About the Execution of 2019-Gold for QuasiCertifProtocol-COL-28
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
7513.780 | 3570153.00 | 3647018.00 | 327.50 | FFF?FFTT???FFTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/mnt/tpsp/fkordon/mcc2020-input.r135-tajo-158961409100191.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2020-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is QuasiCertifProtocol-COL-28, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r135-tajo-158961409100191
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 300K
-rw-r--r-- 1 mcc users 3.7K Apr 12 07:02 CTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Apr 12 07:02 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 11 07:58 CTLFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 11 07:58 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 24 05:37 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K Mar 24 05:37 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.3K Apr 14 12:47 LTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Apr 28 14:02 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Apr 14 12:47 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 28 14:02 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.6K Apr 10 13:55 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K Apr 10 13:55 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.7K Apr 9 20:26 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 14K Apr 9 20:26 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Apr 10 22:24 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Apr 10 22:24 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 equiv_pt
-rw-r--r-- 1 mcc users 3 Mar 24 05:37 instance
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 iscolored
-rw-r--r-- 1 mcc users 120K Mar 24 05:37 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-28-00
FORMULA_NAME QuasiCertifProtocol-COL-28-01
FORMULA_NAME QuasiCertifProtocol-COL-28-02
FORMULA_NAME QuasiCertifProtocol-COL-28-03
FORMULA_NAME QuasiCertifProtocol-COL-28-04
FORMULA_NAME QuasiCertifProtocol-COL-28-05
FORMULA_NAME QuasiCertifProtocol-COL-28-06
FORMULA_NAME QuasiCertifProtocol-COL-28-07
FORMULA_NAME QuasiCertifProtocol-COL-28-08
FORMULA_NAME QuasiCertifProtocol-COL-28-09
FORMULA_NAME QuasiCertifProtocol-COL-28-10
FORMULA_NAME QuasiCertifProtocol-COL-28-11
FORMULA_NAME QuasiCertifProtocol-COL-28-12
FORMULA_NAME QuasiCertifProtocol-COL-28-13
FORMULA_NAME QuasiCertifProtocol-COL-28-14
FORMULA_NAME QuasiCertifProtocol-COL-28-15
=== Now, execution of the tool begins
BK_START 1590280275371
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ QuasiCertifProtocol-COL-28 @ 3570 seconds
FORMULA QuasiCertifProtocol-COL-28-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-06 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-28-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ QuasiCertifProtocol-COL-28
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sun May 24 00:31:15 2020
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 221
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 77
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 236
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 1,
"X": 2,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 5,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 203,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 145,
"visible_transitions": 0
},
"processed": "A ((X (X ((((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861) AND (2 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978)) OR F (((1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031) AND (p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969)))))) U (1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031)))",
"processed_size": 1677,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X (F ((1 <= p1919))))",
"processed_size": 24,
"rewrites": 77
},
"result":
{
"edges": 30,
"markings": 31,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 3,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 275
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 88,
"taut": 0,
"tconj": 0,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 88,
"visible_transitions": 0
},
"processed": "A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872)) OR F (((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 + 1 <= p2010)))))",
"processed_size": 699,
"rewrites": 77
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 4,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 300
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 2,
"G": 2,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (F ((F (G ((3 <= p2008))) AND X (G ((3 <= p2008))))))",
"processed_size": 55,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 7
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 330
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 842,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 842,
"visible_transitions": 0
},
"processed": "A (X (X ((p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2134 + p2133 + p2132 + p2131 + p2130 + p2129 + p2128 + p2158 + p2159 + p2160 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2501 + p2502 + p2503 + p2504 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2530 + p2531 + p2532 + p2533 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584 + p2585 + p2586 + p2587 + p2588 + p2589 + p2590 + p2591 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p2620 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p2796 + p2797 + p2798 + p2799 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p2820 + p2821 + p2822 + p2823 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p2850 + p2851 + p2852 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p2879 + p2880 + p2881 + p2883 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p2910 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p2968 + 1 <= p2008))))",
"processed_size": 6752,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 4
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 367
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 367
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "A (X (F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))",
"processed_size": 248,
"rewrites": 77
},
"result":
{
"edges": 30,
"markings": 31,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 413
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 3,
"aconj": 0,
"adisj": 0,
"aneg": 2,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 60,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 30,
"visible_transitions": 0
},
"processed": "A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831)))))))",
"processed_size": 515,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 7,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 413
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 77
},
"result":
{
"edges": 30,
"markings": 31,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 472
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 30,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 30,
"visible_transitions": 0
},
"processed": "A (G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))",
"processed_size": 254,
"rewrites": 79
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 551
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "A (G (F ((2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))",
"processed_size": 248,
"rewrites": 77
},
"result":
{
"edges": 32,
"markings": 32,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 689
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "A (F (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))",
"processed_size": 219,
"rewrites": 77
},
"result":
{
"edges": 34,
"markings": 33,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 919
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 919
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "(3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)",
"processed_size": 236,
"rewrites": 77
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 15,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 842,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 842,
"visible_transitions": 0
},
"processed": "A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 <= p1920)))",
"processed_size": 6734,
"rewrites": 79
},
"result":
{
"edges": 65,
"markings": 66,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 17,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"type": "invariance",
"workflow": "stateequation||search"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 15,
"type": "boolean"
}
}
],
"exit":
{
"error": null,
