fond
Model Checking Contest 2020
10th edition, Paris, France, June 23, 2020
Execution of r120-csrt-158961292500063
Last Updated
Jun 28, 2020

About the Execution of 2019-Gold for NeoElection-COL-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
8234.570 3570381.00 3745724.00 331.90 FTTTTFTF?FTFFFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/local/x2003239/mcc2020-input.r120-csrt-158961292500063.qcow2', fmt=qcow2 size=4294967296 backing_file=/local/x2003239/mcc2020-input.qcow2 encryption=off cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is NeoElection-COL-6, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r120-csrt-158961292500063
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 276K
-rw-r--r-- 1 mcc users 3.9K Apr 30 13:04 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 30 13:04 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 30 13:04 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Apr 30 13:04 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Apr 30 13:04 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Apr 30 13:04 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.7K Apr 30 13:04 LTLCardinality.txt
-rw-r--r-- 1 mcc users 22K Apr 30 13:04 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.5K Apr 30 13:04 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Apr 30 13:04 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.4K Apr 30 13:04 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 20K Apr 30 13:04 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Apr 30 13:04 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 13K Apr 30 13:04 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Apr 30 13:04 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.9K Apr 30 13:04 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Apr 30 13:04 equiv_pt
-rw-r--r-- 1 mcc users 2 Apr 30 13:04 instance
-rw-r--r-- 1 mcc users 5 Apr 30 13:04 iscolored
-rw-r--r-- 1 mcc users 98K Apr 30 13:04 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-6-00
FORMULA_NAME NeoElection-COL-6-01
FORMULA_NAME NeoElection-COL-6-02
FORMULA_NAME NeoElection-COL-6-03
FORMULA_NAME NeoElection-COL-6-04
FORMULA_NAME NeoElection-COL-6-05
FORMULA_NAME NeoElection-COL-6-06
FORMULA_NAME NeoElection-COL-6-07
FORMULA_NAME NeoElection-COL-6-08
FORMULA_NAME NeoElection-COL-6-09
FORMULA_NAME NeoElection-COL-6-10
FORMULA_NAME NeoElection-COL-6-11
FORMULA_NAME NeoElection-COL-6-12
FORMULA_NAME NeoElection-COL-6-13
FORMULA_NAME NeoElection-COL-6-14
FORMULA_NAME NeoElection-COL-6-15

=== Now, execution of the tool begins

BK_START 1590337130943

info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ NeoElection-COL-6 @ 3570 seconds

FORMULA NeoElection-COL-6-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-04 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-06 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-01 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-07 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-6-03 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: -1
rslt: Output for LTLCardinality @ NeoElection-COL-6

