About the Execution of ITS-Tools for PhilosophersDyn-COL-03
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15742.680 | 5225.00 | 12182.00 | 74.80 | FFFFFFFFTFTFTFTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/mnt/tpsp/fkordon/mcc2020-input.r126-tajo-158961390000196.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2020-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool itstools
Input is PhilosophersDyn-COL-03, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r126-tajo-158961390000196
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 212K
-rw-r--r-- 1 mcc users 3.9K Apr 27 15:14 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 27 15:14 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.7K Apr 27 15:14 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Apr 27 15:14 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Apr 27 15:14 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.9K Apr 27 15:14 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.5K Apr 27 15:14 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Apr 28 14:01 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Apr 27 15:14 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 28 14:01 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.5K Apr 27 15:14 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 22K Apr 27 15:14 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.7K Apr 27 15:14 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 13K Apr 27 15:14 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Apr 27 15:14 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Apr 27 15:14 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Apr 27 15:14 equiv_pt
-rw-r--r-- 1 mcc users 3 Apr 27 15:14 instance
-rw-r--r-- 1 mcc users 5 Apr 27 15:14 iscolored
-rw-r--r-- 1 mcc users 31K Apr 27 15:14 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-00
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-01
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-02
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-03
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-04
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-05
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-06
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-07
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-08
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-09
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-10
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-11
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-12
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-13
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-14
FORMULA_NAME PhilosophersDyn-COL-03-CTLFireability-15
=== Now, execution of the tool begins
BK_START 1589791801663
[2020-05-18 08:50:03] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -greatspnpath, /home/mcc/BenchKit//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2020-05-18 08:50:03] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2020-05-18 08:50:03] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
[2020-05-18 08:50:04] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 538 ms
[2020-05-18 08:50:04] [INFO ] sort/places :
Neighbourhood->Neighbourhood,
Philosopher->Outside,Think,Forks,WaitLeft,WaitRight,HasLeft,HasRight,
[2020-05-18 08:50:04] [INFO ] Imported 8 HL places and 7 HL transitions for a total of 30 PT places and 87.0 transition bindings in 21 ms.
[2020-05-18 08:50:04] [INFO ] Computed order based on color domains.
[2020-05-18 08:50:04] [INFO ] Unfolded HLPN to a Petri net with 30 places and 84 transitions in 10 ms.
[2020-05-18 08:50:04] [INFO ] Unfolded HLPN properties in 0 ms.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
[2020-05-18 08:50:04] [INFO ] Reduced 5 identical enabling conditions.
Ensure Unique test removed 3 transitions
Reduce redundant transitions removed 3 transitions.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 39 ms.
Incomplete random walk after 100000 steps, including 14239 resets, run finished after 364 ms. (steps per millisecond=274 ) properties seen :[1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1]
[2020-05-18 08:50:05] [INFO ] Flow matrix only has 57 transitions (discarded 24 similar events)
// Phase 1: matrix 57 rows 30 cols
[2020-05-18 08:50:05] [INFO ] Computed 11 place invariants in 8 ms
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive place invariants in 15 ms returned unsat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive place invariants in 13 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive and 1 generalized place invariants in 1 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using state equation in 34 ms returned sat
[2020-05-18 08:50:05] [INFO ] State equation strengthened by 36 read => feed constraints.
[2020-05-18 08:50:05] [INFO ] [Real]Added 36 Read/Feed constraints in 12 ms returned sat
[2020-05-18 08:50:05] [INFO ] Solution in real domain found non-integer solution.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive place invariants in 10 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive and 1 generalized place invariants in 0 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using state equation in 18 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Added 36 Read/Feed constraints in 6 ms returned sat
[2020-05-18 08:50:05] [INFO ] Computed and/alt/rep : 78/1419/54 causal constraints in 15 ms.
