 61712923 markings, 61712923 edges, 66303 markings/sec, 910 secs
lola: 62044839 markings, 62044838 edges, 66383 markings/sec, 915 secs
lola: 62376149 markings, 62376148 edges, 66262 markings/sec, 920 secs
lola: 62706308 markings, 62706308 edges, 66032 markings/sec, 925 secs
lola: 63040877 markings, 63040876 edges, 66914 markings/sec, 930 secs
lola: 63376394 markings, 63376394 edges, 67103 markings/sec, 935 secs
lola: 63708635 markings, 63708634 edges, 66448 markings/sec, 940 secs
lola: 64043325 markings, 64043325 edges, 66938 markings/sec, 945 secs
lola: 64378397 markings, 64378397 edges, 67014 markings/sec, 950 secs
lola: 64714424 markings, 64714423 edges, 67205 markings/sec, 955 secs
lola: 65051935 markings, 65051935 edges, 67502 markings/sec, 960 secs
lola: 65387125 markings, 65387124 edges, 67038 markings/sec, 965 secs
lola: 65719388 markings, 65719387 edges, 66453 markings/sec, 970 secs
lola: 66054642 markings, 66054641 edges, 67051 markings/sec, 975 secs
lola: 66391099 markings, 66391098 edges, 67291 markings/sec, 980 secs
lola: 66728648 markings, 66728648 edges, 67510 markings/sec, 985 secs
lola: 67069760 markings, 67069759 edges, 68222 markings/sec, 990 secs
lola: 67405039 markings, 67405038 edges, 67056 markings/sec, 995 secs
lola: 67743617 markings, 67743616 edges, 67716 markings/sec, 1000 secs
lola: 68079693 markings, 68079693 edges, 67215 markings/sec, 1005 secs
lola: 68348137 markings, 68348137 edges, 53689 markings/sec, 1010 secs
lola: 68547191 markings, 68547722 edges, 39811 markings/sec, 1015 secs
lola: Child process aborted or communication problem between parent and child process
lola: RESULT
lola:
SUMMARY: no no no no unknown yes no yes yes no yes yes no no no no
lola:
preliminary result: no no no no unknown yes no yes yes no yes yes no no no no
lola: memory consumption: 433620 KB
lola: time consumption: 2209 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished

BK_STOP 1590266904461

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="SafeBus-COL-20"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is SafeBus-COL-20, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r165-oct2-158972939000093"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/SafeBus-COL-20.tgz
mv SafeBus-COL-20 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;