"memory": 7473524,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "A(X(X(*))) : A(G(F(**))) : A(F(G(**))) : A(X(G(**))) : A(G(**)) : A((X(X(((** AND **) OR F(**)))) U **)) : A(X(F(**))) : A((X(**) OR F(**))) : A((** OR (F(G(**)) AND G((F(**) AND (** OR **)))))) : A(G(F((F(**) OR G(**))))) : A(F(G(*))) : A(F((F(G(**)) AND X(G(**))))) : (** AND (A(G(**)) AND A(F(**)))) : TRUE : (A(X(X(G((* AND X(*)))))) AND A(X(F(**)))) : A(X(TRUE))"
},
"net":
{
"arcs": 6489,
"conflict_clusters": 98,
"places": 2998,
"places_significant": 445,
"singleton_clusters": 0,
"transitions": 446
},
"result":
{
"interim_value": "no no no unknown no no yes yes unknown unknown unknown no no yes no yes ",
"preliminary_value": "no no no unknown no no yes yes unknown unknown unknown no no yes no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 2998, Transitions: 446
lola: @ trans malA4
lola: @ trans SgetTS
lola: @ trans malA5
lola: @ trans malS3
lola: @ trans AreqCS
lola: @ trans AendCS
lola: @ trans ScertCS
lola: @ trans malA2
lola: @ trans SreqTS
lola: @ trans AackCS
lola: @ trans malS2
lola: @ trans AgetTS
lola: @ trans malA3
lola: @ trans malC1
lola: @ trans AstartCS
lola: @ trans Sperform
lola: @ trans malS1
lola: @ trans SsendTS
lola: @ trans malS4
lola: @ trans AreqTS
lola: @ trans CsendTS1
lola: @ trans malA1
lola: @ trans malS6
lola: @ trans malS5
lola: @ trans SackCS
lola: @ trans CgenCertif
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 3444/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 95936
lola: finding significant places
lola: 2998 places, 446 transitions, 445 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p960)
lola: LP says that atomic proposition is always false: (2 <= p1831)
lola: LP says that atomic proposition is always false: (2 <= p871)
lola: LP says that atomic proposition is always false: (3 <= p871)
lola: LP says that atomic proposition is always false: (3 <= p871)
lola: A (NOT(X ((X ((p2008 <= p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2134 + p2133 + p2132 + p2131 + p2130 + p2129 + p2128 + p2158 + p2159 + p2160 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2501 + p2502 + p2503 + p2504 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2530 + p2531 + p2532 + p2533 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584 + p2585 + p2586 + p2587 + p2588 + p2589 + p2590 + p2591 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p2620 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p2796 + p2797 + p2798 + p2799 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p2820 + p2821 + p2822 + p2823 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p2850 + p2851 + p2852 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p2879 + p2880 + p2881 + p2883 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p2910 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p2968)) OR F (()))))) : A (G (X (F (((1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031) U (2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969)))))) : A (F (X (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))) : A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008)))) : A (((() AND G ((0 <= p1919))) AND G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))) : A ((X (((X ((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861)) AND X ((2 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978))) OR X (F (((1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031) AND (p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969)))))) U (1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))) : A (X (F ((X (F (X ((p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872 <= p29)))) U F ((1 <= p1919)))))) : A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872)) OR F (((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 + 1 <= p2010))))) : A ((((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) OR ((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) AND (p1920 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872))) OR (X (F (G ((3 <= p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070)))) AND G (((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) U (p930 + p929 + p928 + p927 + p926 + p925 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p916 + p915 + p914 + p913 + p912 + p911 + p910 + p909 + p908 + p907 + p906 + p905 + p904 + p903 + p902 <= p960)))))) : A (G (F ((F (((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 <= 0) AND F ((0 <= p2008)))) OR G (((p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 <= p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860) OR (1 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999))))))) : A (X (F (NOT(G (F (((0 <= p1919) AND X (((2 <= p2008)))))))))) : A (F ((F (G ((3 <= p2008))) AND X (NOT(F (NOT(G ((3 <= p2008))))))))) : A ((((3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918) AND G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 <= p1920))) AND F ((2 <= p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921)))) : A ((((1 <= p2009) AND G (X (X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978))))) U ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978) U (0 <= p2069 + p2068 + p2067 + p2066 + p2065 + p2064 + p2063 + p2062 + p2061 + p2060 + p2059 + p2058 + p2057 + p2056 + p2055 + p2054 + p2053 + p2052 + p2051 + p2050 + p2049 + p2048 + p2047 + p2046 + p2045 + p2044 + p2043 + p2042 + p2041)))) : A (X (NOT((F (X (((p1831 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969) OR X ((p1831 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))) OR NOT(F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))))) : A (X (NOT(F ((((1 <= p1831) AND NOT(G ((3 <= p871)))) AND (G ((p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)) U (3 <= p871)))))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:434
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:525
lola: rewrite Frontend/Parser/formula_rewrite.k:528
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:251
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:551
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: processed formula length: 223
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 230622 markings, 1619075 edges, 46124 markings/sec, 0 secs
lola: 441776 markings, 3350764 edges, 42231 markings/sec, 5 secs
lola: 651818 markings, 5078564 edges, 42008 markings/sec, 10 secs
lola: 850129 markings, 6811772 edges, 39662 markings/sec, 15 secs
lola: 1032503 markings, 8551668 edges, 36475 markings/sec, 20 secs
lola: 1228896 markings, 10283301 edges, 39279 markings/sec, 25 secs
lola: 1430542 markings, 12008512 edges, 40329 markings/sec, 30 secs
lola: 1622683 markings, 13736138 edges, 38428 markings/sec, 35 secs
lola: 1787145 markings, 15479676 edges, 32892 markings/sec, 40 secs
lola: 1986412 markings, 17204567 edges, 39853 markings/sec, 45 secs
lola: 2165558 markings, 18938233 edges, 35829 markings/sec, 50 secs
lola: 2337048 markings, 20675063 edges, 34298 markings/sec, 55 secs
lola: 2502648 markings, 22414415 edges, 33120 markings/sec, 60 secs
lola: 2664441 markings, 24151700 edges, 32359 markings/sec, 65 secs
lola: 2808928 markings, 25903158 edges, 28897 markings/sec, 70 secs
lola: 3008653 markings, 27624722 edges, 39945 markings/sec, 75 secs
lola: 3208768 markings, 29343116 edges, 40023 markings/sec, 80 secs
lola: 3394829 markings, 31067914 edges, 37212 markings/sec, 85 secs
lola: 3563829 markings, 32802591 edges, 33800 markings/sec, 90 secs
lola: 3761169 markings, 34521881 edges, 39468 markings/sec, 95 secs
lola: 3918675 markings, 36099824 edges, 31501 markings/sec, 100 secs
lola: 4068363 markings, 37589205 edges, 29938 markings/sec, 105 secs
lola: 4218671 markings, 39163110 edges, 30062 markings/sec, 110 secs
lola: 4379983 markings, 40896828 edges, 32262 markings/sec, 115 secs
lola: 4528143 markings, 42639391 edges, 29632 markings/sec, 120 secs
lola: 4704027 markings, 44369540 edges, 35177 markings/sec, 125 secs
lola: 4888154 markings, 46093745 edges, 36825 markings/sec, 130 secs
lola: 5055815 markings, 47828269 edges, 33532 markings/sec, 135 secs
lola: 5230490 markings, 49558246 edges, 34935 markings/sec, 140 secs
lola: 5393919 markings, 51291291 edges, 32686 markings/sec, 145 secs
lola: 5537071 markings, 52951008 edges, 28630 markings/sec, 150 secs
lola: 5661509 markings, 54454397 edges, 24888 markings/sec, 155 secs
lola: 5816414 markings, 55944669 edges, 30981 markings/sec, 160 secs
lola: 5972022 markings, 57602475 edges, 31122 markings/sec, 165 secs
lola: 6126616 markings, 59342911 edges, 30919 markings/sec, 170 secs
lola: 6266165 markings, 61092698 edges, 27910 markings/sec, 175 secs
lola: 6427605 markings, 62826875 edges, 32288 markings/sec, 180 secs
lola: 6572112 markings, 64572618 edges, 28901 markings/sec, 185 secs
lola: 6716723 markings, 66314048 edges, 28922 markings/sec, 190 secs
