fond
Model Checking Contest 2020
10th edition, Paris, France, June 23, 2020
Execution of r135-tajo-158961409100191
Last Updated
Jun 28, 2020

About the Execution of 2019-Gold for QuasiCertifProtocol-COL-28

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
7513.780 3570153.00 3647018.00 327.50 FFF?FFTT???FFTFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/mnt/tpsp/fkordon/mcc2020-input.r135-tajo-158961409100191.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2020-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is QuasiCertifProtocol-COL-28, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r135-tajo-158961409100191
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 300K
-rw-r--r-- 1 mcc users 3.7K Apr 12 07:02 CTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Apr 12 07:02 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 11 07:58 CTLFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 11 07:58 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 24 05:37 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K Mar 24 05:37 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.3K Apr 14 12:47 LTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Apr 28 14:02 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Apr 14 12:47 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 28 14:02 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.6K Apr 10 13:55 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K Apr 10 13:55 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.7K Apr 9 20:26 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 14K Apr 9 20:26 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Apr 10 22:24 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Apr 10 22:24 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 equiv_pt
-rw-r--r-- 1 mcc users 3 Mar 24 05:37 instance
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 iscolored
-rw-r--r-- 1 mcc users 120K Mar 24 05:37 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-28-00
FORMULA_NAME QuasiCertifProtocol-COL-28-01
FORMULA_NAME QuasiCertifProtocol-COL-28-02
FORMULA_NAME QuasiCertifProtocol-COL-28-03
FORMULA_NAME QuasiCertifProtocol-COL-28-04
FORMULA_NAME QuasiCertifProtocol-COL-28-05
FORMULA_NAME QuasiCertifProtocol-COL-28-06
FORMULA_NAME QuasiCertifProtocol-COL-28-07
FORMULA_NAME QuasiCertifProtocol-COL-28-08
FORMULA_NAME QuasiCertifProtocol-COL-28-09
FORMULA_NAME QuasiCertifProtocol-COL-28-10
FORMULA_NAME QuasiCertifProtocol-COL-28-11
FORMULA_NAME QuasiCertifProtocol-COL-28-12
FORMULA_NAME QuasiCertifProtocol-COL-28-13
FORMULA_NAME QuasiCertifProtocol-COL-28-14
FORMULA_NAME QuasiCertifProtocol-COL-28-15

=== Now, execution of the tool begins

BK_START 1590280275371

info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ QuasiCertifProtocol-COL-28 @ 3570 seconds

FORMULA QuasiCertifProtocol-COL-28-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-06 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-28-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ QuasiCertifProtocol-COL-28

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sun May 24 00:31:15 2020
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 221
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 77
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 236
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 1,
"X": 2,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 5,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 203,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 145,
"visible_transitions": 0
},
"processed": "A ((X (X ((((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861) AND (2 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978)) OR F (((1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031) AND (p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969)))))) U (1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031)))",
"processed_size": 1677,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X (F ((1 <= p1919))))",
"processed_size": 24,
"rewrites": 77
},
"result":
{
"edges": 30,
"markings": 31,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 3,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 275
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 88,
"taut": 0,
"tconj": 0,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 88,
"visible_transitions": 0
},
"processed": "A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872)) OR F (((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 + 1 <= p2010)))))",
"processed_size": 699,
"rewrites": 77
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 4,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 300
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 2,
"G": 2,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (F ((F (G ((3 <= p2008))) AND X (G ((3 <= p2008))))))",
"processed_size": 55,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 7
},
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 330
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 842,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 842,
"visible_transitions": 0
},
"processed": "A (X (X ((p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2134 + p2133 + p2132 + p2131 + p2130 + p2129 + p2128 + p2158 + p2159 + p2160 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2501 + p2502 + p2503 + p2504 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2530 + p2531 + p2532 + p2533 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584 + p2585 + p2586 + p2587 + p2588 + p2589 + p2590 + p2591 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p2620 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p2796 + p2797 + p2798 + p2799 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p2820 + p2821 + p2822 + p2823 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p2850 + p2851 + p2852 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p2879 + p2880 + p2881 + p2883 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p2910 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p2968 + 1 <= p2008))))",
"processed_size": 6752,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 4
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 367
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 367
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "A (X (F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))",
"processed_size": 248,
"rewrites": 77
},
"result":
{
"edges": 30,
"markings": 31,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 413
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 3,
"aconj": 0,
"adisj": 0,
"aneg": 2,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 60,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 30,
"visible_transitions": 0
},
"processed": "A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831)))))))",
"processed_size": 515,
"rewrites": 77
},
"result":
{
"edges": 48,
"markings": 48,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 7,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 413
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 77
},
"result":
{
"edges": 30,
"markings": 31,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 472
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 30,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 30,
"visible_transitions": 0
},
"processed": "A (G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))",
"processed_size": 254,
"rewrites": 79
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 551
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "A (G (F ((2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))",
"processed_size": 248,
"rewrites": 77
},
"result":
{
"edges": 32,
"markings": 32,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 689
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "A (F (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))",
"processed_size": 219,
"rewrites": 77
},
"result":
{
"edges": 34,
"markings": 33,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 919
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 919
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 29,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 29,
"visible_transitions": 0
},
"processed": "(3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)",
"processed_size": 236,
"rewrites": 77
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 15,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 842,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 842,
"visible_transitions": 0
},
"processed": "A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 <= p1920)))",
"processed_size": 6734,
"rewrites": 79
},
"result":
{
"edges": 65,
"markings": 66,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 17,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"type": "invariance",
"workflow": "stateequation||search"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 15,
"type": "boolean"
}
}
],
"exit":
{
"error": null,