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sun May 24 16:18:51 2020
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 218
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 233
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 249
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 268
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 291
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 317
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 349
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 388
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 436
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 122
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 499
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 122
},
"result":
{
"edges": 6,
"markings": 7,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 582
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 595,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 595,
"visible_transitions": 0
},
"processed": "A (X (X (((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504))))))",
"processed_size": 4467,
"rewrites": 122
},
"result":
{
"edges": 409,
"markings": 409,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 699
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 14,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 14,
"visible_transitions": 0
},
"processed": "A (X ((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))",
"processed_size": 120,
"rewrites": 122
},
"result":
{
"edges": 409,
"markings": 409,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 873
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 626,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 626,
"visible_transitions": 0
},
"processed": "A (X (G ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662))))",
"processed_size": 4696,
"rewrites": 122
},
"result":
{
"edges": 409,
"markings": 409,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1165
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 122
},
"result":
{
"edges": 6,
"markings": 7,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1747
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 7,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 7,
"visible_transitions": 0
},
"processed": "(6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)",
"processed_size": 60,
"rewrites": 124
},
"result":
{
"edges": 0,
"markings": 1,
"produced_by": "state space / EG",
"value": true
},
"task":
{
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 7847
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
}
],
"exit":
{
"error": null,
"memory": 8201724,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "FALSE : A(X(TRUE)) : TRUE : A(F(**)) : TRUE : A(X(**)) : TRUE : A(X(X((** AND F(**))))) : A(G(F((G(*) OR F(*))))) : FALSE : A(X(TRUE)) : FALSE : FALSE : FALSE : A(X(G(**))) : FALSE"
},
"net":
{
"arcs": 46448,
"conflict_clusters": 3655,
"places": 4830,
"places_significant": 1145,
"singleton_clusters": 0,
"transitions": 8005
},
"result":
{
"interim_value": "no yes yes yes yes no yes no unknown no yes no no no no no ",
"preliminary_value": "no yes yes yes yes no yes no unknown no yes no no no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 4830, Transitions: 8005
lola: @ trans T-startNeg__end
lola: @ trans T-poll__handleAI2
lola: @ trans T-poll__handleAI1
lola: @ trans T-poll__handleRI
lola: @ trans T-poll__handleAnsP2
lola: @ trans T-sendAnnPs__start
lola: @ trans T-startNeg__start
lola: @ trans T-sendAnnPs__send
lola: @ trans T-sendAnnPs__end
lola: @ trans T-poll__iAmPrimary
lola: @ trans T-poll__end
lola: @ trans T-poll__handleAnsP3
lola: @ trans T-poll__handleAnnP1
lola: @ trans T-startSec
lola: @ trans T-poll__handleRP
lola: @ trans T-poll__handleAskP
lola: @ trans T-poll__handleAnnP2
lola: @ trans T-poll__start
lola: @ trans T-poll__handleAnsP1
lola: @ trans T-poll__handleAnsP4
lola: @ trans T-startNeg__send
lola: @ trans T-poll__iAmSecondary
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 12835/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8005 transitions, 1145 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204)
lola: after: (0 <= 36)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204)
lola: after: (0 <= 33)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204)
lola: after: (0 <= 36)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4718 + p4719 + p4720 + p4721 + p4722 + p4723 + p4724)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822)
lola: after: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: LP says that atomic proposition is always true: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (0 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822)
lola: after: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: LP says that atomic proposition is always true: (p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4523 + p4524 + p4525 + p4526 + p4527 + p4528 + p4529 + p4530 + p4531 + p4532 + p4533 + p4534 + p4535 + p4536 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p4543 + p4544 + p4545 + p4546 + p4547 + p4548 + p4549 + p4514 + p4513 + p4512 + p4511 + p4550 + p4551 + p4552 + p4553 + p4554 + p4555 + p4556 + p4557 + p4558 + p4559 + p4510 + p4560 + p4561 + p4562 + p4563 + p4564 + p4565 + p4566 + p4567 + p4568 + p4569 + p4570 + p4571 + p4572 + p4573 + p4574 + p4575 + p4576 + p4577 + p4578 + p4579 + p4580 + p4581 + p4582 + p4583 + p4584 + p4585 + p4586 + p4587 + p4588 + p4589 + p4590 + p4591 + p4592 + p4593 + p4594 + p4595 + p4596 + p4597 + p4598 + p4509 + p4508 + p4507 + p4506 + p4505 + p4504 + p4503 + p4502 + p4501 + p4500 + p4499 + p4498 + p4497 + p4496 + p4495 + p4494 + p4493 + p4492 + p4491 + p4490 + p4489 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p4482 + p4481 + p4480 + p4479 + p4478 + p4477 + p4476 + p4475 + p4474 + p4473 + p4472 + p4471 + p4470 + p4469 + p4468 + p4467 + p4466 + p4465 + p4464 + p4463 + p4462 + p4461 + p4460 + p4459 + p4458 + p4457 + p4456 + p4455 + p4454 + p4453 + p4452 + p4451 + p4450 + p4449 + p4448 + p4447 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p4439 + p4438 + p4437 + p4436 + p4435 + p4434 + p4433 + p4432 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4416 + p4415 + p4414 + p4413 + p4412 + p4411 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p4399 + p4398 + p4397 + p4396 + p4395 + p4394 + p4393 + p4392 + p4391 + p4390 + p4389 + p4388 + p4387 + p4386 + p4385 + p4384 + p4383 + p4382 + p4381 + p4380 + p4379 + p4378 + p4377 + p4376 + p4375 + p4374 + p4373 + p4372 + p4371 + p4370 + p4369 + p4368 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p4361 + p4360 + p4359 + p4358 + p4357 + p4356 + p4355 + p4354 + p4353 + p4352 + p4351 + p4350 + p4349 + p4348 + p4347 + p4346 + p4345 + p4344 + p4343 + p4342 + p4341 + p4340 + p4339 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p4329 + p4328 + p4327 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704)
