About the Execution of 2019-Gold for NeoElection-COL-6
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
8234.570 | 3570381.00 | 3745724.00 | 331.90 | FTTTTFTF?FTFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/local/x2003239/mcc2020-input.r120-csrt-158961292500063.qcow2', fmt=qcow2 size=4294967296 backing_file=/local/x2003239/mcc2020-input.qcow2 encryption=off cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is NeoElection-COL-6, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r120-csrt-158961292500063
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 276K
-rw-r--r-- 1 mcc users 3.9K Apr 30 13:04 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 30 13:04 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 30 13:04 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Apr 30 13:04 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Apr 30 13:04 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Apr 30 13:04 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.7K Apr 30 13:04 LTLCardinality.txt
-rw-r--r-- 1 mcc users 22K Apr 30 13:04 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.5K Apr 30 13:04 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Apr 30 13:04 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.4K Apr 30 13:04 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 20K Apr 30 13:04 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 30 13:04 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 13K Apr 30 13:04 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Apr 30 13:04 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.9K Apr 30 13:04 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Apr 30 13:04 equiv_pt
-rw-r--r-- 1 mcc users 2 Apr 30 13:04 instance
-rw-r--r-- 1 mcc users 5 Apr 30 13:04 iscolored
-rw-r--r-- 1 mcc users 98K Apr 30 13:04 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-6-00
FORMULA_NAME NeoElection-COL-6-01
FORMULA_NAME NeoElection-COL-6-02
FORMULA_NAME NeoElection-COL-6-03
FORMULA_NAME NeoElection-COL-6-04
FORMULA_NAME NeoElection-COL-6-05
FORMULA_NAME NeoElection-COL-6-06
FORMULA_NAME NeoElection-COL-6-07
FORMULA_NAME NeoElection-COL-6-08
FORMULA_NAME NeoElection-COL-6-09
FORMULA_NAME NeoElection-COL-6-10
FORMULA_NAME NeoElection-COL-6-11
FORMULA_NAME NeoElection-COL-6-12
FORMULA_NAME NeoElection-COL-6-13
FORMULA_NAME NeoElection-COL-6-14
FORMULA_NAME NeoElection-COL-6-15
=== Now, execution of the tool begins
BK_START 1590337130943
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ NeoElection-COL-6 @ 3570 seconds
FORMULA NeoElection-COL-6-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-04 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-06 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-01 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-07 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-6-03 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: -1
rslt: Output for LTLCardinality @ NeoElection-COL-6
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sun May 24 16:18:51 2020
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 218
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 233
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 249
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 268
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 291
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 317
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 349
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 388
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 436
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 499
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 122
},
"result":
{
"edges": 6,
"markings": 7,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 582
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 595,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 595,
"visible_transitions": 0
},
"processed": "A (X (X (((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504))))))",
"processed_size": 4467,
"rewrites": 122
},
"result":
{
"edges": 409,
"markings": 409,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 699
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 14,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 14,
"visible_transitions": 0
},
"processed": "A (X ((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))",
"processed_size": 120,
"rewrites": 122
},
"result":
{
"edges": 409,
"markings": 409,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 873
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 626,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 626,
"visible_transitions": 0
},
"processed": "A (X (G ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662))))",
"processed_size": 4696,
"rewrites": 122
},
"result":
{
"edges": 409,
"markings": 409,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1165
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 122
},
"result":
{
"edges": 6,
"markings": 7,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1747
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 7,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 7,
"visible_transitions": 0
},
"processed": "(6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)",
"processed_size": 60,
"rewrites": 124
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "state space / EG",
"value": true
},
"task":
{
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 7847
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
}
],
"exit":
{
"error": null,
"memory": 8201724,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "FALSE : A(X(TRUE)) : TRUE : A(F(**)) : TRUE : A(X(**)) : TRUE : A(X(X((** AND F(**))))) : A(G(F((G(*) OR F(*))))) : FALSE : A(X(TRUE)) : FALSE : FALSE : FALSE : A(X(G(**))) : FALSE"
},
"net":
{
"arcs": 46448,
"conflict_clusters": 3655,
"places": 4830,
"places_significant": 1145,
"singleton_clusters": 0,
"transitions": 8005
},
"result":
{
"interim_value": "no yes yes yes yes no yes no unknown no yes no no no no no ",
"preliminary_value": "no yes yes yes yes no yes no unknown no yes no no no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 4830, Transitions: 8005
lola: @ trans T-startNeg__end
lola: @ trans T-poll__handleAI2
lola: @ trans T-poll__handleAI1
lola: @ trans T-poll__handleRI
lola: @ trans T-poll__handleAnsP2
lola: @ trans T-sendAnnPs__start
lola: @ trans T-startNeg__start
lola: @ trans T-sendAnnPs__send
lola: @ trans T-sendAnnPs__end
lola: @ trans T-poll__iAmPrimary
lola: @ trans T-poll__end
lola: @ trans T-poll__handleAnsP3
lola: @ trans T-poll__handleAnnP1
lola: @ trans T-startSec
lola: @ trans T-poll__handleRP
lola: @ trans T-poll__handleAskP
lola: @ trans T-poll__handleAnnP2
lola: @ trans T-poll__start
lola: @ trans T-poll__handleAnsP1
lola: @ trans T-poll__handleAnsP4
lola: @ trans T-startNeg__send
lola: @ trans T-poll__iAmSecondary
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 12835/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8005 transitions, 1145 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204)
lola: after: (0 <= 36)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204)
lola: after: (0 <= 33)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204)
lola: after: (0 <= 36)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4718 + p4719 + p4720 + p4721 + p4722 + p4723 + p4724)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822)
lola: after: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: LP says that atomic proposition is always true: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (0 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822)
lola: after: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: LP says that atomic proposition is always true: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4523 + p4524 + p4525 + p4526 + p4527 + p4528 + p4529 + p4530 + p4531 + p4532 + p4533 + p4534 + p4535 + p4536 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p4543 + p4544 + p4545 + p4546 + p4547 + p4548 + p4549 + p4514 + p4513 + p4512 + p4511 + p4550 + p4551 + p4552 + p4553 + p4554 + p4555 + p4556 + p4557 + p4558 + p4559 + p4510 + p4560 + p4561 + p4562 + p4563 + p4564 + p4565 + p4566 + p4567 + p4568 + p4569 + p4570 + p4571 + p4572 + p4573 + p4574 + p4575 + p4576 + p4577 + p4578 + p4579 + p4580 + p4581 + p4582 + p4583 + p4584 + p4585 + p4586 + p4587 + p4588 + p4589 + p4590 + p4591 + p4592 + p4593 + p4594 + p4595 + p4596 + p4597 + p4598 + p4509 + p4508 + p4507 + p4506 + p4505 + p4504 + p4503 + p4502 + p4501 + p4500 + p4499 + p4498 + p4497 + p4496 + p4495 + p4494 + p4493 + p4492 + p4491 + p4490 + p4489 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p4482 + p4481 + p4480 + p4479 + p4478 + p4477 + p4476 + p4475 + p4474 + p4473 + p4472 + p4471 + p4470 + p4469 + p4468 + p4467 + p4466 + p4465 + p4464 + p4463 + p4462 + p4461 + p4460 + p4459 + p4458 + p4457 + p4456 + p4455 + p4454 + p4453 + p4452 + p4451 + p4450 + p4449 + p4448 + p4447 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p4439 + p4438 + p4437 + p4436 + p4435 + p4434 + p4433 + p4432 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4416 + p4415 + p4414 + p4413 + p4412 + p4411 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p4399 + p4398 + p4397 + p4396 + p4395 + p4394 + p4393 + p4392 + p4391 + p4390 + p4389 + p4388 + p4387 + p4386 + p4385 + p4384 + p4383 + p4382 + p4381 + p4380 + p4379 + p4378 + p4377 + p4376 + p4375 + p4374 + p4373 + p4372 + p4371 + p4370 + p4369 + p4368 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p4361 + p4360 + p4359 + p4358 + p4357 + p4356 + p4355 + p4354 + p4353 + p4352 + p4351 + p4350 + p4349 + p4348 + p4347 + p4346 + p4345 + p4344 + p4343 + p4342 + p4341 + p4340 + p4339 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p4329 + p4328 + p4327 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704)
lola: after: (30 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704)
lola: LP says that atomic proposition is always false: (30 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704)
lola: place invariant simplifies atomic proposition
lola: before: (p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999)
lola: after: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: LP says that atomic proposition is always true: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4523 + p4524 + p4525 + p4526 + p4527 + p4528 + p4529 + p4530 + p4531 + p4532 + p4533 + p4534 + p4535 + p4536 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p4543 + p4544 + p4545 + p4546 + p4547 + p4548 + p4549 + p4514 + p4513 + p4512 + p4511 + p4550 + p4551 + p4552 + p4553 + p4554 + p4555 + p4556 + p4557 + p4558 + p4559 + p4510 + p4560 + p4561 + p4562 + p4563 + p4564 + p4565 + p4566 + p4567 + p4568 + p4569 + p4570 + p4571 + p4572 + p4573 + p4574 + p4575 + p4576 + p4577 + p4578 + p4579 + p4580 + p4581 + p4582 + p4583 + p4584 + p4585 + p4586 + p4587 + p4588 + p4589 + p4590 + p4591 + p4592 + p4593 + p4594 + p4595 + p4596 + p4597 + p4598 + p4509 + p4508 + p4507 + p4506 + p4505 + p4504 + p4503 + p4502 + p4501 + p4500 + p4499 + p4498 + p4497 + p4496 + p4495 + p4494 + p4493 + p4492 + p4491 + p4490 + p4489 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p4482 + p4481 + p4480 + p4479 + p4478 + p4477 + p4476 + p4475 + p4474 + p4473 + p4472 + p4471 + p4470 + p4469 + p4468 + p4467 + p4466 + p4465 + p4464 + p4463 + p4462 + p4461 + p4460 + p4459 + p4458 + p4457 + p4456 + p4455 + p4454 + p4453 + p4452 + p4451 + p4450 + p4449 + p4448 + p4447 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p4439 + p4438 + p4437 + p4436 + p4435 + p4434 + p4433 + p4432 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4416 + p4415 + p4414 + p4413 + p4412 + p4411 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p4399 + p4398 + p4397 + p4396 + p4395 + p4394 + p4393 + p4392 + p4391 + p4390 + p4389 + p4388 + p4387 + p4386 + p4385 + p4384 + p4383 + p4382 + p4381 + p4380 + p4379 + p4378 + p4377 + p4376 + p4375 + p4374 + p4373 + p4372 + p4371 + p4370 + p4369 + p4368 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p4361 + p4360 + p4359 + p4358 + p4357 + p4356 + p4355 + p4354 + p4353 + p4352 + p4351 + p4350 + p4349 + p4348 + p4347 + p4346 + p4345 + p4344 + p4343 + p4342 + p4341 + p4340 + p4339 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p4329 + p4328 + p4327 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (30 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: LP says that atomic proposition is always false: (30 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666 <= p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822)