"memory": 7473524,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "A(X(X(*))) : A(G(F(**))) : A(F(G(**))) : A(X(G(**))) : A(G(**)) : A((X(X(((** AND **) OR F(**)))) U **)) : A(X(F(**))) : A((X(**) OR F(**))) : A((** OR (F(G(**)) AND G((F(**) AND (** OR **)))))) : A(G(F((F(**) OR G(**))))) : A(F(G(*))) : A(F((F(G(**)) AND X(G(**))))) : (** AND (A(G(**)) AND A(F(**)))) : TRUE : (A(X(X(G((* AND X(*)))))) AND A(X(F(**)))) : A(X(TRUE))"
},
"net":
{
"arcs": 6489,
"conflict_clusters": 98,
"places": 2998,
"places_significant": 445,
"singleton_clusters": 0,
"transitions": 446
},
"result":
{
"interim_value": "no no no unknown no no yes yes unknown unknown unknown no no yes no yes ",
"preliminary_value": "no no no unknown no no yes yes unknown unknown unknown no no yes no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 2998, Transitions: 446
lola: @ trans malA4
lola: @ trans SgetTS
lola: @ trans malA5
lola: @ trans malS3
lola: @ trans AreqCS
lola: @ trans AendCS
lola: @ trans ScertCS
lola: @ trans malA2
lola: @ trans SreqTS
lola: @ trans AackCS
lola: @ trans malS2
lola: @ trans AgetTS
lola: @ trans malA3
lola: @ trans malC1
lola: @ trans AstartCS
lola: @ trans Sperform
lola: @ trans malS1
lola: @ trans SsendTS
lola: @ trans malS4
lola: @ trans AreqTS
lola: @ trans CsendTS1
lola: @ trans malA1
lola: @ trans malS6
lola: @ trans malS5
lola: @ trans SackCS
lola: @ trans CgenCertif
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 3444/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 95936
lola: finding significant places
lola: 2998 places, 446 transitions, 445 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p960)
lola: LP says that atomic proposition is always false: (2 <= p1831)
lola: LP says that atomic proposition is always false: (2 <= p871)
lola: LP says that atomic proposition is always false: (3 <= p871)
lola: LP says that atomic proposition is always false: (3 <= p871)
lola: A (NOT(X ((X ((p2008 <= p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2134 + p2133 + p2132 + p2131 + p2130 + p2129 + p2128 + p2158 + p2159 + p2160 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2501 + p2502 + p2503 + p2504 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2530 + p2531 + p2532 + p2533 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584 + p2585 + p2586 + p2587 + p2588 + p2589 + p2590 + p2591 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p2620 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p2796 + p2797 + p2798 + p2799 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p2820 + p2821 + p2822 + p2823 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p2850 + p2851 + p2852 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p2879 + p2880 + p2881 + p2883 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p2910 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p2968)) OR F (()))))) : A (G (X (F (((1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031) U (2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969)))))) : A (F (X (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))) : A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008)))) : A (((() AND G ((0 <= p1919))) AND G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))) : A ((X (((X ((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861)) AND X ((2 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978))) OR X (F (((1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031) AND (p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1870 + p1869 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1862 + p1861 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969)))))) U (1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))) : A (X (F ((X (F (X ((p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872 <= p29)))) U F ((1 <= p1919)))))) : A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872)) OR F (((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 + 1 <= p2010))))) : A ((((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) OR ((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) AND (p1920 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p872))) OR (X (F (G ((3 <= p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070)))) AND G (((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) U (p930 + p929 + p928 + p927 + p926 + p925 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p916 + p915 + p914 + p913 + p912 + p911 + p910 + p909 + p908 + p907 + p906 + p905 + p904 + p903 + p902 <= p960)))))) : A (G (F ((F (((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 <= 0) AND F ((0 <= p2008)))) OR G (((p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 <= p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860) OR (1 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999))))))) : A (X (F (NOT(G (F (((0 <= p1919) AND X (((2 <= p2008)))))))))) : A (F ((F (G ((3 <= p2008))) AND X (NOT(F (NOT(G ((3 <= p2008))))))))) : A ((((3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918) AND G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 <= p1920))) AND F ((2 <= p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921)))) : A ((((1 <= p2009) AND G (X (X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978))))) U ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1978) U (0 <= p2069 + p2068 + p2067 + p2066 + p2065 + p2064 + p2063 + p2062 + p2061 + p2060 + p2059 + p2058 + p2057 + p2056 + p2055 + p2054 + p2053 + p2052 + p2051 + p2050 + p2049 + p2048 + p2047 + p2046 + p2045 + p2044 + p2043 + p2042 + p2041)))) : A (X (NOT((F (X (((p1831 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969) OR X ((p1831 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))) OR NOT(F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))))) : A (X (NOT(F ((((1 <= p1831) AND NOT(G ((3 <= p871)))) AND (G ((p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)) U (3 <= p871)))))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:434
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:525
lola: rewrite Frontend/Parser/formula_rewrite.k:528
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:251
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:551
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: processed formula length: 223
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 230622 markings, 1619075 edges, 46124 markings/sec, 0 secs
lola: 441776 markings, 3350764 edges, 42231 markings/sec, 5 secs
lola: 651818 markings, 5078564 edges, 42008 markings/sec, 10 secs
lola: 850129 markings, 6811772 edges, 39662 markings/sec, 15 secs
lola: 1032503 markings, 8551668 edges, 36475 markings/sec, 20 secs
lola: 1228896 markings, 10283301 edges, 39279 markings/sec, 25 secs
lola: 1430542 markings, 12008512 edges, 40329 markings/sec, 30 secs
lola: 1622683 markings, 13736138 edges, 38428 markings/sec, 35 secs
lola: 1787145 markings, 15479676 edges, 32892 markings/sec, 40 secs
lola: 1986412 markings, 17204567 edges, 39853 markings/sec, 45 secs
lola: 2165558 markings, 18938233 edges, 35829 markings/sec, 50 secs
lola: 2337048 markings, 20675063 edges, 34298 markings/sec, 55 secs
lola: 2502648 markings, 22414415 edges, 33120 markings/sec, 60 secs
lola: 2664441 markings, 24151700 edges, 32359 markings/sec, 65 secs
lola: 2808928 markings, 25903158 edges, 28897 markings/sec, 70 secs
lola: 3008653 markings, 27624722 edges, 39945 markings/sec, 75 secs
lola: 3208768 markings, 29343116 edges, 40023 markings/sec, 80 secs
lola: 3394829 markings, 31067914 edges, 37212 markings/sec, 85 secs
lola: 3563829 markings, 32802591 edges, 33800 markings/sec, 90 secs
lola: 3761169 markings, 34521881 edges, 39468 markings/sec, 95 secs
lola: 3918675 markings, 36099824 edges, 31501 markings/sec, 100 secs
lola: 4068363 markings, 37589205 edges, 29938 markings/sec, 105 secs
lola: 4218671 markings, 39163110 edges, 30062 markings/sec, 110 secs
lola: 4379983 markings, 40896828 edges, 32262 markings/sec, 115 secs
lola: 4528143 markings, 42639391 edges, 29632 markings/sec, 120 secs
lola: 4704027 markings, 44369540 edges, 35177 markings/sec, 125 secs
lola: 4888154 markings, 46093745 edges, 36825 markings/sec, 130 secs
lola: 5055815 markings, 47828269 edges, 33532 markings/sec, 135 secs
lola: 5230490 markings, 49558246 edges, 34935 markings/sec, 140 secs
lola: 5393919 markings, 51291291 edges, 32686 markings/sec, 145 secs
lola: 5537071 markings, 52951008 edges, 28630 markings/sec, 150 secs
lola: 5661509 markings, 54454397 edges, 24888 markings/sec, 155 secs
lola: 5816414 markings, 55944669 edges, 30981 markings/sec, 160 secs
lola: 5972022 markings, 57602475 edges, 31122 markings/sec, 165 secs
lola: 6126616 markings, 59342911 edges, 30919 markings/sec, 170 secs
lola: 6266165 markings, 61092698 edges, 27910 markings/sec, 175 secs
lola: 6427605 markings, 62826875 edges, 32288 markings/sec, 180 secs
lola: 6572112 markings, 64572618 edges, 28901 markings/sec, 185 secs
lola: 6716723 markings, 66314048 edges, 28922 markings/sec, 190 secs
