fond
Model Checking Contest 2020
10th edition, Paris, France, June 23, 2020
Execution of r135-tajo-158961409000155
Last Updated
Jun 28, 2020

About the Execution of 2019-Gold for PolyORBNT-COL-S10J60

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
10483.300 3570262.00 3709829.00 504.90 FF?FFT?TF?FFTTFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/mnt/tpsp/fkordon/mcc2020-input.r135-tajo-158961409000155.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2020-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is PolyORBNT-COL-S10J60, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r135-tajo-158961409000155
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 264K
-rw-r--r-- 1 mcc users 3.7K Apr 12 06:42 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 12 06:37 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Apr 11 07:33 CTLFireability.txt
-rw-r--r-- 1 mcc users 19K Apr 11 07:28 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 24 05:37 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.2K Mar 24 05:37 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.8K Apr 14 12:46 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Apr 28 14:02 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Apr 14 12:46 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K Apr 28 14:02 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Apr 10 13:38 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 10 13:33 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.6K Apr 9 19:57 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 12K Apr 9 19:53 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Apr 10 22:24 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Apr 10 22:24 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 24 05:37 instance
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 iscolored
-rw-r--r-- 1 mcc users 94K Mar 24 05:37 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME PolyORBNT-COL-S10J60-00
FORMULA_NAME PolyORBNT-COL-S10J60-01
FORMULA_NAME PolyORBNT-COL-S10J60-02
FORMULA_NAME PolyORBNT-COL-S10J60-03
FORMULA_NAME PolyORBNT-COL-S10J60-04
FORMULA_NAME PolyORBNT-COL-S10J60-05
FORMULA_NAME PolyORBNT-COL-S10J60-06
FORMULA_NAME PolyORBNT-COL-S10J60-07
FORMULA_NAME PolyORBNT-COL-S10J60-08
FORMULA_NAME PolyORBNT-COL-S10J60-09
FORMULA_NAME PolyORBNT-COL-S10J60-10
FORMULA_NAME PolyORBNT-COL-S10J60-11
FORMULA_NAME PolyORBNT-COL-S10J60-12
FORMULA_NAME PolyORBNT-COL-S10J60-13
FORMULA_NAME PolyORBNT-COL-S10J60-14
FORMULA_NAME PolyORBNT-COL-S10J60-15

=== Now, execution of the tool begins

BK_START 1590275647376

info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ PolyORBNT-COL-S10J60 @ 3570 seconds

FORMULA PolyORBNT-COL-S10J60-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-08 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA PolyORBNT-COL-S10J60-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ PolyORBNT-COL-S10J60

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat May 23 23:14:07 2020
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 210
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 224
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 240
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 258
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 280
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 305
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 305
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 11,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 11,
"visible_transitions": 0
},
"processed": "A (G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))",
"processed_size": 85,
"rewrites": 100
},
"result":
{
"edges": 18,
"markings": 19,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 336
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X (G ((3 <= p136))))",
"processed_size": 23,
"rewrites": 98
},
"result":
{
"edges": 1812,
"markings": 471,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 373
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 1,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 67,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 65,
"visible_transitions": 0
},
"processed": "A ((((p620 + 1 <= p603) U G (((2 <= p122) AND (p603 <= p620)))) OR X ((p125 <= p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515))))",
"processed_size": 507,
"rewrites": 98
},
"result":
{
"edges": 33,
"markings": 34,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 8
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 420
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 420
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 2,
"visible_transitions": 0
},
"processed": "A (G ((p517 + 1 <= p388)))",
"processed_size": 26,
"rewrites": 100
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 480
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 3,
"G": 3,
"U": 1,
"X": 7,
"aconj": 0,
"adisj": 0,
"aneg": 8,
"comp": 10,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 137,
"taut": 0,
"tconj": 3,
"tdisj": 3,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 65,
"visible_transitions": 0
},
"processed": "A (((X (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + 1 <= p519)) OR X (G ((p622 + 1 <= p391))))))) OR (G ((p391 <= p622)) AND X (F (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + 1 <= p519)) OR X (G ((p622 + 1 <= p391)))))))))) U X ((1 <= p265))))",
"processed_size": 1105,
"rewrites": 98
},
"result":
{
"edges": 19,
"markings": 19,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 45
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 560
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 2,
"visible_transitions": 0
},
"processed": "A (G ((p390 + 1 <= p516)))",
"processed_size": 26,
"rewrites": 100
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 701
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 2,
"G": 1,
"U": 0,
"X": 0,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 3,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 64,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 64,
"visible_transitions": 0
},
"processed": "A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387))))))",
"processed_size": 486,
"rewrites": 98
},
"result":
{
"edges": 20,
"markings": 19,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1402
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 2,
"U": 1,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 6,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1957,
"taut": 0,
"tconj": 1,
"tdisj": 3,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 734,
"visible_transitions": 0
},
"processed": "A (((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10) OR (((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) AND G ((3 <= p389))) OR (((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) U G ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618))) OR F ((p389 <= 2))))))",
"processed_size": 14529,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 8
},
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 10485756,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "A(G(**)) : FALSE : A(F((** AND F((G(*) OR G(**)))))) : (A(G(*)) AND (A(X(X(**))) AND A(X(G(**))))) : A(X(G(**))) : A((** OR ((** AND G(**)) OR ((** U G(**)) OR F(**))))) : A((F(**) OR (F(**) AND F(G(*))))) : TRUE : A(F(G((** AND F(**))))) : A(F(((** U **) AND F(G((F(**) OR X(**))))))) : (A((X(G(**)) U G(**))) AND A(G(**))) : FALSE : A(((** U G((** AND **))) OR X(*))) : TRUE : A(((X((* R (X(*) AND (F(*) OR X(G(*)))))) OR (G(**) AND X(F((* R (X(*) AND (F(*) OR X(G(*))))))))) U X(**))) : TRUE"
},
"net":
{
"arcs": 116999,
"conflict_clusters": 264,
"places": 1294,
"places_significant": 1142,
"singleton_clusters": 0,
"transitions": 12980
},
"result":
{
"interim_value": "no no unknown no no yes unknown yes no unknown no no yes yes no yes ",