lola: after: (p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 6)
lola: LP says that atomic proposition is always true: (p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3213 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3212 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p3204 + p3203 + p3202 + p3201 + p3200 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3310 + p3311 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3346 + p3347 + p3348 + p3349 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3199 + p3198 + p3197 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3196 + p3195 + p3194 + p3193 + p3192 + p3191 + p3190 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3377 + p3378 + p3379 + p3189 + p3188 + p3187 + p3186 + p3185 + p3380 + p3381 + p3184 + p3183 + p3182 + p3181 + p3180 + p3388 + p3389 + p3179 + p3178 + p3171 + p3170 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3169 + p3168 + p3167 + p3166 + p3165 + p3164 + p3163 + p3162 + p3161 + p3160 + p3159 + p3158 + p3157 + p3156 + p3155 + p3154 + p3153 + p3152 + p3151 + p3150 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3149 + p3148 + p3147 + p3146 + p3145 + p3410 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3144 + p3143 + p3142 + p3141 + p3420 + p3421 + p3422 + p3423 + p3140 + p3139 + p3138 + p3137 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3136 + p3129 + p3128 + p3440 + p3441 + p3442 + p3443 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3113 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3103 + p3102 + p3101 + p3100 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p3540 + p3541 + p3542 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3079 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p3556 + p3557 + p3558 + p3559 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p3570 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3577 + p3578 + p3579 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3072 + p3071 + p3070 + p2296 + p2297 + p2298 + p2299 + p3590 + p3591 + p3598 + p3599 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p3045 + p3044 + p3043 + p3042 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p3041 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p2330 + p2331 + p3040 + p2338 + p2339 + p3630 + p3631 + p3632 + p3633 + p3039 + p3038 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p3037 + p3036 + p3035 + p3034 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p3033 + p3032 + p3031 + p3030 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p2370 + p2371 + p2372 + p2373 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3029 + p3028 + p3027 + p3026 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p3025 + p3024 + p3023 + p3022 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3021 + p3020 + p3019 + p3018 + p3017 + p3016 + p3015 + p3014 + p3013 + p3012 + p3011 + p3010 + p3003 + p3002 + p3001 + p3000 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p3740 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p3766 + p3767 + p3768 + p3769 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p4297 + p4296 + p4295 + p4294 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p3776 + p3777 + p3778 + p3779 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p4293 + p4292 + p3780 + p3781 + p3782 + p3783 + p3784 + p3785 + p3786 + p3787 + p3788 + p3789 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p3790 + p3791 + p3792 + p3793 + p3794 + p3795 + p3796 + p3797 + p3798 + p3799 + p4291 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2506 + p2507 + p2508 + p2509 + p4284 + p4283 + p3800 + p3801 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p3808 + p3809 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p4276 + p4275 + p4274 + p4273 + p4272 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p4271 + p4270 + p4263 + p4262 + p3820 + p3821 + p3822 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3829 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p4261 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p2540 + p2541 + p4260 + p4259 + p4258 + p4257 + p4256 + p4255 + p2548 + p2549 + p4254 + p3840 + p3841 + p3842 + p3843 + p4253 + p4252 + p4251 + p4250 + p4249 + p4248 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p4247 + p4246 + p4245 + p4244 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p4243 + p4242 + p4241 + p4240 + p4239 + p3860 + p3861 + p3862 + p3863 + p3864 + p3865 + p3866 + p3867 + p3868 + p3869 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p4238 + p4237 + p3870 + p3871 + p3872 + p3873 + p3874 + p3875 + p3876 + p3877 + p3878 + p3879 + p2580 + p2581 + p2582 + p2583 + p4236 + p4235 + p4234 + p4233 + p4232 + p4231 + p4230 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p4229 + p4228 + p4221 + p4220 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p4219 + p4218 + p3892 + p3893 + p3894 + p3895 + p3896 + p3897 + p3898 + p3899 + p4217 + p4216 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p3907 + p3908 + p3909 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p4208 + p3910 + p3911 + p3912 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p4207 + p4206 + p4205 + p4204 + p4203 + p4202 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p4201 + p4200 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p3934 + p3935 + p3936 + p3937 + p3938 + p3939 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p3940 + p3941 + p3942 + p3943 + p3944 + p3945 + p3946 + p3947 + p3948 + p3949 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p3950 + p3951 + p3952 + p3953 + p3954 + p3955 + p3956 + p3957 + p3958 + p3959 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p3960 + p3961 + p3962 + p3963 + p3964 + p3965 + p3966 + p3967 + p3968 + p3969 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p3976 + p3977 + p3978 + p3979 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p3980 + p3981 + p3982 + p3983 + p3984 + p3985 + p3986 + p3987 + p3988 + p3989 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p3990 + p3991 + p3992 + p3993 + p3994 + p3995 + p3996 + p3997 + p3998 + p3999 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p4199 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p4198 + p4197 + p2790 + p2791 + p2792 + p2793 + p4196 + p4195 + p4194 + p4193 + p4192 + p4191 + p4190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4189 + p4188 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p4187 + p4186 + p4179 + p4178 + p4177 + p4176 + p4175 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p4174 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p4173 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p4165 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4158 + p4157 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p4156 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p4155 + p4154 + p4153 + p4152 + p4151 + p4150 + p4149 + p4148 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p4147 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p4146 + p4145 + p4144 + p4137 + p4136 + p4135 + p4134 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p4133 + p4132 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4131 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p2926 + p2927 + p2928 + p2929 + p4124 + p4123 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p4122 + p4121 + p4120 + p4119 + p4118 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p4117 + p4116 + p4115 + p4114 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p4113 + p2960 + p2961 + p4112 + p4111 + p4110 + p4109 + p4108 + p4107 + p2968 + p2969 + p4106 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p4105 + p4104 + p4103 + p4102 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p4095 + p4094 + p4093 + p4092 + p4091 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999 + p4090 + p4089 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4074 + p4073 + p4072 + p4071 + p4070 + p4069 + p4068 + p4067 + p4066 + p4065 + p4064 + p4063 + p4062 + p4061 + p4060 + p4053 + p4052 + p4051 + p4050 + p4049 + p4048 + p4047 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4032 + p4031 + p4030 + p4029 + p4028 + p4027 + p4026 + p4025 + p4024 + p4023 + p4022 + p4021 + p4020 + p4019 + p4018 + p4011 + p4010 + p4009 + p4008 + p4007 + p4006 + p4005 + p4004 + p4003 + p4002 + p4001 + p4000)
lola: after: (3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)
lola: LP says that atomic proposition is always false: (3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239)
lola: after: (0 <= 5)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: LP says that atomic proposition is always true: (p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: after: (6 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: LP says that atomic proposition is always false: (6 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999)
lola: after: (2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: LP says that atomic proposition is always false: (2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (36 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999)
lola: after: (1 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4523 + p4524 + p4525 + p4526 + p4527 + p4528 + p4529 + p4530 + p4531 + p4532 + p4533 + p4534 + p4535 + p4536 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p4543 + p4544 + p4545 + p4546 + p4547 + p4548 + p4549 + p4514 + p4513 + p4512 + p4511 + p4550 + p4551 + p4552 + p4553 + p4554 + p4555 + p4556 + p4557 + p4558 + p4559 + p4510 + p4560 + p4561 + p4562 + p4563 + p4564 + p4565 + p4566 + p4567 + p4568 + p4569 + p4570 + p4571 + p4572 + p4573 + p4574 + p4575 + p4576 + p4577 + p4578 + p4579 + p4580 + p4581 + p4582 + p4583 + p4584 + p4585 + p4586 + p4587 + p4588 + p4589 + p4590 + p4591 + p4592 + p4593 + p4594 + p4595 + p4596 + p4597 + p4598 + p4509 + p4508 + p4507 + p4506 + p4505 + p4504 + p4503 + p4502 + p4501 + p4500 + p4499 + p4498 + p4497 + p4496 + p4495 + p4494 + p4493 + p4492 + p4491 + p4490 + p4489 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p4482 + p4481 + p4480 + p4479 + p4478 + p4477 + p4476 + p4475 + p4474 + p4473 + p4472 + p4471 + p4470 + p4469 + p4468 + p4467 + p4466 + p4465 + p4464 + p4463 + p4462 + p4461 + p4460 + p4459 + p4458 + p4457 + p4456 + p4455 + p4454 + p4453 + p4452 + p4451 + p4450 + p4449 + p4448 + p4447 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p4439 + p4438 + p4437 + p4436 + p4435 + p4434 + p4433 + p4432 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4416 + p4415 + p4414 + p4413 + p4412 + p4411 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p4399 + p4398 + p4397 + p4396 + p4395 + p4394 + p4393 + p4392 + p4391 + p4390 + p4389 + p4388 + p4387 + p4386 + p4385 + p4384 + p4383 + p4382 + p4381 + p4380 + p4379 + p4378 + p4377 + p4376 + p4375 + p4374 + p4373 + p4372 + p4371 + p4370 + p4369 + p4368 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p4361 + p4360 + p4359 + p4358 + p4357 + p4356 + p4355 + p4354 + p4353 + p4352 + p4351 + p4350 + p4349 + p4348 + p4347 + p4346 + p4345 + p4344 + p4343 + p4342 + p4341 + p4340 + p4339 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p4329 + p4328 + p4327 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3213 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3212 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p3204 + p3203 + p3202 + p3201 + p3200 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3310 + p3311 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3346 + p3347 + p3348 + p3349 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3199 + p3198 + p3197 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3196 + p3195 + p3194 + p3193 + p3192 + p3191 + p3190 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3377 + p3378 + p3379 + p3189 + p3188 + p3187 + p3186 + p3185 + p3380 + p3381 + p3184 + p3183 + p3182 + p3181 + p3180 + p3388 + p3389 + p3179 + p3178 + p3171 + p3170 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3169 + p3168 + p3167 + p3166 + p3165 + p3164 + p3163 + p3162 + p3161 + p3160 + p3159 + p3158 + p3157 + p3156 + p3155 + p3154 + p3153 + p3152 + p3151 + p3150 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3149 + p3148 + p3147 + p3146 + p3145 + p3410 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3144 + p3143 + p3142 + p3141 + p3420 + p3421 + p3422 + p3423 + p3140 + p3139 + p3138 + p3137 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3136 + p3129 + p3128 + p3440 + p3441 + p3442 + p3443 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3113 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3103 + p3102 + p3101 + p3100 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p3540 + p3541 + p3542 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3079 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p3556 + p3557 + p3558 + p3559 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p3570 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3577 + p3578 + p3579 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3072 + p3071 + p3070 + p2296 + p2297 + p2298 + p2299 + p3590 + p3591 + p3598 + p3599 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p3045 + p3044 + p3043 + p3042 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p3041 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p2330 + p2331 + p3040 + p2338 + p2339 + p3630 + p3631 + p3632 + p3633 + p3039 + p3038 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p3037 + p3036 + p3035 + p3034 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p3033 + p3032 + p3031 + p3030 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p2370 + p2371 + p2372 + p2373 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3029 + p3028 + p3027 + p3026 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p3025 + p3024 + p3023 + p3022 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3021 + p3020 + p3019 + p3018 + p3017 + p3016 + p3015 + p3014 + p3013 + p3012 + p3011 + p3010 + p3003 + p3002 + p3001 + p3000 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p3740 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p3766 + p3767 + p3768 + p3769 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p4297 + p4296 + p4295 + p4294 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p3776 + p3777 + p3778 + p3779 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p4293 + p4292 + p3780 + p3781 + p3782 + p3783 + p3784 + p3785 + p3786 + p3787 + p3788 + p3789 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p3790 + p3791 + p3792 + p3793 + p3794 + p3795 + p3796 + p3797 + p3798 + p3799 + p4291 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2506 + p2507 + p2508 + p2509 + p4284 + p4283 + p3800 + p3801 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p3808 + p3809 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p4276 + p4275 + p4274 + p4273 + p4272 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p4271 + p4270 + p4263 + p4262 + p3820 + p3821 + p3822 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3829 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p4261 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p2540 + p2541 + p4260 + p4259 + p4258 + p4257 + p4256 + p4255 + p2548 + p2549 + p4254 + p3840 + p3841 + p3842 + p3843 + p4253 + p4252 + p4251 + p4250 + p4249 + p4248 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p4247 + p4246 + p4245 + p4244 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p4243 + p4242 + p4241 + p4240 + p4239 + p3860 + p3861 + p3862 + p3863 + p3864 + p3865 + p3866 + p3867 + p3868 + p3869 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p4238 + p4237 + p3870 + p3871 + p3872 + p3873 + p3874 + p3875 + p3876 + p3877 + p3878 + p3879 + p2580 + p2581 + p2582 + p2583 + p4236 + p4235 + p4234 + p4233 + p4232 + p4231 + p4230 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p4229 + p4228 + p4221 + p4220 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p4219 + p4218 + p3892 + p3893 + p3894 + p3895 + p3896 + p3897 + p3898 + p3899 + p4217 + p4216 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p3907 + p3908 + p3909 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p4208 + p3910 + p3911 + p3912 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p4207 + p4206 + p4205 + p4204 + p4203 + p4202 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p4201 + p4200 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p3934 + p3935 + p3936 + p3937 + p3938 + p3939 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p3940 + p3941 + p3942 + p3943 + p3944 + p3945 + p3946 + p3947 + p3948 + p3949 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p3950 + p3951 + p3952 + p3953 + p3954 + p3955 + p3956 + p3957 + p3958 + p3959 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p3960 + p3961 + p3962 + p3963 + p3964 + p3965 + p3966 + p3967 + p3968 + p3969 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p3976 + p3977 + p3978 + p3979 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p3980 + p3981 + p3982 + p3983 + p3984 + p3985 + p3986 + p3987 + p3988 + p3989 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p3990 + p3991 + p3992 + p3993 + p3994 + p3995 + p3996 + p3997 + p3998 + p3999 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p4199 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p4198 + p4197 + p2790 + p2791 + p2792 + p2793 + p4196 + p4195 + p4194 + p4193 + p4192 + p4191 + p4190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4189 + p4188 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p4187 + p4186 + p4179 + p4178 + p4177 + p4176 + p4175 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p4174 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p4173 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p4165 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4158 + p4157 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p4156 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p4155 + p4154 + p4153 + p4152 + p4151 + p4150 + p4149 + p4148 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p4147 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p4146 + p4145 + p4144 + p4137 + p4136 + p4135 + p4134 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p4133 + p4132 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4131 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p2926 + p2927 + p2928 + p2929 + p4124 + p4123 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p4122 + p4121 + p4120 + p4119 + p4118 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p4117 + p4116 + p4115 + p4114 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p4113 + p2960 + p2961 + p4112 + p4111 + p4110 + p4109 + p4108 + p4107 + p2968 + p2969 + p4106 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p4105 + p4104 + p4103 + p4102 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p4095 + p4094 + p4093 + p4092 + p4091 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999 + p4090 + p4089 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4074 + p4073 + p4072 + p4071 + p4070 + p4069 + p4068 + p4067 + p4066 + p4065 + p4064 + p4063 + p4062 + p4061 + p4060 + p4053 + p4052 + p4051 + p4050 + p4049 + p4048 + p4047 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4032 + p4031 + p4030 + p4029 + p4028 + p4027 + p4026 + p4025 + p4024 + p4023 + p4022 + p4021 + p4020 + p4019 + p4018 + p4011 + p4010 + p4009 + p4008 + p4007 + p4006 + p4005 + p4004 + p4003 + p4002 + p4001 + p4000 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: LP says that atomic proposition is always true: (p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599)
lola: after: (0 <= p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599)
lola: place invariant simplifies atomic proposition
lola: before: (p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3213 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3212 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p3204 + p3203 + p3202 + p3201 + p3200 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3310 + p3311 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3346 + p3347 + p3348 + p3349 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3199 + p3198 + p3197 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3196 + p3195 + p3194 + p3193 + p3192 + p3191 + p3190 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3377 + p3378 + p3379 + p3189 + p3188 + p3187 + p3186 + p3185 + p3380 + p3381 + p3184 + p3183 + p3182 + p3181 + p3180 + p3388 + p3389 + p3179 + p3178 + p3171 + p3170 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3169 + p3168 + p3167 + p3166 + p3165 + p3164 + p3163 + p3162 + p3161 + p3160 + p3159 + p3158 + p3157 + p3156 + p3155 + p3154 + p3153 + p3152 + p3151 + p3150 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3149 + p3148 + p3147 + p3146 + p3145 + p3410 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3144 + p3143 + p3142 + p3141 + p3420 + p3421 + p3422 + p3423 + p3140 + p3139 + p3138 + p3137 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3136 + p3129 + p3128 + p3440 + p3441 + p3442 + p3443 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3113 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3103 + p3102 + p3101 + p3100 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p3540 + p3541 + p3542 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3079 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p3556 + p3557 + p3558 + p3559 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p3570 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3577 + p3578 + p3579 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3072 + p3071 + p3070 + p2296 + p2297 + p2298 + p2299 + p3590 + p3591 + p3598 + p3599 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p3045 + p3044 + p3043 + p3042 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p3041 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p2330 + p2331 + p3040 + p2338 + p2339 + p3630 + p3631 + p3632 + p3633 + p3039 + p3038 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p3037 + p3036 + p3035 + p3034 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p3033 + p3032 + p3031 + p3030 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p2370 + p2371 + p2372 + p2373 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3029 + p3028 + p3027 + p3026 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p3025 + p3024 + p3023 + p3022 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3021 + p3020 + p3019 + p3018 + p3017 + p3016 + p3015 + p3014 + p3013 + p3012 + p3011 + p3010 + p3003 + p3002 + p3001 + p3000 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p3740 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p3766 + p3767 + p3768 + p3769 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p4297 + p4296 + p4295 + p4294 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p3776 + p3777 + p3778 + p3779 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p4293 + p4292 + p3780 + p3781 + p3782 + p3783 + p3784 + p3785 + p3786 + p3787 + p3788 + p3789 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p3790 + p3791 + p3792 + p3793 + p3794 + p3795 + p3796 + p3797 + p3798 + p3799 + p4291 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2506 + p2507 + p2508 + p2509 + p4284 + p4283 + p3800 + p3801 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p3808 + p3809 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p4276 + p4275 + p4274 + p4273 + p4272 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p4271 + p4270 + p4263 + p4262 + p3820 + p3821 + p3822 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3829 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p4261 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p2540 + p2541 + p4260 + p4259 + p4258 + p4257 + p4256 + p4255 + p2548 + p2549 + p4254 + p3840 + p3841 + p3842 + p3843 + p4253 + p4252 + p4251 + p4250 + p4249 + p4248 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p4247 + p4246 + p4245 + p4244 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p4243 + p4242 + p4241 + p4240 + p4239 + p3860 + p3861 + p3862 + p3863 + p3864 + p3865 + p3866 + p3867 + p3868 + p3869 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p4238 + p4237 + p3870 + p3871 + p3872 + p3873 + p3874 + p3875 + p3876 + p3877 + p3878 + p3879 + p2580 + p2581 + p2582 + p2583 + p4236 + p4235 + p4234 + p4233 + p4232 + p4231 + p4230 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p4229 + p4228 + p4221 + p4220 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p4219 + p4218 + p3892 + p3893 + p3894 + p3895 + p3896 + p3897 + p3898 + p3899 + p4217 + p4216 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p3907 + p3908 + p3909 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p4208 + p3910 + p3911 + p3912 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p4207 + p4206 + p4205 + p4204 + p4203 + p4202 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p4201 + p4200 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p3934 + p3935 + p3936 + p3937 + p3938 + p3939 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p3940 + p3941 + p3942 + p3943 + p3944 + p3945 + p3946 + p3947 + p3948 + p3949 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p3950 + p3951 + p3952 + p3953 + p3954 + p3955 + p3956 + p3957 + p3958 + p3959 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p3960 + p3961 + p3962 + p3963 + p3964 + p3965 + p3966 + p3967 + p3968 + p3969 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p3976 + p3977 + p3978 + p3979 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p3980 + p3981 + p3982 + p3983 + p3984 + p3985 + p3986 + p3987 + p3988 + p3989 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p3990 + p3991 + p3992 + p3993 + p3994 + p3995 + p3996 + p3997 + p3998 + p3999 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p4199 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p4198 + p4197 + p2790 + p2791 + p2792 + p2793 + p4196 + p4195 + p4194 + p4193 + p4192 + p4191 + p4190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4189 + p4188 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p4187 + p4186 + p4179 + p4178 + p4177 + p4176 + p4175 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p4174 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p4173 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p4165 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4158 + p4157 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p4156 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p4155 + p4154 + p4153 + p4152 + p4151 + p4150 + p4149 + p4148 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p4147 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p4146 + p4145 + p4144 + p4137 + p4136 + p4135 + p4134 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p4133 + p4132 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4131 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p2926 + p2927 + p2928 + p2929 + p4124 + p4123 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p4122 + p4121 + p4120 + p4119 + p4118 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p4117 + p4116 + p4115 + p4114 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p4113 + p2960 + p2961 + p4112 + p4111 + p4110 + p4109 + p4108 + p4107 + p2968 + p2969 + p4106 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p4105 + p4104 + p4103 + p4102 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p4095 + p4094 + p4093 + p4092 + p4091 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999 + p4090 + p4089 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4074 + p4073 + p4072 + p4071 + p4070 + p4069 + p4068 + p4067 + p4066 + p4065 + p4064 + p4063 + p4062 + p4061 + p4060 + p4053 + p4052 + p4051 + p4050 + p4049 + p4048 + p4047 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4032 + p4031 + p4030 + p4029 + p4028 + p4027 + p4026 + p4025 + p4024 + p4023 + p4022 + p4021 + p4020 + p4019 + p4018 + p4011 + p4010 + p4009 + p4008 + p4007 + p4006 + p4005 + p4004 + p4003 + p4002 + p4001 + p4000)
lola: after: (p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (0 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (0 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: LP says that atomic proposition is always false: (2 <= p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304)
lola: LP says that atomic proposition is always false: (2 <= p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304)
lola: LP says that atomic proposition is always true: (p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: LP says that atomic proposition is always true: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (36 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239)
lola: after: (0 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829)
lola: after: (0 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829)
lola: A (NOT((G (()) OR ((0 <= 36) AND F ((2 <= 0)))))) : A (X (X ((X ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)) OR X (F (((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + 1 <= 0) U F ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6))))))))) : A (((6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) U NOT((X (X (G ((6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))) U (30 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704))))) : A (F ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 5))) : A (G (F (NOT((NOT((NOT(X ((p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504))) U X ((2 <= 0)))) U F ((30 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613))))))) : A (X (((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND (F ((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 6)) OR G (X (G ((3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)))))))) : A (G ((() OR X ((p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613))))) : A (X ((X ((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)) AND ((6 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212) OR X (F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504))))))) : A (X (G (X ((NOT(G ((2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613))) U NOT((F ((3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)) AND G (((36 <= 0) U (1 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)))))))))) : A (G (F ((29 <= 0)))) : A (G (X (((p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) OR G (((0 <= 0) OR F (NOT(X (F (X ((0 <= 0)))))))))))) : A (G ((X (NOT(X ((G (F ((0 <= p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599))) U (p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256))))) U X ((p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + 1 <= 0))))) : A (((() OR G ((p2211 + p2210 + p2209 + p2208 + p2207 + p2206 + p2205 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829))) U (2 <= p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304))) : A (X (X (((p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212 + 1 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829) AND G ((X ((3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)) AND (X ((p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)) U (36 <= 0)))))))) : A (G (X ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)))) : A (NOT(F (())))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:528
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:525
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 218 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 233 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 249 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 268 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 291 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 317 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 349 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 388 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 436 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 499 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================
lola: subprocess 10 will run for 582 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + ... (shortened)
lola: processed formula length: 4467
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 409 markings, 409 edges
lola: ========================================
lola: subprocess 11 will run for 699 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))
lola: processed formula length: 120
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 409 markings, 409 edges
lola: ========================================
lola: subprocess 12 will run for 873 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1... (shortened)
lola: processed formula length: 4696
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 409 markings, 409 edges
lola: ========================================
lola: subprocess 13 will run for 1165 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================
lola: subprocess 14 will run for 1747 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 5)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: processed formula length: 60
lola: 124 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 15 will run for 3495 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((G ((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 2)) OR F ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((G ((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 2)) OR F ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1... (shortened)
lola: processed formula length: 4718
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 84014 markings, 385745 edges, 16803 markings/sec, 0 secs
lola: 161189 markings, 820741 edges, 15435 markings/sec, 5 secs
lola: 236572 markings, 1264885 edges, 15077 markings/sec, 10 secs
lola: 315643 markings, 1710913 edges, 15814 markings/sec, 15 secs
lola: 404809 markings, 2148587 edges, 17833 markings/sec, 20 secs
lola: 480817 markings, 2619328 edges, 15202 markings/sec, 25 secs
lola: 554485 markings, 3088248 edges, 14734 markings/sec, 30 secs
lola: 638131 markings, 3550837 edges, 16729 markings/sec, 35 secs
lola: 714477 markings, 4005777 edges, 15269 markings/sec, 40 secs
lola: 789260 markings, 4425907 edges, 14957 markings/sec, 45 secs
lola: 871913 markings, 4832759 edges, 16531 markings/sec, 50 secs
lola: 944440 markings, 5270575 edges, 14505 markings/sec, 55 secs
lola: 1011624 markings, 5726592 edges, 13437 markings/sec, 60 secs
lola: 1076684 markings, 6177018 edges, 13012 markings/sec, 65 secs
lola: 1138152 markings, 6633317 edges, 12294 markings/sec, 70 secs
lola: 1203137 markings, 7076807 edges, 12997 markings/sec, 75 secs
lola: 1279508 markings, 7505559 edges, 15274 markings/sec, 80 secs
lola: 1357334 markings, 7932898 edges, 15565 markings/sec, 85 secs
lola: 1424681 markings, 8377875 edges, 13469 markings/sec, 90 secs
lola: 1496421 markings, 8840329 edges, 14348 markings/sec, 95 secs
lola: 1572083 markings, 9312831 edges, 15132 markings/sec, 100 secs
lola: 1639569 markings, 9797553 edges, 13497 markings/sec, 105 secs
lola: 1708437 markings, 10281375 edges, 13774 markings/sec, 110 secs
lola: 1778851 markings, 10766718 edges, 14083 markings/sec, 115 secs
lola: 1855199 markings, 11232452 edges, 15270 markings/sec, 120 secs
lola: 1928870 markings, 11699959 edges, 14734 markings/sec, 125 secs
lola: 2007591 markings, 12157447 edges, 15744 markings/sec, 130 secs
lola: 2084366 markings, 12617473 edges, 15355 markings/sec, 135 secs
lola: 2150986 markings, 13096994 edges, 13324 markings/sec, 140 secs
lola: 2214728 markings, 13571556 edges, 12748 markings/sec, 145 secs
