About the Execution of 2019-Gold for PolyORBNT-COL-S10J60
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
10483.300 | 3570262.00 | 3709829.00 | 504.90 | FF?FFT?TF?FFTTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/mnt/tpsp/fkordon/mcc2020-input.r135-tajo-158961409000155.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2020-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is PolyORBNT-COL-S10J60, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r135-tajo-158961409000155
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 264K
-rw-r--r-- 1 mcc users 3.7K Apr 12 06:42 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 12 06:37 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Apr 11 07:33 CTLFireability.txt
-rw-r--r-- 1 mcc users 19K Apr 11 07:28 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 24 05:37 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.2K Mar 24 05:37 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.8K Apr 14 12:46 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Apr 28 14:02 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Apr 14 12:46 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K Apr 28 14:02 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Apr 10 13:38 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 10 13:33 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.6K Apr 9 19:57 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 12K Apr 9 19:53 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Apr 10 22:24 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Apr 10 22:24 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 24 05:37 instance
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 iscolored
-rw-r--r-- 1 mcc users 94K Mar 24 05:37 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PolyORBNT-COL-S10J60-00
FORMULA_NAME PolyORBNT-COL-S10J60-01
FORMULA_NAME PolyORBNT-COL-S10J60-02
FORMULA_NAME PolyORBNT-COL-S10J60-03
FORMULA_NAME PolyORBNT-COL-S10J60-04
FORMULA_NAME PolyORBNT-COL-S10J60-05
FORMULA_NAME PolyORBNT-COL-S10J60-06
FORMULA_NAME PolyORBNT-COL-S10J60-07
FORMULA_NAME PolyORBNT-COL-S10J60-08
FORMULA_NAME PolyORBNT-COL-S10J60-09
FORMULA_NAME PolyORBNT-COL-S10J60-10
FORMULA_NAME PolyORBNT-COL-S10J60-11
FORMULA_NAME PolyORBNT-COL-S10J60-12
FORMULA_NAME PolyORBNT-COL-S10J60-13
FORMULA_NAME PolyORBNT-COL-S10J60-14
FORMULA_NAME PolyORBNT-COL-S10J60-15
=== Now, execution of the tool begins
BK_START 1590275647376
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ PolyORBNT-COL-S10J60 @ 3570 seconds
FORMULA PolyORBNT-COL-S10J60-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-08 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA PolyORBNT-COL-S10J60-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 0
rslt: Output for LTLCardinality @ PolyORBNT-COL-S10J60
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat May 23 23:14:07 2020
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 210
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 224
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 240
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 258
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 280
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 305
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 305
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 11,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 11,
"visible_transitions": 0
},
"processed": "A (G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))",
"processed_size": 85,
"rewrites": 100
},
"result":
{
"edges": 18,
"markings": 19,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 336
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X (G ((3 <= p136))))",
"processed_size": 23,
"rewrites": 98
},
"result":
{
"edges": 1812,
"markings": 471,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 373
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 1,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 4,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 67,
"taut": 0,
"tconj": 1,
"tdisj": 1,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 65,
"visible_transitions": 0
},
"processed": "A ((((p620 + 1 <= p603) U G (((2 <= p122) AND (p603 <= p620)))) OR X ((p125 <= p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515))))",
"processed_size": 507,
"rewrites": 98
},
"result":
{
"edges": 33,
"markings": 34,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 8
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 420
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 420
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 2,
"visible_transitions": 0
},
"processed": "A (G ((p517 + 1 <= p388)))",
"processed_size": 26,
"rewrites": 100
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 480
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 3,
"G": 3,
"U": 1,
"X": 7,
"aconj": 0,
"adisj": 0,
"aneg": 8,
"comp": 10,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 137,
"taut": 0,
"tconj": 3,
"tdisj": 3,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 65,
"visible_transitions": 0
},
"processed": "A (((X (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + 1 <= p519)) OR X (G ((p622 + 1 <= p391))))))) OR (G ((p391 <= p622)) AND X (F (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + 1 <= p519)) OR X (G ((p622 + 1 <= p391)))))))))) U X ((1 <= p265))))",
"processed_size": 1105,
"rewrites": 98
},
"result":
{
"edges": 19,
"markings": 19,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 45
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 560
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 2,
"visible_transitions": 0
},
"processed": "A (G ((p390 + 1 <= p516)))",
"processed_size": 26,
"rewrites": 100
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space",
"value": false
},
"task":
{
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 701
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 2,
"G": 1,
"U": 0,
"X": 0,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 3,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 64,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 64,
"visible_transitions": 0
},
"processed": "A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387))))))",
"processed_size": 486,
"rewrites": 98
},
"result":
{
"edges": 20,
"markings": 19,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1402
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 2,
"U": 1,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 6,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1957,
"taut": 0,
"tconj": 1,
"tdisj": 3,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 734,
"visible_transitions": 0
},
"processed": "A (((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10) OR (((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) AND G ((3 <= p389))) OR (((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) U G ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618))) OR F ((p389 <= 2))))))",
"processed_size": 14529,
"rewrites": 98
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 8
},
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 10485756,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "A(G(**)) : FALSE : A(F((** AND F((G(*) OR G(**)))))) : (A(G(*)) AND (A(X(X(**))) AND A(X(G(**))))) : A(X(G(**))) : A((** OR ((** AND G(**)) OR ((** U G(**)) OR F(**))))) : A((F(**) OR (F(**) AND F(G(*))))) : TRUE : A(F(G((** AND F(**))))) : A(F(((** U **) AND F(G((F(**) OR X(**))))))) : (A((X(G(**)) U G(**))) AND A(G(**))) : FALSE : A(((** U G((** AND **))) OR X(*))) : TRUE : A(((X((* R (X(*) AND (F(*) OR X(G(*)))))) OR (G(**) AND X(F((* R (X(*) AND (F(*) OR X(G(*))))))))) U X(**))) : TRUE"
},
"net":
{
"arcs": 116999,
"conflict_clusters": 264,
"places": 1294,
"places_significant": 1142,
"singleton_clusters": 0,
"transitions": 12980
},
"result":
{
"interim_value": "no no unknown no no yes unknown yes no unknown no no yes yes no yes ",
"preliminary_value": "no no unknown no no yes unknown yes no unknown no no yes yes no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 1294, Transitions: 12980
lola: @ trans MustCheck
lola: @ trans trans_488
lola: @ trans DummyOR1
lola: @ trans NoJob
lola: @ trans fo2
lola: @ trans fo3
lola: @ trans LeaveCSTCS
lola: @ trans trans_508
lola: @ trans trans_509
lola: @ trans fi1
lola: @ trans GoCheckSource
lola: @ trans trans_478
lola: @ trans trans_486
lola: @ trans trans_534