"preliminary_value": "no no unknown no no yes unknown yes no unknown no no yes yes no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 1294, Transitions: 12980
lola: @ trans MustCheck
lola: @ trans trans_488
lola: @ trans DummyOR1
lola: @ trans NoJob
lola: @ trans fo2
lola: @ trans fo3
lola: @ trans LeaveCSTCS
lola: @ trans trans_508
lola: @ trans trans_509
lola: @ trans fi1
lola: @ trans GoCheckSource
lola: @ trans trans_478
lola: @ trans trans_486
lola: @ trans trans_534
lola: @ trans trans_459
lola: @ trans trans_533
lola: @ trans fi2
lola: @ trans trans_511
lola: @ trans trans_487
lola: @ trans fo1
lola: @ trans DummyOR2
lola: @ trans trans_457
lola: @ trans WillPerformWork
lola: @ trans trans_510
lola: @ trans fi3
lola: @ trans EnterCSTCS
lola: @ trans trans_461
lola: @ trans GoPerformWork
lola: @ trans trans_489
lola: @ trans Run
lola: @ trans JobExist
lola: @ trans trans_689
lola: @ trans IsEvt
lola: @ trans trans_376
lola: @ trans trans_685
lola: @ trans trans_463
lola: @ trans NotifyEventEndOfCheckSources
lola: @ trans trans_776
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 14274/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 41408
lola: finding significant places
lola: 1294 places, 12980 transitions, 1142 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591)
lola: LP says that atomic proposition is always false: (3 <= p617)
lola: LP says that atomic proposition is always false: (2 <= p622)
lola: A (G ((p390 + 1 <= p516))) : A (G (F (((((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10) U (1 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326)) U ((0 <= p139) OR F ((0 <= p137)))) AND F (NOT(X ((0 <= p137)))))))) : A (F (((p264 + 1 <= p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202) AND F (NOT((F ((2 <= p389)) AND NOT(G ((p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 <= p264))))))))) : A (NOT((F ((p388 <= p517)) OR X (NOT((X ((p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 <= p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591)) AND G ((1 <= p519)))))))) : A (X (G ((3 <= p136)))) : A (((((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10) OR ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) AND G ((3 <= p389)))) OR ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) U G ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618)))) OR F ((p389 <= 2)))) : A (((F (NOT(F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326)))) OR (X ((p137 <= p518)) AND G ((2 <= p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591)))) U F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326)))) : A (F ((F (NOT(F (X ((0 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326))))) U (p617 <= 2)))) : A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387)))))) : A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618)))))))) : A (((G (X ((p602 <= p139))) U G ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p519))) AND G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))) : A (X (((p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 <= 2) U G ((p138 + 1 <= 0))))) : A ((((p620 + 1 <= p603) U (G ((2 <= p122)) AND G ((p603 <= p620)))) OR NOT(X ((p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + 1 <= p125))))) : A (((G ((0 <= p615)) OR G ((1 <= p140))) OR NOT((G ((3 <= p123)) OR G ((p621 <= p264)))))) : A (((G ((p391 <= p622)) U X (NOT(((1 <= p265) U (G ((p519 <= p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263)) U X ((p391 <= p622))))))) U X ((1 <= p265)))) : A ((G (F ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p141))) OR F (())))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:551
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:428
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:123
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 210 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 224 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 240 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 258 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 280 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 305 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A ((X (G ((p602 <= p139))) U G ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 5 will run for 305 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))
lola: processed formula length: 85
lola: 100 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + 1 <= p619)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 19 markings, 18 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 6 will run for 336 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((3 <= p136))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((3 <= p136))))
lola: processed formula length: 23
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 471 markings, 1812 edges
lola: ========================================
lola: subprocess 7 will run for 373 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((p620 + 1 <= p603) U G (((2 <= p122) AND (p603 <= p620)))) OR X ((p125 <= p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((p620 + 1 <= p603) U G (((2 <= p122) AND (p603 <= p620)))) OR X ((p125 <= p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 +... (shortened)
lola: processed formula length: 507
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 34 markings, 33 edges
lola: ========================================
lola: subprocess 8 will run for 420 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (G ((p517 + 1 <= p388))) AND (A (X (X ((p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 8 will run for 420 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p517 + 1 <= p388)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:788
lola: processed formula: A (G ((p517 + 1 <= p388)))
lola: processed formula length: 26
lola: 100 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:788
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (p388 <= p517)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 9 will run for 480 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (((X (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((X (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p... (shortened)
lola: processed formula length: 1105
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 45 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 19 markings, 19 edges
lola: ========================================
lola: subprocess 10 will run for 560 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: processed formula length: 99
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 195024 markings, 377479 edges, 39005 markings/sec, 0 secs
lola: 401266 markings, 789857 edges, 41248 markings/sec, 5 secs
lola: 604774 markings, 1197669 edges, 40702 markings/sec, 10 secs
lola: 807605 markings, 1604355 edges, 40566 markings/sec, 15 secs
lola: 1010908 markings, 2004099 edges, 40661 markings/sec, 20 secs
lola: 1213529 markings, 2401024 edges, 40524 markings/sec, 25 secs
lola: 1410662 markings, 2798217 edges, 39427 markings/sec, 30 secs
lola: 1608745 markings, 3194190 edges, 39617 markings/sec, 35 secs
lola: 1809321 markings, 3582821 edges, 40115 markings/sec, 40 secs
lola: 2003426 markings, 3974927 edges, 38821 markings/sec, 45 secs
lola: 2199120 markings, 4366857 edges, 39139 markings/sec, 50 secs
lola: 2381220 markings, 4724676 edges, 36420 markings/sec, 55 secs
lola: 2564754 markings, 5088398 edges, 36707 markings/sec, 60 secs
lola: 2747100 markings, 5454601 edges, 36469 markings/sec, 65 secs
lola: 2933895 markings, 5817461 edges, 37359 markings/sec, 70 secs
lola: 3115182 markings, 6188242 edges, 36257 markings/sec, 75 secs
lola: 3178555 markings, 6556083 edges, 12675 markings/sec, 80 secs
lola: 3225729 markings, 6989714 edges, 9435 markings/sec, 85 secs
lola: 3356404 markings, 7329325 edges, 26135 markings/sec, 90 secs