lola: 2275901 markings, 14011132 edges, 12235 markings/sec, 150 secs
lola: 2334586 markings, 14456378 edges, 11737 markings/sec, 155 secs
lola: 2398612 markings, 14911844 edges, 12805 markings/sec, 160 secs
lola: 2466289 markings, 15394441 edges, 13535 markings/sec, 165 secs
lola: 2536891 markings, 15883390 edges, 14120 markings/sec, 170 secs
lola: 2604385 markings, 16371272 edges, 13499 markings/sec, 175 secs
lola: 2669722 markings, 16856050 edges, 13067 markings/sec, 180 secs
lola: 2735127 markings, 17345030 edges, 13081 markings/sec, 185 secs
lola: 2805374 markings, 17828638 edges, 14049 markings/sec, 190 secs
lola: 2879357 markings, 18305190 edges, 14797 markings/sec, 195 secs
lola: 2955651 markings, 18783754 edges, 15259 markings/sec, 200 secs
lola: 3025502 markings, 19256981 edges, 13970 markings/sec, 205 secs
lola: 3095705 markings, 19734183 edges, 14041 markings/sec, 210 secs
lola: 3165338 markings, 20226121 edges, 13927 markings/sec, 215 secs
lola: 3237905 markings, 20694274 edges, 14513 markings/sec, 220 secs
lola: 3315881 markings, 21153186 edges, 15595 markings/sec, 225 secs
lola: 3393038 markings, 21612577 edges, 15431 markings/sec, 230 secs
lola: 3465703 markings, 22079738 edges, 14533 markings/sec, 235 secs
lola: 3550688 markings, 22524935 edges, 16997 markings/sec, 240 secs
lola: 3632375 markings, 22972718 edges, 16337 markings/sec, 245 secs
lola: 3705597 markings, 23402804 edges, 14644 markings/sec, 250 secs
lola: 3770897 markings, 23832823 edges, 13060 markings/sec, 255 secs
lola: 3845879 markings, 24246441 edges, 14996 markings/sec, 260 secs
lola: 3920100 markings, 24649435 edges, 14844 markings/sec, 265 secs
lola: 3985811 markings, 25076696 edges, 13142 markings/sec, 270 secs
lola: 4050105 markings, 25521559 edges, 12859 markings/sec, 275 secs
lola: 4130537 markings, 25992474 edges, 16086 markings/sec, 280 secs
lola: 4207471 markings, 26467504 edges, 15387 markings/sec, 285 secs
lola: 4284691 markings, 26941256 edges, 15444 markings/sec, 290 secs
lola: 4368972 markings, 27387396 edges, 16856 markings/sec, 295 secs
lola: 4444086 markings, 27823550 edges, 15023 markings/sec, 300 secs
lola: 4511114 markings, 28272295 edges, 13406 markings/sec, 305 secs
lola: 4573212 markings, 28715069 edges, 12420 markings/sec, 310 secs
lola: 4642724 markings, 29205816 edges, 13902 markings/sec, 315 secs
lola: 4712206 markings, 29700457 edges, 13896 markings/sec, 320 secs
lola: 4786456 markings, 30183955 edges, 14850 markings/sec, 325 secs
lola: 4860307 markings, 30662479 edges, 14770 markings/sec, 330 secs
lola: 4928590 markings, 31151331 edges, 13657 markings/sec, 335 secs
lola: 4995723 markings, 31643022 edges, 13427 markings/sec, 340 secs
lola: 5058320 markings, 32131197 edges, 12519 markings/sec, 345 secs
lola: 5125072 markings, 32605423 edges, 13350 markings/sec, 350 secs
lola: 5194478 markings, 33076712 edges, 13881 markings/sec, 355 secs
lola: 5262294 markings, 33567128 edges, 13563 markings/sec, 360 secs
lola: 5329281 markings, 34063677 edges, 13397 markings/sec, 365 secs
lola: 5397827 markings, 34553439 edges, 13709 markings/sec, 370 secs
lola: 5463970 markings, 35030886 edges, 13229 markings/sec, 375 secs
lola: 5529186 markings, 35513741 edges, 13043 markings/sec, 380 secs
lola: 5596037 markings, 35986497 edges, 13370 markings/sec, 385 secs
lola: 5659746 markings, 36466365 edges, 12742 markings/sec, 390 secs
lola: 5720776 markings, 36946053 edges, 12206 markings/sec, 395 secs
lola: 5782238 markings, 37406277 edges, 12292 markings/sec, 400 secs
lola: 5840346 markings, 37859794 edges, 11622 markings/sec, 405 secs
lola: 5900174 markings, 38313210 edges, 11966 markings/sec, 410 secs
lola: 5960439 markings, 38767993 edges, 12053 markings/sec, 415 secs
lola: 6030032 markings, 39192627 edges, 13919 markings/sec, 420 secs
lola: 6098846 markings, 39624729 edges, 13763 markings/sec, 425 secs
lola: 6164259 markings, 40070988 edges, 13083 markings/sec, 430 secs
lola: 6230410 markings, 40507179 edges, 13230 markings/sec, 435 secs
lola: 6296589 markings, 40944942 edges, 13236 markings/sec, 440 secs
lola: 6368020 markings, 41372298 edges, 14286 markings/sec, 445 secs
lola: 6444050 markings, 41823784 edges, 15206 markings/sec, 450 secs
lola: 6507915 markings, 42255499 edges, 12773 markings/sec, 455 secs
lola: 6569911 markings, 42693854 edges, 12399 markings/sec, 460 secs
lola: 6632832 markings, 43129638 edges, 12584 markings/sec, 465 secs
lola: 6695533 markings, 43567433 edges, 12540 markings/sec, 470 secs
lola: 6763130 markings, 43993554 edges, 13519 markings/sec, 475 secs
lola: 6838572 markings, 44422028 edges, 15088 markings/sec, 480 secs
lola: 6915336 markings, 44886846 edges, 15353 markings/sec, 485 secs
lola: 6987517 markings, 45358305 edges, 14436 markings/sec, 490 secs
lola: 7055127 markings, 45833382 edges, 13522 markings/sec, 495 secs
lola: 7130817 markings, 46290046 edges, 15138 markings/sec, 500 secs
lola: 7201970 markings, 46722223 edges, 14231 markings/sec, 505 secs
lola: 7263965 markings, 47162968 edges, 12399 markings/sec, 510 secs
lola: 7323022 markings, 47608648 edges, 11811 markings/sec, 515 secs
lola: 7381990 markings, 48064388 edges, 11794 markings/sec, 520 secs
lola: 7439895 markings, 48510997 edges, 11581 markings/sec, 525 secs
lola: 7506449 markings, 48947119 edges, 13311 markings/sec, 530 secs
lola: 7573073 markings, 49391830 edges, 13325 markings/sec, 535 secs
lola: 7641983 markings, 49876992 edges, 13782 markings/sec, 540 secs
lola: 7707411 markings, 50361345 edges, 13086 markings/sec, 545 secs
lola: 7776848 markings, 50845181 edges, 13887 markings/sec, 550 secs
lola: 7849013 markings, 51321698 edges, 14433 markings/sec, 555 secs
lola: 7920110 markings, 51809093 edges, 14219 markings/sec, 560 secs
lola: 7986870 markings, 52288102 edges, 13352 markings/sec, 565 secs
lola: 8052685 markings, 52786828 edges, 13163 markings/sec, 570 secs
lola: 8129226 markings, 53276180 edges, 15308 markings/sec, 575 secs
lola: 8203286 markings, 53769900 edges, 14812 markings/sec, 580 secs
lola: 8276546 markings, 54259939 edges, 14652 markings/sec, 585 secs
lola: 8349229 markings, 54733467 edges, 14537 markings/sec, 590 secs
lola: 8425254 markings, 55195575 edges, 15205 markings/sec, 595 secs
lola: 8494904 markings, 55663785 edges, 13930 markings/sec, 600 secs
lola: 8568907 markings, 56129575 edges, 14801 markings/sec, 605 secs
lola: 8646527 markings, 56588481 edges, 15524 markings/sec, 610 secs
lola: 8719313 markings, 57058233 edges, 14557 markings/sec, 615 secs
lola: 8801055 markings, 57503407 edges, 16348 markings/sec, 620 secs
lola: 8884063 markings, 57947827 edges, 16602 markings/sec, 625 secs
lola: 8963157 markings, 58400532 edges, 15819 markings/sec, 630 secs
lola: 9033877 markings, 58865321 edges, 14144 markings/sec, 635 secs
lola: 9114752 markings, 59313671 edges, 16175 markings/sec, 640 secs
lola: 9196044 markings, 59760190 edges, 16258 markings/sec, 645 secs
lola: 9267323 markings, 60226637 edges, 14256 markings/sec, 650 secs
lola: 9339630 markings, 60709263 edges, 14461 markings/sec, 655 secs
lola: 9420061 markings, 61178936 edges, 16086 markings/sec, 660 secs
lola: 9495201 markings, 61650732 edges, 15028 markings/sec, 665 secs
lola: 9574138 markings, 62119133 edges, 15787 markings/sec, 670 secs
lola: 9659900 markings, 62564237 edges, 17152 markings/sec, 675 secs
lola: 9737528 markings, 63039768 edges, 15526 markings/sec, 680 secs
lola: 9811760 markings, 63520571 edges, 14846 markings/sec, 685 secs
lola: 9881656 markings, 64009347 edges, 13979 markings/sec, 690 secs
lola: 9951144 markings, 64500398 edges, 13898 markings/sec, 695 secs
lola: 10019594 markings, 64991638 edges, 13690 markings/sec, 700 secs
lola: 10087563 markings, 65486534 edges, 13594 markings/sec, 705 secs
lola: 10153255 markings, 65986344 edges, 13138 markings/sec, 710 secs
lola: 10218173 markings, 66482290 edges, 12984 markings/sec, 715 secs
lola: 10287274 markings, 66973663 edges, 13820 markings/sec, 720 secs
lola: 10361160 markings, 67452718 edges, 14777 markings/sec, 725 secs
lola: 10432060 markings, 67935297 edges, 14180 markings/sec, 730 secs
lola: 10511881 markings, 68405989 edges, 15964 markings/sec, 735 secs
lola: 10591637 markings, 68880663 edges, 15951 markings/sec, 740 secs
lola: 10665511 markings, 69362295 edges, 14775 markings/sec, 745 secs
lola: 10740832 markings, 69842099 edges, 15064 markings/sec, 750 secs
lola: 10806827 markings, 70294654 edges, 13199 markings/sec, 755 secs
lola: 10870341 markings, 70726610 edges, 12703 markings/sec, 760 secs
lola: 10929856 markings, 71182067 edges, 11903 markings/sec, 765 secs
lola: 10992024 markings, 71623305 edges, 12434 markings/sec, 770 secs
lola: 11058543 markings, 72066626 edges, 13304 markings/sec, 775 secs
lola: 11137676 markings, 72493072 edges, 15827 markings/sec, 780 secs
lola: 11214674 markings, 72944826 edges, 15400 markings/sec, 785 secs
lola: 11299681 markings, 73395582 edges, 17001 markings/sec, 790 secs
lola: 11373027 markings, 73866339 edges, 14669 markings/sec, 795 secs
lola: 11453248 markings, 74330965 edges, 16044 markings/sec, 800 secs
lola: 11537852 markings, 74776764 edges, 16921 markings/sec, 805 secs
lola: 11608623 markings, 75252949 edges, 14154 markings/sec, 810 secs
lola: 11675235 markings, 75746797 edges, 13322 markings/sec, 815 secs
lola: 11755003 markings, 76216731 edges, 15954 markings/sec, 820 secs
lola: 11829181 markings, 76697270 edges, 14836 markings/sec, 825 secs
lola: 11902317 markings, 77180605 edges, 14627 markings/sec, 830 secs
lola: 11970945 markings, 77667905 edges, 13726 markings/sec, 835 secs
lola: 12044040 markings, 78136784 edges, 14619 markings/sec, 840 secs
lola: 12121382 markings, 78600992 edges, 15468 markings/sec, 845 secs
lola: 12189520 markings, 79085111 edges, 13628 markings/sec, 850 secs
lola: 12254285 markings, 79569265 edges, 12953 markings/sec, 855 secs
lola: 12319237 markings, 80048927 edges, 12990 markings/sec, 860 secs
lola: 12386653 markings, 80528287 edges, 13483 markings/sec, 865 secs
lola: 12451699 markings, 81022906 edges, 13009 markings/sec, 870 secs
lola: 12521910 markings, 81505408 edges, 14042 markings/sec, 875 secs
lola: 12594943 markings, 81980521 edges, 14607 markings/sec, 880 secs
lola: 12663695 markings, 82463965 edges, 13750 markings/sec, 885 secs
lola: 12736901 markings, 82934689 edges, 14641 markings/sec, 890 secs
lola: 12811256 markings, 83395543 edges, 14871 markings/sec, 895 secs
lola: 12889307 markings, 83853817 edges, 15610 markings/sec, 900 secs
lola: 12971439 markings, 84305206 edges, 16426 markings/sec, 905 secs
lola: 13045980 markings, 84768848 edges, 14908 markings/sec, 910 secs
lola: 13127071 markings, 85222257 edges, 16218 markings/sec, 915 secs
lola: 13200339 markings, 85690923 edges, 14654 markings/sec, 920 secs
lola: 13269829 markings, 86161538 edges, 13898 markings/sec, 925 secs
lola: 13345947 markings, 86627483 edges, 15224 markings/sec, 930 secs
lola: 13425365 markings, 87076539 edges, 15884 markings/sec, 935 secs
lola: 13497182 markings, 87548340 edges, 14363 markings/sec, 940 secs
lola: 13563555 markings, 88037702 edges, 13275 markings/sec, 945 secs
lola: 13630381 markings, 88521002 edges, 13365 markings/sec, 950 secs
lola: 13694050 markings, 89007111 edges, 12734 markings/sec, 955 secs
lola: 13756157 markings, 89495502 edges, 12421 markings/sec, 960 secs
lola: 13823556 markings, 89977592 edges, 13480 markings/sec, 965 secs
lola: 13889684 markings, 90458926 edges, 13226 markings/sec, 970 secs
lola: 13954535 markings, 90944332 edges, 12970 markings/sec, 975 secs
lola: 14017024 markings, 91432931 edges, 12498 markings/sec, 980 secs
lola: 14083972 markings, 91920655 edges, 13390 markings/sec, 985 secs
lola: 14148909 markings, 92402238 edges, 12987 markings/sec, 990 secs
lola: 14214912 markings, 92889713 edges, 13201 markings/sec, 995 secs
lola: 14284102 markings, 93369495 edges, 13838 markings/sec, 1000 secs
lola: 14351200 markings, 93853857 edges, 13420 markings/sec, 1005 secs
lola: 14419903 markings, 94337699 edges, 13741 markings/sec, 1010 secs