[2020-05-18 08:50:05] [INFO ] Added : 38 causal constraints over 8 iterations in 115 ms. Result :sat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive place invariants in 4 ms returned unsat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive place invariants in 3 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive and 1 generalized place invariants in 1 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using state equation in 23 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Added 36 Read/Feed constraints in 6 ms returned sat
[2020-05-18 08:50:05] [INFO ] Solution in real domain found non-integer solution.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive place invariants in 4 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive and 1 generalized place invariants in 1 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using state equation in 15 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Added 36 Read/Feed constraints in 4 ms returned sat
[2020-05-18 08:50:05] [INFO ] Computed and/alt/rep : 78/1419/54 causal constraints in 7 ms.
[2020-05-18 08:50:05] [INFO ] Added : 29 causal constraints over 6 iterations in 65 ms. Result :sat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive place invariants in 3 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive and 1 generalized place invariants in 0 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using state equation in 15 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Added 36 Read/Feed constraints in 5 ms returned sat
[2020-05-18 08:50:05] [INFO ] Solution in real domain found non-integer solution.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive place invariants in 5 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive and 1 generalized place invariants in 0 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using state equation in 14 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Added 36 Read/Feed constraints in 5 ms returned sat
[2020-05-18 08:50:05] [INFO ] Computed and/alt/rep : 78/1419/54 causal constraints in 5 ms.
[2020-05-18 08:50:05] [INFO ] Added : 30 causal constraints over 7 iterations in 68 ms. Result :sat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive place invariants in 3 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using 10 positive and 1 generalized place invariants in 1 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Real]Absence check using state equation in 14 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Real]Added 36 Read/Feed constraints in 5 ms returned sat
[2020-05-18 08:50:05] [INFO ] Solution in real domain found non-integer solution.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive place invariants in 4 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using 10 positive and 1 generalized place invariants in 0 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Adding state equation constraints to refine reachable states.
[2020-05-18 08:50:05] [INFO ] [Nat]Absence check using state equation in 16 ms returned sat
[2020-05-18 08:50:05] [INFO ] [Nat]Added 36 Read/Feed constraints in 4 ms returned sat
[2020-05-18 08:50:05] [INFO ] Computed and/alt/rep : 78/1419/54 causal constraints in 5 ms.
[2020-05-18 08:50:05] [INFO ] Added : 45 causal constraints over 9 iterations in 103 ms. Result :sat
Successfully simplified 2 atomic propositions for a total of 2 simplifications.
[2020-05-18 08:50:06] [INFO ] Initial state reduction rules for CTL removed 4 formulas.
[2020-05-18 08:50:06] [INFO ] Flatten gal took : 44 ms
[2020-05-18 08:50:06] [INFO ] Initial state reduction rules for CTL removed 4 formulas.
[2020-05-18 08:50:06] [INFO ] Flatten gal took : 14 ms
FORMULA PhilosophersDyn-COL-03-CTLFireability-13 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PhilosophersDyn-COL-03-CTLFireability-12 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PhilosophersDyn-COL-03-CTLFireability-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PhilosophersDyn-COL-03-CTLFireability-07 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2020-05-18 08:50:06] [INFO ] Applying decomposition
[2020-05-18 08:50:06] [INFO ] Flatten gal took : 12 ms
Converted graph to binary with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202005100927/bin/convert-linux64, -i, /tmp/graph7793189238283619877.txt, -o, /tmp/graph7793189238283619877.bin, -w, /tmp/graph7793189238283619877.weights], workingDir=null]
Built communities with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202005100927/bin/louvain-linux64, /tmp/graph7793189238283619877.bin, -l, -1, -v, -w, /tmp/graph7793189238283619877.weights, -q, 0, -e, 0.001], workingDir=null]
[2020-05-18 08:50:06] [INFO ] Decomposing Gal with order
[2020-05-18 08:50:06] [INFO ] Rewriting arrays to variables to allow decomposition.
[2020-05-18 08:50:06] [INFO ] Removed a total of 42 redundant transitions.