lola: 3485583 markings, 7665436 edges, 25836 markings/sec, 95 secs
lola: 3613531 markings, 8000033 edges, 25590 markings/sec, 100 secs
lola: 3738786 markings, 8325421 edges, 25051 markings/sec, 105 secs
lola: 3885697 markings, 8710300 edges, 29382 markings/sec, 110 secs
lola: 4025916 markings, 9102797 edges, 28044 markings/sec, 115 secs
lola: 4182022 markings, 9486683 edges, 31221 markings/sec, 120 secs
lola: 4361124 markings, 9845895 edges, 35820 markings/sec, 125 secs
lola: 4557054 markings, 10230719 edges, 39186 markings/sec, 130 secs
lola: 4750130 markings, 10614345 edges, 38615 markings/sec, 135 secs
lola: 4942090 markings, 10999463 edges, 38392 markings/sec, 140 secs
lola: 5137099 markings, 11379360 edges, 39002 markings/sec, 145 secs
lola: 5326519 markings, 11763782 edges, 37884 markings/sec, 150 secs
lola: 5522907 markings, 12142983 edges, 39278 markings/sec, 155 secs
lola: 5712308 markings, 12526855 edges, 37880 markings/sec, 160 secs
lola: 5904597 markings, 12910032 edges, 38458 markings/sec, 165 secs
lola: 6098750 markings, 13291027 edges, 38831 markings/sec, 170 secs
lola: 6289193 markings, 13677127 edges, 38089 markings/sec, 175 secs
lola: 6486438 markings, 14057301 edges, 39449 markings/sec, 180 secs
lola: 6677293 markings, 14444007 edges, 38171 markings/sec, 185 secs
lola: 6869254 markings, 14825601 edges, 38392 markings/sec, 190 secs
lola: 7055955 markings, 15195224 edges, 37340 markings/sec, 195 secs
lola: 7200887 markings, 15515313 edges, 28986 markings/sec, 200 secs
lola: 7214124 markings, 15832363 edges, 2647 markings/sec, 205 secs
lola: 7276656 markings, 16231172 edges, 12506 markings/sec, 210 secs
lola: 7404905 markings, 16565082 edges, 25650 markings/sec, 215 secs
lola: 7531966 markings, 16896163 edges, 25412 markings/sec, 220 secs
lola: 7658725 markings, 17226539 edges, 25352 markings/sec, 225 secs
lola: 7786283 markings, 17559642 edges, 25512 markings/sec, 230 secs
lola: 7915131 markings, 17897565 edges, 25770 markings/sec, 235 secs
lola: 8041050 markings, 18225239 edges, 25184 markings/sec, 240 secs
lola: 8177469 markings, 18611154 edges, 27284 markings/sec, 245 secs
lola: 8374249 markings, 18994394 edges, 39356 markings/sec, 250 secs
lola: 8565216 markings, 19377510 edges, 38193 markings/sec, 255 secs
lola: 8757105 markings, 19760969 edges, 38378 markings/sec, 260 secs
lola: 8950425 markings, 20139713 edges, 38664 markings/sec, 265 secs
lola: 9139086 markings, 20522785 edges, 37732 markings/sec, 270 secs
lola: 9334341 markings, 20899623 edges, 39051 markings/sec, 275 secs
lola: 9522327 markings, 21281598 edges, 37597 markings/sec, 280 secs
lola: 9716074 markings, 21658353 edges, 38749 markings/sec, 285 secs
lola: 9904726 markings, 22039086 edges, 37730 markings/sec, 290 secs
lola: 10095469 markings, 22418159 edges, 38149 markings/sec, 295 secs
lola: 10288111 markings, 22798208 edges, 38528 markings/sec, 300 secs
lola: 10478789 markings, 23182222 edges, 38136 markings/sec, 305 secs
lola: 10674069 markings, 23561525 edges, 39056 markings/sec, 310 secs
lola: 10864344 markings, 23947306 edges, 38055 markings/sec, 315 secs
lola: 11058588 markings, 24330152 edges, 38849 markings/sec, 320 secs
lola: 11233174 markings, 24715868 edges, 34917 markings/sec, 325 secs
lola: 11253713 markings, 25203702 edges, 4108 markings/sec, 330 secs
lola: 11380048 markings, 25610347 edges, 25267 markings/sec, 335 secs
lola: 11526007 markings, 25992968 edges, 29192 markings/sec, 340 secs
lola: 11672165 markings, 26372585 edges, 29232 markings/sec, 345 secs
lola: 11818608 markings, 26754509 edges, 29289 markings/sec, 350 secs
lola: 11965989 markings, 27138859 edges, 29476 markings/sec, 355 secs
lola: 12094097 markings, 27545112 edges, 25622 markings/sec, 360 secs
lola: 12242312 markings, 27859334 edges, 29643 markings/sec, 365 secs
lola: 12426915 markings, 28235608 edges, 36921 markings/sec, 370 secs
lola: 12621224 markings, 28616815 edges, 38862 markings/sec, 375 secs
lola: 12811879 markings, 28997329 edges, 38131 markings/sec, 380 secs
lola: 13003031 markings, 29378954 edges, 38230 markings/sec, 385 secs
lola: 13195621 markings, 29757001 edges, 38518 markings/sec, 390 secs
lola: 13384577 markings, 30138873 edges, 37791 markings/sec, 395 secs
lola: 13578150 markings, 30514704 edges, 38715 markings/sec, 400 secs
lola: 13765686 markings, 30895928 edges, 37507 markings/sec, 405 secs
lola: 13960325 markings, 31271759 edges, 38928 markings/sec, 410 secs
lola: 14147829 markings, 31652969 edges, 37501 markings/sec, 415 secs
lola: 14339431 markings, 32031542 edges, 38320 markings/sec, 420 secs
lola: 14530537 markings, 32410875 edges, 38221 markings/sec, 425 secs
lola: 14721587 markings, 32792891 edges, 38210 markings/sec, 430 secs
lola: 14916004 markings, 33173442 edges, 38883 markings/sec, 435 secs
lola: 15106206 markings, 33559110 edges, 38040 markings/sec, 440 secs
lola: 15266243 markings, 33932514 edges, 32007 markings/sec, 445 secs
lola: 15284954 markings, 34377531 edges, 3742 markings/sec, 450 secs
lola: 15402598 markings, 34781339 edges, 23529 markings/sec, 455 secs
lola: 15548353 markings, 35160032 edges, 29151 markings/sec, 460 secs
lola: 15694115 markings, 35538713 edges, 29152 markings/sec, 465 secs
lola: 15839520 markings, 35920048 edges, 29081 markings/sec, 470 secs
lola: 15986961 markings, 36302687 edges, 29488 markings/sec, 475 secs
lola: 16123324 markings, 36698963 edges, 27273 markings/sec, 480 secs
lola: 16264893 markings, 37036967 edges, 28314 markings/sec, 485 secs
lola: 16412462 markings, 37334413 edges, 29514 markings/sec, 490 secs
lola: 16602939 markings, 37713067 edges, 38095 markings/sec, 495 secs
lola: 16793335 markings, 38089305 edges, 38079 markings/sec, 500 secs
lola: 16982089 markings, 38467371 edges, 37751 markings/sec, 505 secs
lola: 17171838 markings, 38840250 edges, 37950 markings/sec, 510 secs
lola: 17350971 markings, 39193665 edges, 35827 markings/sec, 515 secs
lola: 17537059 markings, 39569081 edges, 37218 markings/sec, 520 secs
lola: 17726901 markings, 39943068 edges, 37968 markings/sec, 525 secs
lola: 17914107 markings, 40317618 edges, 37441 markings/sec, 530 secs
lola: 18103989 markings, 40693960 edges, 37976 markings/sec, 535 secs
lola: 18294045 markings, 41070983 edges, 38011 markings/sec, 540 secs
lola: 18483430 markings, 41448973 edges, 37877 markings/sec, 545 secs
lola: 18674735 markings, 41825585 edges, 38261 markings/sec, 550 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: memory consumption: 4498564 KB
lola: time consumption: 768 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 560 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p390 + 1 <= p516)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((p390 + 1 <= p516)))
lola: processed formula length: 26
lola: 100 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (p516 <= p390)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: subprocess 12 will run for 700 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p3... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p3... (shortened)
lola: processed formula length: 1326
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: ========================================
lola: 7087 markings, 9258 edges, 1417 markings/sec, 0 secs
lola: 14707 markings, 19447 edges, 1524 markings/sec, 5 secs
lola: 21989 markings, 29225 edges, 1456 markings/sec, 10 secs
lola: 29120 markings, 38019 edges, 1426 markings/sec, 15 secs
lola: 36790 markings, 48272 edges, 1534 markings/sec, 20 secs
lola: 44221 markings, 58234 edges, 1486 markings/sec, 25 secs
lola: 51307 markings, 67766 edges, 1417 markings/sec, 30 secs
lola: 58628 markings, 76797 edges, 1464 markings/sec, 35 secs
lola: 66206 markings, 86936 edges, 1516 markings/sec, 40 secs
lola: 73500 markings, 96729 edges, 1459 markings/sec, 45 secs
lola: 80459 markings, 106119 edges, 1392 markings/sec, 50 secs
lola: 87988 markings, 115389 edges, 1506 markings/sec, 55 secs