lola: 14489068 markings, 94824942 edges, 13833 markings/sec, 1015 secs
lola: 14557086 markings, 95316180 edges, 13604 markings/sec, 1020 secs
lola: 14628829 markings, 95794908 edges, 14349 markings/sec, 1025 secs
lola: 14694428 markings, 96278570 edges, 13120 markings/sec, 1030 secs
lola: 14758232 markings, 96765087 edges, 12761 markings/sec, 1035 secs
lola: 14824622 markings, 97249211 edges, 13278 markings/sec, 1040 secs
lola: 14887466 markings, 97741050 edges, 12569 markings/sec, 1045 secs
lola: 14952409 markings, 98232137 edges, 12989 markings/sec, 1050 secs
lola: 15018385 markings, 98725712 edges, 13195 markings/sec, 1055 secs
lola: 15084796 markings, 99216464 edges, 13282 markings/sec, 1060 secs
lola: 15151447 markings, 99707335 edges, 13330 markings/sec, 1065 secs
lola: 15214194 markings, 100197699 edges, 12549 markings/sec, 1070 secs
lola: 15276502 markings, 100688849 edges, 12462 markings/sec, 1075 secs
lola: 15341248 markings, 101170728 edges, 12949 markings/sec, 1080 secs
lola: 15415512 markings, 101647375 edges, 14853 markings/sec, 1085 secs
lola: 15486065 markings, 102122983 edges, 14111 markings/sec, 1090 secs
lola: 15560565 markings, 102600688 edges, 14900 markings/sec, 1095 secs
lola: 15632918 markings, 103083408 edges, 14471 markings/sec, 1100 secs
lola: 15710037 markings, 103551521 edges, 15424 markings/sec, 1105 secs
lola: 15778070 markings, 104029023 edges, 13607 markings/sec, 1110 secs
lola: 15847996 markings, 104508815 edges, 13985 markings/sec, 1115 secs
lola: 15922398 markings, 104984446 edges, 14880 markings/sec, 1120 secs
lola: 16001016 markings, 105453306 edges, 15724 markings/sec, 1125 secs
lola: 16072213 markings, 105934029 edges, 14239 markings/sec, 1130 secs
lola: 16148434 markings, 106408323 edges, 15244 markings/sec, 1135 secs
lola: 16213912 markings, 106899188 edges, 13096 markings/sec, 1140 secs
lola: 16285312 markings, 107381840 edges, 14280 markings/sec, 1145 secs
lola: 16353301 markings, 107866474 edges, 13598 markings/sec, 1150 secs
lola: 16421567 markings, 108349771 edges, 13653 markings/sec, 1155 secs
lola: 16484665 markings, 108839831 edges, 12620 markings/sec, 1160 secs
lola: 16554164 markings, 109321145 edges, 13900 markings/sec, 1165 secs
lola: 16622247 markings, 109810421 edges, 13617 markings/sec, 1170 secs
lola: 16692189 markings, 110296967 edges, 13988 markings/sec, 1175 secs
lola: 16761459 markings, 110784386 edges, 13854 markings/sec, 1180 secs
lola: 16829666 markings, 111274611 edges, 13641 markings/sec, 1185 secs
lola: 16899679 markings, 111750000 edges, 14003 markings/sec, 1190 secs
lola: 16973368 markings, 112223080 edges, 14738 markings/sec, 1195 secs
lola: 17043350 markings, 112696075 edges, 13996 markings/sec, 1200 secs
lola: 17117327 markings, 113166688 edges, 14795 markings/sec, 1205 secs
lola: 17192520 markings, 113633088 edges, 15039 markings/sec, 1210 secs
lola: 17269113 markings, 114092270 edges, 15319 markings/sec, 1215 secs
lola: 17341727 markings, 114543260 edges, 14523 markings/sec, 1220 secs
lola: 17420469 markings, 114984201 edges, 15748 markings/sec, 1225 secs
lola: 17494697 markings, 115444666 edges, 14846 markings/sec, 1230 secs
lola: 17574440 markings, 115893985 edges, 15949 markings/sec, 1235 secs
lola: 17645503 markings, 116360843 edges, 14213 markings/sec, 1240 secs
lola: 17713510 markings, 116813892 edges, 13601 markings/sec, 1245 secs
lola: 17784312 markings, 117285393 edges, 14160 markings/sec, 1250 secs
lola: 17860855 markings, 117748827 edges, 15309 markings/sec, 1255 secs
lola: 17936710 markings, 118210511 edges, 15171 markings/sec, 1260 secs
lola: 18018048 markings, 118652448 edges, 16268 markings/sec, 1265 secs
lola: 18092285 markings, 119120960 edges, 14847 markings/sec, 1270 secs
lola: 18165588 markings, 119591320 edges, 14661 markings/sec, 1275 secs
lola: 18233175 markings, 120075231 edges, 13517 markings/sec, 1280 secs
lola: 18299083 markings, 120565732 edges, 13182 markings/sec, 1285 secs
lola: 18366831 markings, 121050954 edges, 13550 markings/sec, 1290 secs
lola: 18431029 markings, 121537457 edges, 12840 markings/sec, 1295 secs
lola: 18500059 markings, 122016820 edges, 13806 markings/sec, 1300 secs
lola: 18566260 markings, 122500120 edges, 13240 markings/sec, 1305 secs
lola: 18631387 markings, 122989494 edges, 13025 markings/sec, 1310 secs
lola: 18703233 markings, 123458258 edges, 14369 markings/sec, 1315 secs
lola: 18773381 markings, 123934825 edges, 14030 markings/sec, 1320 secs
lola: 18843651 markings, 124415712 edges, 14054 markings/sec, 1325 secs
lola: 18910466 markings, 124905758 edges, 13363 markings/sec, 1330 secs
lola: 18977732 markings, 125386185 edges, 13453 markings/sec, 1335 secs
lola: 19044567 markings, 125874107 edges, 13367 markings/sec, 1340 secs
lola: 19110277 markings, 126368231 edges, 13142 markings/sec, 1345 secs
lola: 19175809 markings, 126853166 edges, 13106 markings/sec, 1350 secs
lola: 19239043 markings, 127338613 edges, 12647 markings/sec, 1355 secs
lola: 19302798 markings, 127823119 edges, 12751 markings/sec, 1360 secs
lola: 19365165 markings, 128303823 edges, 12473 markings/sec, 1365 secs
lola: 19425967 markings, 128769724 edges, 12160 markings/sec, 1370 secs
lola: 19490575 markings, 129229702 edges, 12922 markings/sec, 1375 secs
lola: 19556097 markings, 129712844 edges, 13104 markings/sec, 1380 secs
lola: 19625672 markings, 130191336 edges, 13915 markings/sec, 1385 secs
lola: 19696814 markings, 130662329 edges, 14228 markings/sec, 1390 secs
lola: 19768216 markings, 131127573 edges, 14280 markings/sec, 1395 secs
lola: 19847940 markings, 131589668 edges, 15945 markings/sec, 1400 secs
lola: 19926790 markings, 132053843 edges, 15770 markings/sec, 1405 secs
lola: 19996657 markings, 132532374 edges, 13973 markings/sec, 1410 secs
lola: 20066740 markings, 133004275 edges, 14017 markings/sec, 1415 secs
lola: 20138544 markings, 133463283 edges, 14361 markings/sec, 1420 secs
lola: 20202105 markings, 133942024 edges, 12712 markings/sec, 1425 secs
lola: 20260918 markings, 134390878 edges, 11763 markings/sec, 1430 secs
lola: 20324739 markings, 134825084 edges, 12764 markings/sec, 1435 secs
lola: 20391699 markings, 135251802 edges, 13392 markings/sec, 1440 secs
lola: 20463810 markings, 135678411 edges, 14422 markings/sec, 1445 secs
lola: 20529849 markings, 136103862 edges, 13208 markings/sec, 1450 secs
lola: 20610828 markings, 136528248 edges, 16196 markings/sec, 1455 secs
lola: 20683777 markings, 136956432 edges, 14590 markings/sec, 1460 secs
lola: 20762665 markings, 137366595 edges, 15778 markings/sec, 1465 secs
lola: 20828721 markings, 137796731 edges, 13211 markings/sec, 1470 secs
lola: 20904514 markings, 138228870 edges, 15159 markings/sec, 1475 secs
lola: 20982293 markings, 138654234 edges, 15556 markings/sec, 1480 secs
lola: 21051348 markings, 139079684 edges, 13811 markings/sec, 1485 secs
lola: 21113213 markings, 139528488 edges, 12373 markings/sec, 1490 secs
lola: 21186051 markings, 140014292 edges, 14568 markings/sec, 1495 secs
lola: 21266388 markings, 140489983 edges, 16067 markings/sec, 1500 secs
lola: 21341822 markings, 140975692 edges, 15087 markings/sec, 1505 secs
lola: 21411140 markings, 141472425 edges, 13864 markings/sec, 1510 secs
lola: 21485098 markings, 141958570 edges, 14792 markings/sec, 1515 secs
lola: 21561800 markings, 142430514 edges, 15340 markings/sec, 1520 secs
lola: 21633360 markings, 142906819 edges, 14312 markings/sec, 1525 secs
lola: 21698715 markings, 143395258 edges, 13071 markings/sec, 1530 secs
lola: 21763701 markings, 143883634 edges, 12997 markings/sec, 1535 secs
lola: 21831438 markings, 144363282 edges, 13547 markings/sec, 1540 secs
lola: 21895647 markings, 144849451 edges, 12842 markings/sec, 1545 secs
lola: 21964671 markings, 145346884 edges, 13805 markings/sec, 1550 secs
lola: 22040482 markings, 145832208 edges, 15162 markings/sec, 1555 secs
lola: 22111488 markings, 146326016 edges, 14201 markings/sec, 1560 secs
lola: 22184683 markings, 146811159 edges, 14639 markings/sec, 1565 secs
lola: 22261901 markings, 147280935 edges, 15444 markings/sec, 1570 secs
lola: 22343828 markings, 147746926 edges, 16385 markings/sec, 1575 secs
lola: 22423001 markings, 148218868 edges, 15835 markings/sec, 1580 secs
lola: 22503958 markings, 148686854 edges, 16191 markings/sec, 1585 secs
lola: 22576912 markings, 149164781 edges, 14591 markings/sec, 1590 secs
lola: 22652984 markings, 149629852 edges, 15214 markings/sec, 1595 secs
lola: 22732064 markings, 150089988 edges, 15816 markings/sec, 1600 secs
lola: 22804543 markings, 150573109 edges, 14496 markings/sec, 1605 secs
lola: 22871650 markings, 151069280 edges, 13421 markings/sec, 1610 secs
lola: 22939082 markings, 151558120 edges, 13486 markings/sec, 1615 secs
lola: 23002046 markings, 152037129 edges, 12593 markings/sec, 1620 secs
lola: 23064828 markings, 152526892 edges, 12556 markings/sec, 1625 secs
lola: 23137161 markings, 152998004 edges, 14467 markings/sec, 1630 secs
lola: 23208289 markings, 153474689 edges, 14226 markings/sec, 1635 secs
lola: 23273105 markings, 153968123 edges, 12963 markings/sec, 1640 secs
lola: 23344429 markings, 154452219 edges, 14265 markings/sec, 1645 secs
lola: 23418656 markings, 154940060 edges, 14845 markings/sec, 1650 secs
lola: 23488652 markings, 155424770 edges, 13999 markings/sec, 1655 secs
lola: 23562514 markings, 155881455 edges, 14772 markings/sec, 1660 secs
lola: 23632298 markings, 156360529 edges, 13957 markings/sec, 1665 secs
lola: 23698846 markings, 156849599 edges, 13310 markings/sec, 1670 secs
lola: 23772138 markings, 157334772 edges, 14658 markings/sec, 1675 secs
lola: 23839450 markings, 157823558 edges, 13462 markings/sec, 1680 secs
lola: 23902321 markings, 158312325 edges, 12574 markings/sec, 1685 secs
lola: 23970010 markings, 158785749 edges, 13538 markings/sec, 1690 secs
lola: 24033640 markings, 159261345 edges, 12726 markings/sec, 1695 secs
lola: 24097749 markings, 159738723 edges, 12822 markings/sec, 1700 secs
lola: 24164109 markings, 160227634 edges, 13272 markings/sec, 1705 secs
lola: 24227132 markings, 160719584 edges, 12605 markings/sec, 1710 secs
lola: 24289713 markings, 161213216 edges, 12516 markings/sec, 1715 secs
lola: 24355840 markings, 161697721 edges, 13225 markings/sec, 1720 secs
lola: 24429858 markings, 162177300 edges, 14804 markings/sec, 1725 secs
lola: 24502821 markings, 162662407 edges, 14593 markings/sec, 1730 secs
lola: 24578240 markings, 163117605 edges, 15084 markings/sec, 1735 secs
lola: 24646162 markings, 163598163 edges, 13584 markings/sec, 1740 secs
lola: 24716484 markings, 164078158 edges, 14064 markings/sec, 1745 secs
lola: 24795765 markings, 164549600 edges, 15856 markings/sec, 1750 secs
lola: 24869180 markings, 165047312 edges, 14683 markings/sec, 1755 secs
lola: 24946038 markings, 165516584 edges, 15372 markings/sec, 1760 secs
lola: 25010477 markings, 165986968 edges, 12888 markings/sec, 1765 secs
lola: 25072318 markings, 166473439 edges, 12368 markings/sec, 1770 secs
lola: 25144294 markings, 166959441 edges, 14395 markings/sec, 1775 secs
lola: 25211668 markings, 167452278 edges, 13475 markings/sec, 1780 secs
lola: 25282933 markings, 167939730 edges, 14253 markings/sec, 1785 secs
lola: 25350653 markings, 168423127 edges, 13544 markings/sec, 1790 secs
lola: 25418985 markings, 168906074 edges, 13666 markings/sec, 1795 secs
lola: 25491813 markings, 169394172 edges, 14566 markings/sec, 1800 secs
lola: 25566627 markings, 169872536 edges, 14963 markings/sec, 1805 secs
lola: 25638699 markings, 170350578 edges, 14414 markings/sec, 1810 secs
lola: 25715504 markings, 170826204 edges, 15361 markings/sec, 1815 secs
lola: 25795070 markings, 171297604 edges, 15913 markings/sec, 1820 secs
lola: 25878004 markings, 171745420 edges, 16587 markings/sec, 1825 secs
lola: 25952561 markings, 172210030 edges, 14911 markings/sec, 1830 secs
lola: 26032703 markings, 172664740 edges, 16028 markings/sec, 1835 secs
lola: 26106969 markings, 173137902 edges, 14853 markings/sec, 1840 secs
lola: 26178727 markings, 173616629 edges, 14352 markings/sec, 1845 secs
lola: 26255811 markings, 174090541 edges, 15417 markings/sec, 1850 secs