lola: 6843790 markings, 67949356 edges, 25413 markings/sec, 195 secs
lola: 6955177 markings, 69458119 edges, 22277 markings/sec, 200 secs
lola: 7085362 markings, 71020615 edges, 26037 markings/sec, 205 secs
lola: 7287703 markings, 72703977 edges, 40468 markings/sec, 210 secs
lola: 7484344 markings, 74416350 edges, 39328 markings/sec, 215 secs
lola: 7664847 markings, 76135367 edges, 36101 markings/sec, 220 secs
lola: 7847492 markings, 77854599 edges, 36529 markings/sec, 225 secs
lola: 8031609 markings, 79570669 edges, 36823 markings/sec, 230 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown yes unknown unknown
lola: memory consumption: 2100380 KB
lola: time consumption: 261 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 2 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((X (X ((((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X (X ((((p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 <= p1889 + p1888 + p1887 + p1886 + p1885 + p1884 + p1883 + p1882 + p1881 + p1880 + p1879 + p1878 + p1877 + p1876 + p1875 + p1874 + p1873 + p1872 + p1871 + p1... (shortened)
lola: processed formula length: 1677
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: subprocess 3 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((1 <= p1919))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((1 <= p1919))))
lola: processed formula length: 24
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 31 markings, 30 edges
lola: ========================================
lola: subprocess 4 will run for 275 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 <= p900 + p899 + p898 + p897 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p888 + p887 + p886 + p885 + p884 + p883 + p882 + p881 + p880 + p879 + p878 ... (shortened)
lola: processed formula length: 699
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 300 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((F (G ((3 <= p2008))) AND X (G ((3 <= p2008))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((F (G ((3 <= p2008))) AND X (G ((3 <= p2008))))))
lola: processed formula length: 55
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 7 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: subprocess 6 will run for 330 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X ((p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X ((p2940 + p2911 + p2882 + p2853 + p2824 + p2795 + p2766 + p2737 + p2708 + p2679 + p2650 + p2621 + p2592 + p2563 + p2534 + p2505 + p2476 + p2447 + p2418 + p2389 + p2360 + p2331 + p2302 + p2273 + p2244 + p2215 + p2186 + p2157 + p2156 + p2155 + p2154 + p2153 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 ... (shortened)
lola: processed formula length: 6752
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: subprocess 7 will run for 367 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 7 will run for 367 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= 1))))
lola: processed formula length: 248
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 31 markings, 30 edges
lola: ========================================
lola: subprocess 8 will run for 413 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G (((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969 + 1 <= p1831) AND X ((p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 ... (shortened)
lola: processed formula length: 515
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 8 will run for 413 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 31 markings, 30 edges
lola: ========================================
lola: subprocess 9 will run for 472 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G (((p1831 + 1 <= p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031))))
lola: processed formula length: 254
lola: 79 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: SUBRESULT
lola: formula 0: ((p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p2014 + p2013 + p2012 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 <= p1831))
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 551 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G (((p2008 <= 1)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G (((p2008 <= 1)))))
lola: processed formula length: 26
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 272987 markings, 1561248 edges, 54597 markings/sec, 0 secs
lola: 528658 markings, 3095181 edges, 51134 markings/sec, 5 secs
lola: 768542 markings, 4598880 edges, 47977 markings/sec, 10 secs
lola: 1037208 markings, 6121583 edges, 53733 markings/sec, 15 secs
lola: 1302666 markings, 7618067 edges, 53092 markings/sec, 20 secs
lola: 1573124 markings, 9088836 edges, 54092 markings/sec, 25 secs
lola: 1798597 markings, 10514898 edges, 45095 markings/sec, 30 secs
lola: 2031418 markings, 11949119 edges, 46564 markings/sec, 35 secs
lola: 2233346 markings, 13327911 edges, 40386 markings/sec, 40 secs
lola: 2443993 markings, 14738667 edges, 42129 markings/sec, 45 secs
lola: 2687804 markings, 16199217 edges, 48762 markings/sec, 50 secs
lola: 2893849 markings, 17594089 edges, 41209 markings/sec, 55 secs
lola: 3084863 markings, 18954897 edges, 38203 markings/sec, 60 secs
lola: 3279044 markings, 20323067 edges, 38836 markings/sec, 65 secs
lola: 3455223 markings, 21655938 edges, 35236 markings/sec, 70 secs
lola: 3664001 markings, 23089021 edges, 41756 markings/sec, 75 secs
lola: 3894946 markings, 24563025 edges, 46189 markings/sec, 80 secs
lola: 4141477 markings, 26043713 edges, 49306 markings/sec, 85 secs
lola: 4358599 markings, 27456497 edges, 43424 markings/sec, 90 secs
lola: 4549419 markings, 28831093 edges, 38164 markings/sec, 95 secs
lola: 4756566 markings, 30213614 edges, 41429 markings/sec, 100 secs
lola: 4940959 markings, 31591821 edges, 36879 markings/sec, 105 secs
lola: 5118046 markings, 32947334 edges, 35417 markings/sec, 110 secs
lola: 5329988 markings, 34349508 edges, 42388 markings/sec, 115 secs
lola: 5519251 markings, 35724945 edges, 37853 markings/sec, 120 secs
lola: 5699357 markings, 37109551 edges, 36021 markings/sec, 125 secs
lola: 5882789 markings, 38462456 edges, 36686 markings/sec, 130 secs
lola: 6051956 markings, 39830818 edges, 33833 markings/sec, 135 secs
lola: 6211886 markings, 41203274 edges, 31986 markings/sec, 140 secs
lola: 6439934 markings, 42541791 edges, 45610 markings/sec, 145 secs
lola: 6660896 markings, 43902479 edges, 44192 markings/sec, 150 secs
lola: 6895451 markings, 45286509 edges, 46911 markings/sec, 155 secs
lola: 7124449 markings, 46663715 edges, 45800 markings/sec, 160 secs
lola: 7357168 markings, 48016874 edges, 46544 markings/sec, 165 secs
lola: 7614322 markings, 49403988 edges, 51431 markings/sec, 170 secs
lola: 7858219 markings, 50792635 edges, 48779 markings/sec, 175 secs
lola: 8068508 markings, 52148118 edges, 42058 markings/sec, 180 secs
lola: 8287386 markings, 53474918 edges, 43776 markings/sec, 185 secs
lola: 8476977 markings, 54789635 edges, 37918 markings/sec, 190 secs
lola: 8670187 markings, 56077806 edges, 38642 markings/sec, 195 secs
lola: 8896793 markings, 57419573 edges, 45321 markings/sec, 200 secs
lola: 9090581 markings, 58722278 edges, 38758 markings/sec, 205 secs
lola: 9265260 markings, 59995915 edges, 34936 markings/sec, 210 secs
lola: 9458626 markings, 61299066 edges, 38673 markings/sec, 215 secs
lola: 9628217 markings, 62582060 edges, 33918 markings/sec, 220 secs
lola: 9799662 markings, 63832154 edges, 34289 markings/sec, 225 secs
lola: 10008435 markings, 65170006 edges, 41755 markings/sec, 230 secs
lola: 10223216 markings, 66524063 edges, 42956 markings/sec, 235 secs
lola: 10451839 markings, 67891491 edges, 45725 markings/sec, 240 secs
lola: 10650624 markings, 69228318 edges, 39757 markings/sec, 245 secs
lola: 10834843 markings, 70556945 edges, 36844 markings/sec, 250 secs
lola: 11028316 markings, 71892550 edges, 38695 markings/sec, 255 secs
lola: 11203743 markings, 73220819 edges, 35085 markings/sec, 260 secs
lola: 11382494 markings, 74540437 edges, 35750 markings/sec, 265 secs
lola: 11588290 markings, 75889141 edges, 41159 markings/sec, 270 secs
lola: 11768078 markings, 77221840 edges, 35958 markings/sec, 275 secs
lola: 11936488 markings, 78563779 edges, 33682 markings/sec, 280 secs
lola: 12120603 markings, 79891930 edges, 36823 markings/sec, 285 secs
lola: 12285065 markings, 81223317 edges, 32892 markings/sec, 290 secs
lola: 12438693 markings, 82566129 edges, 30726 markings/sec, 295 secs
lola: 12708500 markings, 84096861 edges, 53961 markings/sec, 300 secs
lola: 12977173 markings, 85618332 edges, 53735 markings/sec, 305 secs
lola: 13247344 markings, 87082326 edges, 54034 markings/sec, 310 secs
lola: 13470800 markings, 88515683 edges, 44691 markings/sec, 315 secs
lola: 13710480 markings, 89968539 edges, 47936 markings/sec, 320 secs
lola: 13915572 markings, 91388651 edges, 41018 markings/sec, 325 secs
lola: 14136298 markings, 92847161 edges, 44145 markings/sec, 330 secs
lola: 14379731 markings, 94312973 edges, 48687 markings/sec, 335 secs
lola: 14586502 markings, 95741627 edges, 41354 markings/sec, 340 secs