[2020-05-18 08:50:06] [INFO ] Flatten gal took : 43 ms
[2020-05-18 08:50:06] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 2 ms.
[2020-05-18 08:50:06] [INFO ] Time to serialize gal into /home/mcc/execution/CTLFireability.pnml.gal : 3 ms
[2020-05-18 08:50:06] [INFO ] Time to serialize properties into /home/mcc/execution/CTLFireability.ctl : 6 ms
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202005100927/bin/its-ctl-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/CTLFireability.pnml.gal, -t, CGAL, -ctl, /home/mcc/execution/CTLFireability.ctl], workingDir=/home/mcc/execution]
its-ctl command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202005100927/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/CTLFireability.pnml.gal -t CGAL -ctl /home/mcc/execution/CTLFireability.ctl
No direction supplied, using forward translation only.
Parsed 12 CTL formulae.
built 4 ordering constraints for composite.
built 32 ordering constraints for composite.
built 32 ordering constraints for composite.
built 32 ordering constraints for composite.
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
reachable,325,0.033294,5300,132,126,967,356,343,1227,136,786,0
Converting to forward existential form...Done !
original formula: A(AF((((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))&&((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1))))) U (((((((((((((((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1)))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))&&(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||((((i0.u0.Think_0>=1)||(i2.u1.Think_1>=1))||(i1.u2.Think_2>=1))&&(((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))))
=> equivalent forward existential formula: [((Init * !(EG(!((((((((((((((((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1)))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))&&(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||((((i0.u0.Think_0>=1)||(i2.u1.Think_1>=1))||(i1.u2.Think_2>=1))&&(((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))))))) * !(E(!((((((((((((((((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1)))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))&&(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||((((i0.u0.Think_0>=1)||(i2.u1.Think_1>=1))||(i1.u2.Think_2>=1))&&(((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1))))))) U (!(!(EG(!((((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))&&((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))))))) * !((((((((((((((((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1)))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))&&(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||((((i0.u0.Think_0>=1)||(i2.u1.Think_1>=1))||(i1.u2.Think_2>=1))&&(((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))))))))] != FALSE
Reverse transition relation is NOT exact ! Due to transitions Leavel0r0p1, Leavel0r0p2, Leavel0r1p2, Leavel0r2p1, Leavel1r0p2, Leavel1r1p0, Leavel1r1p2, Leavel1r2p0, Leavel2r0p1, Leavel2r1p0, Leavel2r2p0, Leavel2r2p1, Intersection with reachable at each step enabled. (destroyed/reverse/intersect/total) :39/30/12/81
Fast SCC detection found an SCC at level 2
(forward)formula 0,0,0.16385,8704,1,0,5969,1152,1525,8987,788,2100,25498
FORMULA PhilosophersDyn-COL-03-CTLFireability-00 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: (EG(((((((((((((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))) + (EF(((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1)))) * AF((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1))))))
=> equivalent forward existential formula: ([((Init * !(EG(((((((((((((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))) * !(E(TRUE U ((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1))))))] = FALSE * [FwdG((Init * !(EG(((((((((((((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))),!((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))] = FALSE)
(forward)formula 1,0,0.187575,9760,1,0,7783,1166,1549,10506,789,2176,34573