lola: 6843790 markings, 67949356 edges, 25413 markings/sec, 195 secs
lola: 6955177 markings, 69458119 edges, 22277 markings/sec, 200 secs
lola: 7085362 markings, 71020615 edges, 26037 markings/sec, 205 secs
lola: 7287703 markings, 72703977 edges, 40468 markings/sec, 210 secs
lola: 7484344 markings, 74416350 edges, 39328 markings/sec, 215 secs
lola: 7664847 markings, 76135367 edges, 36101 markings/sec, 220 secs
lola: 7847492 markings, 77854599 edges, 36529 markings/sec, 225 secs
lola: 8031609 markings, 79570669 edges, 36823 markings/sec, 230 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown yes unknown unknown
lola: memory consumption: 2100380 KB
lola: time consumption: 261 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 2 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((X (X ((((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X (X ((((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1... (shortened)
lola: processed formula length: 1677
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: subprocess 3 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((1 <= p1919))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((1 <= p1919))))
lola: processed formula length: 24
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 31 markings, 30 edges
lola: ========================================
lola: subprocess 4 will run for 275 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 ... (shortened)
lola: processed formula length: 699
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 300 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((F (G ((3 <= p2008))) AND X (G ((3 <= p2008))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((F (G ((3 <= p2008))) AND X (G ((3 <= p2008))))))
lola: processed formula length: 55
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 7 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: subprocess 6 will run for 330 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X ((p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X ((p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 ... (shortened)
lola: processed formula length: 6752
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: subprocess 7 will run for 367 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 7 will run for 367 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))
lola: processed formula length: 248
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 31 markings, 30 edges
lola: ========================================
lola: subprocess 8 will run for 413 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 ... (shortened)
lola: processed formula length: 515
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 8 will run for 413 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 31 markings, 30 edges
lola: ========================================
lola: subprocess 9 will run for 472 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))
lola: processed formula length: 254
lola: 79 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: SUBRESULT
lola: formula 0: ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= p1831))
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 551 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G (((p2008 <= 1)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G (((p2008 <= 1)))))
lola: processed formula length: 26
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 272987 markings, 1561248 edges, 54597 markings/sec, 0 secs
lola: 528658 markings, 3095181 edges, 51134 markings/sec, 5 secs
lola: 768542 markings, 4598880 edges, 47977 markings/sec, 10 secs
lola: 1037208 markings, 6121583 edges, 53733 markings/sec, 15 secs
lola: 1302666 markings, 7618067 edges, 53092 markings/sec, 20 secs
lola: 1573124 markings, 9088836 edges, 54092 markings/sec, 25 secs
lola: 1798597 markings, 10514898 edges, 45095 markings/sec, 30 secs
lola: 2031418 markings, 11949119 edges, 46564 markings/sec, 35 secs
lola: 2233346 markings, 13327911 edges, 40386 markings/sec, 40 secs
lola: 2443993 markings, 14738667 edges, 42129 markings/sec, 45 secs
lola: 2687804 markings, 16199217 edges, 48762 markings/sec, 50 secs
lola: 2893849 markings, 17594089 edges, 41209 markings/sec, 55 secs
lola: 3084863 markings, 18954897 edges, 38203 markings/sec, 60 secs
lola: 3279044 markings, 20323067 edges, 38836 markings/sec, 65 secs
lola: 3455223 markings, 21655938 edges, 35236 markings/sec, 70 secs
lola: 3664001 markings, 23089021 edges, 41756 markings/sec, 75 secs
lola: 3894946 markings, 24563025 edges, 46189 markings/sec, 80 secs
lola: 4141477 markings, 26043713 edges, 49306 markings/sec, 85 secs
lola: 4358599 markings, 27456497 edges, 43424 markings/sec, 90 secs
lola: 4549419 markings, 28831093 edges, 38164 markings/sec, 95 secs
lola: 4756566 markings, 30213614 edges, 41429 markings/sec, 100 secs
lola: 4940959 markings, 31591821 edges, 36879 markings/sec, 105 secs
lola: 5118046 markings, 32947334 edges, 35417 markings/sec, 110 secs
lola: 5329988 markings, 34349508 edges, 42388 markings/sec, 115 secs
lola: 5519251 markings, 35724945 edges, 37853 markings/sec, 120 secs
lola: 5699357 markings, 37109551 edges, 36021 markings/sec, 125 secs
lola: 5882789 markings, 38462456 edges, 36686 markings/sec, 130 secs
lola: 6051956 markings, 39830818 edges, 33833 markings/sec, 135 secs
lola: 6211886 markings, 41203274 edges, 31986 markings/sec, 140 secs
lola: 6439934 markings, 42541791 edges, 45610 markings/sec, 145 secs
lola: 6660896 markings, 43902479 edges, 44192 markings/sec, 150 secs
lola: 6895451 markings, 45286509 edges, 46911 markings/sec, 155 secs
lola: 7124449 markings, 46663715 edges, 45800 markings/sec, 160 secs
lola: 7357168 markings, 48016874 edges, 46544 markings/sec, 165 secs
lola: 7614322 markings, 49403988 edges, 51431 markings/sec, 170 secs
lola: 7858219 markings, 50792635 edges, 48779 markings/sec, 175 secs
lola: 8068508 markings, 52148118 edges, 42058 markings/sec, 180 secs
lola: 8287386 markings, 53474918 edges, 43776 markings/sec, 185 secs
lola: 8476977 markings, 54789635 edges, 37918 markings/sec, 190 secs
lola: 8670187 markings, 56077806 edges, 38642 markings/sec, 195 secs
lola: 8896793 markings, 57419573 edges, 45321 markings/sec, 200 secs
lola: 9090581 markings, 58722278 edges, 38758 markings/sec, 205 secs
lola: 9265260 markings, 59995915 edges, 34936 markings/sec, 210 secs
lola: 9458626 markings, 61299066 edges, 38673 markings/sec, 215 secs
lola: 9628217 markings, 62582060 edges, 33918 markings/sec, 220 secs
lola: 9799662 markings, 63832154 edges, 34289 markings/sec, 225 secs
lola: 10008435 markings, 65170006 edges, 41755 markings/sec, 230 secs
lola: 10223216 markings, 66524063 edges, 42956 markings/sec, 235 secs
lola: 10451839 markings, 67891491 edges, 45725 markings/sec, 240 secs
lola: 10650624 markings, 69228318 edges, 39757 markings/sec, 245 secs
lola: 10834843 markings, 70556945 edges, 36844 markings/sec, 250 secs
lola: 11028316 markings, 71892550 edges, 38695 markings/sec, 255 secs
lola: 11203743 markings, 73220819 edges, 35085 markings/sec, 260 secs
lola: 11382494 markings, 74540437 edges, 35750 markings/sec, 265 secs
lola: 11588290 markings, 75889141 edges, 41159 markings/sec, 270 secs
lola: 11768078 markings, 77221840 edges, 35958 markings/sec, 275 secs
lola: 11936488 markings, 78563779 edges, 33682 markings/sec, 280 secs
lola: 12120603 markings, 79891930 edges, 36823 markings/sec, 285 secs
lola: 12285065 markings, 81223317 edges, 32892 markings/sec, 290 secs
lola: 12438693 markings, 82566129 edges, 30726 markings/sec, 295 secs
lola: 12708500 markings, 84096861 edges, 53961 markings/sec, 300 secs
lola: 12977173 markings, 85618332 edges, 53735 markings/sec, 305 secs
lola: 13247344 markings, 87082326 edges, 54034 markings/sec, 310 secs
lola: 13470800 markings, 88515683 edges, 44691 markings/sec, 315 secs
lola: 13710480 markings, 89968539 edges, 47936 markings/sec, 320 secs
lola: 13915572 markings, 91388651 edges, 41018 markings/sec, 325 secs
lola: 14136298 markings, 92847161 edges, 44145 markings/sec, 330 secs
lola: 14379731 markings, 94312973 edges, 48687 markings/sec, 335 secs
lola: 14586502 markings, 95741627 edges, 41354 markings/sec, 340 secs
lola: 14795141 markings, 97170837 edges, 41728 markings/sec, 345 secs
lola: 14987595 markings, 98588058 edges, 38491 markings/sec, 350 secs
lola: 15166009 markings, 100000718 edges, 35683 markings/sec, 355 secs
lola: 15421961 markings, 101429484 edges, 51190 markings/sec, 360 secs
lola: 15675179 markings, 102856587 edges, 50644 markings/sec, 365 secs
lola: 15938106 markings, 104268737 edges, 52585 markings/sec, 370 secs
lola: 16158758 markings, 105654701 edges, 44130 markings/sec, 375 secs
lola: 16386034 markings, 107050906 edges, 45455 markings/sec, 380 secs