lola: 26336207 markings, 174539018 edges, 16079 markings/sec, 1855 secs
lola: 26407115 markings, 175024465 edges, 14182 markings/sec, 1860 secs
lola: 26473208 markings, 175516082 edges, 13219 markings/sec, 1865 secs
lola: 26542191 markings, 176001857 edges, 13797 markings/sec, 1870 secs
lola: 26608454 markings, 176498980 edges, 13253 markings/sec, 1875 secs
lola: 26681879 markings, 176975070 edges, 14685 markings/sec, 1880 secs
lola: 26749074 markings, 177458321 edges, 13439 markings/sec, 1885 secs
lola: 26815923 markings, 177948801 edges, 13370 markings/sec, 1890 secs
lola: 26880260 markings, 178450238 edges, 12867 markings/sec, 1895 secs
lola: 26950124 markings, 178939245 edges, 13973 markings/sec, 1900 secs
lola: 27019878 markings, 179425682 edges, 13951 markings/sec, 1905 secs
lola: 27087766 markings, 179896978 edges, 13578 markings/sec, 1910 secs
lola: 27151345 markings, 180377445 edges, 12716 markings/sec, 1915 secs
lola: 27222622 markings, 180844350 edges, 14255 markings/sec, 1920 secs
lola: 27291627 markings, 181318659 edges, 13801 markings/sec, 1925 secs
lola: 27357629 markings, 181798639 edges, 13200 markings/sec, 1930 secs
lola: 27422216 markings, 182288240 edges, 12917 markings/sec, 1935 secs
lola: 27487696 markings, 182782123 edges, 13096 markings/sec, 1940 secs
lola: 27558916 markings, 183265574 edges, 14244 markings/sec, 1945 secs
lola: 27632950 markings, 183741536 edges, 14807 markings/sec, 1950 secs
lola: 27704485 markings, 184227245 edges, 14307 markings/sec, 1955 secs
lola: 27782699 markings, 184695842 edges, 15643 markings/sec, 1960 secs
lola: 27853039 markings, 185181758 edges, 14068 markings/sec, 1965 secs
lola: 27921692 markings, 185669861 edges, 13731 markings/sec, 1970 secs
lola: 27990987 markings, 186161378 edges, 13859 markings/sec, 1975 secs
lola: 28069585 markings, 186634624 edges, 15720 markings/sec, 1980 secs
lola: 28143807 markings, 187110966 edges, 14844 markings/sec, 1985 secs
lola: 28215082 markings, 187598372 edges, 14255 markings/sec, 1990 secs
lola: 28281554 markings, 188096671 edges, 13294 markings/sec, 1995 secs
lola: 28356401 markings, 188552050 edges, 14969 markings/sec, 2000 secs
lola: 28429365 markings, 188967413 edges, 14593 markings/sec, 2005 secs
lola: 28503653 markings, 189395040 edges, 14858 markings/sec, 2010 secs
lola: 28573835 markings, 189879320 edges, 14036 markings/sec, 2015 secs
lola: 28649256 markings, 190344421 edges, 15084 markings/sec, 2020 secs
lola: 28712336 markings, 190777538 edges, 12616 markings/sec, 2025 secs
lola: 28777092 markings, 191207848 edges, 12951 markings/sec, 2030 secs
lola: 28839065 markings, 191667732 edges, 12395 markings/sec, 2035 secs
lola: 28906684 markings, 192158016 edges, 13524 markings/sec, 2040 secs
lola: 28978158 markings, 192640197 edges, 14295 markings/sec, 2045 secs
lola: 29055358 markings, 193101080 edges, 15440 markings/sec, 2050 secs
lola: 29134661 markings, 193563132 edges, 15861 markings/sec, 2055 secs
lola: 29211701 markings, 194028018 edges, 15408 markings/sec, 2060 secs
lola: 29284898 markings, 194498170 edges, 14639 markings/sec, 2065 secs
lola: 29358702 markings, 194969623 edges, 14761 markings/sec, 2070 secs
lola: 29432010 markings, 195438645 edges, 14662 markings/sec, 2075 secs
lola: 29495414 markings, 195932610 edges, 12681 markings/sec, 2080 secs
lola: 29560226 markings, 196420028 edges, 12962 markings/sec, 2085 secs
lola: 29625198 markings, 196913804 edges, 12994 markings/sec, 2090 secs
lola: 29688251 markings, 197401402 edges, 12611 markings/sec, 2095 secs
lola: 29751193 markings, 197890765 edges, 12588 markings/sec, 2100 secs
lola: 29816543 markings, 198379054 edges, 13070 markings/sec, 2105 secs
lola: 29880271 markings, 198865989 edges, 12746 markings/sec, 2110 secs
lola: 29942251 markings, 199357112 edges, 12396 markings/sec, 2115 secs
lola: 30007591 markings, 199840514 edges, 13068 markings/sec, 2120 secs
lola: 30071581 markings, 200327392 edges, 12798 markings/sec, 2125 secs
lola: 30136256 markings, 200812859 edges, 12935 markings/sec, 2130 secs
lola: 30201522 markings, 201302537 edges, 13053 markings/sec, 2135 secs
lola: 30266260 markings, 201792300 edges, 12948 markings/sec, 2140 secs
lola: 30329088 markings, 202281554 edges, 12566 markings/sec, 2145 secs
lola: 30391941 markings, 202769803 edges, 12571 markings/sec, 2150 secs
lola: 30458362 markings, 203260111 edges, 13284 markings/sec, 2155 secs
lola: 30521377 markings, 203751586 edges, 12603 markings/sec, 2160 secs
lola: 30586741 markings, 204240277 edges, 13073 markings/sec, 2165 secs
lola: 30652787 markings, 204725614 edges, 13209 markings/sec, 2170 secs
lola: 30717521 markings, 205205525 edges, 12947 markings/sec, 2175 secs
lola: 30783221 markings, 205689935 edges, 13140 markings/sec, 2180 secs
lola: 30851016 markings, 206179744 edges, 13559 markings/sec, 2185 secs
lola: 30919501 markings, 206668503 edges, 13697 markings/sec, 2190 secs
lola: 30983897 markings, 207158820 edges, 12879 markings/sec, 2195 secs
lola: 31045684 markings, 207651613 edges, 12357 markings/sec, 2200 secs
lola: 31107865 markings, 208142596 edges, 12436 markings/sec, 2205 secs
lola: 31172470 markings, 208634201 edges, 12921 markings/sec, 2210 secs
lola: 31237477 markings, 209126299 edges, 13001 markings/sec, 2215 secs
lola: 31299869 markings, 209613229 edges, 12478 markings/sec, 2220 secs
lola: 31372752 markings, 210089772 edges, 14577 markings/sec, 2225 secs
lola: 31445098 markings, 210569854 edges, 14469 markings/sec, 2230 secs
lola: 31517087 markings, 211049742 edges, 14398 markings/sec, 2235 secs
lola: 31589523 markings, 211525555 edges, 14487 markings/sec, 2240 secs
lola: 31662528 markings, 212004058 edges, 14601 markings/sec, 2245 secs
lola: 31737624 markings, 212478008 edges, 15019 markings/sec, 2250 secs
lola: 31810147 markings, 212962781 edges, 14505 markings/sec, 2255 secs
lola: 31878236 markings, 213453830 edges, 13618 markings/sec, 2260 secs
lola: 31946890 markings, 213934207 edges, 13731 markings/sec, 2265 secs
lola: 32013065 markings, 214415250 edges, 13235 markings/sec, 2270 secs
lola: 32078875 markings, 214890568 edges, 13162 markings/sec, 2275 secs
lola: 32144893 markings, 215369620 edges, 13204 markings/sec, 2280 secs
lola: 32214153 markings, 215862736 edges, 13852 markings/sec, 2285 secs
lola: 32285532 markings, 216348156 edges, 14276 markings/sec, 2290 secs
lola: 32355809 markings, 216830336 edges, 14055 markings/sec, 2295 secs
lola: 32431547 markings, 217296782 edges, 15148 markings/sec, 2300 secs
lola: 32503705 markings, 217757629 edges, 14432 markings/sec, 2305 secs
lola: 32575092 markings, 218223576 edges, 14277 markings/sec, 2310 secs
lola: 32653150 markings, 218682007 edges, 15612 markings/sec, 2315 secs
lola: 32733995 markings, 219149436 edges, 16169 markings/sec, 2320 secs
lola: 32802665 markings, 219634254 edges, 13734 markings/sec, 2325 secs
lola: 32872665 markings, 220119391 edges, 14000 markings/sec, 2330 secs
lola: 32945789 markings, 220598098 edges, 14625 markings/sec, 2335 secs
lola: 33021612 markings, 221065238 edges, 15165 markings/sec, 2340 secs
lola: 33100674 markings, 221517946 edges, 15812 markings/sec, 2345 secs
lola: 33173320 markings, 221982162 edges, 14529 markings/sec, 2350 secs
lola: 33245216 markings, 222440445 edges, 14379 markings/sec, 2355 secs
lola: 33312334 markings, 222929194 edges, 13424 markings/sec, 2360 secs
lola: 33378573 markings, 223416321 edges, 13248 markings/sec, 2365 secs
lola: 33444439 markings, 223896181 edges, 13173 markings/sec, 2370 secs
lola: 33508118 markings, 224379341 edges, 12736 markings/sec, 2375 secs
lola: 33577630 markings, 224860743 edges, 13902 markings/sec, 2380 secs
lola: 33644019 markings, 225347324 edges, 13278 markings/sec, 2385 secs
lola: 33710028 markings, 225834365 edges, 13202 markings/sec, 2390 secs
lola: 33782858 markings, 226303779 edges, 14566 markings/sec, 2395 secs
lola: 33852207 markings, 226782819 edges, 13870 markings/sec, 2400 secs
lola: 33921869 markings, 227264340 edges, 13932 markings/sec, 2405 secs
lola: 33988478 markings, 227755630 edges, 13322 markings/sec, 2410 secs
lola: 34055188 markings, 228240278 edges, 13342 markings/sec, 2415 secs
lola: 34119239 markings, 228728448 edges, 12810 markings/sec, 2420 secs
lola: 34182222 markings, 229220013 edges, 12597 markings/sec, 2425 secs
lola: 34250804 markings, 229710506 edges, 13716 markings/sec, 2430 secs
lola: 34316961 markings, 230204958 edges, 13231 markings/sec, 2435 secs
lola: 34384013 markings, 230690536 edges, 13410 markings/sec, 2440 secs
lola: 34447450 markings, 231178549 edges, 12687 markings/sec, 2445 secs
lola: 34511509 markings, 231665915 edges, 12812 markings/sec, 2450 secs
lola: 34579041 markings, 232149310 edges, 13506 markings/sec, 2455 secs
lola: 34644262 markings, 232642054 edges, 13044 markings/sec, 2460 secs
lola: 34715779 markings, 233116686 edges, 14303 markings/sec, 2465 secs
lola: 34786271 markings, 233589715 edges, 14098 markings/sec, 2470 secs
lola: 34857854 markings, 234063082 edges, 14317 markings/sec, 2475 secs
lola: 34922112 markings, 234551409 edges, 12852 markings/sec, 2480 secs
lola: 34989919 markings, 235029553 edges, 13561 markings/sec, 2485 secs
lola: 35056303 markings, 235525002 edges, 13277 markings/sec, 2490 secs
lola: 35123507 markings, 236002668 edges, 13441 markings/sec, 2495 secs
lola: 35194821 markings, 236467537 edges, 14263 markings/sec, 2500 secs
lola: 35259827 markings, 236947695 edges, 13001 markings/sec, 2505 secs
lola: 35324532 markings, 237431182 edges, 12941 markings/sec, 2510 secs
lola: 35390457 markings, 237912445 edges, 13185 markings/sec, 2515 secs
lola: 35456689 markings, 238392737 edges, 13246 markings/sec, 2520 secs
lola: 35525110 markings, 238865669 edges, 13684 markings/sec, 2525 secs
lola: 35588312 markings, 239354586 edges, 12640 markings/sec, 2530 secs
lola: 35653084 markings, 239857975 edges, 12954 markings/sec, 2535 secs
lola: 35717824 markings, 240361330 edges, 12948 markings/sec, 2540 secs
lola: 35784096 markings, 240861366 edges, 13254 markings/sec, 2545 secs
lola: 35851510 markings, 241364471 edges, 13483 markings/sec, 2550 secs
lola: 35918771 markings, 241865642 edges, 13452 markings/sec, 2555 secs
lola: 35981722 markings, 242357174 edges, 12590 markings/sec, 2560 secs
lola: 36042617 markings, 242839108 edges, 12179 markings/sec, 2565 secs
lola: 36106095 markings, 243318674 edges, 12696 markings/sec, 2570 secs
lola: 36171846 markings, 243806823 edges, 13150 markings/sec, 2575 secs
lola: 36239436 markings, 244285870 edges, 13518 markings/sec, 2580 secs
lola: 36307579 markings, 244758866 edges, 13629 markings/sec, 2585 secs
lola: 36382880 markings, 245219399 edges, 15060 markings/sec, 2590 secs
lola: 36458682 markings, 245677188 edges, 15160 markings/sec, 2595 secs
lola: 36534889 markings, 246144085 edges, 15241 markings/sec, 2600 secs
lola: 36607349 markings, 246621078 edges, 14492 markings/sec, 2605 secs
lola: 36678077 markings, 247104233 edges, 14146 markings/sec, 2610 secs
lola: 36748549 markings, 247574325 edges, 14094 markings/sec, 2615 secs
lola: 36812089 markings, 248060894 edges, 12708 markings/sec, 2620 secs
lola: 36879807 markings, 248544619 edges, 13544 markings/sec, 2625 secs
lola: 36950735 markings, 249011860 edges, 14186 markings/sec, 2630 secs
lola: 37024140 markings, 249451466 edges, 14681 markings/sec, 2635 secs
lola: 37090207 markings, 249875505 edges, 13213 markings/sec, 2640 secs
lola: 37160747 markings, 250305654 edges, 14108 markings/sec, 2645 secs
lola: 37229435 markings, 250807050 edges, 13738 markings/sec, 2650 secs
lola: 37297315 markings, 251313746 edges, 13576 markings/sec, 2655 secs
lola: 37364035 markings, 251810017 edges, 13344 markings/sec, 2660 secs
lola: 37426767 markings, 252295755 edges, 12546 markings/sec, 2665 secs
lola: 37495537 markings, 252777450 edges, 13754 markings/sec, 2670 secs
lola: 37565408 markings, 253232008 edges, 13974 markings/sec, 2675 secs
lola: 37627159 markings, 253666804 edges, 12350 markings/sec, 2680 secs
lola: 37687274 markings, 254113054 edges, 12023 markings/sec, 2685 secs