FORMULA PhilosophersDyn-COL-03-CTLFireability-01 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: (!(A(((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2<1)||(i0.u0.Neighbourhood_3<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1))&&(((i1.u2.Neighbourhood_8<2)||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i0.u0.Neighbourhood_0<1)||(i0.u0.Neighbourhood_3<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_5<1)||(i2.u1.Neighbourhood_7<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&(((i0.u0.Neighbourhood_0<2)||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i2.u1.Neighbourhood_1<1)||(i0.u0.Neighbourhood_3<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_0<1)||(i2.u1.Neighbourhood_1<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_2<1)||(i0.u0.Neighbourhood_6<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_1<1)||(i1.u2.Neighbourhood_5<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&(((i2.u1.Neighbourhood_4<2)||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i1.u2.Neighbourhood_5<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i0.u0.Neighbourhood_0<1)||(i1.u2.Neighbourhood_2<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_2<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i1.u2.Neighbourhood_5<1)||(i0.u0.Neighbourhood_6<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_4<1)||(i1.u2.Neighbourhood_5<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_0<1)||(i0.u0.Neighbourhood_6<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_5<1)||(i2.u1.Neighbourhood_7<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i1.u2.Neighbourhood_2<1)||(i2.u1.Neighbourhood_7<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_1<1)||(i0.u0.Neighbourhood_6<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_2<1)||(i0.u0.Neighbourhood_6<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i2.u1.Neighbourhood_1<1)||(i2.u1.Neighbourhood_4<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_3<1)||(i2.u1.Neighbourhood_7<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i2.u1.Neighbourhood_7<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i0.u0.Neighbourhood_3<1)||(i2.u1.Neighbourhood_4<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_6<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_4<1)||(i2.u1.Neighbourhood_7<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i2.u1.Neighbourhood_1<1)||(i0.u0.Neighbourhood_3<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1))) U ((((i1.u2.Forks_2<1)||(i1.u2.WaitLeft_2<1))&&((i2.u1.Forks_1<1)||(i2.u1.WaitLeft_1<1)))&&((i0.u0.Forks_0<1)||(i0.u0.WaitLeft_0<1))))) + AF(((((((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(i0.u0.Outside_0<1))||(i2.u1.Outside_1<1))||(i1.u2.Outside_2<1)) * EX((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))))))
=> equivalent forward existential formula: [FwdG((Init * !(!(!((E(!(((((i1.u2.Forks_2<1)||(i1.u2.WaitLeft_2<1))&&((i2.u1.Forks_1<1)||(i2.u1.WaitLeft_1<1)))&&((i0.u0.Forks_0<1)||(i0.u0.WaitLeft_0<1)))) U (!(((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2<1)||(i0.u0.Neighbourhood_3<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1))&&(((i1.u2.Neighbourhood_8<2)||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i0.u0.Neighbourhood_0<1)||(i0.u0.Neighbourhood_3<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_5<1)||(i2.u1.Neighbourhood_7<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&(((i0.u0.Neighbourhood_0<2)||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i2.u1.Neighbourhood_1<1)||(i0.u0.Neighbourhood_3<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_0<1)||(i2.u1.Neighbourhood_1<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_2<1)||(i0.u0.Neighbourhood_6<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_1<1)||(i1.u2.Neighbourhood_5<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&(((i2.u1.Neighbourhood_4<2)||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i1.u2.Neighbourhood_5<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i0.u0.Neighbourhood_0<1)||(i1.u2.Neighbourhood_2<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_2<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i1.u2.Neighbourhood_5<1)||(i0.u0.Neighbourhood_6<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_4<1)||(i1.u2.Neighbourhood_5<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_0<1)||(i0.u0.Neighbourhood_6<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_5<1)||(i2.u1.Neighbourhood_7<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i1.u2.Neighbourhood_2<1)||(i2.u1.Neighbourhood_7<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_1<1)||(i0.u0.Neighbourhood_6<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i1.u2.Neighbourhood_2<1)||(i0.u0.Neighbourhood_6<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))&&((((i2.u1.Neighbourhood_1<1)||(i2.u1.Neighbourhood_4<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_3<1)||(i2.u1.Neighbourhood_7<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i2.u1.Neighbourhood_7<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i0.u0.Neighbourhood_3<1)||(i2.u1.Neighbourhood_4<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i0.u0.Neighbourhood_6<1)||(i1.u2.Neighbourhood_8<1))||(i1.u2.Think_2<1))||(i1.u2.Forks_2<1)))&&((((i2.u1.Neighbourhood_4<1)||(i2.u1.Neighbourhood_7<1))||(i2.u1.Think_1<1))||(i2.u1.Forks_1<1)))&&((((i2.u1.Neighbourhood_1<1)||(i0.u0.Neighbourhood_3<1))||(i0.u0.Think_0<1))||(i0.u0.Forks_0<1)))) * !(((((i1.u2.Forks_2<1)||(i1.u2.WaitLeft_2<1))&&((i2.u1.Forks_1<1)||(i2.u1.WaitLeft_1<1)))&&((i0.u0.Forks_0<1)||(i0.u0.WaitLeft_0<1)))))) + EG(!(((((i1.u2.Forks_2<1)||(i1.u2.WaitLeft_2<1))&&((i2.u1.Forks_1<1)||(i2.u1.WaitLeft_1<1)))&&((i0.u0.Forks_0<1)||(i0.u0.WaitLeft_0<1)))))))))),!(((((((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(i0.u0.Outside_0<1))||(i2.u1.Outside_1<1))||(i1.u2.Outside_2<1)) * EX((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))))))] = FALSE