lola: @ trans trans_459
lola: @ trans trans_533
lola: @ trans fi2
lola: @ trans trans_511
lola: @ trans trans_487
lola: @ trans fo1
lola: @ trans DummyOR2
lola: @ trans trans_457
lola: @ trans WillPerformWork
lola: @ trans trans_510
lola: @ trans fi3
lola: @ trans EnterCSTCS
lola: @ trans trans_461
lola: @ trans GoPerformWork
lola: @ trans trans_489
lola: @ trans Run
lola: @ trans JobExist
lola: @ trans trans_689
lola: @ trans IsEvt
lola: @ trans trans_376
lola: @ trans trans_685
lola: @ trans trans_463
lola: @ trans NotifyEventEndOfCheckSources
lola: @ trans trans_776
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 14274/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 41408
lola: finding significant places
lola: 1294 places, 12980 transitions, 1142 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (2 <= p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591)
lola: LP says that atomic proposition is always false: (3 <= p617)
lola: LP says that atomic proposition is always false: (2 <= p622)
lola: A (G ((p390 + 1 <= p516))) : A (G (F (((((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10) U (1 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326)) U ((0 <= p139) OR F ((0 <= p137)))) AND F (NOT(X ((0 <= p137)))))))) : A (F (((p264 + 1 <= p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202) AND F (NOT((F ((2 <= p389)) AND NOT(G ((p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 <= p264))))))))) : A (NOT((F ((p388 <= p517)) OR X (NOT((X ((p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 <= p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591)) AND G ((1 <= p519)))))))) : A (X (G ((3 <= p136)))) : A (((((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10) OR ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) AND G ((3 <= p389)))) OR ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618) U G ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p618)))) OR F ((p389 <= 2)))) : A (((F (NOT(F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326)))) OR (X ((p137 <= p518)) AND G ((2 <= p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591)))) U F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326)))) : A (F ((F (NOT(F (X ((0 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326))))) U (p617 <= 2)))) : A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387)))))) : A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618)))))))) : A (((G (X ((p602 <= p139))) U G ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p47 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p519))) AND G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))) : A (X (((p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 <= 2) U G ((p138 + 1 <= 0))))) : A ((((p620 + 1 <= p603) U (G ((2 <= p122)) AND G ((p603 <= p620)))) OR NOT(X ((p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + 1 <= p125))))) : A (((G ((0 <= p615)) OR G ((1 <= p140))) OR NOT((G ((3 <= p123)) OR G ((p621 <= p264)))))) : A (((G ((p391 <= p622)) U X (NOT(((1 <= p265) U (G ((p519 <= p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263)) U X ((p391 <= p622))))))) U X ((1 <= p265)))) : A ((G (F ((p1282 + p1281 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1274 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1266 + p1265 + p1264 + p1262 + p1261 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1252 + p1251 + p1250 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p1249 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p1248 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p1247 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p1246 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p1245 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p1244 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p1242 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p1241 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p1240 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p1239 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p1238 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p1237 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p1236 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p1235 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p1234 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p1232 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p1231 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p1230 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p1229 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p1228 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p1227 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1226 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1225 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1224 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1222 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1221 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1220 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1219 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1218 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1217 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p900 + p901 + p902 + p1216 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p1215 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p1214 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p1212 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p1211 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p1210 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p1209 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p1208 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p1207 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p1206 + p994 + p995 + p996 + p997 + p998 + p1205 + p1204 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1192 + p1191 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1182 + p1181 + p1180 + p1179 + p1178 + p1177 + p1176 + p1175 + p1174 + p1172 + p1171 + p1170 + p1169 + p1168 + p1167 + p1166 + p1165 + p1164 + p1162 + p1161 + p1160 + p1159 + p1158 + p1157 + p1156 + p1155 + p1154 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1100 + p1101 + p1102 + p1146 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1145 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1144 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1142 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1133 + p1143 + p1123 + p1113 + p1103 + p1153 + p1163 + p1173 + p1183 + p1193 + p1203 + p999 + p993 + p983 + p973 + p963 + p953 + p943 + p933 + p1213 + p923 + p913 + p903 + p1093 + p1083 + p1073 + p1063 + p1053 + p1043 + p1223 + p1033 + p1023 + p1013 + p893 + p883 + p873 + p863 + p853 + p843 + p1233 + p833 + p823 + p813 + p803 + p793 + p783 + p773 + p763 + p753 + p1243 + p743 + p733 + p723 + p713 + p703 + p693 + p1253 + p1263 + p1273 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 <= p141))) OR F (())))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:551
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:428
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:338
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:123
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 210 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 224 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 240 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 258 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 280 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 305 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A ((X (G ((p602 <= p139))) U G ((p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 5 will run for 305 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((p619 <= p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135)))
lola: processed formula length: 85
lola: 100 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + 1 <= p619)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 19 markings, 18 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 6 will run for 336 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((3 <= p136))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((3 <= p136))))
lola: processed formula length: 23
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 471 markings, 1812 edges
lola: ========================================