lola: 14795141 markings, 97170837 edges, 41728 markings/sec, 345 secs
lola: 14987595 markings, 98588058 edges, 38491 markings/sec, 350 secs
lola: 15166009 markings, 100000718 edges, 35683 markings/sec, 355 secs
lola: 15421961 markings, 101429484 edges, 51190 markings/sec, 360 secs
lola: 15675179 markings, 102856587 edges, 50644 markings/sec, 365 secs
lola: 15938106 markings, 104268737 edges, 52585 markings/sec, 370 secs
lola: 16158758 markings, 105654701 edges, 44130 markings/sec, 375 secs
lola: 16386034 markings, 107050906 edges, 45455 markings/sec, 380 secs
lola: 16590557 markings, 108429001 edges, 40905 markings/sec, 385 secs
lola: 16787336 markings, 109808617 edges, 39356 markings/sec, 390 secs
lola: 17029136 markings, 111222833 edges, 48360 markings/sec, 395 secs
lola: 17236740 markings, 112604038 edges, 41521 markings/sec, 400 secs
lola: 17424677 markings, 113972934 edges, 37587 markings/sec, 405 secs
lola: 17628379 markings, 115358329 edges, 40740 markings/sec, 410 secs
lola: 17808930 markings, 116730348 edges, 36110 markings/sec, 415 secs
lola: 18036017 markings, 118176194 edges, 45417 markings/sec, 420 secs
lola: 18305538 markings, 119638019 edges, 53904 markings/sec, 425 secs
lola: 18530840 markings, 121062026 edges, 45060 markings/sec, 430 secs
lola: 18764327 markings, 122503880 edges, 46697 markings/sec, 435 secs
lola: 18971166 markings, 123917403 edges, 41368 markings/sec, 440 secs
lola: 19198692 markings, 125331941 edges, 45505 markings/sec, 445 secs
lola: 19462681 markings, 126742429 edges, 52798 markings/sec, 450 secs
lola: 19682969 markings, 128124241 edges, 44058 markings/sec, 455 secs
lola: 19908626 markings, 129513579 edges, 45131 markings/sec, 460 secs
lola: 20112126 markings, 130882622 edges, 40700 markings/sec, 465 secs
lola: 20325578 markings, 132284130 edges, 42690 markings/sec, 470 secs
lola: 20575278 markings, 133713222 edges, 49940 markings/sec, 475 secs
lola: 20801361 markings, 135126294 edges, 45217 markings/sec, 480 secs
lola: 21045993 markings, 136516531 edges, 48926 markings/sec, 485 secs
lola: 21263892 markings, 137901837 edges, 43580 markings/sec, 490 secs
lola: 21519853 markings, 139322798 edges, 51192 markings/sec, 495 secs
lola: 21756321 markings, 140711572 edges, 47294 markings/sec, 500 secs
lola: 21996931 markings, 142089194 edges, 48122 markings/sec, 505 secs
lola: 22189877 markings, 143438369 edges, 38589 markings/sec, 510 secs
lola: 22370361 markings, 144776832 edges, 36097 markings/sec, 515 secs
lola: 22573933 markings, 146131668 edges, 40714 markings/sec, 520 secs
lola: 22769274 markings, 147474783 edges, 39068 markings/sec, 525 secs
lola: 22945917 markings, 148805752 edges, 35329 markings/sec, 530 secs
lola: 23107032 markings, 150138498 edges, 32223 markings/sec, 535 secs
lola: 23308329 markings, 151488309 edges, 40259 markings/sec, 540 secs
lola: 23521540 markings, 152856812 edges, 42642 markings/sec, 545 secs
lola: local time limit reached - aborting
lola:
preliminary result: no unknown unknown unknown no no yes yes unknown unknown unknown no unknown yes no yes
lola: memory consumption: 3682652 KB
lola: time consumption: 812 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 551 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((2 <= p2997 + p2996 + p2995 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p2979 + p2978 + p2977 + p2976 + p2975 + p2974 + p2973 + p2972 + p2971 + p2970 + p2969))))
lola: processed formula length: 248
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 32 markings, 32 edges
lola: ========================================
lola: subprocess 12 will run for 689 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((1 <= p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989))))
lola: processed formula length: 219
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 33 markings, 34 edges
lola: ========================================
lola: subprocess 13 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((F ((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 <= 0)) OR G (((p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((F ((p1949 + p1948 + p1947 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 <= 0)) OR G (((p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p... (shortened)
lola: processed formula length: 940
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 210427 markings, 1439331 edges, 42085 markings/sec, 0 secs
lola: 410191 markings, 3143275 edges, 39953 markings/sec, 5 secs
lola: 626259 markings, 4835118 edges, 43214 markings/sec, 10 secs
lola: 819393 markings, 6516055 edges, 38627 markings/sec, 15 secs
lola: 978548 markings, 7995597 edges, 31831 markings/sec, 20 secs
lola: 1133453 markings, 9562994 edges, 30981 markings/sec, 25 secs
lola: 1340996 markings, 11249571 edges, 41509 markings/sec, 30 secs
lola: 1517102 markings, 12774386 edges, 35221 markings/sec, 35 secs
lola: 1684855 markings, 14339827 edges, 33551 markings/sec, 40 secs
lola: 1855187 markings, 16044754 edges, 34066 markings/sec, 45 secs
lola: 2043513 markings, 17715166 edges, 37665 markings/sec, 50 secs
lola: 2190561 markings, 19218870 edges, 29410 markings/sec, 55 secs
lola: 2337136 markings, 20675745 edges, 29315 markings/sec, 60 secs
lola: 2499432 markings, 22388050 edges, 32459 markings/sec, 65 secs
lola: 2658665 markings, 24096624 edges, 31847 markings/sec, 70 secs
lola: 2802778 markings, 25816434 edges, 28823 markings/sec, 75 secs
lola: 2995290 markings, 27517354 edges, 38502 markings/sec, 80 secs
lola: 3194027 markings, 29211148 edges, 39747 markings/sec, 85 secs
lola: 3367858 markings, 30797623 edges, 34766 markings/sec, 90 secs
lola: 3524893 markings, 32444731 edges, 31407 markings/sec, 95 secs
lola: 3715722 markings, 34141546 edges, 38166 markings/sec, 100 secs
lola: 3895329 markings, 35841035 edges, 35921 markings/sec, 105 secs
lola: 4064042 markings, 37545246 edges, 33743 markings/sec, 110 secs
lola: 4225471 markings, 39252087 edges, 32286 markings/sec, 115 secs
lola: 4384448 markings, 40958940 edges, 31795 markings/sec, 120 secs
lola: 4531720 markings, 42674422 edges, 29454 markings/sec, 125 secs
lola: 4705426 markings, 44381067 edges, 34741 markings/sec, 130 secs
lola: 4886876 markings, 46079521 edges, 36290 markings/sec, 135 secs
lola: 5051626 markings, 47789004 edges, 32950 markings/sec, 140 secs
lola: 5223317 markings, 49467802 edges, 34338 markings/sec, 145 secs
lola: 5372021 markings, 51049451 edges, 29741 markings/sec, 150 secs
lola: 5518212 markings, 52728026 edges, 29238 markings/sec, 155 secs
lola: 5660508 markings, 54447670 edges, 28459 markings/sec, 160 secs
lola: 5836459 markings, 56150617 edges, 35190 markings/sec, 165 secs
lola: 5977914 markings, 57662473 edges, 28291 markings/sec, 170 secs
lola: 6116104 markings, 59217297 edges, 27638 markings/sec, 175 secs
lola: 6249475 markings, 60941372 edges, 26674 markings/sec, 180 secs
lola: 6407911 markings, 62642872 edges, 31687 markings/sec, 185 secs
lola: 6555011 markings, 64347174 edges, 29420 markings/sec, 190 secs
lola: 6678661 markings, 65851642 edges, 24730 markings/sec, 195 secs
lola: 6804824 markings, 67501351 edges, 25233 markings/sec, 200 secs
lola: 6937814 markings, 69217354 edges, 26598 markings/sec, 205 secs
lola: 7073267 markings, 70939285 edges, 27091 markings/sec, 210 secs
lola: 7279888 markings, 72620412 edges, 41324 markings/sec, 215 secs
lola: 7469743 markings, 74309372 edges, 37971 markings/sec, 220 secs
lola: 7651196 markings, 75999818 edges, 36291 markings/sec, 225 secs
lola: 7829725 markings, 77696662 edges, 35706 markings/sec, 230 secs
lola: 8009848 markings, 79388657 edges, 36025 markings/sec, 235 secs
lola: 8172600 markings, 81091697 edges, 32550 markings/sec, 240 secs
lola: 8351584 markings, 82785424 edges, 35797 markings/sec, 245 secs
lola: 8511409 markings, 84484004 edges, 31965 markings/sec, 250 secs
lola: 8651345 markings, 86065157 edges, 27987 markings/sec, 255 secs
lola: 8777606 markings, 87704413 edges, 25252 markings/sec, 260 secs
lola: 8973811 markings, 89389500 edges, 39241 markings/sec, 265 secs
lola: 9135239 markings, 90939624 edges, 32286 markings/sec, 270 secs
lola: 9274883 markings, 92360556 edges, 27929 markings/sec, 275 secs
lola: 9442307 markings, 94058182 edges, 33485 markings/sec, 280 secs
lola: 9589650 markings, 95626508 edges, 29469 markings/sec, 285 secs
lola: 9736689 markings, 97326883 edges, 29408 markings/sec, 290 secs
lola: 9885463 markings, 99027176 edges, 29755 markings/sec, 295 secs
lola: 10054375 markings, 100727809 edges, 33782 markings/sec, 300 secs
lola: 10203913 markings, 102319793 edges, 29908 markings/sec, 305 secs
lola: 10351263 markings, 104025127 edges, 29470 markings/sec, 310 secs
lola: 10478095 markings, 105573560 edges, 25366 markings/sec, 315 secs
lola: 10631875 markings, 107248424 edges, 30756 markings/sec, 320 secs
lola: 10771589 markings, 108961840 edges, 27943 markings/sec, 325 secs
lola: 10914144 markings, 110671126 edges, 28511 markings/sec, 330 secs
lola: 11038404 markings, 112269799 edges, 24852 markings/sec, 335 secs