lola: 16590557 markings, 108429001 edges, 40905 markings/sec, 385 secs
lola: 16787336 markings, 109808617 edges, 39356 markings/sec, 390 secs
lola: 17029136 markings, 111222833 edges, 48360 markings/sec, 395 secs
lola: 17236740 markings, 112604038 edges, 41521 markings/sec, 400 secs
lola: 17424677 markings, 113972934 edges, 37587 markings/sec, 405 secs
lola: 17628379 markings, 115358329 edges, 40740 markings/sec, 410 secs
lola: 17808930 markings, 116730348 edges, 36110 markings/sec, 415 secs
lola: 18036017 markings, 118176194 edges, 45417 markings/sec, 420 secs
lola: 18305538 markings, 119638019 edges, 53904 markings/sec, 425 secs
lola: 18530840 markings, 121062026 edges, 45060 markings/sec, 430 secs
lola: 18764327 markings, 122503880 edges, 46697 markings/sec, 435 secs
lola: 18971166 markings, 123917403 edges, 41368 markings/sec, 440 secs
lola: 19198692 markings, 125331941 edges, 45505 markings/sec, 445 secs
lola: 19462681 markings, 126742429 edges, 52798 markings/sec, 450 secs
lola: 19682969 markings, 128124241 edges, 44058 markings/sec, 455 secs
lola: 19908626 markings, 129513579 edges, 45131 markings/sec, 460 secs
lola: 20112126 markings, 130882622 edges, 40700 markings/sec, 465 secs
lola: 20325578 markings, 132284130 edges, 42690 markings/sec, 470 secs
lola: 20575278 markings, 133713222 edges, 49940 markings/sec, 475 secs
lola: 20801361 markings, 135126294 edges, 45217 markings/sec, 480 secs
lola: 21045993 markings, 136516531 edges, 48926 markings/sec, 485 secs
lola: 21263892 markings, 137901837 edges, 43580 markings/sec, 490 secs
lola: 21519853 markings, 139322798 edges, 51192 markings/sec, 495 secs
lola: 21756321 markings, 140711572 edges, 47294 markings/sec, 500 secs
lola: 21996931 markings, 142089194 edges, 48122 markings/sec, 505 secs
lola: 22189877 markings, 143438369 edges, 38589 markings/sec, 510 secs
lola: 22370361 markings, 144776832 edges, 36097 markings/sec, 515 secs
lola: 22573933 markings, 146131668 edges, 40714 markings/sec, 520 secs
lola: 22769274 markings, 147474783 edges, 39068 markings/sec, 525 secs
lola: 22945917 markings, 148805752 edges, 35329 markings/sec, 530 secs
lola: 23107032 markings, 150138498 edges, 32223 markings/sec, 535 secs
lola: 23308329 markings, 151488309 edges, 40259 markings/sec, 540 secs
lola: 23521540 markings, 152856812 edges, 42642 markings/sec, 545 secs
lola: local time limit reached - aborting
lola:
preliminary result: no unknown unknown unknown no no yes yes unknown unknown unknown no unknown yes no yes
lola: memory consumption: 3682652 KB
lola: time consumption: 812 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 551 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))
lola: processed formula length: 248
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 32 markings, 32 edges
lola: ========================================
lola: subprocess 12 will run for 689 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))
lola: processed formula length: 219
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 33 markings, 34 edges
lola: ========================================
lola: subprocess 13 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((F ((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 <= 0)) OR G (((p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((F ((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 <= 0)) OR G (((p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p... (shortened)
lola: processed formula length: 940
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 210427 markings, 1439331 edges, 42085 markings/sec, 0 secs
lola: 410191 markings, 3143275 edges, 39953 markings/sec, 5 secs
lola: 626259 markings, 4835118 edges, 43214 markings/sec, 10 secs
lola: 819393 markings, 6516055 edges, 38627 markings/sec, 15 secs
lola: 978548 markings, 7995597 edges, 31831 markings/sec, 20 secs
lola: 1133453 markings, 9562994 edges, 30981 markings/sec, 25 secs
lola: 1340996 markings, 11249571 edges, 41509 markings/sec, 30 secs
lola: 1517102 markings, 12774386 edges, 35221 markings/sec, 35 secs
lola: 1684855 markings, 14339827 edges, 33551 markings/sec, 40 secs
lola: 1855187 markings, 16044754 edges, 34066 markings/sec, 45 secs
lola: 2043513 markings, 17715166 edges, 37665 markings/sec, 50 secs
lola: 2190561 markings, 19218870 edges, 29410 markings/sec, 55 secs
lola: 2337136 markings, 20675745 edges, 29315 markings/sec, 60 secs
lola: 2499432 markings, 22388050 edges, 32459 markings/sec, 65 secs
lola: 2658665 markings, 24096624 edges, 31847 markings/sec, 70 secs
lola: 2802778 markings, 25816434 edges, 28823 markings/sec, 75 secs
lola: 2995290 markings, 27517354 edges, 38502 markings/sec, 80 secs
lola: 3194027 markings, 29211148 edges, 39747 markings/sec, 85 secs
lola: 3367858 markings, 30797623 edges, 34766 markings/sec, 90 secs
lola: 3524893 markings, 32444731 edges, 31407 markings/sec, 95 secs
lola: 3715722 markings, 34141546 edges, 38166 markings/sec, 100 secs
lola: 3895329 markings, 35841035 edges, 35921 markings/sec, 105 secs
lola: 4064042 markings, 37545246 edges, 33743 markings/sec, 110 secs
lola: 4225471 markings, 39252087 edges, 32286 markings/sec, 115 secs
lola: 4384448 markings, 40958940 edges, 31795 markings/sec, 120 secs
lola: 4531720 markings, 42674422 edges, 29454 markings/sec, 125 secs
lola: 4705426 markings, 44381067 edges, 34741 markings/sec, 130 secs
lola: 4886876 markings, 46079521 edges, 36290 markings/sec, 135 secs
lola: 5051626 markings, 47789004 edges, 32950 markings/sec, 140 secs
lola: 5223317 markings, 49467802 edges, 34338 markings/sec, 145 secs
lola: 5372021 markings, 51049451 edges, 29741 markings/sec, 150 secs
lola: 5518212 markings, 52728026 edges, 29238 markings/sec, 155 secs
lola: 5660508 markings, 54447670 edges, 28459 markings/sec, 160 secs
lola: 5836459 markings, 56150617 edges, 35190 markings/sec, 165 secs
lola: 5977914 markings, 57662473 edges, 28291 markings/sec, 170 secs
lola: 6116104 markings, 59217297 edges, 27638 markings/sec, 175 secs
lola: 6249475 markings, 60941372 edges, 26674 markings/sec, 180 secs
lola: 6407911 markings, 62642872 edges, 31687 markings/sec, 185 secs
lola: 6555011 markings, 64347174 edges, 29420 markings/sec, 190 secs
lola: 6678661 markings, 65851642 edges, 24730 markings/sec, 195 secs
lola: 6804824 markings, 67501351 edges, 25233 markings/sec, 200 secs
lola: 6937814 markings, 69217354 edges, 26598 markings/sec, 205 secs
lola: 7073267 markings, 70939285 edges, 27091 markings/sec, 210 secs
lola: 7279888 markings, 72620412 edges, 41324 markings/sec, 215 secs
lola: 7469743 markings, 74309372 edges, 37971 markings/sec, 220 secs
lola: 7651196 markings, 75999818 edges, 36291 markings/sec, 225 secs
lola: 7829725 markings, 77696662 edges, 35706 markings/sec, 230 secs
lola: 8009848 markings, 79388657 edges, 36025 markings/sec, 235 secs
lola: 8172600 markings, 81091697 edges, 32550 markings/sec, 240 secs
lola: 8351584 markings, 82785424 edges, 35797 markings/sec, 245 secs
lola: 8511409 markings, 84484004 edges, 31965 markings/sec, 250 secs
lola: 8651345 markings, 86065157 edges, 27987 markings/sec, 255 secs
lola: 8777606 markings, 87704413 edges, 25252 markings/sec, 260 secs
lola: 8973811 markings, 89389500 edges, 39241 markings/sec, 265 secs
lola: 9135239 markings, 90939624 edges, 32286 markings/sec, 270 secs
lola: 9274883 markings, 92360556 edges, 27929 markings/sec, 275 secs
lola: 9442307 markings, 94058182 edges, 33485 markings/sec, 280 secs
lola: 9589650 markings, 95626508 edges, 29469 markings/sec, 285 secs
lola: 9736689 markings, 97326883 edges, 29408 markings/sec, 290 secs
lola: 9885463 markings, 99027176 edges, 29755 markings/sec, 295 secs
lola: 10054375 markings, 100727809 edges, 33782 markings/sec, 300 secs
lola: 10203913 markings, 102319793 edges, 29908 markings/sec, 305 secs
lola: 10351263 markings, 104025127 edges, 29470 markings/sec, 310 secs
lola: 10478095 markings, 105573560 edges, 25366 markings/sec, 315 secs
lola: 10631875 markings, 107248424 edges, 30756 markings/sec, 320 secs
lola: 10771589 markings, 108961840 edges, 27943 markings/sec, 325 secs
lola: 10914144 markings, 110671126 edges, 28511 markings/sec, 330 secs
lola: 11038404 markings, 112269799 edges, 24852 markings/sec, 335 secs
lola: 11163603 markings, 113987367 edges, 25040 markings/sec, 340 secs
lola: 11318873 markings, 115697378 edges, 31054 markings/sec, 345 secs
lola: 11502169 markings, 117390619 edges, 36659 markings/sec, 350 secs
lola: 11661317 markings, 119092475 edges, 31830 markings/sec, 355 secs
lola: 11842091 markings, 120785798 edges, 36155 markings/sec, 360 secs
lola: 12002476 markings, 122486461 edges, 32077 markings/sec, 365 secs
lola: 12153617 markings, 124191554 edges, 30228 markings/sec, 370 secs
lola: 12289932 markings, 125908209 edges, 27263 markings/sec, 375 secs
lola: 12467932 markings, 127602284 edges, 35600 markings/sec, 380 secs