lola: subprocess 7 will run for 373 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((p620 + 1 <= p603) U G (((2 <= p122) AND (p603 <= p620)))) OR X ((p125 <= p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((p620 + 1 <= p603) U G (((2 <= p122) AND (p603 <= p620)))) OR X ((p125 <= p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 +... (shortened)
lola: processed formula length: 507
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 34 markings, 33 edges
lola: ========================================
lola: subprocess 8 will run for 420 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (G ((p517 + 1 <= p388))) AND (A (X (X ((p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 8 will run for 420 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p517 + 1 <= p388)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:788
lola: processed formula: A (G ((p517 + 1 <= p388)))
lola: processed formula length: 26
lola: 100 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:788
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (p388 <= p517)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 9 will run for 480 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (((X (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((X (((p265 <= 0) R (X ((p622 + 1 <= p391)) AND (F ((p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p... (shortened)
lola: processed formula length: 1105
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 45 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 19 markings, 19 edges
lola: ========================================
lola: subprocess 10 will run for 560 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: processed formula length: 99
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 195024 markings, 377479 edges, 39005 markings/sec, 0 secs
lola: 401266 markings, 789857 edges, 41248 markings/sec, 5 secs
lola: 604774 markings, 1197669 edges, 40702 markings/sec, 10 secs
lola: 807605 markings, 1604355 edges, 40566 markings/sec, 15 secs
lola: 1010908 markings, 2004099 edges, 40661 markings/sec, 20 secs
lola: 1213529 markings, 2401024 edges, 40524 markings/sec, 25 secs
lola: 1410662 markings, 2798217 edges, 39427 markings/sec, 30 secs
lola: 1608745 markings, 3194190 edges, 39617 markings/sec, 35 secs
lola: 1809321 markings, 3582821 edges, 40115 markings/sec, 40 secs
lola: 2003426 markings, 3974927 edges, 38821 markings/sec, 45 secs
lola: 2199120 markings, 4366857 edges, 39139 markings/sec, 50 secs
lola: 2381220 markings, 4724676 edges, 36420 markings/sec, 55 secs
lola: 2564754 markings, 5088398 edges, 36707 markings/sec, 60 secs
lola: 2747100 markings, 5454601 edges, 36469 markings/sec, 65 secs
lola: 2933895 markings, 5817461 edges, 37359 markings/sec, 70 secs
lola: 3115182 markings, 6188242 edges, 36257 markings/sec, 75 secs
lola: 3178555 markings, 6556083 edges, 12675 markings/sec, 80 secs
lola: 3225729 markings, 6989714 edges, 9435 markings/sec, 85 secs
lola: 3356404 markings, 7329325 edges, 26135 markings/sec, 90 secs
lola: 3485583 markings, 7665436 edges, 25836 markings/sec, 95 secs
lola: 3613531 markings, 8000033 edges, 25590 markings/sec, 100 secs
lola: 3738786 markings, 8325421 edges, 25051 markings/sec, 105 secs
lola: 3885697 markings, 8710300 edges, 29382 markings/sec, 110 secs
lola: 4025916 markings, 9102797 edges, 28044 markings/sec, 115 secs
lola: 4182022 markings, 9486683 edges, 31221 markings/sec, 120 secs
lola: 4361124 markings, 9845895 edges, 35820 markings/sec, 125 secs
lola: 4557054 markings, 10230719 edges, 39186 markings/sec, 130 secs
lola: 4750130 markings, 10614345 edges, 38615 markings/sec, 135 secs
lola: 4942090 markings, 10999463 edges, 38392 markings/sec, 140 secs
lola: 5137099 markings, 11379360 edges, 39002 markings/sec, 145 secs
lola: 5326519 markings, 11763782 edges, 37884 markings/sec, 150 secs
lola: 5522907 markings, 12142983 edges, 39278 markings/sec, 155 secs
lola: 5712308 markings, 12526855 edges, 37880 markings/sec, 160 secs
lola: 5904597 markings, 12910032 edges, 38458 markings/sec, 165 secs
lola: 6098750 markings, 13291027 edges, 38831 markings/sec, 170 secs
lola: 6289193 markings, 13677127 edges, 38089 markings/sec, 175 secs
lola: 6486438 markings, 14057301 edges, 39449 markings/sec, 180 secs
lola: 6677293 markings, 14444007 edges, 38171 markings/sec, 185 secs
lola: 6869254 markings, 14825601 edges, 38392 markings/sec, 190 secs
lola: 7055955 markings, 15195224 edges, 37340 markings/sec, 195 secs
lola: 7200887 markings, 15515313 edges, 28986 markings/sec, 200 secs
lola: 7214124 markings, 15832363 edges, 2647 markings/sec, 205 secs
lola: 7276656 markings, 16231172 edges, 12506 markings/sec, 210 secs
lola: 7404905 markings, 16565082 edges, 25650 markings/sec, 215 secs
lola: 7531966 markings, 16896163 edges, 25412 markings/sec, 220 secs
lola: 7658725 markings, 17226539 edges, 25352 markings/sec, 225 secs
lola: 7786283 markings, 17559642 edges, 25512 markings/sec, 230 secs
lola: 7915131 markings, 17897565 edges, 25770 markings/sec, 235 secs
lola: 8041050 markings, 18225239 edges, 25184 markings/sec, 240 secs
lola: 8177469 markings, 18611154 edges, 27284 markings/sec, 245 secs
lola: 8374249 markings, 18994394 edges, 39356 markings/sec, 250 secs
lola: 8565216 markings, 19377510 edges, 38193 markings/sec, 255 secs
lola: 8757105 markings, 19760969 edges, 38378 markings/sec, 260 secs
lola: 8950425 markings, 20139713 edges, 38664 markings/sec, 265 secs
lola: 9139086 markings, 20522785 edges, 37732 markings/sec, 270 secs
lola: 9334341 markings, 20899623 edges, 39051 markings/sec, 275 secs
lola: 9522327 markings, 21281598 edges, 37597 markings/sec, 280 secs
lola: 9716074 markings, 21658353 edges, 38749 markings/sec, 285 secs
lola: 9904726 markings, 22039086 edges, 37730 markings/sec, 290 secs
lola: 10095469 markings, 22418159 edges, 38149 markings/sec, 295 secs
lola: 10288111 markings, 22798208 edges, 38528 markings/sec, 300 secs
lola: 10478789 markings, 23182222 edges, 38136 markings/sec, 305 secs
lola: 10674069 markings, 23561525 edges, 39056 markings/sec, 310 secs
lola: 10864344 markings, 23947306 edges, 38055 markings/sec, 315 secs
lola: 11058588 markings, 24330152 edges, 38849 markings/sec, 320 secs
lola: 11233174 markings, 24715868 edges, 34917 markings/sec, 325 secs
lola: 11253713 markings, 25203702 edges, 4108 markings/sec, 330 secs
lola: 11380048 markings, 25610347 edges, 25267 markings/sec, 335 secs
lola: 11526007 markings, 25992968 edges, 29192 markings/sec, 340 secs
lola: 11672165 markings, 26372585 edges, 29232 markings/sec, 345 secs
lola: 11818608 markings, 26754509 edges, 29289 markings/sec, 350 secs
lola: 11965989 markings, 27138859 edges, 29476 markings/sec, 355 secs
lola: 12094097 markings, 27545112 edges, 25622 markings/sec, 360 secs
lola: 12242312 markings, 27859334 edges, 29643 markings/sec, 365 secs
lola: 12426915 markings, 28235608 edges, 36921 markings/sec, 370 secs
lola: 12621224 markings, 28616815 edges, 38862 markings/sec, 375 secs
lola: 12811879 markings, 28997329 edges, 38131 markings/sec, 380 secs
lola: 13003031 markings, 29378954 edges, 38230 markings/sec, 385 secs
lola: 13195621 markings, 29757001 edges, 38518 markings/sec, 390 secs
lola: 13384577 markings, 30138873 edges, 37791 markings/sec, 395 secs
lola: 13578150 markings, 30514704 edges, 38715 markings/sec, 400 secs
lola: 13765686 markings, 30895928 edges, 37507 markings/sec, 405 secs
lola: 13960325 markings, 31271759 edges, 38928 markings/sec, 410 secs
lola: 14147829 markings, 31652969 edges, 37501 markings/sec, 415 secs
lola: 14339431 markings, 32031542 edges, 38320 markings/sec, 420 secs
lola: 14530537 markings, 32410875 edges, 38221 markings/sec, 425 secs
lola: 14721587 markings, 32792891 edges, 38210 markings/sec, 430 secs
lola: 14916004 markings, 33173442 edges, 38883 markings/sec, 435 secs
lola: 15106206 markings, 33559110 edges, 38040 markings/sec, 440 secs
lola: 15266243 markings, 33932514 edges, 32007 markings/sec, 445 secs
lola: 15284954 markings, 34377531 edges, 3742 markings/sec, 450 secs
lola: 15402598 markings, 34781339 edges, 23529 markings/sec, 455 secs
lola: 15548353 markings, 35160032 edges, 29151 markings/sec, 460 secs
lola: 15694115 markings, 35538713 edges, 29152 markings/sec, 465 secs
lola: 15839520 markings, 35920048 edges, 29081 markings/sec, 470 secs
lola: 15986961 markings, 36302687 edges, 29488 markings/sec, 475 secs
lola: 16123324 markings, 36698963 edges, 27273 markings/sec, 480 secs
lola: 16264893 markings, 37036967 edges, 28314 markings/sec, 485 secs