lola: 11163603 markings, 113987367 edges, 25040 markings/sec, 340 secs
lola: 11318873 markings, 115697378 edges, 31054 markings/sec, 345 secs
lola: 11502169 markings, 117390619 edges, 36659 markings/sec, 350 secs
lola: 11661317 markings, 119092475 edges, 31830 markings/sec, 355 secs
lola: 11842091 markings, 120785798 edges, 36155 markings/sec, 360 secs
lola: 12002476 markings, 122486461 edges, 32077 markings/sec, 365 secs
lola: 12153617 markings, 124191554 edges, 30228 markings/sec, 370 secs
lola: 12289932 markings, 125908209 edges, 27263 markings/sec, 375 secs
lola: 12467932 markings, 127602284 edges, 35600 markings/sec, 380 secs
lola: 12628383 markings, 129303204 edges, 32090 markings/sec, 385 secs
lola: 12774780 markings, 130971844 edges, 29279 markings/sec, 390 secs
lola: 12898730 markings, 132579334 edges, 24790 markings/sec, 395 secs
lola: 13057897 markings, 134271642 edges, 31833 markings/sec, 400 secs
lola: 13203315 markings, 135978929 edges, 29084 markings/sec, 405 secs
lola: 13342283 markings, 137689023 edges, 27794 markings/sec, 410 secs
lola: 13468652 markings, 139293883 edges, 25274 markings/sec, 415 secs
lola: 13591661 markings, 140929048 edges, 24602 markings/sec, 420 secs
lola: 13719928 markings, 142600656 edges, 25653 markings/sec, 425 secs
lola: 13891397 markings, 144293725 edges, 34294 markings/sec, 430 secs
lola: 14050993 markings, 145990377 edges, 31919 markings/sec, 435 secs
lola: 14197980 markings, 147691745 edges, 29397 markings/sec, 440 secs
lola: 14340434 markings, 149397486 edges, 28491 markings/sec, 445 secs
lola: 14495182 markings, 151100301 edges, 30950 markings/sec, 450 secs
lola: 14633171 markings, 152814887 edges, 27598 markings/sec, 455 secs
lola: 14776970 markings, 154522273 edges, 28760 markings/sec, 460 secs
lola: 14909165 markings, 156235143 edges, 26439 markings/sec, 465 secs
lola: 15032884 markings, 157957578 edges, 24744 markings/sec, 470 secs
lola: 15177859 markings, 159667180 edges, 28995 markings/sec, 475 secs
lola: 15317298 markings, 161265400 edges, 27888 markings/sec, 480 secs
lola: 15452430 markings, 162976374 edges, 27026 markings/sec, 485 secs
lola: 15595335 markings, 164679130 edges, 28581 markings/sec, 490 secs
lola: 15717608 markings, 166278486 edges, 24455 markings/sec, 495 secs
lola: 15837968 markings, 167991863 edges, 24072 markings/sec, 500 secs
lola: 15976159 markings, 169688895 edges, 27638 markings/sec, 505 secs
lola: 16108371 markings, 171393744 edges, 26442 markings/sec, 510 secs
lola: 16232110 markings, 173098362 edges, 24748 markings/sec, 515 secs
lola: 16356434 markings, 174806290 edges, 24865 markings/sec, 520 secs
lola: 16478553 markings, 176508003 edges, 24424 markings/sec, 525 secs
lola: 16596227 markings, 178222326 edges, 23535 markings/sec, 530 secs
lola: 16707102 markings, 179933987 edges, 22175 markings/sec, 535 secs
lola: 16854210 markings, 181637116 edges, 29422 markings/sec, 540 secs
lola: 17048064 markings, 183301238 edges, 38771 markings/sec, 545 secs
lola: 17243770 markings, 184971485 edges, 39141 markings/sec, 550 secs
lola: 17415048 markings, 186644806 edges, 34256 markings/sec, 555 secs
lola: 17595581 markings, 188320728 edges, 36107 markings/sec, 560 secs
lola: 17773736 markings, 189989882 edges, 35631 markings/sec, 565 secs
lola: 17935825 markings, 191675267 edges, 32418 markings/sec, 570 secs
lola: 18107762 markings, 193349466 edges, 34387 markings/sec, 575 secs
lola: 18265562 markings, 195033363 edges, 31560 markings/sec, 580 secs
lola: 18410863 markings, 196721888 edges, 29060 markings/sec, 585 secs
lola: 18557791 markings, 198415669 edges, 29386 markings/sec, 590 secs
lola: 18747704 markings, 200081278 edges, 37983 markings/sec, 595 secs
lola: 18914791 markings, 201762910 edges, 33417 markings/sec, 600 secs
lola: 19084829 markings, 203439280 edges, 34008 markings/sec, 605 secs
lola: 19243003 markings, 205123823 edges, 31635 markings/sec, 610 secs
lola: 19398087 markings, 206801446 edges, 31017 markings/sec, 615 secs
lola: 19537236 markings, 208496286 edges, 27830 markings/sec, 620 secs
lola: 19702864 markings, 210179181 edges, 33126 markings/sec, 625 secs
lola: 19862334 markings, 211867372 edges, 31894 markings/sec, 630 secs
lola: 20011148 markings, 213484014 edges, 29763 markings/sec, 635 secs
lola: 20132890 markings, 214943639 edges, 24348 markings/sec, 640 secs
lola: 20260603 markings, 216408061 edges, 25543 markings/sec, 645 secs
lola: 20399496 markings, 217953733 edges, 27779 markings/sec, 650 secs
lola: 20532006 markings, 219644629 edges, 26502 markings/sec, 655 secs
lola: 20675820 markings, 221335270 edges, 28763 markings/sec, 660 secs
lola: 20806755 markings, 223029943 edges, 26187 markings/sec, 665 secs
lola: 20928417 markings, 224735684 edges, 24332 markings/sec, 670 secs
lola: 21096011 markings, 226417079 edges, 33519 markings/sec, 675 secs
lola: 21274221 markings, 228092741 edges, 35642 markings/sec, 680 secs
lola: 21434315 markings, 229753427 edges, 32019 markings/sec, 685 secs
lola: 21601083 markings, 231372360 edges, 33354 markings/sec, 690 secs
lola: 21758716 markings, 233051629 edges, 31527 markings/sec, 695 secs
lola: 21905575 markings, 234743576 edges, 29372 markings/sec, 700 secs
lola: 22046232 markings, 236436517 edges, 28131 markings/sec, 705 secs
lola: 22211992 markings, 238035312 edges, 33152 markings/sec, 710 secs
lola: 22349956 markings, 239525804 edges, 27593 markings/sec, 715 secs
lola: 22489199 markings, 241059238 edges, 27849 markings/sec, 720 secs
lola: 22618586 markings, 242685728 edges, 25877 markings/sec, 725 secs
lola: 22774000 markings, 244371811 edges, 31083 markings/sec, 730 secs
lola: 22918852 markings, 246059111 edges, 28970 markings/sec, 735 secs
lola: 23056642 markings, 247752505 edges, 27558 markings/sec, 740 secs
lola: 23187235 markings, 249443223 edges, 26119 markings/sec, 745 secs
lola: 23318452 markings, 251142372 edges, 26243 markings/sec, 750 secs
lola: 23442329 markings, 252841645 edges, 24775 markings/sec, 755 secs
lola: 23616905 markings, 254520124 edges, 34915 markings/sec, 760 secs
lola: 23774679 markings, 256202365 edges, 31555 markings/sec, 765 secs
lola: 23921928 markings, 257893514 edges, 29450 markings/sec, 770 secs
lola: 24058999 markings, 259586148 edges, 27414 markings/sec, 775 secs
lola: 24215328 markings, 261272823 edges, 31266 markings/sec, 780 secs
lola: 24355421 markings, 262963529 edges, 28019 markings/sec, 785 secs
lola: 24495355 markings, 264655755 edges, 27987 markings/sec, 790 secs
lola: 24627210 markings, 266349789 edges, 26371 markings/sec, 795 secs
lola: 24752485 markings, 268055728 edges, 25055 markings/sec, 800 secs
lola: 24882030 markings, 269695444 edges, 25909 markings/sec, 805 secs
lola: 25035034 markings, 271386934 edges, 30601 markings/sec, 810 secs
lola: 25167837 markings, 273081853 edges, 26561 markings/sec, 815 secs
lola: 25311547 markings, 274770808 edges, 28742 markings/sec, 820 secs
lola: 25442325 markings, 276463843 edges, 26156 markings/sec, 825 secs
lola: 25564093 markings, 278170572 edges, 24354 markings/sec, 830 secs
lola: 25695609 markings, 279858402 edges, 26303 markings/sec, 835 secs
lola: 25829251 markings, 281556695 edges, 26728 markings/sec, 840 secs
lola: 25956318 markings, 283251018 edges, 25413 markings/sec, 845 secs
lola: 26077537 markings, 284956108 edges, 24244 markings/sec, 850 secs
lola: 26201024 markings, 286651559 edges, 24697 markings/sec, 855 secs
lola: 26318471 markings, 288360592 edges, 23489 markings/sec, 860 secs
lola: 26431358 markings, 290068585 edges, 22577 markings/sec, 865 secs
lola: 26555673 markings, 291779235 edges, 24863 markings/sec, 870 secs
lola: 26736484 markings, 293369691 edges, 36162 markings/sec, 875 secs
lola: 26906663 markings, 295065638 edges, 34036 markings/sec, 880 secs
lola: 27078449 markings, 296761627 edges, 34357 markings/sec, 885 secs
lola: 27237966 markings, 298463458 edges, 31903 markings/sec, 890 secs
lola: 27395203 markings, 300160086 edges, 31447 markings/sec, 895 secs
lola: 27527511 markings, 301762708 edges, 26462 markings/sec, 900 secs
lola: 27692223 markings, 303457217 edges, 32942 markings/sec, 905 secs
lola: 27851677 markings, 305153495 edges, 31891 markings/sec, 910 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no unknown yes no yes
lola: memory consumption: 7081340 KB
lola: time consumption: 1732 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 14 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) OR ((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p19... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999) OR ((2 <= p2007 + p2006 + p2005 + p2004 + p2003 + p2002 + p2001 + p2000 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p19... (shortened)
lola: processed formula length: 1635
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 178285 markings, 1205512 edges, 35657 markings/sec, 0 secs
lola: 336177 markings, 2460190 edges, 31578 markings/sec, 5 secs
lola: 487342 markings, 3695413 edges, 30233 markings/sec, 10 secs
lola: 635800 markings, 4916618 edges, 29692 markings/sec, 15 secs