lola: 37755009 markings, 254573843 edges, 13547 markings/sec, 2690 secs
lola: 37829230 markings, 255053958 edges, 14844 markings/sec, 2695 secs
lola: 37899392 markings, 255542742 edges, 14032 markings/sec, 2700 secs
lola: 37978026 markings, 256009987 edges, 15727 markings/sec, 2705 secs
lola: 38050301 markings, 256471605 edges, 14455 markings/sec, 2710 secs
lola: 38136730 markings, 256939893 edges, 17286 markings/sec, 2715 secs
lola: 38212070 markings, 257372406 edges, 15068 markings/sec, 2720 secs
lola: 38289935 markings, 257792187 edges, 15573 markings/sec, 2725 secs
lola: 38358929 markings, 258215000 edges, 13799 markings/sec, 2730 secs
lola: 38433827 markings, 258651691 edges, 14980 markings/sec, 2735 secs
lola: 38511577 markings, 259092061 edges, 15550 markings/sec, 2740 secs
lola: 38588542 markings, 259543701 edges, 15393 markings/sec, 2745 secs
lola: 38652829 markings, 260008673 edges, 12857 markings/sec, 2750 secs
lola: 38716118 markings, 260444716 edges, 12658 markings/sec, 2755 secs
lola: 38789408 markings, 260866252 edges, 14658 markings/sec, 2760 secs
lola: 38856160 markings, 261307739 edges, 13350 markings/sec, 2765 secs
lola: 38925732 markings, 261775487 edges, 13914 markings/sec, 2770 secs
lola: 38995067 markings, 262250346 edges, 13867 markings/sec, 2775 secs
lola: 39066479 markings, 262712649 edges, 14282 markings/sec, 2780 secs
lola: 39143166 markings, 263169689 edges, 15337 markings/sec, 2785 secs
lola: 39208658 markings, 263651273 edges, 13098 markings/sec, 2790 secs
lola: 39273395 markings, 264133933 edges, 12947 markings/sec, 2795 secs
lola: 39335252 markings, 264592920 edges, 12371 markings/sec, 2800 secs
lola: 39394564 markings, 265025681 edges, 11862 markings/sec, 2805 secs
lola: 39453731 markings, 265462221 edges, 11833 markings/sec, 2810 secs
lola: 39516452 markings, 265901850 edges, 12544 markings/sec, 2815 secs
lola: 39583022 markings, 266338282 edges, 13314 markings/sec, 2820 secs
lola: 39648425 markings, 266776543 edges, 13081 markings/sec, 2825 secs
lola: 39713063 markings, 267220367 edges, 12928 markings/sec, 2830 secs
lola: 39782360 markings, 267648899 edges, 13859 markings/sec, 2835 secs
lola: 39850973 markings, 268069204 edges, 13723 markings/sec, 2840 secs
lola: 39926854 markings, 268481265 edges, 15176 markings/sec, 2845 secs
lola: 40000276 markings, 268937161 edges, 14684 markings/sec, 2850 secs
lola: 40078504 markings, 269385851 edges, 15646 markings/sec, 2855 secs
lola: 40150201 markings, 269854020 edges, 14339 markings/sec, 2860 secs
lola: 40225548 markings, 270314991 edges, 15069 markings/sec, 2865 secs
lola: 40305627 markings, 270764030 edges, 16016 markings/sec, 2870 secs
lola: 40375332 markings, 271244518 edges, 13941 markings/sec, 2875 secs
lola: 40442318 markings, 271728441 edges, 13397 markings/sec, 2880 secs
lola: 40512030 markings, 272199264 edges, 13942 markings/sec, 2885 secs
lola: 40577505 markings, 272672934 edges, 13095 markings/sec, 2890 secs
lola: 40640754 markings, 273153729 edges, 12650 markings/sec, 2895 secs
lola: 40707337 markings, 273627711 edges, 13317 markings/sec, 2900 secs
lola: 40772263 markings, 274113727 edges, 12985 markings/sec, 2905 secs
lola: 40837878 markings, 274597325 edges, 13123 markings/sec, 2910 secs
lola: 40903446 markings, 275079893 edges, 13114 markings/sec, 2915 secs
lola: 40966015 markings, 275562123 edges, 12514 markings/sec, 2920 secs
lola: 41028588 markings, 276047647 edges, 12515 markings/sec, 2925 secs
lola: 41090187 markings, 276527271 edges, 12320 markings/sec, 2930 secs
lola: 41162390 markings, 276986260 edges, 14441 markings/sec, 2935 secs
lola: 41232933 markings, 277456188 edges, 14109 markings/sec, 2940 secs
lola: 41309288 markings, 277926112 edges, 15271 markings/sec, 2945 secs
lola: 41378384 markings, 278399392 edges, 13819 markings/sec, 2950 secs
lola: 41446338 markings, 278875983 edges, 13591 markings/sec, 2955 secs
lola: 41522857 markings, 279337740 edges, 15304 markings/sec, 2960 secs
lola: 41595910 markings, 279810241 edges, 14611 markings/sec, 2965 secs
lola: 41668972 markings, 280281321 edges, 14612 markings/sec, 2970 secs
lola: 41738531 markings, 280759102 edges, 13912 markings/sec, 2975 secs
lola: 41802609 markings, 281245512 edges, 12816 markings/sec, 2980 secs
lola: 41872250 markings, 281727316 edges, 13928 markings/sec, 2985 secs
lola: 41941457 markings, 282207784 edges, 13841 markings/sec, 2990 secs
lola: 42009050 markings, 282691428 edges, 13519 markings/sec, 2995 secs
lola: 42078000 markings, 283172089 edges, 13790 markings/sec, 3000 secs
lola: 42145285 markings, 283657473 edges, 13457 markings/sec, 3005 secs
lola: 42216965 markings, 284133626 edges, 14336 markings/sec, 3010 secs
lola: 42285961 markings, 284604487 edges, 13799 markings/sec, 3015 secs
lola: 42356492 markings, 285073627 edges, 14106 markings/sec, 3020 secs
lola: 42431572 markings, 285534574 edges, 15016 markings/sec, 3025 secs
lola: 42508250 markings, 285979503 edges, 15336 markings/sec, 3030 secs
lola: 42585415 markings, 286420513 edges, 15433 markings/sec, 3035 secs
lola: 42659026 markings, 286864343 edges, 14722 markings/sec, 3040 secs
lola: 42733714 markings, 287319770 edges, 14938 markings/sec, 3045 secs
lola: 42807086 markings, 287781984 edges, 14674 markings/sec, 3050 secs
lola: 42881855 markings, 288241459 edges, 14954 markings/sec, 3055 secs
lola: 42959190 markings, 288690483 edges, 15467 markings/sec, 3060 secs
lola: 43022236 markings, 289164689 edges, 12609 markings/sec, 3065 secs
lola: 43089905 markings, 289635477 edges, 13534 markings/sec, 3070 secs
lola: 43159032 markings, 290109290 edges, 13825 markings/sec, 3075 secs
lola: 43232843 markings, 290574931 edges, 14762 markings/sec, 3080 secs
lola: 43308666 markings, 291031160 edges, 15165 markings/sec, 3085 secs
lola: 43377597 markings, 291501379 edges, 13786 markings/sec, 3090 secs
lola: 43442551 markings, 291965169 edges, 12991 markings/sec, 3095 secs
lola: 43509174 markings, 292442578 edges, 13325 markings/sec, 3100 secs
lola: 43582855 markings, 292902071 edges, 14736 markings/sec, 3105 secs
lola: 43656510 markings, 293361178 edges, 14731 markings/sec, 3110 secs
lola: 43725382 markings, 293832740 edges, 13774 markings/sec, 3115 secs
lola: 43791531 markings, 294314519 edges, 13230 markings/sec, 3120 secs
lola: 43855624 markings, 294796719 edges, 12819 markings/sec, 3125 secs
lola: 43919226 markings, 295283057 edges, 12720 markings/sec, 3130 secs
lola: 43989366 markings, 295754461 edges, 14028 markings/sec, 3135 secs
lola: 44063832 markings, 296218032 edges, 14893 markings/sec, 3140 secs
lola: 44136850 markings, 296686850 edges, 14604 markings/sec, 3145 secs
lola: 44207374 markings, 297154469 edges, 14105 markings/sec, 3150 secs
lola: 44269444 markings, 297633906 edges, 12414 markings/sec, 3155 secs
lola: 44341724 markings, 298100648 edges, 14456 markings/sec, 3160 secs
lola: 44423967 markings, 298551371 edges, 16449 markings/sec, 3165 secs
lola: 44499585 markings, 298997060 edges, 15124 markings/sec, 3170 secs
lola: 44568411 markings, 299455507 edges, 13765 markings/sec, 3175 secs
lola: 44641949 markings, 299916831 edges, 14708 markings/sec, 3180 secs
lola: 44712225 markings, 300391844 edges, 14055 markings/sec, 3185 secs
lola: 44783090 markings, 300863029 edges, 14173 markings/sec, 3190 secs
lola: 44847524 markings, 301344563 edges, 12887 markings/sec, 3195 secs
lola: 44914417 markings, 301825250 edges, 13379 markings/sec, 3200 secs
lola: 44985644 markings, 302300027 edges, 14245 markings/sec, 3205 secs
lola: 45060382 markings, 302755817 edges, 14948 markings/sec, 3210 secs
lola: 45139019 markings, 303210524 edges, 15727 markings/sec, 3215 secs
lola: 45212642 markings, 303675697 edges, 14725 markings/sec, 3220 secs
lola: 45289999 markings, 304134934 edges, 15471 markings/sec, 3225 secs
lola: 45353568 markings, 304616643 edges, 12714 markings/sec, 3230 secs
lola: 45416611 markings, 305099747 edges, 12609 markings/sec, 3235 secs
lola: 45480633 markings, 305584505 edges, 12804 markings/sec, 3240 secs
lola: 45543357 markings, 306063495 edges, 12545 markings/sec, 3245 secs
lola: 45605223 markings, 306542600 edges, 12373 markings/sec, 3250 secs
lola: 45672379 markings, 307021082 edges, 13431 markings/sec, 3255 secs
lola: 45738899 markings, 307498128 edges, 13304 markings/sec, 3260 secs
lola: 45810156 markings, 307969641 edges, 14251 markings/sec, 3265 secs
lola: 45876153 markings, 308448763 edges, 13199 markings/sec, 3270 secs
lola: 45945967 markings, 308923094 edges, 13963 markings/sec, 3275 secs
lola: 46016094 markings, 309398879 edges, 14025 markings/sec, 3280 secs
lola: 46080424 markings, 309883386 edges, 12866 markings/sec, 3285 secs
lola: 46141936 markings, 310366150 edges, 12302 markings/sec, 3290 secs
lola: 46207330 markings, 310849020 edges, 13079 markings/sec, 3295 secs
lola: 46269698 markings, 311334933 edges, 12474 markings/sec, 3300 secs
lola: 46334309 markings, 311817207 edges, 12922 markings/sec, 3305 secs
lola: 46399305 markings, 312290897 edges, 12999 markings/sec, 3310 secs
lola: 46462897 markings, 312759997 edges, 12718 markings/sec, 3315 secs
lola: 46529413 markings, 313234325 edges, 13303 markings/sec, 3320 secs
lola: 46594010 markings, 313708778 edges, 12919 markings/sec, 3325 secs
lola: 46656495 markings, 314187617 edges, 12497 markings/sec, 3330 secs
lola: 46719239 markings, 314670317 edges, 12549 markings/sec, 3335 secs
lola: 46783076 markings, 315151996 edges, 12767 markings/sec, 3340 secs
lola: 46844700 markings, 315634085 edges, 12325 markings/sec, 3345 secs
lola: 46914788 markings, 316106475 edges, 14018 markings/sec, 3350 secs
lola: 46988081 markings, 316581862 edges, 14659 markings/sec, 3355 secs
lola: 47058655 markings, 317054304 edges, 14115 markings/sec, 3360 secs
lola: 47133603 markings, 317521811 edges, 14990 markings/sec, 3365 secs
lola: 47205315 markings, 317992035 edges, 14342 markings/sec, 3370 secs
lola: 47271664 markings, 318470735 edges, 13270 markings/sec, 3375 secs
lola: 47337095 markings, 318949850 edges, 13086 markings/sec, 3380 secs
lola: 47399075 markings, 319386877 edges, 12396 markings/sec, 3385 secs
lola: 47460758 markings, 319824499 edges, 12337 markings/sec, 3390 secs
lola: 47526007 markings, 320273697 edges, 13050 markings/sec, 3395 secs
lola: 47594815 markings, 320740418 edges, 13762 markings/sec, 3400 secs
lola: 47669538 markings, 321199264 edges, 14945 markings/sec, 3405 secs
lola: 47743585 markings, 321654322 edges, 14809 markings/sec, 3410 secs
lola: 47813584 markings, 322070638 edges, 14000 markings/sec, 3415 secs
lola: 47883223 markings, 322483056 edges, 13928 markings/sec, 3420 secs
lola: 47946960 markings, 322906055 edges, 12747 markings/sec, 3425 secs
lola: 48013082 markings, 323364108 edges, 13224 markings/sec, 3430 secs
lola: 48087533 markings, 323823204 edges, 14890 markings/sec, 3435 secs
lola: 48163281 markings, 324274045 edges, 15150 markings/sec, 3440 secs
lola: 48226886 markings, 324753620 edges, 12721 markings/sec, 3445 secs
lola: 48292020 markings, 325229540 edges, 13027 markings/sec, 3450 secs
lola: 48355064 markings, 325713893 edges, 12609 markings/sec, 3455 secs
lola: 48416247 markings, 326193632 edges, 12237 markings/sec, 3460 secs
lola: 48484221 markings, 326660821 edges, 13595 markings/sec, 3465 secs
lola: 48545499 markings, 327124452 edges, 12256 markings/sec, 3470 secs
lola: 48606386 markings, 327556607 edges, 12177 markings/sec, 3475 secs
lola: 48672448 markings, 327991168 edges, 13212 markings/sec, 3480 secs
lola: 48734024 markings, 328435738 edges, 12315 markings/sec, 3485 secs
lola: time limit reached - aborting
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola: memory consumption: 8201724 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
rslt: finished
BK_STOP 1590340701324
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-6"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is NeoElection-COL-6, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r120-csrt-158961292500063"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-6.tgz
mv NeoElection-COL-6 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;