lola: 16412462 markings, 37334413 edges, 29514 markings/sec, 490 secs
lola: 16602939 markings, 37713067 edges, 38095 markings/sec, 495 secs
lola: 16793335 markings, 38089305 edges, 38079 markings/sec, 500 secs
lola: 16982089 markings, 38467371 edges, 37751 markings/sec, 505 secs
lola: 17171838 markings, 38840250 edges, 37950 markings/sec, 510 secs
lola: 17350971 markings, 39193665 edges, 35827 markings/sec, 515 secs
lola: 17537059 markings, 39569081 edges, 37218 markings/sec, 520 secs
lola: 17726901 markings, 39943068 edges, 37968 markings/sec, 525 secs
lola: 17914107 markings, 40317618 edges, 37441 markings/sec, 530 secs
lola: 18103989 markings, 40693960 edges, 37976 markings/sec, 535 secs
lola: 18294045 markings, 41070983 edges, 38011 markings/sec, 540 secs
lola: 18483430 markings, 41448973 edges, 37877 markings/sec, 545 secs
lola: 18674735 markings, 41825585 edges, 38261 markings/sec, 550 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: memory consumption: 4498564 KB
lola: time consumption: 768 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 560 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((p390 + 1 <= p516)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((p390 + 1 <= p516)))
lola: processed formula length: 26
lola: 100 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (p516 <= p390)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: subprocess 12 will run for 700 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p3... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((2 <= p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p3... (shortened)
lola: processed formula length: 1326
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: ========================================
lola: 7087 markings, 9258 edges, 1417 markings/sec, 0 secs
lola: 14707 markings, 19447 edges, 1524 markings/sec, 5 secs
lola: 21989 markings, 29225 edges, 1456 markings/sec, 10 secs
lola: 29120 markings, 38019 edges, 1426 markings/sec, 15 secs
lola: 36790 markings, 48272 edges, 1534 markings/sec, 20 secs
lola: 44221 markings, 58234 edges, 1486 markings/sec, 25 secs
lola: 51307 markings, 67766 edges, 1417 markings/sec, 30 secs
lola: 58628 markings, 76797 edges, 1464 markings/sec, 35 secs
lola: 66206 markings, 86936 edges, 1516 markings/sec, 40 secs
lola: 73500 markings, 96729 edges, 1459 markings/sec, 45 secs
lola: 80459 markings, 106119 edges, 1392 markings/sec, 50 secs
lola: 87988 markings, 115389 edges, 1506 markings/sec, 55 secs
lola: 95425 markings, 125358 edges, 1487 markings/sec, 60 secs
lola: 102535 markings, 134918 edges, 1422 markings/sec, 65 secs
lola: 109602 markings, 143640 edges, 1413 markings/sec, 70 secs
lola: 117165 markings, 153760 edges, 1513 markings/sec, 75 secs
lola: 124454 markings, 163541 edges, 1458 markings/sec, 80 secs
lola: 131372 markings, 172870 edges, 1384 markings/sec, 85 secs
lola: 138741 markings, 181959 edges, 1474 markings/sec, 90 secs
lola: 146173 markings, 191917 edges, 1486 markings/sec, 95 secs
lola: 153279 markings, 201478 edges, 1421 markings/sec, 100 secs
lola: 160207 markings, 210021 edges, 1386 markings/sec, 105 secs
lola: 167734 markings, 220099 edges, 1505 markings/sec, 110 secs
lola: 174993 markings, 229848 edges, 1452 markings/sec, 115 secs
lola: 181876 markings, 239131 edges, 1377 markings/sec, 120 secs
lola: 189179 markings, 248137 edges, 1461 markings/sec, 125 secs
lola: 196551 markings, 258024 edges, 1474 markings/sec, 130 secs
lola: 202974 markings, 266740 edges, 1285 markings/sec, 135 secs
lola: 209642 markings, 274966 edges, 1334 markings/sec, 140 secs
lola: 217044 markings, 284888 edges, 1480 markings/sec, 145 secs
lola: 224111 markings, 294396 edges, 1413 markings/sec, 150 secs
lola: 230891 markings, 303589 edges, 1356 markings/sec, 155 secs
lola: 238376 markings, 312788 edges, 1497 markings/sec, 160 secs
lola: 245583 markings, 322472 edges, 1441 markings/sec, 165 secs
lola: 252392 markings, 331659 edges, 1362 markings/sec, 170 secs
lola: 259251 markings, 340120 edges, 1372 markings/sec, 175 secs
lola: 266187 markings, 349471 edges, 1387 markings/sec, 180 secs
lola: 273063 markings, 358744 edges, 1375 markings/sec, 185 secs
lola: 280153 markings, 367488 edges, 1418 markings/sec, 190 secs
lola: 287489 markings, 377330 edges, 1467 markings/sec, 195 secs
lola: 294515 markings, 386790 edges, 1405 markings/sec, 200 secs
lola: 301241 markings, 395893 edges, 1345 markings/sec, 205 secs
lola: 308698 markings, 405078 edges, 1491 markings/sec, 210 secs
lola: 315843 markings, 414686 edges, 1429 markings/sec, 215 secs
lola: 322598 markings, 423809 edges, 1351 markings/sec, 220 secs
lola: 329842 markings, 432745 edges, 1449 markings/sec, 225 secs
lola: 337082 markings, 442470 edges, 1448 markings/sec, 230 secs
lola: 343992 markings, 451785 edges, 1382 markings/sec, 235 secs
lola: 350914 markings, 460323 edges, 1384 markings/sec, 240 secs
lola: 358244 markings, 470156 edges, 1466 markings/sec, 245 secs
lola: 365264 markings, 479608 edges, 1404 markings/sec, 250 secs
lola: 371866 markings, 488548 edges, 1320 markings/sec, 255 secs
lola: 379334 markings, 497756 edges, 1494 markings/sec, 260 secs
lola: 385999 markings, 506771 edges, 1333 markings/sec, 265 secs
lola: 392333 markings, 515377 edges, 1267 markings/sec, 270 secs
lola: 399681 markings, 524441 edges, 1470 markings/sec, 275 secs
lola: 406826 markings, 534049 edges, 1429 markings/sec, 280 secs
lola: 412934 markings, 542373 edges, 1222 markings/sec, 285 secs
lola: 420181 markings, 551316 edges, 1449 markings/sec, 290 secs
lola: 427381 markings, 560991 edges, 1440 markings/sec, 295 secs
lola: 434191 markings, 570179 edges, 1362 markings/sec, 300 secs
lola: 441136 markings, 578748 edges, 1389 markings/sec, 305 secs
lola: 448419 markings, 588523 edges, 1457 markings/sec, 310 secs
lola: 455361 markings, 597880 edges, 1388 markings/sec, 315 secs
lola: 461850 markings, 606678 edges, 1298 markings/sec, 320 secs
lola: 469404 markings, 615995 edges, 1511 markings/sec, 325 secs
lola: 476463 markings, 625494 edges, 1412 markings/sec, 330 secs
lola: 483119 markings, 634498 edges, 1331 markings/sec, 335 secs
lola: 490369 markings, 643439 edges, 1450 markings/sec, 340 secs
lola: 497535 markings, 653072 edges, 1433 markings/sec, 345 secs
lola: 504328 markings, 662246 edges, 1359 markings/sec, 350 secs
lola: 511310 markings, 670857 edges, 1396 markings/sec, 355 secs
lola: 518538 markings, 680567 edges, 1446 markings/sec, 360 secs
lola: 525460 markings, 689896 edges, 1384 markings/sec, 365 secs
lola: 532062 markings, 698842 edges, 1320 markings/sec, 370 secs
lola: 539521 markings, 708033 edges, 1492 markings/sec, 375 secs
lola: 546550 markings, 717496 edges, 1406 markings/sec, 380 secs
lola: 553167 markings, 726453 edges, 1323 markings/sec, 385 secs
lola: 560474 markings, 735464 edges, 1461 markings/sec, 390 secs
lola: 567592 markings, 745038 edges, 1424 markings/sec, 395 secs
lola: 573914 markings, 753630 edges, 1264 markings/sec, 400 secs
lola: 580916 markings, 762268 edges, 1400 markings/sec, 405 secs
lola: 588100 markings, 771922 edges, 1437 markings/sec, 410 secs
lola: 594880 markings, 781374 edges, 1356 markings/sec, 415 secs
lola: 603051 markings, 795817 edges, 1634 markings/sec, 420 secs
lola: 611226 markings, 810266 edges, 1635 markings/sec, 425 secs
lola: 619413 markings, 824731 edges, 1637 markings/sec, 430 secs
lola: 627601 markings, 839198 edges, 1638 markings/sec, 435 secs
lola: 635797 markings, 853675 edges, 1639 markings/sec, 440 secs
lola: 644002 markings, 868164 edges, 1641 markings/sec, 445 secs
lola: 651855 markings, 882179 edges, 1571 markings/sec, 450 secs
lola: 659837 markings, 896368 edges, 1596 markings/sec, 455 secs
lola: 668055 markings, 910875 edges, 1644 markings/sec, 460 secs
lola: 676288 markings, 925402 edges, 1647 markings/sec, 465 secs
lola: 684524 markings, 939933 edges, 1647 markings/sec, 470 secs
lola: 692766 markings, 954472 edges, 1648 markings/sec, 475 secs
lola: 701009 markings, 969013 edges, 1649 markings/sec, 480 secs
lola: 709260 markings, 983564 edges, 1650 markings/sec, 485 secs
lola: 717515 markings, 998121 edges, 1651 markings/sec, 490 secs
lola: 725264 markings, 1011996 edges, 1550 markings/sec, 495 secs
lola: 733319 markings, 1026283 edges, 1611 markings/sec, 500 secs
lola: 741570 markings, 1040834 edges, 1650 markings/sec, 505 secs
lola: 749843 markings, 1055415 edges, 1655 markings/sec, 510 secs
lola: 757892 markings, 1068423 edges, 1610 markings/sec, 515 secs