lola: 95425 markings, 125358 edges, 1487 markings/sec, 60 secs
lola: 102535 markings, 134918 edges, 1422 markings/sec, 65 secs
lola: 109602 markings, 143640 edges, 1413 markings/sec, 70 secs
lola: 117165 markings, 153760 edges, 1513 markings/sec, 75 secs
lola: 124454 markings, 163541 edges, 1458 markings/sec, 80 secs
lola: 131372 markings, 172870 edges, 1384 markings/sec, 85 secs
lola: 138741 markings, 181959 edges, 1474 markings/sec, 90 secs
lola: 146173 markings, 191917 edges, 1486 markings/sec, 95 secs
lola: 153279 markings, 201478 edges, 1421 markings/sec, 100 secs
lola: 160207 markings, 210021 edges, 1386 markings/sec, 105 secs
lola: 167734 markings, 220099 edges, 1505 markings/sec, 110 secs
lola: 174993 markings, 229848 edges, 1452 markings/sec, 115 secs
lola: 181876 markings, 239131 edges, 1377 markings/sec, 120 secs
lola: 189179 markings, 248137 edges, 1461 markings/sec, 125 secs
lola: 196551 markings, 258024 edges, 1474 markings/sec, 130 secs
lola: 202974 markings, 266740 edges, 1285 markings/sec, 135 secs
lola: 209642 markings, 274966 edges, 1334 markings/sec, 140 secs
lola: 217044 markings, 284888 edges, 1480 markings/sec, 145 secs
lola: 224111 markings, 294396 edges, 1413 markings/sec, 150 secs
lola: 230891 markings, 303589 edges, 1356 markings/sec, 155 secs
lola: 238376 markings, 312788 edges, 1497 markings/sec, 160 secs
lola: 245583 markings, 322472 edges, 1441 markings/sec, 165 secs
lola: 252392 markings, 331659 edges, 1362 markings/sec, 170 secs
lola: 259251 markings, 340120 edges, 1372 markings/sec, 175 secs
lola: 266187 markings, 349471 edges, 1387 markings/sec, 180 secs
lola: 273063 markings, 358744 edges, 1375 markings/sec, 185 secs
lola: 280153 markings, 367488 edges, 1418 markings/sec, 190 secs
lola: 287489 markings, 377330 edges, 1467 markings/sec, 195 secs
lola: 294515 markings, 386790 edges, 1405 markings/sec, 200 secs
lola: 301241 markings, 395893 edges, 1345 markings/sec, 205 secs
lola: 308698 markings, 405078 edges, 1491 markings/sec, 210 secs
lola: 315843 markings, 414686 edges, 1429 markings/sec, 215 secs
lola: 322598 markings, 423809 edges, 1351 markings/sec, 220 secs
lola: 329842 markings, 432745 edges, 1449 markings/sec, 225 secs
lola: 337082 markings, 442470 edges, 1448 markings/sec, 230 secs
lola: 343992 markings, 451785 edges, 1382 markings/sec, 235 secs
lola: 350914 markings, 460323 edges, 1384 markings/sec, 240 secs
lola: 358244 markings, 470156 edges, 1466 markings/sec, 245 secs
lola: 365264 markings, 479608 edges, 1404 markings/sec, 250 secs
lola: 371866 markings, 488548 edges, 1320 markings/sec, 255 secs
lola: 379334 markings, 497756 edges, 1494 markings/sec, 260 secs
lola: 385999 markings, 506771 edges, 1333 markings/sec, 265 secs
lola: 392333 markings, 515377 edges, 1267 markings/sec, 270 secs
lola: 399681 markings, 524441 edges, 1470 markings/sec, 275 secs
lola: 406826 markings, 534049 edges, 1429 markings/sec, 280 secs
lola: 412934 markings, 542373 edges, 1222 markings/sec, 285 secs
lola: 420181 markings, 551316 edges, 1449 markings/sec, 290 secs
lola: 427381 markings, 560991 edges, 1440 markings/sec, 295 secs
lola: 434191 markings, 570179 edges, 1362 markings/sec, 300 secs
lola: 441136 markings, 578748 edges, 1389 markings/sec, 305 secs
lola: 448419 markings, 588523 edges, 1457 markings/sec, 310 secs
lola: 455361 markings, 597880 edges, 1388 markings/sec, 315 secs
lola: 461850 markings, 606678 edges, 1298 markings/sec, 320 secs
lola: 469404 markings, 615995 edges, 1511 markings/sec, 325 secs
lola: 476463 markings, 625494 edges, 1412 markings/sec, 330 secs
lola: 483119 markings, 634498 edges, 1331 markings/sec, 335 secs
lola: 490369 markings, 643439 edges, 1450 markings/sec, 340 secs
lola: 497535 markings, 653072 edges, 1433 markings/sec, 345 secs
lola: 504328 markings, 662246 edges, 1359 markings/sec, 350 secs
lola: 511310 markings, 670857 edges, 1396 markings/sec, 355 secs
lola: 518538 markings, 680567 edges, 1446 markings/sec, 360 secs
lola: 525460 markings, 689896 edges, 1384 markings/sec, 365 secs
lola: 532062 markings, 698842 edges, 1320 markings/sec, 370 secs
lola: 539521 markings, 708033 edges, 1492 markings/sec, 375 secs
lola: 546550 markings, 717496 edges, 1406 markings/sec, 380 secs
lola: 553167 markings, 726453 edges, 1323 markings/sec, 385 secs
lola: 560474 markings, 735464 edges, 1461 markings/sec, 390 secs
lola: 567592 markings, 745038 edges, 1424 markings/sec, 395 secs
lola: 573914 markings, 753630 edges, 1264 markings/sec, 400 secs
lola: 580916 markings, 762268 edges, 1400 markings/sec, 405 secs
lola: 588100 markings, 771922 edges, 1437 markings/sec, 410 secs
lola: 594880 markings, 781374 edges, 1356 markings/sec, 415 secs
lola: 603051 markings, 795817 edges, 1634 markings/sec, 420 secs
lola: 611226 markings, 810266 edges, 1635 markings/sec, 425 secs
lola: 619413 markings, 824731 edges, 1637 markings/sec, 430 secs
lola: 627601 markings, 839198 edges, 1638 markings/sec, 435 secs
lola: 635797 markings, 853675 edges, 1639 markings/sec, 440 secs
lola: 644002 markings, 868164 edges, 1641 markings/sec, 445 secs
lola: 651855 markings, 882179 edges, 1571 markings/sec, 450 secs
lola: 659837 markings, 896368 edges, 1596 markings/sec, 455 secs
lola: 668055 markings, 910875 edges, 1644 markings/sec, 460 secs
lola: 676288 markings, 925402 edges, 1647 markings/sec, 465 secs
lola: 684524 markings, 939933 edges, 1647 markings/sec, 470 secs
lola: 692766 markings, 954472 edges, 1648 markings/sec, 475 secs
lola: 701009 markings, 969013 edges, 1649 markings/sec, 480 secs
lola: 709260 markings, 983564 edges, 1650 markings/sec, 485 secs
lola: 717515 markings, 998121 edges, 1651 markings/sec, 490 secs
lola: 725264 markings, 1011996 edges, 1550 markings/sec, 495 secs
lola: 733319 markings, 1026283 edges, 1611 markings/sec, 500 secs
lola: 741570 markings, 1040834 edges, 1650 markings/sec, 505 secs
lola: 749843 markings, 1055415 edges, 1655 markings/sec, 510 secs
lola: 757892 markings, 1068423 edges, 1610 markings/sec, 515 secs
lola: 765174 markings, 1078201 edges, 1456 markings/sec, 520 secs
lola: 772296 markings, 1086984 edges, 1424 markings/sec, 525 secs
lola: 779999 markings, 1097279 edges, 1541 markings/sec, 530 secs
lola: 787415 markings, 1107221 edges, 1483 markings/sec, 535 secs
lola: 794495 markings, 1116745 edges, 1416 markings/sec, 540 secs
lola: 801804 markings, 1125762 edges, 1462 markings/sec, 545 secs
lola: 809373 markings, 1135890 edges, 1514 markings/sec, 550 secs
lola: 816664 markings, 1145679 edges, 1458 markings/sec, 555 secs
lola: 823554 markings, 1155001 edges, 1378 markings/sec, 560 secs
lola: 831152 markings, 1164339 edges, 1520 markings/sec, 565 secs
lola: 838592 markings, 1174312 edges, 1488 markings/sec, 570 secs
lola: 845711 markings, 1183883 edges, 1424 markings/sec, 575 secs
lola: 852777 markings, 1192604 edges, 1413 markings/sec, 580 secs
lola: 860323 markings, 1202703 edges, 1509 markings/sec, 585 secs
lola: 867618 markings, 1212491 edges, 1459 markings/sec, 590 secs
lola: 874539 markings, 1221824 edges, 1384 markings/sec, 595 secs
lola: 881905 markings, 1230910 edges, 1473 markings/sec, 600 secs
lola: 889337 markings, 1240868 edges, 1486 markings/sec, 605 secs
lola: 896446 markings, 1250432 edges, 1422 markings/sec, 610 secs
lola: 903371 markings, 1258972 edges, 1385 markings/sec, 615 secs
lola: 910901 markings, 1269053 edges, 1506 markings/sec, 620 secs
lola: 918169 markings, 1278813 edges, 1454 markings/sec, 625 secs
lola: 925048 markings, 1288091 edges, 1376 markings/sec, 630 secs
lola: 932346 markings, 1297090 edges, 1460 markings/sec, 635 secs
lola: 939718 markings, 1306977 edges, 1474 markings/sec, 640 secs
lola: 946782 markings, 1316487 edges, 1413 markings/sec, 645 secs
lola: 953653 markings, 1324961 edges, 1374 markings/sec, 650 secs
lola: 961145 markings, 1334995 edges, 1498 markings/sec, 655 secs
lola: 968344 markings, 1344668 edges, 1440 markings/sec, 660 secs