(forward)formula 2,0,0.23439,11080,1,0,9988,1178,1938,12911,850,2324,43541
FORMULA PhilosophersDyn-COL-03-CTLFireability-02 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: ((EG(EX(((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))&&((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))))) + AF(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1))))) + AX((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))
=> equivalent forward existential formula: [(EY((Init * !((EG(EX(((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))&&((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))))) + !(EG(!(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))))))))) * !((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))] = FALSE
(forward)formula 3,0,0.262001,11608,1,0,11323,1184,1964,14394,851,2342,48037
FORMULA PhilosophersDyn-COL-03-CTLFireability-03 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: AX((AF((((((((((((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))) * (((((((((((((((((((((((((((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Outside_1>=1))&&(i2.u1.Forks_1>=2))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Outside_1>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i0.u0.Outside_0>=1))&&(i1.u2.Forks_2>=2)))||(((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=2)))||((((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Outside_1>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i0.u0.Outside_0>=1))&&(i2.u1.Forks_1>=2)))||((((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Outside_2>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Forks_2>=2)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=2)))||((((i0.u0.Neighbourhood_6>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Outside_0>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Outside_2>=1))&&(i1.u2.Forks_2>=2)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=2)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i0.u0.Outside_0>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Outside_2>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Outside_2>=1))&&(i2.u1.Forks_1>=2)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))))
=> equivalent forward existential formula: ([FwdG(EY(Init),!((((((((((((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))] = FALSE * [(EY(Init) * !((((((((((((((((((((((((((((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Outside_1>=1))&&(i2.u1.Forks_1>=2))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Outside_1>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i0.u0.Outside_0>=1))&&(i1.u2.Forks_2>=2)))||(((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=2)))||((((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Outside_1>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i0.u0.Outside_0>=1))&&(i2.u1.Forks_1>=2)))||((((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Outside_2>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Forks_2>=2)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=2)))||((((i0.u0.Neighbourhood_6>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Outside_0>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Outside_2>=1))&&(i1.u2.Forks_2>=2)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=2)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Outside_0>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i0.u0.Outside_0>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Outside_2>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Outside_2>=1))&&(i2.u1.Forks_1>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Outside_2>=1))&&(i2.u1.Forks_1>=2)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Outside_1>=1))&&(i0.u0.Forks_0>=1))&&(i2.u1.Forks_1>=1)))))] = FALSE)
(forward)formula 4,0,0.278294,12136,1,0,11584,1185,2273,14624,880,2344,50770
FORMULA PhilosophersDyn-COL-03-CTLFireability-04 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: AF((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1))))
=> equivalent forward existential formula: [FwdG(Init,!((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))] = FALSE
(forward)formula 5,0,0.280078,12400,1,0,11584,1185,2273,14624,880,2344,50770