lola: 765174 markings, 1078201 edges, 1456 markings/sec, 520 secs
lola: 772296 markings, 1086984 edges, 1424 markings/sec, 525 secs
lola: 779999 markings, 1097279 edges, 1541 markings/sec, 530 secs
lola: 787415 markings, 1107221 edges, 1483 markings/sec, 535 secs
lola: 794495 markings, 1116745 edges, 1416 markings/sec, 540 secs
lola: 801804 markings, 1125762 edges, 1462 markings/sec, 545 secs
lola: 809373 markings, 1135890 edges, 1514 markings/sec, 550 secs
lola: 816664 markings, 1145679 edges, 1458 markings/sec, 555 secs
lola: 823554 markings, 1155001 edges, 1378 markings/sec, 560 secs
lola: 831152 markings, 1164339 edges, 1520 markings/sec, 565 secs
lola: 838592 markings, 1174312 edges, 1488 markings/sec, 570 secs
lola: 845711 markings, 1183883 edges, 1424 markings/sec, 575 secs
lola: 852777 markings, 1192604 edges, 1413 markings/sec, 580 secs
lola: 860323 markings, 1202703 edges, 1509 markings/sec, 585 secs
lola: 867618 markings, 1212491 edges, 1459 markings/sec, 590 secs
lola: 874539 markings, 1221824 edges, 1384 markings/sec, 595 secs
lola: 881905 markings, 1230910 edges, 1473 markings/sec, 600 secs
lola: 889337 markings, 1240868 edges, 1486 markings/sec, 605 secs
lola: 896446 markings, 1250432 edges, 1422 markings/sec, 610 secs
lola: 903371 markings, 1258972 edges, 1385 markings/sec, 615 secs
lola: 910901 markings, 1269053 edges, 1506 markings/sec, 620 secs
lola: 918169 markings, 1278813 edges, 1454 markings/sec, 625 secs
lola: 925048 markings, 1288091 edges, 1376 markings/sec, 630 secs
lola: 932346 markings, 1297090 edges, 1460 markings/sec, 635 secs
lola: 939718 markings, 1306977 edges, 1474 markings/sec, 640 secs
lola: 946782 markings, 1316487 edges, 1413 markings/sec, 645 secs
lola: 953653 markings, 1324961 edges, 1374 markings/sec, 650 secs
lola: 961145 markings, 1334995 edges, 1498 markings/sec, 655 secs
lola: 968344 markings, 1344668 edges, 1440 markings/sec, 660 secs
lola: 975143 markings, 1353845 edges, 1360 markings/sec, 665 secs
lola: 982461 markings, 1362873 edges, 1464 markings/sec, 670 secs
lola: 989767 markings, 1372679 edges, 1461 markings/sec, 675 secs
lola: 996749 markings, 1382081 edges, 1396 markings/sec, 680 secs
lola: 1003682 markings, 1390635 edges, 1387 markings/sec, 685 secs
lola: 1011096 markings, 1400571 edges, 1483 markings/sec, 690 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: memory consumption: 659104 KB
lola: time consumption: 1468 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 700 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (((p264 + 1 <= p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (((p264 + 1 <= p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p1... (shortened)
lola: processed formula length: 916
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 122926 markings, 167837 edges, 24585 markings/sec, 0 secs
lola: 263570 markings, 360385 edges, 28129 markings/sec, 5 secs
lola: 395109 markings, 539933 edges, 26308 markings/sec, 10 secs
lola: 535080 markings, 730279 edges, 27994 markings/sec, 15 secs
lola: 672547 markings, 919020 edges, 27493 markings/sec, 20 secs
lola: 778027 markings, 1082296 edges, 21096 markings/sec, 25 secs
lola: 827913 markings, 1212806 edges, 9977 markings/sec, 30 secs
lola: 963864 markings, 1429394 edges, 27190 markings/sec, 35 secs
lola: 1092670 markings, 1646997 edges, 25761 markings/sec, 40 secs
lola: 1221203 markings, 1821969 edges, 25707 markings/sec, 45 secs
lola: 1346977 markings, 1994543 edges, 25155 markings/sec, 50 secs
lola: 1474313 markings, 2168272 edges, 25467 markings/sec, 55 secs
lola: 1603448 markings, 2344026 edges, 25827 markings/sec, 60 secs
lola: 1730585 markings, 2518285 edges, 25427 markings/sec, 65 secs
lola: 1820335 markings, 2657998 edges, 17950 markings/sec, 70 secs
lola: 1822978 markings, 2715281 edges, 529 markings/sec, 75 secs
lola: 1932504 markings, 2889975 edges, 21905 markings/sec, 80 secs
lola: 2042967 markings, 3065823 edges, 22093 markings/sec, 85 secs
lola: 2107955 markings, 3187401 edges, 12998 markings/sec, 90 secs
lola: 2234495 markings, 3360807 edges, 25308 markings/sec, 95 secs
lola: 2361589 markings, 3534782 edges, 25419 markings/sec, 100 secs
lola: 2489816 markings, 3709332 edges, 25645 markings/sec, 105 secs
lola: 2618204 markings, 3884672 edges, 25678 markings/sec, 110 secs
lola: 2745797 markings, 4059495 edges, 25519 markings/sec, 115 secs
lola: 2862227 markings, 4224613 edges, 23286 markings/sec, 120 secs
lola: 2864944 markings, 4283543 edges, 543 markings/sec, 125 secs
lola: 2956607 markings, 4439182 edges, 18333 markings/sec, 130 secs
lola: 3068170 markings, 4616905 edges, 22313 markings/sec, 135 secs
lola: 3137220 markings, 4747745 edges, 13810 markings/sec, 140 secs
lola: 3262752 markings, 4919850 edges, 25106 markings/sec, 145 secs
lola: 3390280 markings, 5094252 edges, 25506 markings/sec, 150 secs
lola: 3519057 markings, 5269188 edges, 25755 markings/sec, 155 secs
lola: 3645983 markings, 5443126 edges, 25385 markings/sec, 160 secs
lola: 3773281 markings, 5617583 edges, 25460 markings/sec, 165 secs
lola: 3903015 markings, 5794559 edges, 25947 markings/sec, 170 secs
lola: 3907069 markings, 5855164 edges, 811 markings/sec, 175 secs
lola: 3987180 markings, 5998873 edges, 16022 markings/sec, 180 secs
lola: 4099448 markings, 6177499 edges, 22454 markings/sec, 185 secs
lola: 4169867 markings, 6311784 edges, 14084 markings/sec, 190 secs
lola: 4290694 markings, 6478505 edges, 24165 markings/sec, 195 secs
lola: 4418277 markings, 6652734 edges, 25517 markings/sec, 200 secs
lola: 4547462 markings, 6828356 edges, 25837 markings/sec, 205 secs
lola: 4674072 markings, 7001963 edges, 25322 markings/sec, 210 secs
lola: 4801959 markings, 7177033 edges, 25577 markings/sec, 215 secs
lola: 4930890 markings, 7352865 edges, 25786 markings/sec, 220 secs
lola: 4949182 markings, 7426600 edges, 3658 markings/sec, 225 secs
lola: 5016104 markings, 7555581 edges, 13384 markings/sec, 230 secs
lola: 5128478 markings, 7734462 edges, 22475 markings/sec, 235 secs
lola: 5212021 markings, 7883036 edges, 16709 markings/sec, 240 secs
lola: 5317457 markings, 8035427 edges, 21087 markings/sec, 245 secs
lola: 5445911 markings, 8209904 edges, 25691 markings/sec, 250 secs
lola: 5571775 markings, 8382533 edges, 25173 markings/sec, 255 secs
lola: 5699095 markings, 8556701 edges, 25464 markings/sec, 260 secs
lola: 5827769 markings, 8731774 edges, 25735 markings/sec, 265 secs
lola: 5956991 markings, 8908258 edges, 25844 markings/sec, 270 secs
lola: 5991242 markings, 8996877 edges, 6850 markings/sec, 275 secs
lola: 6038399 markings, 9101785 edges, 9431 markings/sec, 280 secs
lola: 6146333 markings, 9273283 edges, 21587 markings/sec, 285 secs
lola: 6253906 markings, 9447512 edges, 21515 markings/sec, 290 secs
lola: 6330353 markings, 9572717 edges, 15289 markings/sec, 295 secs
lola: 6456617 markings, 9745496 edges, 25253 markings/sec, 300 secs
lola: 6583592 markings, 9919252 edges, 25395 markings/sec, 305 secs
lola: 6712182 markings, 10094003 edges, 25718 markings/sec, 310 secs
lola: 6839461 markings, 10268294 edges, 25456 markings/sec, 315 secs
lola: 6967030 markings, 10443087 edges, 25514 markings/sec, 320 secs
lola: 7033015 markings, 10560989 edges, 13197 markings/sec, 325 secs
lola: 7059412 markings, 10645847 edges, 5279 markings/sec, 330 secs
lola: 7171312 markings, 10823735 edges, 22380 markings/sec, 335 secs
lola: 7283740 markings, 11003121 edges, 22486 markings/sec, 340 secs
lola: 7354394 markings, 11126159 edges, 14131 markings/sec, 345 secs
lola: 7478134 markings, 11295171 edges, 24748 markings/sec, 350 secs
lola: 7605660 markings, 11469219 edges, 25505 markings/sec, 355 secs
lola: 7731744 markings, 11642120 edges, 25217 markings/sec, 360 secs
lola: 7859968 markings, 11816611 edges, 25645 markings/sec, 365 secs
lola: 7988864 markings, 11992463 edges, 25779 markings/sec, 370 secs
lola: 8074972 markings, 12129009 edges, 17222 markings/sec, 375 secs
lola: 8082469 markings, 12193559 edges, 1499 markings/sec, 380 secs
lola: 8193100 markings, 12369646 edges, 22126 markings/sec, 385 secs
lola: 8306439 markings, 12549582 edges, 22668 markings/sec, 390 secs
lola: 8375729 markings, 12675665 edges, 13858 markings/sec, 395 secs
lola: 8494214 markings, 12837164 edges, 23697 markings/sec, 400 secs
lola: 8609994 markings, 12995267 edges, 23156 markings/sec, 405 secs
lola: 8734591 markings, 13166146 edges, 24919 markings/sec, 410 secs
lola: 8862875 markings, 13340439 edges, 25657 markings/sec, 415 secs