lola: 975143 markings, 1353845 edges, 1360 markings/sec, 665 secs
lola: 982461 markings, 1362873 edges, 1464 markings/sec, 670 secs
lola: 989767 markings, 1372679 edges, 1461 markings/sec, 675 secs
lola: 996749 markings, 1382081 edges, 1396 markings/sec, 680 secs
lola: 1003682 markings, 1390635 edges, 1387 markings/sec, 685 secs
lola: 1011096 markings, 1400571 edges, 1483 markings/sec, 690 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: memory consumption: 659104 KB
lola: time consumption: 1468 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 700 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (((p264 + 1 <= p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (((p264 + 1 <= p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p1... (shortened)
lola: processed formula length: 916
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 122926 markings, 167837 edges, 24585 markings/sec, 0 secs
lola: 263570 markings, 360385 edges, 28129 markings/sec, 5 secs
lola: 395109 markings, 539933 edges, 26308 markings/sec, 10 secs
lola: 535080 markings, 730279 edges, 27994 markings/sec, 15 secs
lola: 672547 markings, 919020 edges, 27493 markings/sec, 20 secs
lola: 778027 markings, 1082296 edges, 21096 markings/sec, 25 secs
lola: 827913 markings, 1212806 edges, 9977 markings/sec, 30 secs
lola: 963864 markings, 1429394 edges, 27190 markings/sec, 35 secs
lola: 1092670 markings, 1646997 edges, 25761 markings/sec, 40 secs
lola: 1221203 markings, 1821969 edges, 25707 markings/sec, 45 secs
lola: 1346977 markings, 1994543 edges, 25155 markings/sec, 50 secs
lola: 1474313 markings, 2168272 edges, 25467 markings/sec, 55 secs
lola: 1603448 markings, 2344026 edges, 25827 markings/sec, 60 secs
lola: 1730585 markings, 2518285 edges, 25427 markings/sec, 65 secs
lola: 1820335 markings, 2657998 edges, 17950 markings/sec, 70 secs
lola: 1822978 markings, 2715281 edges, 529 markings/sec, 75 secs
lola: 1932504 markings, 2889975 edges, 21905 markings/sec, 80 secs
lola: 2042967 markings, 3065823 edges, 22093 markings/sec, 85 secs
lola: 2107955 markings, 3187401 edges, 12998 markings/sec, 90 secs
lola: 2234495 markings, 3360807 edges, 25308 markings/sec, 95 secs
lola: 2361589 markings, 3534782 edges, 25419 markings/sec, 100 secs
lola: 2489816 markings, 3709332 edges, 25645 markings/sec, 105 secs
lola: 2618204 markings, 3884672 edges, 25678 markings/sec, 110 secs
lola: 2745797 markings, 4059495 edges, 25519 markings/sec, 115 secs
lola: 2862227 markings, 4224613 edges, 23286 markings/sec, 120 secs
lola: 2864944 markings, 4283543 edges, 543 markings/sec, 125 secs
lola: 2956607 markings, 4439182 edges, 18333 markings/sec, 130 secs
lola: 3068170 markings, 4616905 edges, 22313 markings/sec, 135 secs
lola: 3137220 markings, 4747745 edges, 13810 markings/sec, 140 secs
lola: 3262752 markings, 4919850 edges, 25106 markings/sec, 145 secs
lola: 3390280 markings, 5094252 edges, 25506 markings/sec, 150 secs
lola: 3519057 markings, 5269188 edges, 25755 markings/sec, 155 secs
lola: 3645983 markings, 5443126 edges, 25385 markings/sec, 160 secs
lola: 3773281 markings, 5617583 edges, 25460 markings/sec, 165 secs
lola: 3903015 markings, 5794559 edges, 25947 markings/sec, 170 secs
lola: 3907069 markings, 5855164 edges, 811 markings/sec, 175 secs
lola: 3987180 markings, 5998873 edges, 16022 markings/sec, 180 secs
lola: 4099448 markings, 6177499 edges, 22454 markings/sec, 185 secs
lola: 4169867 markings, 6311784 edges, 14084 markings/sec, 190 secs
lola: 4290694 markings, 6478505 edges, 24165 markings/sec, 195 secs
lola: 4418277 markings, 6652734 edges, 25517 markings/sec, 200 secs
lola: 4547462 markings, 6828356 edges, 25837 markings/sec, 205 secs
lola: 4674072 markings, 7001963 edges, 25322 markings/sec, 210 secs
lola: 4801959 markings, 7177033 edges, 25577 markings/sec, 215 secs
lola: 4930890 markings, 7352865 edges, 25786 markings/sec, 220 secs
lola: 4949182 markings, 7426600 edges, 3658 markings/sec, 225 secs
lola: 5016104 markings, 7555581 edges, 13384 markings/sec, 230 secs
lola: 5128478 markings, 7734462 edges, 22475 markings/sec, 235 secs
lola: 5212021 markings, 7883036 edges, 16709 markings/sec, 240 secs
lola: 5317457 markings, 8035427 edges, 21087 markings/sec, 245 secs
lola: 5445911 markings, 8209904 edges, 25691 markings/sec, 250 secs
lola: 5571775 markings, 8382533 edges, 25173 markings/sec, 255 secs
lola: 5699095 markings, 8556701 edges, 25464 markings/sec, 260 secs
lola: 5827769 markings, 8731774 edges, 25735 markings/sec, 265 secs
lola: 5956991 markings, 8908258 edges, 25844 markings/sec, 270 secs
lola: 5991242 markings, 8996877 edges, 6850 markings/sec, 275 secs
lola: 6038399 markings, 9101785 edges, 9431 markings/sec, 280 secs
lola: 6146333 markings, 9273283 edges, 21587 markings/sec, 285 secs
lola: 6253906 markings, 9447512 edges, 21515 markings/sec, 290 secs
lola: 6330353 markings, 9572717 edges, 15289 markings/sec, 295 secs
lola: 6456617 markings, 9745496 edges, 25253 markings/sec, 300 secs
lola: 6583592 markings, 9919252 edges, 25395 markings/sec, 305 secs
lola: 6712182 markings, 10094003 edges, 25718 markings/sec, 310 secs
lola: 6839461 markings, 10268294 edges, 25456 markings/sec, 315 secs
lola: 6967030 markings, 10443087 edges, 25514 markings/sec, 320 secs
lola: 7033015 markings, 10560989 edges, 13197 markings/sec, 325 secs
lola: 7059412 markings, 10645847 edges, 5279 markings/sec, 330 secs
lola: 7171312 markings, 10823735 edges, 22380 markings/sec, 335 secs
lola: 7283740 markings, 11003121 edges, 22486 markings/sec, 340 secs
lola: 7354394 markings, 11126159 edges, 14131 markings/sec, 345 secs
lola: 7478134 markings, 11295171 edges, 24748 markings/sec, 350 secs
lola: 7605660 markings, 11469219 edges, 25505 markings/sec, 355 secs
lola: 7731744 markings, 11642120 edges, 25217 markings/sec, 360 secs
lola: 7859968 markings, 11816611 edges, 25645 markings/sec, 365 secs
lola: 7988864 markings, 11992463 edges, 25779 markings/sec, 370 secs
lola: 8074972 markings, 12129009 edges, 17222 markings/sec, 375 secs
lola: 8082469 markings, 12193559 edges, 1499 markings/sec, 380 secs
lola: 8193100 markings, 12369646 edges, 22126 markings/sec, 385 secs
lola: 8306439 markings, 12549582 edges, 22668 markings/sec, 390 secs
lola: 8375729 markings, 12675665 edges, 13858 markings/sec, 395 secs
lola: 8494214 markings, 12837164 edges, 23697 markings/sec, 400 secs
lola: 8609994 markings, 12995267 edges, 23156 markings/sec, 405 secs
lola: 8734591 markings, 13166146 edges, 24919 markings/sec, 410 secs
lola: 8862875 markings, 13340439 edges, 25657 markings/sec, 415 secs
lola: 8989827 markings, 13514352 edges, 25390 markings/sec, 420 secs
lola: 9116541 markings, 13688493 edges, 25343 markings/sec, 425 secs
lola: 9119230 markings, 13746988 edges, 538 markings/sec, 430 secs
lola: 9199564 markings, 13890664 edges, 16067 markings/sec, 435 secs
lola: 9312223 markings, 14069734 edges, 22532 markings/sec, 440 secs
lola: 9382032 markings, 14203559 edges, 13962 markings/sec, 445 secs
lola: 9498785 markings, 14364270 edges, 23351 markings/sec, 450 secs
lola: 9626813 markings, 14538460 edges, 25606 markings/sec, 455 secs
lola: 9752076 markings, 14710406 edges, 25053 markings/sec, 460 secs
lola: 9879341 markings, 14884001 edges, 25453 markings/sec, 465 secs
lola: 10008260 markings, 15059535 edges, 25784 markings/sec, 470 secs
lola: 10128003 markings, 15222931 edges, 23949 markings/sec, 475 secs
lola: 10160832 markings, 15307204 edges, 6566 markings/sec, 480 secs
lola: 10206238 markings, 15411918 edges, 9081 markings/sec, 485 secs
lola: 10317678 markings, 15589418 edges, 22288 markings/sec, 490 secs
lola: 10423682 markings, 15762179 edges, 21201 markings/sec, 495 secs
lola: 10502327 markings, 15889460 edges, 15729 markings/sec, 500 secs
lola: 10625199 markings, 16057171 edges, 24574 markings/sec, 505 secs
lola: 10751759 markings, 16230118 edges, 25312 markings/sec, 510 secs