lola: 12628383 markings, 129303204 edges, 32090 markings/sec, 385 secs
lola: 12774780 markings, 130971844 edges, 29279 markings/sec, 390 secs
lola: 12898730 markings, 132579334 edges, 24790 markings/sec, 395 secs
lola: 13057897 markings, 134271642 edges, 31833 markings/sec, 400 secs
lola: 13203315 markings, 135978929 edges, 29084 markings/sec, 405 secs
lola: 13342283 markings, 137689023 edges, 27794 markings/sec, 410 secs
lola: 13468652 markings, 139293883 edges, 25274 markings/sec, 415 secs
lola: 13591661 markings, 140929048 edges, 24602 markings/sec, 420 secs
lola: 13719928 markings, 142600656 edges, 25653 markings/sec, 425 secs
lola: 13891397 markings, 144293725 edges, 34294 markings/sec, 430 secs
lola: 14050993 markings, 145990377 edges, 31919 markings/sec, 435 secs
lola: 14197980 markings, 147691745 edges, 29397 markings/sec, 440 secs
lola: 14340434 markings, 149397486 edges, 28491 markings/sec, 445 secs
lola: 14495182 markings, 151100301 edges, 30950 markings/sec, 450 secs
lola: 14633171 markings, 152814887 edges, 27598 markings/sec, 455 secs
lola: 14776970 markings, 154522273 edges, 28760 markings/sec, 460 secs
lola: 14909165 markings, 156235143 edges, 26439 markings/sec, 465 secs
lola: 15032884 markings, 157957578 edges, 24744 markings/sec, 470 secs
lola: 15177859 markings, 159667180 edges, 28995 markings/sec, 475 secs
lola: 15317298 markings, 161265400 edges, 27888 markings/sec, 480 secs
lola: 15452430 markings, 162976374 edges, 27026 markings/sec, 485 secs
lola: 15595335 markings, 164679130 edges, 28581 markings/sec, 490 secs
lola: 15717608 markings, 166278486 edges, 24455 markings/sec, 495 secs
lola: 15837968 markings, 167991863 edges, 24072 markings/sec, 500 secs
lola: 15976159 markings, 169688895 edges, 27638 markings/sec, 505 secs
lola: 16108371 markings, 171393744 edges, 26442 markings/sec, 510 secs
lola: 16232110 markings, 173098362 edges, 24748 markings/sec, 515 secs
lola: 16356434 markings, 174806290 edges, 24865 markings/sec, 520 secs
lola: 16478553 markings, 176508003 edges, 24424 markings/sec, 525 secs
lola: 16596227 markings, 178222326 edges, 23535 markings/sec, 530 secs
lola: 16707102 markings, 179933987 edges, 22175 markings/sec, 535 secs
lola: 16854210 markings, 181637116 edges, 29422 markings/sec, 540 secs
lola: 17048064 markings, 183301238 edges, 38771 markings/sec, 545 secs
lola: 17243770 markings, 184971485 edges, 39141 markings/sec, 550 secs
lola: 17415048 markings, 186644806 edges, 34256 markings/sec, 555 secs
lola: 17595581 markings, 188320728 edges, 36107 markings/sec, 560 secs
lola: 17773736 markings, 189989882 edges, 35631 markings/sec, 565 secs
lola: 17935825 markings, 191675267 edges, 32418 markings/sec, 570 secs
lola: 18107762 markings, 193349466 edges, 34387 markings/sec, 575 secs
lola: 18265562 markings, 195033363 edges, 31560 markings/sec, 580 secs
lola: 18410863 markings, 196721888 edges, 29060 markings/sec, 585 secs
lola: 18557791 markings, 198415669 edges, 29386 markings/sec, 590 secs
lola: 18747704 markings, 200081278 edges, 37983 markings/sec, 595 secs
lola: 18914791 markings, 201762910 edges, 33417 markings/sec, 600 secs
lola: 19084829 markings, 203439280 edges, 34008 markings/sec, 605 secs
lola: 19243003 markings, 205123823 edges, 31635 markings/sec, 610 secs
lola: 19398087 markings, 206801446 edges, 31017 markings/sec, 615 secs
lola: 19537236 markings, 208496286 edges, 27830 markings/sec, 620 secs
lola: 19702864 markings, 210179181 edges, 33126 markings/sec, 625 secs
lola: 19862334 markings, 211867372 edges, 31894 markings/sec, 630 secs
lola: 20011148 markings, 213484014 edges, 29763 markings/sec, 635 secs
lola: 20132890 markings, 214943639 edges, 24348 markings/sec, 640 secs
lola: 20260603 markings, 216408061 edges, 25543 markings/sec, 645 secs
lola: 20399496 markings, 217953733 edges, 27779 markings/sec, 650 secs
lola: 20532006 markings, 219644629 edges, 26502 markings/sec, 655 secs
lola: 20675820 markings, 221335270 edges, 28763 markings/sec, 660 secs
lola: 20806755 markings, 223029943 edges, 26187 markings/sec, 665 secs
lola: 20928417 markings, 224735684 edges, 24332 markings/sec, 670 secs
lola: 21096011 markings, 226417079 edges, 33519 markings/sec, 675 secs
lola: 21274221 markings, 228092741 edges, 35642 markings/sec, 680 secs
lola: 21434315 markings, 229753427 edges, 32019 markings/sec, 685 secs
lola: 21601083 markings, 231372360 edges, 33354 markings/sec, 690 secs
lola: 21758716 markings, 233051629 edges, 31527 markings/sec, 695 secs
lola: 21905575 markings, 234743576 edges, 29372 markings/sec, 700 secs
lola: 22046232 markings, 236436517 edges, 28131 markings/sec, 705 secs
lola: 22211992 markings, 238035312 edges, 33152 markings/sec, 710 secs
lola: 22349956 markings, 239525804 edges, 27593 markings/sec, 715 secs
lola: 22489199 markings, 241059238 edges, 27849 markings/sec, 720 secs
lola: 22618586 markings, 242685728 edges, 25877 markings/sec, 725 secs
lola: 22774000 markings, 244371811 edges, 31083 markings/sec, 730 secs
lola: 22918852 markings, 246059111 edges, 28970 markings/sec, 735 secs
lola: 23056642 markings, 247752505 edges, 27558 markings/sec, 740 secs
lola: 23187235 markings, 249443223 edges, 26119 markings/sec, 745 secs
lola: 23318452 markings, 251142372 edges, 26243 markings/sec, 750 secs
lola: 23442329 markings, 252841645 edges, 24775 markings/sec, 755 secs
lola: 23616905 markings, 254520124 edges, 34915 markings/sec, 760 secs
lola: 23774679 markings, 256202365 edges, 31555 markings/sec, 765 secs
lola: 23921928 markings, 257893514 edges, 29450 markings/sec, 770 secs
lola: 24058999 markings, 259586148 edges, 27414 markings/sec, 775 secs
lola: 24215328 markings, 261272823 edges, 31266 markings/sec, 780 secs
lola: 24355421 markings, 262963529 edges, 28019 markings/sec, 785 secs
lola: 24495355 markings, 264655755 edges, 27987 markings/sec, 790 secs
lola: 24627210 markings, 266349789 edges, 26371 markings/sec, 795 secs
lola: 24752485 markings, 268055728 edges, 25055 markings/sec, 800 secs
lola: 24882030 markings, 269695444 edges, 25909 markings/sec, 805 secs
lola: 25035034 markings, 271386934 edges, 30601 markings/sec, 810 secs
lola: 25167837 markings, 273081853 edges, 26561 markings/sec, 815 secs
lola: 25311547 markings, 274770808 edges, 28742 markings/sec, 820 secs
lola: 25442325 markings, 276463843 edges, 26156 markings/sec, 825 secs
lola: 25564093 markings, 278170572 edges, 24354 markings/sec, 830 secs
lola: 25695609 markings, 279858402 edges, 26303 markings/sec, 835 secs
lola: 25829251 markings, 281556695 edges, 26728 markings/sec, 840 secs
lola: 25956318 markings, 283251018 edges, 25413 markings/sec, 845 secs
lola: 26077537 markings, 284956108 edges, 24244 markings/sec, 850 secs
lola: 26201024 markings, 286651559 edges, 24697 markings/sec, 855 secs
lola: 26318471 markings, 288360592 edges, 23489 markings/sec, 860 secs
lola: 26431358 markings, 290068585 edges, 22577 markings/sec, 865 secs
lola: 26555673 markings, 291779235 edges, 24863 markings/sec, 870 secs
lola: 26736484 markings, 293369691 edges, 36162 markings/sec, 875 secs
lola: 26906663 markings, 295065638 edges, 34036 markings/sec, 880 secs
lola: 27078449 markings, 296761627 edges, 34357 markings/sec, 885 secs
lola: 27237966 markings, 298463458 edges, 31903 markings/sec, 890 secs
lola: 27395203 markings, 300160086 edges, 31447 markings/sec, 895 secs
lola: 27527511 markings, 301762708 edges, 26462 markings/sec, 900 secs
lola: 27692223 markings, 303457217 edges, 32942 markings/sec, 905 secs
lola: 27851677 markings, 305153495 edges, 31891 markings/sec, 910 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no unknown yes no yes
lola: memory consumption: 7081340 KB
lola: time consumption: 1732 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 14 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) OR ((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p19... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) OR ((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p19... (shortened)
lola: processed formula length: 1635
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 178285 markings, 1205512 edges, 35657 markings/sec, 0 secs
lola: 336177 markings, 2460190 edges, 31578 markings/sec, 5 secs
lola: 487342 markings, 3695413 edges, 30233 markings/sec, 10 secs
lola: 635800 markings, 4916618 edges, 29692 markings/sec, 15 secs
lola: 778670 markings, 6134395 edges, 28574 markings/sec, 20 secs
lola: 912670 markings, 7355142 edges, 26800 markings/sec, 25 secs
lola: 1021980 markings, 8444684 edges, 21862 markings/sec, 30 secs
lola: 1149090 markings, 9670475 edges, 25422 markings/sec, 35 secs
lola: 1290559 markings, 10788342 edges, 28294 markings/sec, 40 secs
lola: 1426765 markings, 11983678 edges, 27241 markings/sec, 45 secs