lola: 8989827 markings, 13514352 edges, 25390 markings/sec, 420 secs
lola: 9116541 markings, 13688493 edges, 25343 markings/sec, 425 secs
lola: 9119230 markings, 13746988 edges, 538 markings/sec, 430 secs
lola: 9199564 markings, 13890664 edges, 16067 markings/sec, 435 secs
lola: 9312223 markings, 14069734 edges, 22532 markings/sec, 440 secs
lola: 9382032 markings, 14203559 edges, 13962 markings/sec, 445 secs
lola: 9498785 markings, 14364270 edges, 23351 markings/sec, 450 secs
lola: 9626813 markings, 14538460 edges, 25606 markings/sec, 455 secs
lola: 9752076 markings, 14710406 edges, 25053 markings/sec, 460 secs
lola: 9879341 markings, 14884001 edges, 25453 markings/sec, 465 secs
lola: 10008260 markings, 15059535 edges, 25784 markings/sec, 470 secs
lola: 10128003 markings, 15222931 edges, 23949 markings/sec, 475 secs
lola: 10160832 markings, 15307204 edges, 6566 markings/sec, 480 secs
lola: 10206238 markings, 15411918 edges, 9081 markings/sec, 485 secs
lola: 10317678 markings, 15589418 edges, 22288 markings/sec, 490 secs
lola: 10423682 markings, 15762179 edges, 21201 markings/sec, 495 secs
lola: 10502327 markings, 15889460 edges, 15729 markings/sec, 500 secs
lola: 10625199 markings, 16057171 edges, 24574 markings/sec, 505 secs
lola: 10751759 markings, 16230118 edges, 25312 markings/sec, 510 secs
lola: 10880155 markings, 16404782 edges, 25679 markings/sec, 515 secs
lola: 11006318 markings, 16577840 edges, 25233 markings/sec, 520 secs
lola: 11134748 markings, 16753314 edges, 25686 markings/sec, 525 secs
lola: 11202671 markings, 16872662 edges, 13585 markings/sec, 530 secs
lola: 11226284 markings, 16954486 edges, 4723 markings/sec, 535 secs
lola: 11337074 markings, 17130873 edges, 22158 markings/sec, 540 secs
lola: 11448764 markings, 17308768 edges, 22338 markings/sec, 545 secs
lola: 11518443 markings, 17431788 edges, 13936 markings/sec, 550 secs
lola: 11624303 markings, 17576416 edges, 21172 markings/sec, 555 secs
lola: 11743118 markings, 17738721 edges, 23763 markings/sec, 560 secs
lola: 11870477 markings, 17911807 edges, 25472 markings/sec, 565 secs
lola: 11995139 markings, 18083011 edges, 24932 markings/sec, 570 secs
lola: 12122713 markings, 18257085 edges, 25515 markings/sec, 575 secs
lola: 12243964 markings, 18426225 edges, 24250 markings/sec, 580 secs
lola: 12246631 markings, 18484232 edges, 533 markings/sec, 585 secs
lola: 12330164 markings, 18630284 edges, 16707 markings/sec, 590 secs
lola: 12441648 markings, 18808107 edges, 22297 markings/sec, 595 secs
lola: 12509200 markings, 18935386 edges, 13510 markings/sec, 600 secs
lola: 12615464 markings, 19084820 edges, 21253 markings/sec, 605 secs
lola: 12739304 markings, 19253267 edges, 24768 markings/sec, 610 secs
lola: 12864878 markings, 19425370 edges, 25115 markings/sec, 615 secs
lola: 12993090 markings, 19599556 edges, 25642 markings/sec, 620 secs
lola: 13119246 markings, 19772490 edges, 25231 markings/sec, 625 secs
lola: 13246724 markings, 19946937 edges, 25496 markings/sec, 630 secs
lola: 13288080 markings, 20041212 edges, 8271 markings/sec, 635 secs
lola: 13324701 markings, 20132686 edges, 7324 markings/sec, 640 secs
lola: 13430359 markings, 20300696 edges, 21132 markings/sec, 645 secs
lola: 13542738 markings, 20479771 edges, 22476 markings/sec, 650 secs
lola: 13614172 markings, 20602243 edges, 14287 markings/sec, 655 secs
lola: 13732684 markings, 20764349 edges, 23702 markings/sec, 660 secs
lola: 13857844 markings, 20935882 edges, 25032 markings/sec, 665 secs
lola: 13983226 markings, 21107155 edges, 25076 markings/sec, 670 secs
lola: 14111156 markings, 21281468 edges, 25586 markings/sec, 675 secs
lola: 14231997 markings, 21446218 edges, 24168 markings/sec, 680 secs
lola: 14329270 markings, 21592579 edges, 19455 markings/sec, 685 secs
lola: 14331958 markings, 21650896 edges, 538 markings/sec, 690 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no no unknown no no unknown unknown yes unknown unknown no no yes yes no yes
lola: memory consumption: 4274232 KB
lola: time consumption: 2168 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 14 will run for 701 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((((p388 <= p520) AND (3 <= p124)) AND F ((1 <= p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p... (shortened)
lola: processed formula length: 486
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 19 markings, 20 edges
lola: ========================================
lola: subprocess 15 will run for 1402 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + ... (shortened)
lola: processed formula length: 14529
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 1 markings, 0 edges
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((((p618 + 1 <= p516) U (1 <= p125)) AND F (G ((F ((p617 <= p123)) OR X ((p516 <= p618))))))))
lola: processed formula length: 99
lola: 98 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 202698 markings, 393532 edges, 40540 markings/sec, 0 secs
lola: 410175 markings, 804752 edges, 41495 markings/sec, 5 secs
lola: 613933 markings, 1212940 edges, 40752 markings/sec, 10 secs
lola: 815568 markings, 1617698 edges, 40327 markings/sec, 15 secs
lola: 1017578 markings, 2019700 edges, 40402 markings/sec, 20 secs
lola: 1221511 markings, 2414298 edges, 40787 markings/sec, 25 secs
lola: 1417694 markings, 2809942 edges, 39237 markings/sec, 30 secs
lola: 1614317 markings, 3206327 edges, 39325 markings/sec, 35 secs
lola: 1813257 markings, 3596101 edges, 39788 markings/sec, 40 secs
lola: 2009818 markings, 3985582 edges, 39312 markings/sec, 45 secs
lola: 2204191 markings, 4378218 edges, 38875 markings/sec, 50 secs
lola: 2403521 markings, 4764437 edges, 39866 markings/sec, 55 secs
lola: 2597411 markings, 5153644 edges, 38778 markings/sec, 60 secs
lola: 2791632 markings, 5545134 edges, 38844 markings/sec, 65 secs
lola: 2991290 markings, 5930238 edges, 39932 markings/sec, 70 secs
lola: 3168979 markings, 6328346 edges, 35538 markings/sec, 75 secs
lola: 3189513 markings, 6815798 edges, 4107 markings/sec, 80 secs
lola: 3317896 markings, 7228052 edges, 25677 markings/sec, 85 secs
lola: 3464000 markings, 7611003 edges, 29221 markings/sec, 90 secs
lola: 3603552 markings, 7975057 edges, 27910 markings/sec, 95 secs
lola: 3742873 markings, 8338543 edges, 27864 markings/sec, 100 secs
lola: 3889877 markings, 8720154 edges, 29401 markings/sec, 105 secs
lola: 4026589 markings, 9111826 edges, 27342 markings/sec, 110 secs
lola: 4193450 markings, 9513441 edges, 33372 markings/sec, 115 secs
lola: 4391290 markings, 9896126 edges, 39568 markings/sec, 120 secs
lola: 4581367 markings, 10281624 edges, 38015 markings/sec, 125 secs
lola: 4774804 markings, 10664990 edges, 38687 markings/sec, 130 secs
lola: 4968011 markings, 11046093 edges, 38641 markings/sec, 135 secs
lola: 5158523 markings, 11429974 edges, 38102 markings/sec, 140 secs
lola: 5353208 markings, 11808168 edges, 38937 markings/sec, 145 secs
lola: 5542063 markings, 12191646 edges, 37771 markings/sec, 150 secs
lola: 5737637 markings, 12570387 edges, 39115 markings/sec, 155 secs
lola: 5926817 markings, 12953010 edges, 37836 markings/sec, 160 secs
lola: 6118742 markings, 13335187 edges, 38385 markings/sec, 165 secs
lola: 6312673 markings, 13716217 edges, 38786 markings/sec, 170 secs
lola: 6503330 markings, 14102640 edges, 38131 markings/sec, 175 secs
lola: 6700211 markings, 14482213 edges, 39376 markings/sec, 180 secs
lola: 6891070 markings, 14868987 edges, 38172 markings/sec, 185 secs
lola: 7085016 markings, 15254549 edges, 38789 markings/sec, 190 secs
lola: 7206839 markings, 15658977 edges, 24365 markings/sec, 195 secs
lola: 7242026 markings, 16142495 edges, 7037 markings/sec, 200 secs
lola: 7388780 markings, 16523551 edges, 29351 markings/sec, 205 secs
lola: 7534253 markings, 16904090 edges, 29095 markings/sec, 210 secs
lola: 7679920 markings, 17283501 edges, 29133 markings/sec, 215 secs
lola: 7826693 markings, 17664568 edges, 29355 markings/sec, 220 secs
lola: 7973823 markings, 18049967 edges, 29426 markings/sec, 225 secs
lola: 8105774 markings, 18459798 edges, 26390 markings/sec, 230 secs
lola: 8285784 markings, 18826061 edges, 36002 markings/sec, 235 secs
lola: 8481604 markings, 19207318 edges, 39164 markings/sec, 240 secs
lola: 8670830 markings, 19587911 edges, 37845 markings/sec, 245 secs
lola: 8862041 markings, 19968572 edges, 38242 markings/sec, 250 secs
lola: 9053793 markings, 20346272 edges, 38350 markings/sec, 255 secs