lola: 778670 markings, 6134395 edges, 28574 markings/sec, 20 secs
lola: 912670 markings, 7355142 edges, 26800 markings/sec, 25 secs
lola: 1021980 markings, 8444684 edges, 21862 markings/sec, 30 secs
lola: 1149090 markings, 9670475 edges, 25422 markings/sec, 35 secs
lola: 1290559 markings, 10788342 edges, 28294 markings/sec, 40 secs
lola: 1426765 markings, 11983678 edges, 27241 markings/sec, 45 secs
lola: 1544638 markings, 13037246 edges, 23575 markings/sec, 50 secs
lola: 1675144 markings, 14242807 edges, 26101 markings/sec, 55 secs
lola: 1785665 markings, 15461117 edges, 22104 markings/sec, 60 secs
lola: 1929484 markings, 16672866 edges, 28764 markings/sec, 65 secs
lola: 2059820 markings, 17885216 edges, 26067 markings/sec, 70 secs
lola: 2180168 markings, 19103947 edges, 24070 markings/sec, 75 secs
lola: 2294948 markings, 20249481 edges, 22956 markings/sec, 80 secs
lola: 2417742 markings, 21463628 edges, 24559 markings/sec, 85 secs
lola: 2530448 markings, 22683339 edges, 22541 markings/sec, 90 secs
lola: 2639773 markings, 23901895 edges, 21865 markings/sec, 95 secs
lola: 2748120 markings, 25127983 edges, 21669 markings/sec, 100 secs
lola: 2840023 markings, 26354017 edges, 18381 markings/sec, 105 secs
lola: 2997476 markings, 27540594 edges, 31491 markings/sec, 110 secs
lola: 3132808 markings, 28718347 edges, 27066 markings/sec, 115 secs
lola: 3267673 markings, 29894633 edges, 26973 markings/sec, 120 secs
lola: 3394679 markings, 31066631 edges, 25401 markings/sec, 125 secs
lola: 3507545 markings, 32233521 edges, 22573 markings/sec, 130 secs
lola: 3638933 markings, 33415713 edges, 26278 markings/sec, 135 secs
lola: 3769444 markings, 34595400 edges, 26102 markings/sec, 140 secs
lola: 3888701 markings, 35773890 edges, 23851 markings/sec, 145 secs
lola: 4001215 markings, 36959500 edges, 22503 markings/sec, 150 secs
lola: 4127211 markings, 38152934 edges, 25199 markings/sec, 155 secs
lola: 4231288 markings, 39338102 edges, 20815 markings/sec, 160 secs
lola: 4350569 markings, 40533081 edges, 23856 markings/sec, 165 secs
lola: 4454783 markings, 41722704 edges, 20843 markings/sec, 170 secs
lola: 4550928 markings, 42920621 edges, 19229 markings/sec, 175 secs
lola: 4678762 markings, 44148302 edges, 25567 markings/sec, 180 secs
lola: 4813646 markings, 45370172 edges, 26977 markings/sec, 185 secs
lola: 4935306 markings, 46573330 edges, 24332 markings/sec, 190 secs
lola: 5050351 markings, 47778514 edges, 23009 markings/sec, 195 secs
lola: 5177726 markings, 48991505 edges, 25475 markings/sec, 200 secs
lola: 5286055 markings, 50202816 edges, 21666 markings/sec, 205 secs
lola: 5405310 markings, 51421765 edges, 23851 markings/sec, 210 secs
lola: 5510339 markings, 52625187 edges, 21006 markings/sec, 215 secs
lola: 5605693 markings, 53824221 edges, 19071 markings/sec, 220 secs
lola: 5724598 markings, 55029921 edges, 23781 markings/sec, 225 secs
lola: 5842948 markings, 56226972 edges, 23670 markings/sec, 230 secs
lola: 5955188 markings, 57427597 edges, 22448 markings/sec, 235 secs
lola: 6065492 markings, 58656018 edges, 22061 markings/sec, 240 secs
lola: 6172227 markings, 59890237 edges, 21347 markings/sec, 245 secs
lola: 6270263 markings, 61129323 edges, 19607 markings/sec, 250 secs
lola: 6387278 markings, 62364965 edges, 23403 markings/sec, 255 secs
lola: 6493782 markings, 63604267 edges, 21301 markings/sec, 260 secs
lola: 6592153 markings, 64852709 edges, 19674 markings/sec, 265 secs
lola: 6696150 markings, 66093235 edges, 20799 markings/sec, 270 secs
lola: 6794283 markings, 67333475 edges, 19627 markings/sec, 275 secs
lola: 6892263 markings, 68589006 edges, 19596 markings/sec, 280 secs
lola: 6981796 markings, 69846674 edges, 17907 markings/sec, 285 secs
lola: 7095472 markings, 71094326 edges, 22735 markings/sec, 290 secs
lola: 7245699 markings, 72301629 edges, 30045 markings/sec, 295 secs
lola: 7385795 markings, 73502879 edges, 28019 markings/sec, 300 secs
lola: 7518922 markings, 74708331 edges, 26625 markings/sec, 305 secs
lola: 7641459 markings, 75912403 edges, 24507 markings/sec, 310 secs
lola: 7758548 markings, 77121799 edges, 23418 markings/sec, 315 secs
lola: 7896055 markings, 78327667 edges, 27501 markings/sec, 320 secs
lola: 8028092 markings, 79536439 edges, 26407 markings/sec, 325 secs
lola: 8142327 markings, 80744193 edges, 22847 markings/sec, 330 secs
lola: 8266378 markings, 81949501 edges, 24810 markings/sec, 335 secs
lola: 8385510 markings, 83153807 edges, 23826 markings/sec, 340 secs
lola: 8498978 markings, 84363128 edges, 22694 markings/sec, 345 secs
lola: 8607711 markings, 85571243 edges, 21747 markings/sec, 350 secs
lola: 8709903 markings, 86777285 edges, 20438 markings/sec, 355 secs
lola: 8815107 markings, 87993787 edges, 21041 markings/sec, 360 secs
lola: 8949561 markings, 89205061 edges, 26891 markings/sec, 365 secs
lola: 9083207 markings, 90419274 edges, 26729 markings/sec, 370 secs
lola: 9196643 markings, 91628334 edges, 22687 markings/sec, 375 secs
lola: 9321461 markings, 92838821 edges, 24964 markings/sec, 380 secs
lola: 9441158 markings, 94044994 edges, 23939 markings/sec, 385 secs
lola: 9555420 markings, 95253750 edges, 22852 markings/sec, 390 secs
lola: 9663175 markings, 96461337 edges, 21551 markings/sec, 395 secs
lola: 9763631 markings, 97661058 edges, 20091 markings/sec, 400 secs
lola: 9866902 markings, 98869129 edges, 20654 markings/sec, 405 secs
lola: 9993486 markings, 100080742 edges, 25317 markings/sec, 410 secs
lola: 10103631 markings, 101297207 edges, 22029 markings/sec, 415 secs
lola: 10221023 markings, 102519684 edges, 23478 markings/sec, 420 secs
lola: 10327694 markings, 103745132 edges, 21334 markings/sec, 425 secs
lola: 10424523 markings, 104967326 edges, 19366 markings/sec, 430 secs
lola: 10538370 markings, 106192554 edges, 22769 markings/sec, 435 secs
lola: 10647003 markings, 107418143 edges, 21727 markings/sec, 440 secs
lola: 10750157 markings, 108673194 edges, 20631 markings/sec, 445 secs
lola: 10850667 markings, 109906298 edges, 20102 markings/sec, 450 secs
lola: 10950886 markings, 111131213 edges, 20044 markings/sec, 455 secs
lola: 11044847 markings, 112356115 edges, 18792 markings/sec, 460 secs
lola: 11135429 markings, 113583164 edges, 18116 markings/sec, 465 secs
lola: 11218610 markings, 114814995 edges, 16636 markings/sec, 470 secs
lola: 11357581 markings, 116034509 edges, 27794 markings/sec, 475 secs
lola: 11489256 markings, 117249088 edges, 26335 markings/sec, 480 secs
lola: 11610342 markings, 118478308 edges, 24217 markings/sec, 485 secs
lola: 11735347 markings, 119723392 edges, 25001 markings/sec, 490 secs
lola: 11860492 markings, 120969300 edges, 25029 markings/sec, 495 secs
lola: 11976847 markings, 122220079 edges, 23271 markings/sec, 500 secs
lola: 12088873 markings, 123472042 edges, 22405 markings/sec, 505 secs
lola: 12197322 markings, 124717809 edges, 21690 markings/sec, 510 secs
lola: 12296037 markings, 125957470 edges, 19743 markings/sec, 515 secs
lola: 12430386 markings, 127209489 edges, 26870 markings/sec, 520 secs
lola: 12541067 markings, 128461431 edges, 22136 markings/sec, 525 secs
lola: 12664812 markings, 129707494 edges, 24749 markings/sec, 530 secs
lola: 12772285 markings, 130942635 edges, 21495 markings/sec, 535 secs
lola: 12870537 markings, 132177598 edges, 19650 markings/sec, 540 secs
lola: 12984435 markings, 133411983 edges, 22780 markings/sec, 545 secs
lola: 13094858 markings, 134662749 edges, 22085 markings/sec, 550 secs
lola: 13198251 markings, 135916072 edges, 20679 markings/sec, 555 secs
lola: 13299960 markings, 137164575 edges, 20342 markings/sec, 560 secs
lola: 13401991 markings, 138410917 edges, 20406 markings/sec, 565 secs
lola: 13497326 markings, 139657251 edges, 19067 markings/sec, 570 secs
lola: 13589998 markings, 140908288 edges, 18534 markings/sec, 575 secs
lola: 13673118 markings, 142154777 edges, 16624 markings/sec, 580 secs
lola: 13802793 markings, 143381308 edges, 25935 markings/sec, 585 secs
lola: 13919406 markings, 144604029 edges, 23323 markings/sec, 590 secs
lola: 14036690 markings, 145826378 edges, 23457 markings/sec, 595 secs
lola: 14145549 markings, 147057429 edges, 21772 markings/sec, 600 secs
lola: 14246759 markings, 148290892 edges, 20242 markings/sec, 605 secs
lola: 14353250 markings, 149526159 edges, 21298 markings/sec, 610 secs
lola: 14463797 markings, 150760907 edges, 22109 markings/sec, 615 secs
lola: 14570843 markings, 151995920 edges, 21409 markings/sec, 620 secs
lola: 14666881 markings, 153239688 edges, 19208 markings/sec, 625 secs
lola: 14774658 markings, 154489793 edges, 21555 markings/sec, 630 secs
lola: 14869821 markings, 155740503 edges, 19033 markings/sec, 635 secs
lola: 14963123 markings, 156989050 edges, 18660 markings/sec, 640 secs
lola: 15051375 markings, 158238425 edges, 17650 markings/sec, 645 secs
lola: 15161057 markings, 159492063 edges, 21936 markings/sec, 650 secs
lola: 15272341 markings, 160740145 edges, 22257 markings/sec, 655 secs
lola: 15375785 markings, 161988401 edges, 20689 markings/sec, 660 secs