lola: 1544638 markings, 13037246 edges, 23575 markings/sec, 50 secs
lola: 1675144 markings, 14242807 edges, 26101 markings/sec, 55 secs
lola: 1785665 markings, 15461117 edges, 22104 markings/sec, 60 secs
lola: 1929484 markings, 16672866 edges, 28764 markings/sec, 65 secs
lola: 2059820 markings, 17885216 edges, 26067 markings/sec, 70 secs
lola: 2180168 markings, 19103947 edges, 24070 markings/sec, 75 secs
lola: 2294948 markings, 20249481 edges, 22956 markings/sec, 80 secs
lola: 2417742 markings, 21463628 edges, 24559 markings/sec, 85 secs
lola: 2530448 markings, 22683339 edges, 22541 markings/sec, 90 secs
lola: 2639773 markings, 23901895 edges, 21865 markings/sec, 95 secs
lola: 2748120 markings, 25127983 edges, 21669 markings/sec, 100 secs
lola: 2840023 markings, 26354017 edges, 18381 markings/sec, 105 secs
lola: 2997476 markings, 27540594 edges, 31491 markings/sec, 110 secs
lola: 3132808 markings, 28718347 edges, 27066 markings/sec, 115 secs
lola: 3267673 markings, 29894633 edges, 26973 markings/sec, 120 secs
lola: 3394679 markings, 31066631 edges, 25401 markings/sec, 125 secs
lola: 3507545 markings, 32233521 edges, 22573 markings/sec, 130 secs
lola: 3638933 markings, 33415713 edges, 26278 markings/sec, 135 secs
lola: 3769444 markings, 34595400 edges, 26102 markings/sec, 140 secs
lola: 3888701 markings, 35773890 edges, 23851 markings/sec, 145 secs
lola: 4001215 markings, 36959500 edges, 22503 markings/sec, 150 secs
lola: 4127211 markings, 38152934 edges, 25199 markings/sec, 155 secs
lola: 4231288 markings, 39338102 edges, 20815 markings/sec, 160 secs
lola: 4350569 markings, 40533081 edges, 23856 markings/sec, 165 secs
lola: 4454783 markings, 41722704 edges, 20843 markings/sec, 170 secs
lola: 4550928 markings, 42920621 edges, 19229 markings/sec, 175 secs
lola: 4678762 markings, 44148302 edges, 25567 markings/sec, 180 secs
lola: 4813646 markings, 45370172 edges, 26977 markings/sec, 185 secs
lola: 4935306 markings, 46573330 edges, 24332 markings/sec, 190 secs
lola: 5050351 markings, 47778514 edges, 23009 markings/sec, 195 secs
lola: 5177726 markings, 48991505 edges, 25475 markings/sec, 200 secs
lola: 5286055 markings, 50202816 edges, 21666 markings/sec, 205 secs
lola: 5405310 markings, 51421765 edges, 23851 markings/sec, 210 secs
lola: 5510339 markings, 52625187 edges, 21006 markings/sec, 215 secs
lola: 5605693 markings, 53824221 edges, 19071 markings/sec, 220 secs
lola: 5724598 markings, 55029921 edges, 23781 markings/sec, 225 secs
lola: 5842948 markings, 56226972 edges, 23670 markings/sec, 230 secs
lola: 5955188 markings, 57427597 edges, 22448 markings/sec, 235 secs
lola: 6065492 markings, 58656018 edges, 22061 markings/sec, 240 secs
lola: 6172227 markings, 59890237 edges, 21347 markings/sec, 245 secs
lola: 6270263 markings, 61129323 edges, 19607 markings/sec, 250 secs
lola: 6387278 markings, 62364965 edges, 23403 markings/sec, 255 secs
lola: 6493782 markings, 63604267 edges, 21301 markings/sec, 260 secs
lola: 6592153 markings, 64852709 edges, 19674 markings/sec, 265 secs
lola: 6696150 markings, 66093235 edges, 20799 markings/sec, 270 secs
lola: 6794283 markings, 67333475 edges, 19627 markings/sec, 275 secs
lola: 6892263 markings, 68589006 edges, 19596 markings/sec, 280 secs
lola: 6981796 markings, 69846674 edges, 17907 markings/sec, 285 secs
lola: 7095472 markings, 71094326 edges, 22735 markings/sec, 290 secs
lola: 7245699 markings, 72301629 edges, 30045 markings/sec, 295 secs
lola: 7385795 markings, 73502879 edges, 28019 markings/sec, 300 secs
lola: 7518922 markings, 74708331 edges, 26625 markings/sec, 305 secs
lola: 7641459 markings, 75912403 edges, 24507 markings/sec, 310 secs
lola: 7758548 markings, 77121799 edges, 23418 markings/sec, 315 secs
lola: 7896055 markings, 78327667 edges, 27501 markings/sec, 320 secs
lola: 8028092 markings, 79536439 edges, 26407 markings/sec, 325 secs
lola: 8142327 markings, 80744193 edges, 22847 markings/sec, 330 secs
lola: 8266378 markings, 81949501 edges, 24810 markings/sec, 335 secs
lola: 8385510 markings, 83153807 edges, 23826 markings/sec, 340 secs
lola: 8498978 markings, 84363128 edges, 22694 markings/sec, 345 secs
lola: 8607711 markings, 85571243 edges, 21747 markings/sec, 350 secs
lola: 8709903 markings, 86777285 edges, 20438 markings/sec, 355 secs
lola: 8815107 markings, 87993787 edges, 21041 markings/sec, 360 secs
lola: 8949561 markings, 89205061 edges, 26891 markings/sec, 365 secs
lola: 9083207 markings, 90419274 edges, 26729 markings/sec, 370 secs
lola: 9196643 markings, 91628334 edges, 22687 markings/sec, 375 secs
lola: 9321461 markings, 92838821 edges, 24964 markings/sec, 380 secs
lola: 9441158 markings, 94044994 edges, 23939 markings/sec, 385 secs
lola: 9555420 markings, 95253750 edges, 22852 markings/sec, 390 secs
lola: 9663175 markings, 96461337 edges, 21551 markings/sec, 395 secs
lola: 9763631 markings, 97661058 edges, 20091 markings/sec, 400 secs
lola: 9866902 markings, 98869129 edges, 20654 markings/sec, 405 secs
lola: 9993486 markings, 100080742 edges, 25317 markings/sec, 410 secs
lola: 10103631 markings, 101297207 edges, 22029 markings/sec, 415 secs
lola: 10221023 markings, 102519684 edges, 23478 markings/sec, 420 secs
lola: 10327694 markings, 103745132 edges, 21334 markings/sec, 425 secs
lola: 10424523 markings, 104967326 edges, 19366 markings/sec, 430 secs
lola: 10538370 markings, 106192554 edges, 22769 markings/sec, 435 secs
lola: 10647003 markings, 107418143 edges, 21727 markings/sec, 440 secs
lola: 10750157 markings, 108673194 edges, 20631 markings/sec, 445 secs
lola: 10850667 markings, 109906298 edges, 20102 markings/sec, 450 secs
lola: 10950886 markings, 111131213 edges, 20044 markings/sec, 455 secs
lola: 11044847 markings, 112356115 edges, 18792 markings/sec, 460 secs
lola: 11135429 markings, 113583164 edges, 18116 markings/sec, 465 secs
lola: 11218610 markings, 114814995 edges, 16636 markings/sec, 470 secs
lola: 11357581 markings, 116034509 edges, 27794 markings/sec, 475 secs
lola: 11489256 markings, 117249088 edges, 26335 markings/sec, 480 secs
lola: 11610342 markings, 118478308 edges, 24217 markings/sec, 485 secs
lola: 11735347 markings, 119723392 edges, 25001 markings/sec, 490 secs
lola: 11860492 markings, 120969300 edges, 25029 markings/sec, 495 secs
lola: 11976847 markings, 122220079 edges, 23271 markings/sec, 500 secs
lola: 12088873 markings, 123472042 edges, 22405 markings/sec, 505 secs
lola: 12197322 markings, 124717809 edges, 21690 markings/sec, 510 secs
lola: 12296037 markings, 125957470 edges, 19743 markings/sec, 515 secs
lola: 12430386 markings, 127209489 edges, 26870 markings/sec, 520 secs
lola: 12541067 markings, 128461431 edges, 22136 markings/sec, 525 secs
lola: 12664812 markings, 129707494 edges, 24749 markings/sec, 530 secs
lola: 12772285 markings, 130942635 edges, 21495 markings/sec, 535 secs
lola: 12870537 markings, 132177598 edges, 19650 markings/sec, 540 secs
lola: 12984435 markings, 133411983 edges, 22780 markings/sec, 545 secs
lola: 13094858 markings, 134662749 edges, 22085 markings/sec, 550 secs
lola: 13198251 markings, 135916072 edges, 20679 markings/sec, 555 secs
lola: 13299960 markings, 137164575 edges, 20342 markings/sec, 560 secs
lola: 13401991 markings, 138410917 edges, 20406 markings/sec, 565 secs
lola: 13497326 markings, 139657251 edges, 19067 markings/sec, 570 secs
lola: 13589998 markings, 140908288 edges, 18534 markings/sec, 575 secs
lola: 13673118 markings, 142154777 edges, 16624 markings/sec, 580 secs
lola: 13802793 markings, 143381308 edges, 25935 markings/sec, 585 secs
lola: 13919406 markings, 144604029 edges, 23323 markings/sec, 590 secs
lola: 14036690 markings, 145826378 edges, 23457 markings/sec, 595 secs
lola: 14145549 markings, 147057429 edges, 21772 markings/sec, 600 secs
lola: 14246759 markings, 148290892 edges, 20242 markings/sec, 605 secs
lola: 14353250 markings, 149526159 edges, 21298 markings/sec, 610 secs
lola: 14463797 markings, 150760907 edges, 22109 markings/sec, 615 secs
lola: 14570843 markings, 151995920 edges, 21409 markings/sec, 620 secs
lola: 14666881 markings, 153239688 edges, 19208 markings/sec, 625 secs
lola: 14774658 markings, 154489793 edges, 21555 markings/sec, 630 secs
lola: 14869821 markings, 155740503 edges, 19033 markings/sec, 635 secs
lola: 14963123 markings, 156989050 edges, 18660 markings/sec, 640 secs
lola: 15051375 markings, 158238425 edges, 17650 markings/sec, 645 secs
lola: 15161057 markings, 159492063 edges, 21936 markings/sec, 650 secs
lola: 15272341 markings, 160740145 edges, 22257 markings/sec, 655 secs
lola: 15375785 markings, 161988401 edges, 20689 markings/sec, 660 secs
lola: 15475744 markings, 163236977 edges, 19992 markings/sec, 665 secs
lola: 15580774 markings, 164497043 edges, 21006 markings/sec, 670 secs
lola: 15677906 markings, 165756127 edges, 19426 markings/sec, 675 secs