lola: 10880155 markings, 16404782 edges, 25679 markings/sec, 515 secs
lola: 11006318 markings, 16577840 edges, 25233 markings/sec, 520 secs
lola: 11134748 markings, 16753314 edges, 25686 markings/sec, 525 secs
lola: 11202671 markings, 16872662 edges, 13585 markings/sec, 530 secs
lola: 11226284 markings, 16954486 edges, 4723 markings/sec, 535 secs
lola: 11337074 markings, 17130873 edges, 22158 markings/sec, 540 secs
lola: 11448764 markings, 17308768 edges, 22338 markings/sec, 545 secs
lola: 11518443 markings, 17431788 edges, 13936 markings/sec, 550 secs
lola: 11624303 markings, 17576416 edges, 21172 markings/sec, 555 secs
lola: 11743118 markings, 17738721 edges, 23763 markings/sec, 560 secs
lola: 11870477 markings, 17911807 edges, 25472 markings/sec, 565 secs
lola: 11995139 markings, 18083011 edges, 24932 markings/sec, 570 secs
lola: 12122713 markings, 18257085 edges, 25515 markings/sec, 575 secs
lola: 12243964 markings, 18426225 edges, 24250 markings/sec, 580 secs
lola: 12246631 markings, 18484232 edges, 533 markings/sec, 585 secs
lola: 12330164 markings, 18630284 edges, 16707 markings/sec, 590 secs
lola: 12441648 markings, 18808107 edges, 22297 markings/sec, 595 secs
lola: 12509200 markings, 18935386 edges, 13510 markings/sec, 600 secs
lola: 12615464 markings, 19084820 edges, 21253 markings/sec, 605 secs
lola: 12739304 markings, 19253267 edges, 24768 markings/sec, 610 secs
lola: 12864878 markings, 19425370 edges, 25115 markings/sec, 615 secs
lola: 12993090 markings, 19599556 edges, 25642 markings/sec, 620 secs
lola: 13119246 markings, 19772490 edges, 25231 markings/sec, 625 secs
lola: 13246724 markings, 19946937 edges, 25496 markings/sec, 630 secs
lola: 13288080 markings, 20041212 edges, 8271 markings/sec, 635 secs
lola: 13324701 markings, 20132686 edges, 7324 markings/sec, 640 secs
lola: 13430359 markings, 20300696 edges, 21132 markings/sec, 645 secs
lola: 13542738 markings, 20479771 edges, 22476 markings/sec, 650 secs
lola: 13614172 markings, 20602243 edges, 14287 markings/sec, 655 secs
lola: 13732684 markings, 20764349 edges, 23702 markings/sec, 660 secs
lola: 13857844 markings, 20935882 edges, 25032 markings/sec, 665 secs
lola: 13983226 markings, 21107155 edges, 25076 markings/sec, 670 secs
lola: 14111156 markings, 21281468 edges, 25586 markings/sec, 675 secs
lola: 14231997 markings, 21446218 edges, 24168 markings/sec, 680 secs
lola: 14329270 markings, 21592579 edges, 19455 markings/sec, 685 secs
lola: 14331958 markings, 21650896 edges, 538 markings/sec, 690 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: memory consumption: 4274232 KB
lola: time consumption: 2168 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 14 will run for 701 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p... (shortened)
lola: processed formula length: 486
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 19 markings, 20 edges
lola: ========================================
lola: subprocess 15 will run for 1402 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + ... (shortened)
lola: processed formula length: 14529
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 1 markings, 0 edges
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: processed formula length: 99
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 202698 markings, 393532 edges, 40540 markings/sec, 0 secs
lola: 410175 markings, 804752 edges, 41495 markings/sec, 5 secs
lola: 613933 markings, 1212940 edges, 40752 markings/sec, 10 secs
lola: 815568 markings, 1617698 edges, 40327 markings/sec, 15 secs
lola: 1017578 markings, 2019700 edges, 40402 markings/sec, 20 secs
lola: 1221511 markings, 2414298 edges, 40787 markings/sec, 25 secs
lola: 1417694 markings, 2809942 edges, 39237 markings/sec, 30 secs
lola: 1614317 markings, 3206327 edges, 39325 markings/sec, 35 secs
lola: 1813257 markings, 3596101 edges, 39788 markings/sec, 40 secs
lola: 2009818 markings, 3985582 edges, 39312 markings/sec, 45 secs
lola: 2204191 markings, 4378218 edges, 38875 markings/sec, 50 secs
lola: 2403521 markings, 4764437 edges, 39866 markings/sec, 55 secs
lola: 2597411 markings, 5153644 edges, 38778 markings/sec, 60 secs
lola: 2791632 markings, 5545134 edges, 38844 markings/sec, 65 secs
lola: 2991290 markings, 5930238 edges, 39932 markings/sec, 70 secs
lola: 3168979 markings, 6328346 edges, 35538 markings/sec, 75 secs
lola: 3189513 markings, 6815798 edges, 4107 markings/sec, 80 secs
lola: 3317896 markings, 7228052 edges, 25677 markings/sec, 85 secs
lola: 3464000 markings, 7611003 edges, 29221 markings/sec, 90 secs
lola: 3603552 markings, 7975057 edges, 27910 markings/sec, 95 secs
lola: 3742873 markings, 8338543 edges, 27864 markings/sec, 100 secs
lola: 3889877 markings, 8720154 edges, 29401 markings/sec, 105 secs
lola: 4026589 markings, 9111826 edges, 27342 markings/sec, 110 secs
lola: 4193450 markings, 9513441 edges, 33372 markings/sec, 115 secs
lola: 4391290 markings, 9896126 edges, 39568 markings/sec, 120 secs
lola: 4581367 markings, 10281624 edges, 38015 markings/sec, 125 secs
lola: 4774804 markings, 10664990 edges, 38687 markings/sec, 130 secs
lola: 4968011 markings, 11046093 edges, 38641 markings/sec, 135 secs
lola: 5158523 markings, 11429974 edges, 38102 markings/sec, 140 secs
lola: 5353208 markings, 11808168 edges, 38937 markings/sec, 145 secs
lola: 5542063 markings, 12191646 edges, 37771 markings/sec, 150 secs
lola: 5737637 markings, 12570387 edges, 39115 markings/sec, 155 secs
lola: 5926817 markings, 12953010 edges, 37836 markings/sec, 160 secs
lola: 6118742 markings, 13335187 edges, 38385 markings/sec, 165 secs
lola: 6312673 markings, 13716217 edges, 38786 markings/sec, 170 secs
lola: 6503330 markings, 14102640 edges, 38131 markings/sec, 175 secs
lola: 6700211 markings, 14482213 edges, 39376 markings/sec, 180 secs
lola: 6891070 markings, 14868987 edges, 38172 markings/sec, 185 secs
lola: 7085016 markings, 15254549 edges, 38789 markings/sec, 190 secs
lola: 7206839 markings, 15658977 edges, 24365 markings/sec, 195 secs
lola: 7242026 markings, 16142495 edges, 7037 markings/sec, 200 secs
lola: 7388780 markings, 16523551 edges, 29351 markings/sec, 205 secs
lola: 7534253 markings, 16904090 edges, 29095 markings/sec, 210 secs
lola: 7679920 markings, 17283501 edges, 29133 markings/sec, 215 secs
lola: 7826693 markings, 17664568 edges, 29355 markings/sec, 220 secs
lola: 7973823 markings, 18049967 edges, 29426 markings/sec, 225 secs
lola: 8105774 markings, 18459798 edges, 26390 markings/sec, 230 secs
lola: 8285784 markings, 18826061 edges, 36002 markings/sec, 235 secs
lola: 8481604 markings, 19207318 edges, 39164 markings/sec, 240 secs
lola: 8670830 markings, 19587911 edges, 37845 markings/sec, 245 secs
lola: 8862041 markings, 19968572 edges, 38242 markings/sec, 250 secs
lola: 9053793 markings, 20346272 edges, 38350 markings/sec, 255 secs
lola: 9242990 markings, 20727095 edges, 37839 markings/sec, 260 secs
lola: 9435769 markings, 21103043 edges, 38556 markings/sec, 265 secs
lola: 9623343 markings, 21484291 edges, 37515 markings/sec, 270 secs
lola: 9817629 markings, 21859570 edges, 38857 markings/sec, 275 secs
lola: 10005240 markings, 22240900 edges, 37522 markings/sec, 280 secs
lola: 10199266 markings, 22618195 edges, 38805 markings/sec, 285 secs
lola: 10388080 markings, 22999082 edges, 37763 markings/sec, 290 secs
lola: 10579342 markings, 23379580 edges, 38252 markings/sec, 295 secs
lola: 10772516 markings, 23759930 edges, 38635 markings/sec, 300 secs
lola: 10963125 markings, 24144714 edges, 38122 markings/sec, 305 secs
lola: 11159365 markings, 24524786 edges, 39248 markings/sec, 310 secs
lola: 11242850 markings, 24945686 edges, 16697 markings/sec, 315 secs
lola: 11294006 markings, 25386457 edges, 10231 markings/sec, 320 secs
lola: 11430233 markings, 25742649 edges, 27245 markings/sec, 325 secs
lola: 11574949 markings, 26118860 edges, 28943 markings/sec, 330 secs