lola: 15475744 markings, 163236977 edges, 19992 markings/sec, 665 secs
lola: 15580774 markings, 164497043 edges, 21006 markings/sec, 670 secs
lola: 15677906 markings, 165756127 edges, 19426 markings/sec, 675 secs
lola: 15770247 markings, 167004670 edges, 18468 markings/sec, 680 secs
lola: 15855600 markings, 168270055 edges, 17071 markings/sec, 685 secs
lola: 15962377 markings, 169532897 edges, 21355 markings/sec, 690 secs
lola: 16059333 markings, 170792772 edges, 19391 markings/sec, 695 secs
lola: 16157901 markings, 172053573 edges, 19714 markings/sec, 700 secs
lola: 16247943 markings, 173319692 edges, 18008 markings/sec, 705 secs
lola: 16339276 markings, 174586702 edges, 18267 markings/sec, 710 secs
lola: 16432684 markings, 175851820 edges, 18682 markings/sec, 715 secs
lola: 16517372 markings, 177107889 edges, 16938 markings/sec, 720 secs
lola: 16605837 markings, 178362354 edges, 17693 markings/sec, 725 secs
lola: 16687648 markings, 179619050 edges, 16362 markings/sec, 730 secs
lola: 16764472 markings, 180879436 edges, 15365 markings/sec, 735 secs
lola: 16915668 markings, 182109347 edges, 30239 markings/sec, 740 secs
lola: 17052724 markings, 183329180 edges, 27411 markings/sec, 745 secs
lola: 17196438 markings, 184547123 edges, 28743 markings/sec, 750 secs
lola: 17326975 markings, 185765306 edges, 26107 markings/sec, 755 secs
lola: 17444582 markings, 186982449 edges, 23521 markings/sec, 760 secs
lola: 17580184 markings, 188193858 edges, 27120 markings/sec, 765 secs
lola: 17712955 markings, 189399243 edges, 26554 markings/sec, 770 secs
lola: 17835181 markings, 190608974 edges, 24445 markings/sec, 775 secs
lola: 17952385 markings, 191823239 edges, 23441 markings/sec, 780 secs
lola: 18076031 markings, 193035172 edges, 24729 markings/sec, 785 secs
lola: 18189188 markings, 194253423 edges, 22631 markings/sec, 790 secs
lola: 18303245 markings, 195463508 edges, 22811 markings/sec, 795 secs
lola: 18407476 markings, 196671136 edges, 20846 markings/sec, 800 secs
lola: 18503247 markings, 197881211 edges, 19154 markings/sec, 805 secs
lola: 18638243 markings, 199084897 edges, 26999 markings/sec, 810 secs
lola: 18769120 markings, 200280504 edges, 26175 markings/sec, 815 secs
lola: 18889056 markings, 201478974 edges, 23987 markings/sec, 820 secs
lola: 19006998 markings, 202688049 edges, 23588 markings/sec, 825 secs
lola: 19128747 markings, 203889634 edges, 24350 markings/sec, 830 secs
lola: 19240350 markings, 205096073 edges, 22321 markings/sec, 835 secs
lola: 19354327 markings, 206310826 edges, 22795 markings/sec, 840 secs
lola: 19458738 markings, 207525596 edges, 20882 markings/sec, 845 secs
lola: 19555555 markings, 208750817 edges, 19363 markings/sec, 850 secs
lola: 19679427 markings, 209970293 edges, 24774 markings/sec, 855 secs
lola: 19800257 markings, 211193337 edges, 24166 markings/sec, 860 secs
lola: 19915851 markings, 212413195 edges, 23119 markings/sec, 865 secs
lola: 20024069 markings, 213631568 edges, 21644 markings/sec, 870 secs
lola: 20125625 markings, 214854018 edges, 20311 markings/sec, 875 secs
lola: 20228866 markings, 216077037 edges, 20648 markings/sec, 880 secs
lola: 20338465 markings, 217299941 edges, 21920 markings/sec, 885 secs
lola: 20446641 markings, 218524213 edges, 21635 markings/sec, 890 secs
lola: 20539290 markings, 219760190 edges, 18530 markings/sec, 895 secs
lola: 20647278 markings, 220981154 edges, 21598 markings/sec, 900 secs
lola: 20739208 markings, 222211061 edges, 18386 markings/sec, 905 secs
lola: 20836305 markings, 223440222 edges, 19419 markings/sec, 910 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no unknown yes no yes
lola: memory consumption: 5349020 KB
lola: time consumption: 2651 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: ((3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918) AND (A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 15 will run for 919 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1918)
lola: processed formula length: 236
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 17 will run for 1 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1020 + p1021 + p... (shortened)
lola: processed formula length: 6734
lola: 79 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 66 markings, 65 edges
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 <= p2008))))
lola: processed formula length: 223
lola: 77 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 248527 markings, 1740533 edges, 49705 markings/sec, 0 secs
lola: 465668 markings, 3520080 edges, 43428 markings/sec, 5 secs
lola: 673423 markings, 5291693 edges, 41551 markings/sec, 10 secs
lola: 879660 markings, 7064126 edges, 41247 markings/sec, 15 secs
lola: 1059523 markings, 8850802 edges, 35973 markings/sec, 20 secs
lola: 1268655 markings, 10606462 edges, 41826 markings/sec, 25 secs
lola: 1475044 markings, 12377851 edges, 41278 markings/sec, 30 secs
lola: 1664484 markings, 14151021 edges, 37888 markings/sec, 35 secs
lola: 1841706 markings, 15920198 edges, 35444 markings/sec, 40 secs
lola: 2039948 markings, 17680615 edges, 39648 markings/sec, 45 secs
lola: 2210181 markings, 19456984 edges, 34047 markings/sec, 50 secs
lola: 2393532 markings, 21221170 edges, 36670 markings/sec, 55 secs
lola: 2560061 markings, 22992255 edges, 33306 markings/sec, 60 secs
lola: 2718381 markings, 24771623 edges, 31664 markings/sec, 65 secs
lola: 2870923 markings, 26569142 edges, 30508 markings/sec, 70 secs
lola: 3088280 markings, 28330069 edges, 43471 markings/sec, 75 secs
lola: 3289843 markings, 30097705 edges, 40313 markings/sec, 80 secs
lola: 3475417 markings, 31873071 edges, 37115 markings/sec, 85 secs
lola: 3665108 markings, 33643839 edges, 37938 markings/sec, 90 secs
lola: 3853919 markings, 35410505 edges, 37762 markings/sec, 95 secs
lola: 4026866 markings, 37182190 edges, 34589 markings/sec, 100 secs
lola: 4202115 markings, 38961975 edges, 35050 markings/sec, 105 secs
lola: 4368067 markings, 40740725 edges, 33190 markings/sec, 110 secs
lola: 4520649 markings, 42529105 edges, 30516 markings/sec, 115 secs
lola: 4696288 markings, 44306019 edges, 35128 markings/sec, 120 secs
lola: 4886163 markings, 46072445 edges, 37975 markings/sec, 125 secs
lola: 5057003 markings, 47840894 edges, 34168 markings/sec, 130 secs
lola: 5235712 markings, 49605391 edges, 35742 markings/sec, 135 secs
lola: 5401052 markings, 51371496 edges, 33068 markings/sec, 140 secs
lola: 5554181 markings, 53151478 edges, 30626 markings/sec, 145 secs
lola: 5714438 markings, 54928338 edges, 32051 markings/sec, 150 secs
lola: 5882335 markings, 56683630 edges, 33579 markings/sec, 155 secs
lola: 6044722 markings, 58428133 edges, 32477 markings/sec, 160 secs
lola: 6197026 markings, 60213189 edges, 30461 markings/sec, 165 secs
lola: 6354532 markings, 61996344 edges, 31501 markings/sec, 170 secs
lola: 6509497 markings, 63780809 edges, 30993 markings/sec, 175 secs
lola: 6653667 markings, 65559578 edges, 28834 markings/sec, 180 secs
lola: 6795663 markings, 67354553 edges, 28399 markings/sec, 185 secs
lola: 6932774 markings, 69148040 edges, 27422 markings/sec, 190 secs
lola: 7067720 markings, 70909511 edges, 26989 markings/sec, 195 secs
lola: 7280513 markings, 72626210 edges, 42559 markings/sec, 200 secs
lola: 7475973 markings, 74352673 edges, 39092 markings/sec, 205 secs
lola: 7659816 markings, 76088708 edges, 36769 markings/sec, 210 secs
lola: 7846496 markings, 77847712 edges, 37336 markings/sec, 215 secs
lola: 8034999 markings, 79609872 edges, 37701 markings/sec, 220 secs
lola: 8205808 markings, 81378512 edges, 34162 markings/sec, 225 secs
lola: 8384974 markings, 83146448 edges, 35833 markings/sec, 230 secs
lola: 8550235 markings, 84914487 edges, 33052 markings/sec, 235 secs
lola: 8703498 markings, 86696182 edges, 30653 markings/sec, 240 secs
lola: 8873839 markings, 88471743 edges, 34068 markings/sec, 245 secs
lola: 9062201 markings, 90229010 edges, 37672 markings/sec, 250 secs
lola: 9236182 markings, 92021896 edges, 34796 markings/sec, 255 secs
lola: 9418064 markings, 93788528 edges, 36376 markings/sec, 260 secs
lola: 9586132 markings, 95584989 edges, 33614 markings/sec, 265 secs
lola: 9744010 markings, 97418521 edges, 31576 markings/sec, 270 secs
lola: 9910177 markings, 99259533 edges, 33233 markings/sec, 275 secs
lola: 10085066 markings, 101106964 edges, 34978 markings/sec, 280 secs
lola: 10253174 markings, 102911256 edges, 33622 markings/sec, 285 secs
lola: 10403513 markings, 104680952 edges, 30068 markings/sec, 290 secs
lola: 10560426 markings, 106437015 edges, 31383 markings/sec, 295 secs
lola: 10710399 markings, 108174336 edges, 29995 markings/sec, 300 secs
lola: 10851695 markings, 109916199 edges, 28259 markings/sec, 305 secs
lola: 10989160 markings, 111658304 edges, 27493 markings/sec, 310 secs
lola: 11122110 markings, 113405090 edges, 26590 markings/sec, 315 secs
lola: 11250901 markings, 115155476 edges, 25758 markings/sec, 320 secs
lola: 11448646 markings, 116871301 edges, 39549 markings/sec, 325 secs
lola: 11625857 markings, 118642247 edges, 35442 markings/sec, 330 secs