lola: 15770247 markings, 167004670 edges, 18468 markings/sec, 680 secs
lola: 15855600 markings, 168270055 edges, 17071 markings/sec, 685 secs
lola: 15962377 markings, 169532897 edges, 21355 markings/sec, 690 secs
lola: 16059333 markings, 170792772 edges, 19391 markings/sec, 695 secs
lola: 16157901 markings, 172053573 edges, 19714 markings/sec, 700 secs
lola: 16247943 markings, 173319692 edges, 18008 markings/sec, 705 secs
lola: 16339276 markings, 174586702 edges, 18267 markings/sec, 710 secs
lola: 16432684 markings, 175851820 edges, 18682 markings/sec, 715 secs
lola: 16517372 markings, 177107889 edges, 16938 markings/sec, 720 secs
lola: 16605837 markings, 178362354 edges, 17693 markings/sec, 725 secs
lola: 16687648 markings, 179619050 edges, 16362 markings/sec, 730 secs
lola: 16764472 markings, 180879436 edges, 15365 markings/sec, 735 secs
lola: 16915668 markings, 182109347 edges, 30239 markings/sec, 740 secs
lola: 17052724 markings, 183329180 edges, 27411 markings/sec, 745 secs
lola: 17196438 markings, 184547123 edges, 28743 markings/sec, 750 secs
lola: 17326975 markings, 185765306 edges, 26107 markings/sec, 755 secs
lola: 17444582 markings, 186982449 edges, 23521 markings/sec, 760 secs
lola: 17580184 markings, 188193858 edges, 27120 markings/sec, 765 secs
lola: 17712955 markings, 189399243 edges, 26554 markings/sec, 770 secs
lola: 17835181 markings, 190608974 edges, 24445 markings/sec, 775 secs
lola: 17952385 markings, 191823239 edges, 23441 markings/sec, 780 secs
lola: 18076031 markings, 193035172 edges, 24729 markings/sec, 785 secs
lola: 18189188 markings, 194253423 edges, 22631 markings/sec, 790 secs
lola: 18303245 markings, 195463508 edges, 22811 markings/sec, 795 secs
lola: 18407476 markings, 196671136 edges, 20846 markings/sec, 800 secs
lola: 18503247 markings, 197881211 edges, 19154 markings/sec, 805 secs
lola: 18638243 markings, 199084897 edges, 26999 markings/sec, 810 secs
lola: 18769120 markings, 200280504 edges, 26175 markings/sec, 815 secs
lola: 18889056 markings, 201478974 edges, 23987 markings/sec, 820 secs
lola: 19006998 markings, 202688049 edges, 23588 markings/sec, 825 secs
lola: 19128747 markings, 203889634 edges, 24350 markings/sec, 830 secs
lola: 19240350 markings, 205096073 edges, 22321 markings/sec, 835 secs
lola: 19354327 markings, 206310826 edges, 22795 markings/sec, 840 secs
lola: 19458738 markings, 207525596 edges, 20882 markings/sec, 845 secs
lola: 19555555 markings, 208750817 edges, 19363 markings/sec, 850 secs
lola: 19679427 markings, 209970293 edges, 24774 markings/sec, 855 secs
lola: 19800257 markings, 211193337 edges, 24166 markings/sec, 860 secs
lola: 19915851 markings, 212413195 edges, 23119 markings/sec, 865 secs
lola: 20024069 markings, 213631568 edges, 21644 markings/sec, 870 secs
lola: 20125625 markings, 214854018 edges, 20311 markings/sec, 875 secs
lola: 20228866 markings, 216077037 edges, 20648 markings/sec, 880 secs
lola: 20338465 markings, 217299941 edges, 21920 markings/sec, 885 secs
lola: 20446641 markings, 218524213 edges, 21635 markings/sec, 890 secs
lola: 20539290 markings, 219760190 edges, 18530 markings/sec, 895 secs
lola: 20647278 markings, 220981154 edges, 21598 markings/sec, 900 secs
lola: 20739208 markings, 222211061 edges, 18386 markings/sec, 905 secs
lola: 20836305 markings, 223440222 edges, 19419 markings/sec, 910 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no unknown yes no yes
lola: memory consumption: 5349020 KB
lola: time consumption: 2651 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: ((3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918) AND (A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 15 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)
lola: processed formula length: 236
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 17 will run for 1 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p... (shortened)
lola: processed formula length: 6734
lola: 79 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 66 markings, 65 edges
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: processed formula length: 223
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 248527 markings, 1740533 edges, 49705 markings/sec, 0 secs
lola: 465668 markings, 3520080 edges, 43428 markings/sec, 5 secs
lola: 673423 markings, 5291693 edges, 41551 markings/sec, 10 secs
lola: 879660 markings, 7064126 edges, 41247 markings/sec, 15 secs
lola: 1059523 markings, 8850802 edges, 35973 markings/sec, 20 secs
lola: 1268655 markings, 10606462 edges, 41826 markings/sec, 25 secs
lola: 1475044 markings, 12377851 edges, 41278 markings/sec, 30 secs
lola: 1664484 markings, 14151021 edges, 37888 markings/sec, 35 secs
lola: 1841706 markings, 15920198 edges, 35444 markings/sec, 40 secs
lola: 2039948 markings, 17680615 edges, 39648 markings/sec, 45 secs
lola: 2210181 markings, 19456984 edges, 34047 markings/sec, 50 secs
lola: 2393532 markings, 21221170 edges, 36670 markings/sec, 55 secs
lola: 2560061 markings, 22992255 edges, 33306 markings/sec, 60 secs
lola: 2718381 markings, 24771623 edges, 31664 markings/sec, 65 secs
lola: 2870923 markings, 26569142 edges, 30508 markings/sec, 70 secs
lola: 3088280 markings, 28330069 edges, 43471 markings/sec, 75 secs
lola: 3289843 markings, 30097705 edges, 40313 markings/sec, 80 secs
lola: 3475417 markings, 31873071 edges, 37115 markings/sec, 85 secs
lola: 3665108 markings, 33643839 edges, 37938 markings/sec, 90 secs
lola: 3853919 markings, 35410505 edges, 37762 markings/sec, 95 secs
lola: 4026866 markings, 37182190 edges, 34589 markings/sec, 100 secs
lola: 4202115 markings, 38961975 edges, 35050 markings/sec, 105 secs
lola: 4368067 markings, 40740725 edges, 33190 markings/sec, 110 secs
lola: 4520649 markings, 42529105 edges, 30516 markings/sec, 115 secs
lola: 4696288 markings, 44306019 edges, 35128 markings/sec, 120 secs
lola: 4886163 markings, 46072445 edges, 37975 markings/sec, 125 secs
lola: 5057003 markings, 47840894 edges, 34168 markings/sec, 130 secs
lola: 5235712 markings, 49605391 edges, 35742 markings/sec, 135 secs
lola: 5401052 markings, 51371496 edges, 33068 markings/sec, 140 secs
lola: 5554181 markings, 53151478 edges, 30626 markings/sec, 145 secs
lola: 5714438 markings, 54928338 edges, 32051 markings/sec, 150 secs
lola: 5882335 markings, 56683630 edges, 33579 markings/sec, 155 secs
lola: 6044722 markings, 58428133 edges, 32477 markings/sec, 160 secs
lola: 6197026 markings, 60213189 edges, 30461 markings/sec, 165 secs
lola: 6354532 markings, 61996344 edges, 31501 markings/sec, 170 secs
lola: 6509497 markings, 63780809 edges, 30993 markings/sec, 175 secs
lola: 6653667 markings, 65559578 edges, 28834 markings/sec, 180 secs
lola: 6795663 markings, 67354553 edges, 28399 markings/sec, 185 secs
lola: 6932774 markings, 69148040 edges, 27422 markings/sec, 190 secs
lola: 7067720 markings, 70909511 edges, 26989 markings/sec, 195 secs
lola: 7280513 markings, 72626210 edges, 42559 markings/sec, 200 secs
lola: 7475973 markings, 74352673 edges, 39092 markings/sec, 205 secs
lola: 7659816 markings, 76088708 edges, 36769 markings/sec, 210 secs
lola: 7846496 markings, 77847712 edges, 37336 markings/sec, 215 secs
lola: 8034999 markings, 79609872 edges, 37701 markings/sec, 220 secs
lola: 8205808 markings, 81378512 edges, 34162 markings/sec, 225 secs
lola: 8384974 markings, 83146448 edges, 35833 markings/sec, 230 secs
lola: 8550235 markings, 84914487 edges, 33052 markings/sec, 235 secs
lola: 8703498 markings, 86696182 edges, 30653 markings/sec, 240 secs
lola: 8873839 markings, 88471743 edges, 34068 markings/sec, 245 secs
lola: 9062201 markings, 90229010 edges, 37672 markings/sec, 250 secs
lola: 9236182 markings, 92021896 edges, 34796 markings/sec, 255 secs
lola: 9418064 markings, 93788528 edges, 36376 markings/sec, 260 secs
lola: 9586132 markings, 95584989 edges, 33614 markings/sec, 265 secs
lola: 9744010 markings, 97418521 edges, 31576 markings/sec, 270 secs
lola: 9910177 markings, 99259533 edges, 33233 markings/sec, 275 secs
lola: 10085066 markings, 101106964 edges, 34978 markings/sec, 280 secs
lola: 10253174 markings, 102911256 edges, 33622 markings/sec, 285 secs
lola: 10403513 markings, 104680952 edges, 30068 markings/sec, 290 secs
lola: 10560426 markings, 106437015 edges, 31383 markings/sec, 295 secs
lola: 10710399 markings, 108174336 edges, 29995 markings/sec, 300 secs
lola: 10851695 markings, 109916199 edges, 28259 markings/sec, 305 secs
lola: 10989160 markings, 111658304 edges, 27493 markings/sec, 310 secs
lola: 11122110 markings, 113405090 edges, 26590 markings/sec, 315 secs
lola: 11250901 markings, 115155476 edges, 25758 markings/sec, 320 secs
lola: 11448646 markings, 116871301 edges, 39549 markings/sec, 325 secs
lola: 11625857 markings, 118642247 edges, 35442 markings/sec, 330 secs
lola: 11806293 markings, 120410088 edges, 36087 markings/sec, 335 secs