lola: 11719402 markings, 26494484 edges, 28891 markings/sec, 335 secs
lola: 11864682 markings, 26875479 edges, 29056 markings/sec, 340 secs
lola: 12012245 markings, 27258448 edges, 29513 markings/sec, 345 secs
lola: 12141987 markings, 27667874 edges, 25948 markings/sec, 350 secs
lola: 12316638 markings, 28017519 edges, 34930 markings/sec, 355 secs
lola: 12513214 markings, 28396576 edges, 39315 markings/sec, 360 secs
lola: 12701051 markings, 28778291 edges, 37567 markings/sec, 365 secs
lola: 12892492 markings, 29158275 edges, 38288 markings/sec, 370 secs
lola: 13083641 markings, 29536093 edges, 38230 markings/sec, 375 secs
lola: 13272914 markings, 29915547 edges, 37855 markings/sec, 380 secs
lola: 13464750 markings, 30291373 edges, 38367 markings/sec, 385 secs
lola: 13652850 markings, 30671719 edges, 37620 markings/sec, 390 secs
lola: 13843742 markings, 31043151 edges, 38178 markings/sec, 395 secs
lola: 14016831 markings, 31388073 edges, 34618 markings/sec, 400 secs
lola: 14196228 markings, 31750742 edges, 35879 markings/sec, 405 secs
lola: 14390839 markings, 32126623 edges, 38922 markings/sec, 410 secs
lola: 14579059 markings, 32508912 edges, 37644 markings/sec, 415 secs
lola: 14770380 markings, 32888086 edges, 38264 markings/sec, 420 secs
lola: 14962830 markings, 33268650 edges, 38490 markings/sec, 425 secs
lola: 15153577 markings, 33651861 edges, 38149 markings/sec, 430 secs
lola: 15271186 markings, 34048483 edges, 23522 markings/sec, 435 secs
lola: 15307228 markings, 34531976 edges, 7208 markings/sec, 440 secs
lola: 15452487 markings, 34909495 edges, 29052 markings/sec, 445 secs
lola: 15597305 markings, 35287486 edges, 28964 markings/sec, 450 secs
lola: 15742152 markings, 35665960 edges, 28969 markings/sec, 455 secs
lola: 15887917 markings, 36044671 edges, 29153 markings/sec, 460 secs
lola: 16034556 markings, 36427896 edges, 29328 markings/sec, 465 secs
lola: 16164792 markings, 36835827 edges, 26047 markings/sec, 470 secs
lola: 16332121 markings, 37174270 edges, 33466 markings/sec, 475 secs
lola: 16520033 markings, 37548018 edges, 37582 markings/sec, 480 secs
lola: 16710467 markings, 37926719 edges, 38087 markings/sec, 485 secs
lola: 16901646 markings, 38304197 edges, 38236 markings/sec, 490 secs
lola: 17090336 markings, 38682711 edges, 37738 markings/sec, 495 secs
lola: 17268294 markings, 39035385 edges, 35592 markings/sec, 500 secs
lola: 17458142 markings, 39403406 edges, 37970 markings/sec, 505 secs
lola: 17644256 markings, 39782083 edges, 37223 markings/sec, 510 secs
lola: 17834755 markings, 40158872 edges, 38100 markings/sec, 515 secs
lola: 18024503 markings, 40535981 edges, 37950 markings/sec, 520 secs
lola: 18214146 markings, 40913779 edges, 37929 markings/sec, 525 secs
lola: 18405358 markings, 41290864 edges, 38242 markings/sec, 530 secs
lola: 18594588 markings, 41671110 edges, 37846 markings/sec, 535 secs
lola: 18788048 markings, 42048797 edges, 38692 markings/sec, 540 secs
lola: 18977194 markings, 42432633 edges, 37829 markings/sec, 545 secs
lola: 19172834 markings, 42810159 edges, 39128 markings/sec, 550 secs
lola: 19301546 markings, 43201292 edges, 25742 markings/sec, 555 secs
lola: 19326314 markings, 43691359 edges, 4954 markings/sec, 560 secs
lola: 19470880 markings, 44067230 edges, 28913 markings/sec, 565 secs
lola: 19616178 markings, 44447115 edges, 29060 markings/sec, 570 secs
lola: 19761371 markings, 44825652 edges, 29039 markings/sec, 575 secs
lola: 19907541 markings, 45205309 edges, 29234 markings/sec, 580 secs
lola: 20054086 markings, 45589303 edges, 29309 markings/sec, 585 secs
lola: 20179256 markings, 46000020 edges, 25034 markings/sec, 590 secs
lola: 20351809 markings, 46339085 edges, 34511 markings/sec, 595 secs
lola: 20528476 markings, 46695238 edges, 35333 markings/sec, 600 secs
lola: 20719597 markings, 47072193 edges, 38224 markings/sec, 605 secs
lola: 20908238 markings, 47450975 edges, 37728 markings/sec, 610 secs
lola: 21099377 markings, 47825216 edges, 38228 markings/sec, 615 secs
lola: 21286524 markings, 48203263 edges, 37429 markings/sec, 620 secs
lola: 21469871 markings, 48562887 edges, 36669 markings/sec, 625 secs
lola: 21651627 markings, 48923032 edges, 36351 markings/sec, 630 secs
lola: 21838884 markings, 49297971 edges, 37451 markings/sec, 635 secs
lola: 22028284 markings, 49673228 edges, 37880 markings/sec, 640 secs
lola: 22217318 markings, 50048836 edges, 37807 markings/sec, 645 secs
lola: 22406391 markings, 50425133 edges, 37815 markings/sec, 650 secs
lola: 22596899 markings, 50801608 edges, 38102 markings/sec, 655 secs
lola: 22785824 markings, 51180087 edges, 37785 markings/sec, 660 secs
lola: 22978222 markings, 51557221 edges, 38480 markings/sec, 665 secs
lola: 23166886 markings, 51940061 edges, 37733 markings/sec, 670 secs
lola: 23330176 markings, 52312745 edges, 32658 markings/sec, 675 secs
lola: 23349866 markings, 52781139 edges, 3938 markings/sec, 680 secs
lola: 23471460 markings, 53179477 edges, 24319 markings/sec, 685 secs
lola: 23617167 markings, 53558028 edges, 29141 markings/sec, 690 secs
lola: 23761854 markings, 53937377 edges, 28937 markings/sec, 695 secs
lola: 23907571 markings, 54316234 edges, 29143 markings/sec, 700 secs
lola: 24054569 markings, 54697856 edges, 29400 markings/sec, 705 secs
lola: 24188179 markings, 55095074 edges, 26722 markings/sec, 710 secs
lola: 24344587 markings, 55459318 edges, 31282 markings/sec, 715 secs
lola: 24511242 markings, 55792324 edges, 33331 markings/sec, 720 secs
lola: 24701885 markings, 56165530 edges, 38129 markings/sec, 725 secs
lola: 24889159 markings, 56543756 edges, 37455 markings/sec, 730 secs
lola: 25080517 markings, 56916696 edges, 38272 markings/sec, 735 secs
lola: 25255939 markings, 57269159 edges, 35084 markings/sec, 740 secs
lola: 25427572 markings, 57615113 edges, 34327 markings/sec, 745 secs
lola: 25616783 markings, 57982049 edges, 37842 markings/sec, 750 secs
lola: 25801656 markings, 58356272 edges, 36975 markings/sec, 755 secs
lola: 25983752 markings, 58713837 edges, 36419 markings/sec, 760 secs
lola: 26171592 markings, 59089059 edges, 37568 markings/sec, 765 secs
lola: 26361298 markings, 59463187 edges, 37941 markings/sec, 770 secs
lola: 26549290 markings, 59839960 edges, 37598 markings/sec, 775 secs
lola: 26740497 markings, 60215271 edges, 38241 markings/sec, 780 secs
lola: 26928489 markings, 60594409 edges, 37598 markings/sec, 785 secs
lola: 27120897 markings, 60969430 edges, 38482 markings/sec, 790 secs
lola: 27308720 markings, 61351120 edges, 37565 markings/sec, 795 secs
lola: 27373256 markings, 61767431 edges, 12907 markings/sec, 800 secs
lola: 27444025 markings, 62218639 edges, 14154 markings/sec, 805 secs
lola: 27588827 markings, 62595069 edges, 28960 markings/sec, 810 secs
lola: 27734269 markings, 62973014 edges, 29088 markings/sec, 815 secs
lola: 27878943 markings, 63352604 edges, 28935 markings/sec, 820 secs
lola: 28025314 markings, 63732731 edges, 29274 markings/sec, 825 secs
lola: 28172534 markings, 64116870 edges, 29444 markings/sec, 830 secs
lola: 28309033 markings, 64513524 edges, 27300 markings/sec, 835 secs
lola: 28476967 markings, 64844912 edges, 33587 markings/sec, 840 secs
lola: 28645758 markings, 65187584 edges, 33758 markings/sec, 845 secs
lola: 28835185 markings, 65562048 edges, 37885 markings/sec, 850 secs
lola: 29023153 markings, 65937796 edges, 37594 markings/sec, 855 secs
lola: 29212331 markings, 66310742 edges, 37836 markings/sec, 860 secs
lola: 29399494 markings, 66685545 edges, 37433 markings/sec, 865 secs
lola: 29587829 markings, 67056738 edges, 37667 markings/sec, 870 secs
lola: 29774892 markings, 67431083 edges, 37413 markings/sec, 875 secs
lola: 29963534 markings, 67803030 edges, 37728 markings/sec, 880 secs
lola: 30150569 markings, 68177279 edges, 37407 markings/sec, 885 secs
lola: 30339306 markings, 68549435 edges, 37747 markings/sec, 890 secs
lola: 30526372 markings, 68923780 edges, 37413 markings/sec, 895 secs