lola: 11806293 markings, 120410088 edges, 36087 markings/sec, 335 secs
lola: 11973587 markings, 122183521 edges, 33459 markings/sec, 340 secs
lola: 12134446 markings, 123960562 edges, 32172 markings/sec, 345 secs
lola: 12274003 markings, 125748769 edges, 27911 markings/sec, 350 secs
lola: 12459618 markings, 127515909 edges, 37123 markings/sec, 355 secs
lola: 12627139 markings, 129291492 edges, 33504 markings/sec, 360 secs
lola: 12782181 markings, 131072489 edges, 31008 markings/sec, 365 secs
lola: 12930482 markings, 132859584 edges, 29660 markings/sec, 370 secs
lola: 13092245 markings, 134637518 edges, 32353 markings/sec, 375 secs
lola: 13235913 markings, 136426254 edges, 28734 markings/sec, 380 secs
lola: 13385895 markings, 138206328 edges, 29996 markings/sec, 385 secs
lola: 13522979 markings, 139983711 edges, 27417 markings/sec, 390 secs
lola: 13648308 markings, 141766810 edges, 25066 markings/sec, 395 secs
lola: 13818549 markings, 143528831 edges, 34048 markings/sec, 400 secs
lola: 13984676 markings, 145289655 edges, 33225 markings/sec, 405 secs
lola: 14145023 markings, 147050763 edges, 32069 markings/sec, 410 secs
lola: 14287222 markings, 148847754 edges, 28440 markings/sec, 415 secs
lola: 14450272 markings, 150626662 edges, 32610 markings/sec, 420 secs
lola: 14603439 markings, 152411449 edges, 30633 markings/sec, 425 secs
lola: 14748974 markings, 154190082 edges, 29107 markings/sec, 430 secs
lola: 14889150 markings, 155976063 edges, 28035 markings/sec, 435 secs
lola: 15018936 markings, 157769003 edges, 25957 markings/sec, 440 secs
lola: 15167233 markings, 159554593 edges, 29659 markings/sec, 445 secs
lola: 15322590 markings, 161338468 edges, 31071 markings/sec, 450 secs
lola: 15466998 markings, 163124799 edges, 28882 markings/sec, 455 secs
lola: 15612254 markings, 164912494 edges, 29051 markings/sec, 460 secs
lola: 15746959 markings, 166705314 edges, 26941 markings/sec, 465 secs
lola: 15872478 markings, 168507952 edges, 25104 markings/sec, 470 secs
lola: 16024125 markings, 170293484 edges, 30329 markings/sec, 475 secs
lola: 16160129 markings, 172085943 edges, 27201 markings/sec, 480 secs
lola: 16284675 markings, 173885563 edges, 24909 markings/sec, 485 secs
lola: 16419543 markings, 175672461 edges, 26974 markings/sec, 490 secs
lola: 16543178 markings, 177469659 edges, 24727 markings/sec, 495 secs
lola: 16664567 markings, 179269715 edges, 24278 markings/sec, 500 secs
lola: 16775405 markings, 181077188 edges, 22168 markings/sec, 505 secs
lola: 16999193 markings, 182819900 edges, 44758 markings/sec, 510 secs
lola: 17199187 markings, 184577828 edges, 39999 markings/sec, 515 secs
lola: 17384128 markings, 186339002 edges, 36988 markings/sec, 520 secs
lola: 17568933 markings, 188087976 edges, 36961 markings/sec, 525 secs
lola: 17756600 markings, 189835926 edges, 37533 markings/sec, 530 secs
lola: 17925740 markings, 191591107 edges, 33828 markings/sec, 535 secs
lola: 18107136 markings, 193342190 edges, 36279 markings/sec, 540 secs
lola: 18270719 markings, 195098682 edges, 32717 markings/sec, 545 secs
lola: 18424133 markings, 196863109 edges, 30683 markings/sec, 550 secs
lola: 18582531 markings, 198625362 edges, 31680 markings/sec, 555 secs
lola: 18778013 markings, 200370419 edges, 39096 markings/sec, 560 secs
lola: 18944920 markings, 202130269 edges, 33381 markings/sec, 565 secs
lola: 19127178 markings, 203877455 edges, 36452 markings/sec, 570 secs
lola: 19293639 markings, 205630943 edges, 33292 markings/sec, 575 secs
lola: 19450019 markings, 207403048 edges, 31276 markings/sec, 580 secs
lola: 19597164 markings, 209179672 edges, 29429 markings/sec, 585 secs
lola: 19777669 markings, 210943116 edges, 36101 markings/sec, 590 secs
lola: 19943361 markings, 212710855 edges, 33138 markings/sec, 595 secs
lola: 20096359 markings, 214482000 edges, 30600 markings/sec, 600 secs
lola: 20245906 markings, 216255581 edges, 29909 markings/sec, 605 secs
lola: 20404552 markings, 218021450 edges, 31729 markings/sec, 610 secs
lola: 20543635 markings, 219812797 edges, 27817 markings/sec, 615 secs
lola: 20694237 markings, 221571892 edges, 30120 markings/sec, 620 secs
lola: 20830305 markings, 223352949 edges, 27214 markings/sec, 625 secs
lola: 20952445 markings, 225107677 edges, 24428 markings/sec, 630 secs
lola: 21136756 markings, 226827788 edges, 36862 markings/sec, 635 secs
lola: 21319123 markings, 228544939 edges, 36473 markings/sec, 640 secs
lola: 21491502 markings, 230279069 edges, 34476 markings/sec, 645 secs
lola: 21658174 markings, 232041064 edges, 33334 markings/sec, 650 secs
lola: 21820393 markings, 233796025 edges, 32444 markings/sec, 655 secs
lola: 21971352 markings, 235546791 edges, 30192 markings/sec, 660 secs
lola: 22134578 markings, 237273301 edges, 32645 markings/sec, 665 secs
lola: 22298241 markings, 238999335 edges, 32733 markings/sec, 670 secs
lola: 22458829 markings, 240724916 edges, 32118 markings/sec, 675 secs
lola: 22602378 markings, 242461726 edges, 28710 markings/sec, 680 secs
lola: 22759950 markings, 244203663 edges, 31514 markings/sec, 685 secs
lola: 22911826 markings, 245969227 edges, 30375 markings/sec, 690 secs
lola: 23055377 markings, 247739312 edges, 28710 markings/sec, 695 secs
lola: 23191837 markings, 249508841 edges, 27292 markings/sec, 700 secs
lola: 23327812 markings, 251278489 edges, 27195 markings/sec, 705 secs
lola: 23461752 markings, 253018162 edges, 26788 markings/sec, 710 secs
lola: 23638812 markings, 254763411 edges, 35412 markings/sec, 715 secs
lola: 23802772 markings, 256511955 edges, 32792 markings/sec, 720 secs
lola: 23953511 markings, 258266707 edges, 30148 markings/sec, 725 secs
lola: 24101440 markings, 260020792 edges, 29586 markings/sec, 730 secs
lola: 24259865 markings, 261775334 edges, 31685 markings/sec, 735 secs
lola: 24397104 markings, 263542446 edges, 27448 markings/sec, 740 secs
lola: 24546513 markings, 265297534 edges, 29882 markings/sec, 745 secs
lola: 24681953 markings, 267071323 edges, 27088 markings/sec, 750 secs
lola: 24806061 markings, 268861293 edges, 24822 markings/sec, 755 secs
lola: 24966172 markings, 270625689 edges, 32022 markings/sec, 760 secs
lola: 25116985 markings, 272400044 edges, 30163 markings/sec, 765 secs
lola: 25262297 markings, 274178578 edges, 29062 markings/sec, 770 secs
lola: 25402677 markings, 275959148 edges, 28076 markings/sec, 775 secs
lola: 25534883 markings, 277746250 edges, 26441 markings/sec, 780 secs
lola: 25670008 markings, 279531151 edges, 27025 markings/sec, 785 secs
lola: 25807749 markings, 281313086 edges, 27548 markings/sec, 790 secs
lola: 25945792 markings, 283105424 edges, 27609 markings/sec, 795 secs
lola: 26071060 markings, 284874082 edges, 25054 markings/sec, 800 secs
lola: 26200456 markings, 286641959 edges, 25879 markings/sec, 805 secs
lola: 26322237 markings, 288418296 edges, 24356 markings/sec, 810 secs
lola: 26438907 markings, 290190826 edges, 23334 markings/sec, 815 secs
lola: 26576721 markings, 291954223 edges, 27563 markings/sec, 820 secs
lola: 26772563 markings, 293706018 edges, 39168 markings/sec, 825 secs
lola: 26940769 markings, 295475080 edges, 33641 markings/sec, 830 secs
lola: 27125085 markings, 297241067 edges, 36863 markings/sec, 835 secs
lola: 27292689 markings, 299012257 edges, 33521 markings/sec, 840 secs
lola: 27448350 markings, 300782189 edges, 31132 markings/sec, 845 secs
lola: 27597530 markings, 302566235 edges, 29836 markings/sec, 850 secs
lola: 27776967 markings, 304334121 edges, 35887 markings/sec, 855 secs
lola: 27943633 markings, 306107512 edges, 33333 markings/sec, 860 secs
lola: 28096454 markings, 307885083 edges, 30564 markings/sec, 865 secs
lola: 28247005 markings, 309666366 edges, 30110 markings/sec, 870 secs
lola: 28407121 markings, 311440363 edges, 32023 markings/sec, 875 secs
lola: 28547214 markings, 313226799 edges, 28019 markings/sec, 880 secs
lola: 28696922 markings, 315003399 edges, 29942 markings/sec, 885 secs
lola: 28832495 markings, 316790134 edges, 27115 markings/sec, 890 secs
lola: 28956680 markings, 318587085 edges, 24837 markings/sec, 895 secs
lola: 29137531 markings, 320354439 edges, 36170 markings/sec, 900 secs
lola: 29305148 markings, 322127185 edges, 33523 markings/sec, 905 secs
lola: 29462507 markings, 323903736 edges, 31472 markings/sec, 910 secs
lola: time limit reached - aborting
lola: lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes caught signal User defined signal 1 - aborting LoLA

lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes
lola: memory consumption: 7473524 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no no no unknown no no yes yes unknown unknown unknown no no yes no yes
rslt: finished

BK_STOP 1590283845524

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-28"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is QuasiCertifProtocol-COL-28, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r135-tajo-158961409100191"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-28.tgz
mv QuasiCertifProtocol-COL-28 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;