lola: 9242990 markings, 20727095 edges, 37839 markings/sec, 260 secs
lola: 9435769 markings, 21103043 edges, 38556 markings/sec, 265 secs
lola: 9623343 markings, 21484291 edges, 37515 markings/sec, 270 secs
lola: 9817629 markings, 21859570 edges, 38857 markings/sec, 275 secs
lola: 10005240 markings, 22240900 edges, 37522 markings/sec, 280 secs
lola: 10199266 markings, 22618195 edges, 38805 markings/sec, 285 secs
lola: 10388080 markings, 22999082 edges, 37763 markings/sec, 290 secs
lola: 10579342 markings, 23379580 edges, 38252 markings/sec, 295 secs
lola: 10772516 markings, 23759930 edges, 38635 markings/sec, 300 secs
lola: 10963125 markings, 24144714 edges, 38122 markings/sec, 305 secs
lola: 11159365 markings, 24524786 edges, 39248 markings/sec, 310 secs
lola: 11242850 markings, 24945686 edges, 16697 markings/sec, 315 secs
lola: 11294006 markings, 25386457 edges, 10231 markings/sec, 320 secs
lola: 11430233 markings, 25742649 edges, 27245 markings/sec, 325 secs
lola: 11574949 markings, 26118860 edges, 28943 markings/sec, 330 secs
lola: 11719402 markings, 26494484 edges, 28891 markings/sec, 335 secs
lola: 11864682 markings, 26875479 edges, 29056 markings/sec, 340 secs
lola: 12012245 markings, 27258448 edges, 29513 markings/sec, 345 secs
lola: 12141987 markings, 27667874 edges, 25948 markings/sec, 350 secs
lola: 12316638 markings, 28017519 edges, 34930 markings/sec, 355 secs
lola: 12513214 markings, 28396576 edges, 39315 markings/sec, 360 secs
lola: 12701051 markings, 28778291 edges, 37567 markings/sec, 365 secs
lola: 12892492 markings, 29158275 edges, 38288 markings/sec, 370 secs
lola: 13083641 markings, 29536093 edges, 38230 markings/sec, 375 secs
lola: 13272914 markings, 29915547 edges, 37855 markings/sec, 380 secs
lola: 13464750 markings, 30291373 edges, 38367 markings/sec, 385 secs
lola: 13652850 markings, 30671719 edges, 37620 markings/sec, 390 secs
lola: 13843742 markings, 31043151 edges, 38178 markings/sec, 395 secs
lola: 14016831 markings, 31388073 edges, 34618 markings/sec, 400 secs
lola: 14196228 markings, 31750742 edges, 35879 markings/sec, 405 secs
lola: 14390839 markings, 32126623 edges, 38922 markings/sec, 410 secs
lola: 14579059 markings, 32508912 edges, 37644 markings/sec, 415 secs
lola: 14770380 markings, 32888086 edges, 38264 markings/sec, 420 secs
lola: 14962830 markings, 33268650 edges, 38490 markings/sec, 425 secs
lola: 15153577 markings, 33651861 edges, 38149 markings/sec, 430 secs
lola: 15271186 markings, 34048483 edges, 23522 markings/sec, 435 secs
lola: 15307228 markings, 34531976 edges, 7208 markings/sec, 440 secs
lola: 15452487 markings, 34909495 edges, 29052 markings/sec, 445 secs
lola: 15597305 markings, 35287486 edges, 28964 markings/sec, 450 secs
lola: 15742152 markings, 35665960 edges, 28969 markings/sec, 455 secs
lola: 15887917 markings, 36044671 edges, 29153 markings/sec, 460 secs
lola: 16034556 markings, 36427896 edges, 29328 markings/sec, 465 secs
lola: 16164792 markings, 36835827 edges, 26047 markings/sec, 470 secs
lola: 16332121 markings, 37174270 edges, 33466 markings/sec, 475 secs
lola: 16520033 markings, 37548018 edges, 37582 markings/sec, 480 secs
lola: 16710467 markings, 37926719 edges, 38087 markings/sec, 485 secs
lola: 16901646 markings, 38304197 edges, 38236 markings/sec, 490 secs
lola: 17090336 markings, 38682711 edges, 37738 markings/sec, 495 secs
lola: 17268294 markings, 39035385 edges, 35592 markings/sec, 500 secs
lola: 17458142 markings, 39403406 edges, 37970 markings/sec, 505 secs
lola: 17644256 markings, 39782083 edges, 37223 markings/sec, 510 secs
lola: 17834755 markings, 40158872 edges, 38100 markings/sec, 515 secs
lola: 18024503 markings, 40535981 edges, 37950 markings/sec, 520 secs
lola: 18214146 markings, 40913779 edges, 37929 markings/sec, 525 secs
lola: 18405358 markings, 41290864 edges, 38242 markings/sec, 530 secs
lola: 18594588 markings, 41671110 edges, 37846 markings/sec, 535 secs
lola: 18788048 markings, 42048797 edges, 38692 markings/sec, 540 secs
lola: 18977194 markings, 42432633 edges, 37829 markings/sec, 545 secs
lola: 19172834 markings, 42810159 edges, 39128 markings/sec, 550 secs
lola: 19301546 markings, 43201292 edges, 25742 markings/sec, 555 secs
lola: 19326314 markings, 43691359 edges, 4954 markings/sec, 560 secs
lola: 19470880 markings, 44067230 edges, 28913 markings/sec, 565 secs
lola: 19616178 markings, 44447115 edges, 29060 markings/sec, 570 secs
lola: 19761371 markings, 44825652 edges, 29039 markings/sec, 575 secs
lola: 19907541 markings, 45205309 edges, 29234 markings/sec, 580 secs
lola: 20054086 markings, 45589303 edges, 29309 markings/sec, 585 secs
lola: 20179256 markings, 46000020 edges, 25034 markings/sec, 590 secs
lola: 20351809 markings, 46339085 edges, 34511 markings/sec, 595 secs
lola: 20528476 markings, 46695238 edges, 35333 markings/sec, 600 secs
lola: 20719597 markings, 47072193 edges, 38224 markings/sec, 605 secs
lola: 20908238 markings, 47450975 edges, 37728 markings/sec, 610 secs
lola: 21099377 markings, 47825216 edges, 38228 markings/sec, 615 secs
lola: 21286524 markings, 48203263 edges, 37429 markings/sec, 620 secs
lola: 21469871 markings, 48562887 edges, 36669 markings/sec, 625 secs
lola: 21651627 markings, 48923032 edges, 36351 markings/sec, 630 secs
lola: 21838884 markings, 49297971 edges, 37451 markings/sec, 635 secs
lola: 22028284 markings, 49673228 edges, 37880 markings/sec, 640 secs
lola: 22217318 markings, 50048836 edges, 37807 markings/sec, 645 secs
lola: 22406391 markings, 50425133 edges, 37815 markings/sec, 650 secs
lola: 22596899 markings, 50801608 edges, 38102 markings/sec, 655 secs
lola: 22785824 markings, 51180087 edges, 37785 markings/sec, 660 secs
lola: 22978222 markings, 51557221 edges, 38480 markings/sec, 665 secs
lola: 23166886 markings, 51940061 edges, 37733 markings/sec, 670 secs
lola: 23330176 markings, 52312745 edges, 32658 markings/sec, 675 secs
lola: 23349866 markings, 52781139 edges, 3938 markings/sec, 680 secs
lola: 23471460 markings, 53179477 edges, 24319 markings/sec, 685 secs
lola: 23617167 markings, 53558028 edges, 29141 markings/sec, 690 secs
lola: 23761854 markings, 53937377 edges, 28937 markings/sec, 695 secs
lola: 23907571 markings, 54316234 edges, 29143 markings/sec, 700 secs
lola: 24054569 markings, 54697856 edges, 29400 markings/sec, 705 secs
lola: 24188179 markings, 55095074 edges, 26722 markings/sec, 710 secs
lola: 24344587 markings, 55459318 edges, 31282 markings/sec, 715 secs
lola: 24511242 markings, 55792324 edges, 33331 markings/sec, 720 secs
lola: 24701885 markings, 56165530 edges, 38129 markings/sec, 725 secs
lola: 24889159 markings, 56543756 edges, 37455 markings/sec, 730 secs
lola: 25080517 markings, 56916696 edges, 38272 markings/sec, 735 secs
lola: 25255939 markings, 57269159 edges, 35084 markings/sec, 740 secs
lola: 25427572 markings, 57615113 edges, 34327 markings/sec, 745 secs
lola: 25616783 markings, 57982049 edges, 37842 markings/sec, 750 secs
lola: 25801656 markings, 58356272 edges, 36975 markings/sec, 755 secs
lola: 25983752 markings, 58713837 edges, 36419 markings/sec, 760 secs
lola: 26171592 markings, 59089059 edges, 37568 markings/sec, 765 secs
lola: 26361298 markings, 59463187 edges, 37941 markings/sec, 770 secs
lola: 26549290 markings, 59839960 edges, 37598 markings/sec, 775 secs
lola: 26740497 markings, 60215271 edges, 38241 markings/sec, 780 secs
lola: 26928489 markings, 60594409 edges, 37598 markings/sec, 785 secs
lola: 27120897 markings, 60969430 edges, 38482 markings/sec, 790 secs
lola: 27308720 markings, 61351120 edges, 37565 markings/sec, 795 secs
lola: 27373256 markings, 61767431 edges, 12907 markings/sec, 800 secs
lola: 27444025 markings, 62218639 edges, 14154 markings/sec, 805 secs
lola: 27588827 markings, 62595069 edges, 28960 markings/sec, 810 secs
lola: 27734269 markings, 62973014 edges, 29088 markings/sec, 815 secs
lola: 27878943 markings, 63352604 edges, 28935 markings/sec, 820 secs
lola: 28025314 markings, 63732731 edges, 29274 markings/sec, 825 secs
lola: 28172534 markings, 64116870 edges, 29444 markings/sec, 830 secs
lola: 28309033 markings, 64513524 edges, 27300 markings/sec, 835 secs
lola: 28476967 markings, 64844912 edges, 33587 markings/sec, 840 secs
lola: 28645758 markings, 65187584 edges, 33758 markings/sec, 845 secs
lola: 28835185 markings, 65562048 edges, 37885 markings/sec, 850 secs
lola: 29023153 markings, 65937796 edges, 37594 markings/sec, 855 secs
lola: 29212331 markings, 66310742 edges, 37836 markings/sec, 860 secs