lola: 11973587 markings, 122183521 edges, 33459 markings/sec, 340 secs
lola: 12134446 markings, 123960562 edges, 32172 markings/sec, 345 secs
lola: 12274003 markings, 125748769 edges, 27911 markings/sec, 350 secs
lola: 12459618 markings, 127515909 edges, 37123 markings/sec, 355 secs
lola: 12627139 markings, 129291492 edges, 33504 markings/sec, 360 secs
lola: 12782181 markings, 131072489 edges, 31008 markings/sec, 365 secs
lola: 12930482 markings, 132859584 edges, 29660 markings/sec, 370 secs
lola: 13092245 markings, 134637518 edges, 32353 markings/sec, 375 secs
lola: 13235913 markings, 136426254 edges, 28734 markings/sec, 380 secs
lola: 13385895 markings, 138206328 edges, 29996 markings/sec, 385 secs
lola: 13522979 markings, 139983711 edges, 27417 markings/sec, 390 secs
lola: 13648308 markings, 141766810 edges, 25066 markings/sec, 395 secs
lola: 13818549 markings, 143528831 edges, 34048 markings/sec, 400 secs
lola: 13984676 markings, 145289655 edges, 33225 markings/sec, 405 secs
lola: 14145023 markings, 147050763 edges, 32069 markings/sec, 410 secs
lola: 14287222 markings, 148847754 edges, 28440 markings/sec, 415 secs
lola: 14450272 markings, 150626662 edges, 32610 markings/sec, 420 secs
lola: 14603439 markings, 152411449 edges, 30633 markings/sec, 425 secs
lola: 14748974 markings, 154190082 edges, 29107 markings/sec, 430 secs
lola: 14889150 markings, 155976063 edges, 28035 markings/sec, 435 secs
lola: 15018936 markings, 157769003 edges, 25957 markings/sec, 440 secs
lola: 15167233 markings, 159554593 edges, 29659 markings/sec, 445 secs
lola: 15322590 markings, 161338468 edges, 31071 markings/sec, 450 secs
lola: 15466998 markings, 163124799 edges, 28882 markings/sec, 455 secs
lola: 15612254 markings, 164912494 edges, 29051 markings/sec, 460 secs
lola: 15746959 markings, 166705314 edges, 26941 markings/sec, 465 secs
lola: 15872478 markings, 168507952 edges, 25104 markings/sec, 470 secs
lola: 16024125 markings, 170293484 edges, 30329 markings/sec, 475 secs
lola: 16160129 markings, 172085943 edges, 27201 markings/sec, 480 secs
lola: 16284675 markings, 173885563 edges, 24909 markings/sec, 485 secs
lola: 16419543 markings, 175672461 edges, 26974 markings/sec, 490 secs
lola: 16543178 markings, 177469659 edges, 24727 markings/sec, 495 secs
lola: 16664567 markings, 179269715 edges, 24278 markings/sec, 500 secs
lola: 16775405 markings, 181077188 edges, 22168 markings/sec, 505 secs
lola: 16999193 markings, 182819900 edges, 44758 markings/sec, 510 secs
lola: 17199187 markings, 184577828 edges, 39999 markings/sec, 515 secs
lola: 17384128 markings, 186339002 edges, 36988 markings/sec, 520 secs
lola: 17568933 markings, 188087976 edges, 36961 markings/sec, 525 secs
lola: 17756600 markings, 189835926 edges, 37533 markings/sec, 530 secs
lola: 17925740 markings, 191591107 edges, 33828 markings/sec, 535 secs
lola: 18107136 markings, 193342190 edges, 36279 markings/sec, 540 secs
lola: 18270719 markings, 195098682 edges, 32717 markings/sec, 545 secs
lola: 18424133 markings, 196863109 edges, 30683 markings/sec, 550 secs
lola: 18582531 markings, 198625362 edges, 31680 markings/sec, 555 secs
lola: 18778013 markings, 200370419 edges, 39096 markings/sec, 560 secs
lola: 18944920 markings, 202130269 edges, 33381 markings/sec, 565 secs
lola: 19127178 markings, 203877455 edges, 36452 markings/sec, 570 secs
lola: 19293639 markings, 205630943 edges, 33292 markings/sec, 575 secs
lola: 19450019 markings, 207403048 edges, 31276 markings/sec, 580 secs
lola: 19597164 markings, 209179672 edges, 29429 markings/sec, 585 secs
lola: 19777669 markings, 210943116 edges, 36101 markings/sec, 590 secs
lola: 19943361 markings, 212710855 edges, 33138 markings/sec, 595 secs
lola: 20096359 markings, 214482000 edges, 30600 markings/sec, 600 secs
lola: 20245906 markings, 216255581 edges, 29909 markings/sec, 605 secs
lola: 20404552 markings, 218021450 edges, 31729 markings/sec, 610 secs
lola: 20543635 markings, 219812797 edges, 27817 markings/sec, 615 secs
lola: 20694237 markings, 221571892 edges, 30120 markings/sec, 620 secs
lola: 20830305 markings, 223352949 edges, 27214 markings/sec, 625 secs
lola: 20952445 markings, 225107677 edges, 24428 markings/sec, 630 secs
lola: 21136756 markings, 226827788 edges, 36862 markings/sec, 635 secs
lola: 21319123 markings, 228544939 edges, 36473 markings/sec, 640 secs
lola: 21491502 markings, 230279069 edges, 34476 markings/sec, 645 secs
lola: 21658174 markings, 232041064 edges, 33334 markings/sec, 650 secs
lola: 21820393 markings, 233796025 edges, 32444 markings/sec, 655 secs
lola: 21971352 markings, 235546791 edges, 30192 markings/sec, 660 secs
lola: 22134578 markings, 237273301 edges, 32645 markings/sec, 665 secs
lola: 22298241 markings, 238999335 edges, 32733 markings/sec, 670 secs
lola: 22458829 markings, 240724916 edges, 32118 markings/sec, 675 secs
lola: 22602378 markings, 242461726 edges, 28710 markings/sec, 680 secs
lola: 22759950 markings, 244203663 edges, 31514 markings/sec, 685 secs
lola: 22911826 markings, 245969227 edges, 30375 markings/sec, 690 secs
lola: 23055377 markings, 247739312 edges, 28710 markings/sec, 695 secs
lola: 23191837 markings, 249508841 edges, 27292 markings/sec, 700 secs
lola: 23327812 markings, 251278489 edges, 27195 markings/sec, 705 secs
lola: 23461752 markings, 253018162 edges, 26788 markings/sec, 710 secs
lola: 23638812 markings, 254763411 edges, 35412 markings/sec, 715 secs
lola: 23802772 markings, 256511955 edges, 32792 markings/sec, 720 secs
lola: 23953511 markings, 258266707 edges, 30148 markings/sec, 725 secs
lola: 24101440 markings, 260020792 edges, 29586 markings/sec, 730 secs
lola: 24259865 markings, 261775334 edges, 31685 markings/sec, 735 secs
lola: 24397104 markings, 263542446 edges, 27448 markings/sec, 740 secs
lola: 24546513 markings, 265297534 edges, 29882 markings/sec, 745 secs
lola: 24681953 markings, 267071323 edges, 27088 markings/sec, 750 secs
lola: 24806061 markings, 268861293 edges, 24822 markings/sec, 755 secs
lola: 24966172 markings, 270625689 edges, 32022 markings/sec, 760 secs
lola: 25116985 markings, 272400044 edges, 30163 markings/sec, 765 secs
lola: 25262297 markings, 274178578 edges, 29062 markings/sec, 770 secs
lola: 25402677 markings, 275959148 edges, 28076 markings/sec, 775 secs
lola: 25534883 markings, 277746250 edges, 26441 markings/sec, 780 secs
lola: 25670008 markings, 279531151 edges, 27025 markings/sec, 785 secs
lola: 25807749 markings, 281313086 edges, 27548 markings/sec, 790 secs
lola: 25945792 markings, 283105424 edges, 27609 markings/sec, 795 secs
lola: 26071060 markings, 284874082 edges, 25054 markings/sec, 800 secs
lola: 26200456 markings, 286641959 edges, 25879 markings/sec, 805 secs
lola: 26322237 markings, 288418296 edges, 24356 markings/sec, 810 secs
lola: 26438907 markings, 290190826 edges, 23334 markings/sec, 815 secs
lola: 26576721 markings, 291954223 edges, 27563 markings/sec, 820 secs
lola: 26772563 markings, 293706018 edges, 39168 markings/sec, 825 secs
lola: 26940769 markings, 295475080 edges, 33641 markings/sec, 830 secs
lola: 27125085 markings, 297241067 edges, 36863 markings/sec, 835 secs
lola: 27292689 markings, 299012257 edges, 33521 markings/sec, 840 secs
lola: 27448350 markings, 300782189 edges, 31132 markings/sec, 845 secs
lola: 27597530 markings, 302566235 edges, 29836 markings/sec, 850 secs
lola: 27776967 markings, 304334121 edges, 35887 markings/sec, 855 secs
lola: 27943633 markings, 306107512 edges, 33333 markings/sec, 860 secs
lola: 28096454 markings, 307885083 edges, 30564 markings/sec, 865 secs
lola: 28247005 markings, 309666366 edges, 30110 markings/sec, 870 secs
lola: 28407121 markings, 311440363 edges, 32023 markings/sec, 875 secs
lola: 28547214 markings, 313226799 edges, 28019 markings/sec, 880 secs
lola: 28696922 markings, 315003399 edges, 29942 markings/sec, 885 secs
lola: 28832495 markings, 316790134 edges, 27115 markings/sec, 890 secs
lola: 28956680 markings, 318587085 edges, 24837 markings/sec, 895 secs
lola: 29137531 markings, 320354439 edges, 36170 markings/sec, 900 secs
lola: 29305148 markings, 322127185 edges, 33523 markings/sec, 905 secs
lola: 29462507 markings, 323903736 edges, 31472 markings/sec, 910 secs
lola: time limit reached - aborting
lola: lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes
lola: memory consumption: 7473524 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes
rslt: finished
BK_STOP 1590283845524
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-28"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is QuasiCertifProtocol-COL-28, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r135-tajo-158961409100191"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-28.tgz
mv QuasiCertifProtocol-COL-28 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;