lola: 30716279 markings, 69297882 edges, 37981 markings/sec, 900 secs
lola: 30904191 markings, 69674982 edges, 37582 markings/sec, 905 secs
lola: 31095706 markings, 70050355 edges, 38303 markings/sec, 910 secs
lola: 31283884 markings, 70430571 edges, 37636 markings/sec, 915 secs
lola: 31398852 markings, 70807402 edges, 22994 markings/sec, 920 secs
lola: 31426080 markings, 71280227 edges, 5446 markings/sec, 925 secs
lola: 31568675 markings, 71651449 edges, 28519 markings/sec, 930 secs
lola: 31713542 markings, 72031273 edges, 28973 markings/sec, 935 secs
lola: 31858501 markings, 72408286 edges, 28992 markings/sec, 940 secs
lola: 32004552 markings, 72787669 edges, 29210 markings/sec, 945 secs
lola: 32151045 markings, 73171550 edges, 29299 markings/sec, 950 secs
lola: 32276214 markings, 73581769 edges, 25034 markings/sec, 955 secs
lola: 32448011 markings, 73919587 edges, 34359 markings/sec, 960 secs
lola: 32617308 markings, 74253170 edges, 33859 markings/sec, 965 secs
lola: 32792214 markings, 74610750 edges, 34981 markings/sec, 970 secs
lola: 32983352 markings, 74983433 edges, 38228 markings/sec, 975 secs
lola: 33168929 markings, 75359360 edges, 37115 markings/sec, 980 secs
lola: 33358809 markings, 75729245 edges, 37976 markings/sec, 985 secs
lola: 33543941 markings, 76104018 edges, 37026 markings/sec, 990 secs
lola: 33732990 markings, 76473032 edges, 37810 markings/sec, 995 secs
lola: 33918170 markings, 76846819 edges, 37036 markings/sec, 1000 secs
lola: 34107218 markings, 77216882 edges, 37810 markings/sec, 1005 secs
lola: 34284717 markings, 77570977 edges, 35500 markings/sec, 1010 secs
lola: 34464112 markings, 77931798 edges, 35879 markings/sec, 1015 secs
lola: 34655743 markings, 78302669 edges, 38326 markings/sec, 1020 secs
lola: 34840357 markings, 78679021 edges, 36923 markings/sec, 1025 secs
lola: 35033418 markings, 79052229 edges, 38612 markings/sec, 1030 secs
lola: 35219260 markings, 79430605 edges, 37168 markings/sec, 1035 secs
lola: 35411843 markings, 79807964 edges, 38517 markings/sec, 1040 secs
lola: 35440071 markings, 80217672 edges, 5646 markings/sec, 1045 secs
lola: 35523115 markings, 80644372 edges, 16609 markings/sec, 1050 secs
lola: 35661423 markings, 81005460 edges, 27662 markings/sec, 1055 secs
lola: 35800784 markings, 81367825 edges, 27872 markings/sec, 1060 secs
lola: 35946116 markings, 81746730 edges, 29066 markings/sec, 1065 secs
lola: 36092886 markings, 82127814 edges, 29354 markings/sec, 1070 secs
lola: 36240346 markings, 82513969 edges, 29492 markings/sec, 1075 secs
lola: 36378225 markings, 82908981 edges, 27576 markings/sec, 1080 secs
lola: 36545218 markings, 83242349 edges, 33399 markings/sec, 1085 secs
lola: 36710466 markings, 83575869 edges, 33050 markings/sec, 1090 secs
lola: 36889792 markings, 83933237 edges, 35865 markings/sec, 1095 secs
lola: 37081856 markings, 84306813 edges, 38413 markings/sec, 1100 secs
lola: 37265370 markings, 84679313 edges, 36703 markings/sec, 1105 secs
lola: 37457287 markings, 85050588 edges, 38383 markings/sec, 1110 secs
lola: 37640211 markings, 85424109 edges, 36585 markings/sec, 1115 secs
lola: 37831553 markings, 85794498 edges, 38268 markings/sec, 1120 secs
lola: 38014265 markings, 86167703 edges, 36542 markings/sec, 1125 secs
lola: 38205466 markings, 86537844 edges, 38240 markings/sec, 1130 secs
lola: 38389331 markings, 86912928 edges, 36773 markings/sec, 1135 secs
lola: 38581084 markings, 87283937 edges, 38351 markings/sec, 1140 secs
lola: 38765393 markings, 87659774 edges, 36862 markings/sec, 1145 secs
lola: 38957938 markings, 88032189 edges, 38509 markings/sec, 1150 secs
lola: 39143059 markings, 88409370 edges, 37024 markings/sec, 1155 secs
lola: 39336356 markings, 88784168 edges, 38659 markings/sec, 1160 secs
lola: 39461309 markings, 89153704 edges, 24991 markings/sec, 1165 secs
lola: 39480765 markings, 89616115 edges, 3891 markings/sec, 1170 secs
lola: 39610652 markings, 89982632 edges, 25977 markings/sec, 1175 secs
lola: 39745837 markings, 90332913 edges, 27037 markings/sec, 1180 secs
lola: 39887249 markings, 90701338 edges, 28282 markings/sec, 1185 secs
lola: 40032370 markings, 91081968 edges, 29024 markings/sec, 1190 secs
lola: 40173550 markings, 91449841 edges, 28236 markings/sec, 1195 secs
lola: 40308434 markings, 91799419 edges, 26977 markings/sec, 1200 secs
lola: 40447121 markings, 92181082 edges, 27737 markings/sec, 1205 secs
lola: 40615383 markings, 92512966 edges, 33652 markings/sec, 1210 secs
lola: 40785735 markings, 92848344 edges, 34070 markings/sec, 1215 secs
lola: 40961252 markings, 93205235 edges, 35103 markings/sec, 1220 secs
lola: 41150560 markings, 93576526 edges, 37862 markings/sec, 1225 secs
lola: 41336629 markings, 93950721 edges, 37214 markings/sec, 1230 secs
lola: 41525106 markings, 94320890 edges, 37695 markings/sec, 1235 secs
lola: 41711206 markings, 94694339 edges, 37220 markings/sec, 1240 secs
lola: 41899128 markings, 95064325 edges, 37584 markings/sec, 1245 secs
lola: 42085353 markings, 95436949 edges, 37245 markings/sec, 1250 secs
lola: 42273217 markings, 95807961 edges, 37573 markings/sec, 1255 secs
lola: 42460024 markings, 96180810 edges, 37361 markings/sec, 1260 secs
lola: 42648175 markings, 96553019 edges, 37630 markings/sec, 1265 secs
lola: 42835535 markings, 96926614 edges, 37472 markings/sec, 1270 secs
lola: 43024336 markings, 97300064 edges, 37760 markings/sec, 1275 secs
lola: 43205538 markings, 97653545 edges, 36240 markings/sec, 1280 secs
lola: 43390845 markings, 98031014 edges, 37061 markings/sec, 1285 secs
lola: 43495458 markings, 98395857 edges, 20923 markings/sec, 1290 secs
lola: 43520098 markings, 98855503 edges, 4928 markings/sec, 1295 secs
lola: 43660949 markings, 99222612 edges, 28170 markings/sec, 1300 secs
lola: 43807207 markings, 99602476 edges, 29252 markings/sec, 1305 secs
lola: 43952214 markings, 99982863 edges, 29001 markings/sec, 1310 secs
lola: 44098618 markings, 100363057 edges, 29281 markings/sec, 1315 secs
lola: 44245602 markings, 100747526 edges, 29397 markings/sec, 1320 secs
lola: 44369827 markings, 101157968 edges, 24845 markings/sec, 1325 secs
lola: 44540404 markings, 101493684 edges, 34115 markings/sec, 1330 secs
lola: 44709064 markings, 101826290 edges, 33732 markings/sec, 1335 secs
lola: 44877811 markings, 102163223 edges, 33749 markings/sec, 1340 secs
lola: 45053400 markings, 102520345 edges, 35118 markings/sec, 1345 secs
lola: 45244254 markings, 102889902 edges, 38171 markings/sec, 1350 secs
lola: 45427515 markings, 103263928 edges, 36652 markings/sec, 1355 secs
lola: 45617001 markings, 103631245 edges, 37897 markings/sec, 1360 secs
lola: 45801294 markings, 104004602 edges, 36859 markings/sec, 1365 secs
lola: 45989460 markings, 104372147 edges, 37633 markings/sec, 1370 secs
lola: 46174478 markings, 104744967 edges, 37004 markings/sec, 1375 secs
lola: 46362691 markings, 105114261 edges, 37643 markings/sec, 1380 secs
lola: 46548433 markings, 105487148 edges, 37148 markings/sec, 1385 secs
lola: 46736917 markings, 105858112 edges, 37697 markings/sec, 1390 secs
lola: 46902357 markings, 106185305 edges, 33088 markings/sec, 1395 secs
lola: time limit reached - aborting
lola:
preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
lola: lola: caught signal User defined signal 1 - aborting LoLA

preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
lola:
preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
lola: memory consumption: 10485756 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
rslt: finished

BK_STOP 1590279217638

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PolyORBNT-COL-S10J60"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is PolyORBNT-COL-S10J60, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r135-tajo-158961409000155"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/PolyORBNT-COL-S10J60.tgz
mv PolyORBNT-COL-S10J60 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;