lola: 29399494 markings, 66685545 edges, 37433 markings/sec, 865 secs
lola: 29587829 markings, 67056738 edges, 37667 markings/sec, 870 secs
lola: 29774892 markings, 67431083 edges, 37413 markings/sec, 875 secs
lola: 29963534 markings, 67803030 edges, 37728 markings/sec, 880 secs
lola: 30150569 markings, 68177279 edges, 37407 markings/sec, 885 secs
lola: 30339306 markings, 68549435 edges, 37747 markings/sec, 890 secs
lola: 30526372 markings, 68923780 edges, 37413 markings/sec, 895 secs
lola: 30716279 markings, 69297882 edges, 37981 markings/sec, 900 secs
lola: 30904191 markings, 69674982 edges, 37582 markings/sec, 905 secs
lola: 31095706 markings, 70050355 edges, 38303 markings/sec, 910 secs
lola: 31283884 markings, 70430571 edges, 37636 markings/sec, 915 secs
lola: 31398852 markings, 70807402 edges, 22994 markings/sec, 920 secs
lola: 31426080 markings, 71280227 edges, 5446 markings/sec, 925 secs
lola: 31568675 markings, 71651449 edges, 28519 markings/sec, 930 secs
lola: 31713542 markings, 72031273 edges, 28973 markings/sec, 935 secs
lola: 31858501 markings, 72408286 edges, 28992 markings/sec, 940 secs
lola: 32004552 markings, 72787669 edges, 29210 markings/sec, 945 secs
lola: 32151045 markings, 73171550 edges, 29299 markings/sec, 950 secs
lola: 32276214 markings, 73581769 edges, 25034 markings/sec, 955 secs
lola: 32448011 markings, 73919587 edges, 34359 markings/sec, 960 secs
lola: 32617308 markings, 74253170 edges, 33859 markings/sec, 965 secs
lola: 32792214 markings, 74610750 edges, 34981 markings/sec, 970 secs
lola: 32983352 markings, 74983433 edges, 38228 markings/sec, 975 secs
lola: 33168929 markings, 75359360 edges, 37115 markings/sec, 980 secs
lola: 33358809 markings, 75729245 edges, 37976 markings/sec, 985 secs
lola: 33543941 markings, 76104018 edges, 37026 markings/sec, 990 secs
lola: 33732990 markings, 76473032 edges, 37810 markings/sec, 995 secs
lola: 33918170 markings, 76846819 edges, 37036 markings/sec, 1000 secs
lola: 34107218 markings, 77216882 edges, 37810 markings/sec, 1005 secs
lola: 34284717 markings, 77570977 edges, 35500 markings/sec, 1010 secs
lola: 34464112 markings, 77931798 edges, 35879 markings/sec, 1015 secs
lola: 34655743 markings, 78302669 edges, 38326 markings/sec, 1020 secs
lola: 34840357 markings, 78679021 edges, 36923 markings/sec, 1025 secs
lola: 35033418 markings, 79052229 edges, 38612 markings/sec, 1030 secs
lola: 35219260 markings, 79430605 edges, 37168 markings/sec, 1035 secs
lola: 35411843 markings, 79807964 edges, 38517 markings/sec, 1040 secs
lola: 35440071 markings, 80217672 edges, 5646 markings/sec, 1045 secs
lola: 35523115 markings, 80644372 edges, 16609 markings/sec, 1050 secs
lola: 35661423 markings, 81005460 edges, 27662 markings/sec, 1055 secs
lola: 35800784 markings, 81367825 edges, 27872 markings/sec, 1060 secs
lola: 35946116 markings, 81746730 edges, 29066 markings/sec, 1065 secs
lola: 36092886 markings, 82127814 edges, 29354 markings/sec, 1070 secs
lola: 36240346 markings, 82513969 edges, 29492 markings/sec, 1075 secs
lola: 36378225 markings, 82908981 edges, 27576 markings/sec, 1080 secs
lola: 36545218 markings, 83242349 edges, 33399 markings/sec, 1085 secs
lola: 36710466 markings, 83575869 edges, 33050 markings/sec, 1090 secs
lola: 36889792 markings, 83933237 edges, 35865 markings/sec, 1095 secs
lola: 37081856 markings, 84306813 edges, 38413 markings/sec, 1100 secs
lola: 37265370 markings, 84679313 edges, 36703 markings/sec, 1105 secs
lola: 37457287 markings, 85050588 edges, 38383 markings/sec, 1110 secs
lola: 37640211 markings, 85424109 edges, 36585 markings/sec, 1115 secs
lola: 37831553 markings, 85794498 edges, 38268 markings/sec, 1120 secs
lola: 38014265 markings, 86167703 edges, 36542 markings/sec, 1125 secs
lola: 38205466 markings, 86537844 edges, 38240 markings/sec, 1130 secs
lola: 38389331 markings, 86912928 edges, 36773 markings/sec, 1135 secs
lola: 38581084 markings, 87283937 edges, 38351 markings/sec, 1140 secs
lola: 38765393 markings, 87659774 edges, 36862 markings/sec, 1145 secs
lola: 38957938 markings, 88032189 edges, 38509 markings/sec, 1150 secs
lola: 39143059 markings, 88409370 edges, 37024 markings/sec, 1155 secs
lola: 39336356 markings, 88784168 edges, 38659 markings/sec, 1160 secs
lola: 39461309 markings, 89153704 edges, 24991 markings/sec, 1165 secs
lola: 39480765 markings, 89616115 edges, 3891 markings/sec, 1170 secs
lola: 39610652 markings, 89982632 edges, 25977 markings/sec, 1175 secs
lola: 39745837 markings, 90332913 edges, 27037 markings/sec, 1180 secs
lola: 39887249 markings, 90701338 edges, 28282 markings/sec, 1185 secs
lola: 40032370 markings, 91081968 edges, 29024 markings/sec, 1190 secs
lola: 40173550 markings, 91449841 edges, 28236 markings/sec, 1195 secs
lola: 40308434 markings, 91799419 edges, 26977 markings/sec, 1200 secs
lola: 40447121 markings, 92181082 edges, 27737 markings/sec, 1205 secs
lola: 40615383 markings, 92512966 edges, 33652 markings/sec, 1210 secs
lola: 40785735 markings, 92848344 edges, 34070 markings/sec, 1215 secs
lola: 40961252 markings, 93205235 edges, 35103 markings/sec, 1220 secs
lola: 41150560 markings, 93576526 edges, 37862 markings/sec, 1225 secs
lola: 41336629 markings, 93950721 edges, 37214 markings/sec, 1230 secs
lola: 41525106 markings, 94320890 edges, 37695 markings/sec, 1235 secs
lola: 41711206 markings, 94694339 edges, 37220 markings/sec, 1240 secs
lola: 41899128 markings, 95064325 edges, 37584 markings/sec, 1245 secs
lola: 42085353 markings, 95436949 edges, 37245 markings/sec, 1250 secs
lola: 42273217 markings, 95807961 edges, 37573 markings/sec, 1255 secs
lola: 42460024 markings, 96180810 edges, 37361 markings/sec, 1260 secs
lola: 42648175 markings, 96553019 edges, 37630 markings/sec, 1265 secs
lola: 42835535 markings, 96926614 edges, 37472 markings/sec, 1270 secs
lola: 43024336 markings, 97300064 edges, 37760 markings/sec, 1275 secs
lola: 43205538 markings, 97653545 edges, 36240 markings/sec, 1280 secs
lola: 43390845 markings, 98031014 edges, 37061 markings/sec, 1285 secs
lola: 43495458 markings, 98395857 edges, 20923 markings/sec, 1290 secs
lola: 43520098 markings, 98855503 edges, 4928 markings/sec, 1295 secs
lola: 43660949 markings, 99222612 edges, 28170 markings/sec, 1300 secs
lola: 43807207 markings, 99602476 edges, 29252 markings/sec, 1305 secs
lola: 43952214 markings, 99982863 edges, 29001 markings/sec, 1310 secs
lola: 44098618 markings, 100363057 edges, 29281 markings/sec, 1315 secs
lola: 44245602 markings, 100747526 edges, 29397 markings/sec, 1320 secs
lola: 44369827 markings, 101157968 edges, 24845 markings/sec, 1325 secs
lola: 44540404 markings, 101493684 edges, 34115 markings/sec, 1330 secs
lola: 44709064 markings, 101826290 edges, 33732 markings/sec, 1335 secs
lola: 44877811 markings, 102163223 edges, 33749 markings/sec, 1340 secs
lola: 45053400 markings, 102520345 edges, 35118 markings/sec, 1345 secs
lola: 45244254 markings, 102889902 edges, 38171 markings/sec, 1350 secs
lola: 45427515 markings, 103263928 edges, 36652 markings/sec, 1355 secs
lola: 45617001 markings, 103631245 edges, 37897 markings/sec, 1360 secs
lola: 45801294 markings, 104004602 edges, 36859 markings/sec, 1365 secs
lola: 45989460 markings, 104372147 edges, 37633 markings/sec, 1370 secs
lola: 46174478 markings, 104744967 edges, 37004 markings/sec, 1375 secs
lola: 46362691 markings, 105114261 edges, 37643 markings/sec, 1380 secs
lola: 46548433 markings, 105487148 edges, 37148 markings/sec, 1385 secs
lola: 46736917 markings, 105858112 edges, 37697 markings/sec, 1390 secs
lola: 46902357 markings, 106185305 edges, 33088 markings/sec, 1395 secs
lola: time limit reached - aborting
lola:
preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
lola: lola: caught signal User defined signal 1 - aborting LoLA
preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
lola:
preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
lola: memory consumption: 10485756 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no no unknown no no yes unknown yes no unknown no no yes yes no yes
rslt: finished
BK_STOP 1590279217638
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PolyORBNT-COL-S10J60"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is PolyORBNT-COL-S10J60, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r135-tajo-158961409000155"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/PolyORBNT-COL-S10J60.tgz
mv PolyORBNT-COL-S10J60 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;