FORMULA PhilosophersDyn-COL-03-CTLFireability-05 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: AF(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1))))
=> equivalent forward existential formula: [FwdG(Init,!(((((i1.u2.Forks_2>=1)&&(i1.u2.WaitLeft_2>=1))||((i2.u1.Forks_1>=1)&&(i2.u1.WaitLeft_1>=1)))||((i0.u0.Forks_0>=1)&&(i0.u0.WaitLeft_0>=1)))))] = FALSE
(forward)formula 6,0,0.290992,12664,1,0,12454,1185,2276,15290,880,2355,54391
FORMULA PhilosophersDyn-COL-03-CTLFireability-06 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: (!(AX((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1))))) + !(EF((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1))))))
=> equivalent forward existential formula: [(FwdU((Init * !(!(!(EX(!((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_6>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i0.u0.HasLeft_0>=1))&&(i0.u4.HasRight_0>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i2.u1.HasLeft_1>=1))&&(i2.u3.HasRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i1.u2.HasLeft_2>=1))&&(i1.u5.HasRight_2>=1))))))))),TRUE) * (((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1))))] = FALSE
(forward)formula 7,1,0.296646,12928,1,0,12508,1185,2277,15395,880,2355,54527
FORMULA PhilosophersDyn-COL-03-CTLFireability-08 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is TRUE !
***************************************
original formula: AG(E((((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1)) U ((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))))
=> equivalent forward existential formula: [(FwdU(Init,TRUE) * !(E((((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1)) U ((((((((((((((((((((((((((((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))||(((i1.u2.Neighbourhood_8>=2)&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||(((i0.u0.Neighbourhood_0>=2)&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i2.u1.Neighbourhood_1>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||(((i2.u1.Neighbourhood_4>=2)&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i1.u2.Neighbourhood_2>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i1.u2.Neighbourhood_5>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_5>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i1.u2.Neighbourhood_2>=1)&&(i0.u0.Neighbourhood_6>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_7>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i0.u0.Neighbourhood_3>=1)&&(i2.u1.Neighbourhood_4>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i0.u0.Neighbourhood_6>=1)&&(i1.u2.Neighbourhood_8>=1))&&(i1.u2.Think_2>=1))&&(i1.u2.Forks_2>=1)))||((((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Neighbourhood_7>=1))&&(i2.u1.Think_1>=1))&&(i2.u1.Forks_1>=1)))||((((i2.u1.Neighbourhood_1>=1)&&(i0.u0.Neighbourhood_3>=1))&&(i0.u0.Think_0>=1))&&(i0.u0.Forks_0>=1))))))] = FALSE
(forward)formula 8,0,0.309893,12928,1,0,12578,1198,2280,15502,880,2358,54852
FORMULA PhilosophersDyn-COL-03-CTLFireability-09 FALSE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is FALSE !
***************************************
original formula: AF(EG((((((((((((i1.u2.Neighbourhood_2<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1))&&(((i0.u0.Neighbourhood_3<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_6<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i1.u2.Neighbourhood_8<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i2.u1.Neighbourhood_4<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_0<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i2.u1.Neighbourhood_1<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i1.u2.Neighbourhood_5<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i2.u1.Neighbourhood_7<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))))
=> equivalent forward existential formula: [FwdG(Init,!(EG((((((((((((i1.u2.Neighbourhood_2<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1))&&(((i0.u0.Neighbourhood_3<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_6<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i1.u2.Neighbourhood_8<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i2.u1.Neighbourhood_4<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_0<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i2.u1.Neighbourhood_1<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i1.u2.Neighbourhood_5<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i2.u1.Neighbourhood_7<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1))))))] = FALSE
(forward)formula 9,1,0.322876,12928,1,0,13074,1202,2344,16191,884,2398,58001
FORMULA PhilosophersDyn-COL-03-CTLFireability-10 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is TRUE !
***************************************
original formula: EF((EX((((((((((((i1.u2.Neighbourhood_2<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1))&&(((i0.u0.Neighbourhood_3<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_6<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i1.u2.Neighbourhood_8<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i2.u1.Neighbourhood_4<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_0<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i2.u1.Neighbourhood_1<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i1.u2.Neighbourhood_5<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i2.u1.Neighbourhood_7<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))) * (((i0.u0.Think_0>=1)||(i2.u1.Think_1>=1))||(i1.u2.Think_2>=1))))
=> equivalent forward existential formula: [(EY((FwdU(Init,TRUE) * (((i0.u0.Think_0>=1)||(i2.u1.Think_1>=1))||(i1.u2.Think_2>=1)))) * (((((((((((i1.u2.Neighbourhood_2<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1))&&(((i0.u0.Neighbourhood_3<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_6<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i1.u2.Neighbourhood_8<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1)))&&(((i2.u1.Neighbourhood_4<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i0.u0.Neighbourhood_0<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i2.u1.Neighbourhood_1<1)||(i0.u0.HasLeft_0<1))||(i0.u4.HasRight_0<1)))&&(((i1.u2.Neighbourhood_5<1)||(i2.u1.HasLeft_1<1))||(i2.u3.HasRight_1<1)))&&(((i2.u1.Neighbourhood_7<1)||(i1.u2.HasLeft_2<1))||(i1.u5.HasRight_2<1))))] != FALSE
(forward)formula 10,1,0.333644,13192,1,0,13291,1205,2344,16477,884,2399,58771
FORMULA PhilosophersDyn-COL-03-CTLFireability-14 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is TRUE !
***************************************
original formula: (!(AX((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1))))) + !(AF((((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1)))))
=> equivalent forward existential formula: ([(EY(Init) * !((((((((((((i0.u0.Neighbourhood_6>=1)&&(i0.u0.Forks_0>=1))&&(i1.u5.WaitRight_2>=1))||(((i0.u0.Neighbourhood_3>=1)&&(i0.u0.Forks_0>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_1>=1)&&(i2.u1.Forks_1>=1))&&(i0.u4.WaitRight_0>=1)))||(((i1.u2.Neighbourhood_8>=1)&&(i1.u2.Forks_2>=1))&&(i1.u5.WaitRight_2>=1)))||(((i1.u2.Neighbourhood_5>=1)&&(i1.u2.Forks_2>=1))&&(i2.u3.WaitRight_1>=1)))||(((i1.u2.Neighbourhood_2>=1)&&(i1.u2.Forks_2>=1))&&(i0.u4.WaitRight_0>=1)))||(((i2.u1.Neighbourhood_4>=1)&&(i2.u1.Forks_1>=1))&&(i2.u3.WaitRight_1>=1)))||(((i2.u1.Neighbourhood_7>=1)&&(i2.u1.Forks_1>=1))&&(i1.u5.WaitRight_2>=1)))||(((i0.u0.Neighbourhood_0>=1)&&(i0.u0.Forks_0>=1))&&(i0.u4.WaitRight_0>=1)))))] != FALSE + [FwdG(Init,!((((i0.u0.Outside_0>=1)&&(i2.u1.Outside_1>=1))&&(i1.u2.Outside_2>=1))))] != FALSE)
(forward)formula 11,1,0.336069,13192,1,0,13291,1205,2344,16477,884,2399,58771
FORMULA PhilosophersDyn-COL-03-CTLFireability-15 TRUE TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN
Formula is TRUE !
***************************************
BK_STOP 1589791806888
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ CTLFireability = StateSpace ]]
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution CTLFireability -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -greatspnpath /home/mcc/BenchKit//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination CTLFireability -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -greatspnpath /home/mcc/BenchKit//greatspn/ -order META -manyOrder -smt -timeout 3600 -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss128m -Xms40m -Xmx16000m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PhilosophersDyn-COL-03"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool itstools"
echo " Input is PhilosophersDyn-COL-03, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r126-tajo-158961390000196"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/PhilosophersDyn-COL-03.tgz
mv PhilosophersDyn-COL-03 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;