lola: after: (30 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704)
lola: LP says that atomic proposition is always false: (30 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704)
lola: place invariant simplifies atomic proposition
lola: before: (p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999)
lola: after: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: LP says that atomic proposition is always true: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4523 + p4524 + p4525 + p4526 + p4527 + p4528 + p4529 + p4530 + p4531 + p4532 + p4533 + p4534 + p4535 + p4536 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p4543 + p4544 + p4545 + p4546 + p4547 + p4548 + p4549 + p4514 + p4513 + p4512 + p4511 + p4550 + p4551 + p4552 + p4553 + p4554 + p4555 + p4556 + p4557 + p4558 + p4559 + p4510 + p4560 + p4561 + p4562 + p4563 + p4564 + p4565 + p4566 + p4567 + p4568 + p4569 + p4570 + p4571 + p4572 + p4573 + p4574 + p4575 + p4576 + p4577 + p4578 + p4579 + p4580 + p4581 + p4582 + p4583 + p4584 + p4585 + p4586 + p4587 + p4588 + p4589 + p4590 + p4591 + p4592 + p4593 + p4594 + p4595 + p4596 + p4597 + p4598 + p4509 + p4508 + p4507 + p4506 + p4505 + p4504 + p4503 + p4502 + p4501 + p4500 + p4499 + p4498 + p4497 + p4496 + p4495 + p4494 + p4493 + p4492 + p4491 + p4490 + p4489 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p4482 + p4481 + p4480 + p4479 + p4478 + p4477 + p4476 + p4475 + p4474 + p4473 + p4472 + p4471 + p4470 + p4469 + p4468 + p4467 + p4466 + p4465 + p4464 + p4463 + p4462 + p4461 + p4460 + p4459 + p4458 + p4457 + p4456 + p4455 + p4454 + p4453 + p4452 + p4451 + p4450 + p4449 + p4448 + p4447 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p4439 + p4438 + p4437 + p4436 + p4435 + p4434 + p4433 + p4432 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4416 + p4415 + p4414 + p4413 + p4412 + p4411 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p4399 + p4398 + p4397 + p4396 + p4395 + p4394 + p4393 + p4392 + p4391 + p4390 + p4389 + p4388 + p4387 + p4386 + p4385 + p4384 + p4383 + p4382 + p4381 + p4380 + p4379 + p4378 + p4377 + p4376 + p4375 + p4374 + p4373 + p4372 + p4371 + p4370 + p4369 + p4368 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p4361 + p4360 + p4359 + p4358 + p4357 + p4356 + p4355 + p4354 + p4353 + p4352 + p4351 + p4350 + p4349 + p4348 + p4347 + p4346 + p4345 + p4344 + p4343 + p4342 + p4341 + p4340 + p4339 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p4329 + p4328 + p4327 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (30 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: LP says that atomic proposition is always false: (30 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666 <= p4821 + p4820 + p4819 + p4818 + p4817 + p4816 + p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774 + p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 + p4765 + p4764 + p4763 + p4762 + p4761 + p4760 + p4759 + p4758 + p4757 + p4756 + p4755 + p4754 + p4753 + p4751 + p4750 + p4749 + p4748 + p4747 + p4746 + p4745 + p4744 + p4743 + p4742 + p4741 + p4740 + p4739 + p4737 + p4736 + p4735 + p4734 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p4725 + p4738 + p4752 + p4766 + p4780 + p4794 + p4808 + p4822)
lola: after: (p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 6)
lola: LP says that atomic proposition is always true: (p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3213 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3212 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p3204 + p3203 + p3202 + p3201 + p3200 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3310 + p3311 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3346 + p3347 + p3348 + p3349 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3199 + p3198 + p3197 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3196 + p3195 + p3194 + p3193 + p3192 + p3191 + p3190 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3377 + p3378 + p3379 + p3189 + p3188 + p3187 + p3186 + p3185 + p3380 + p3381 + p3184 + p3183 + p3182 + p3181 + p3180 + p3388 + p3389 + p3179 + p3178 + p3171 + p3170 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3169 + p3168 + p3167 + p3166 + p3165 + p3164 + p3163 + p3162 + p3161 + p3160 + p3159 + p3158 + p3157 + p3156 + p3155 + p3154 + p3153 + p3152 + p3151 + p3150 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3149 + p3148 + p3147 + p3146 + p3145 + p3410 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3144 + p3143 + p3142 + p3141 + p3420 + p3421 + p3422 + p3423 + p3140 + p3139 + p3138 + p3137 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3136 + p3129 + p3128 + p3440 + p3441 + p3442 + p3443 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3113 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3103 + p3102 + p3101 + p3100 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p3540 + p3541 + p3542 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3079 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p3556 + p3557 + p3558 + p3559 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p3570 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3577 + p3578 + p3579 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3072 + p3071 + p3070 + p2296 + p2297 + p2298 + p2299 + p3590 + p3591 + p3598 + p3599 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p3045 + p3044 + p3043 + p3042 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p3041 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p2330 + p2331 + p3040 + p2338 + p2339 + p3630 + p3631 + p3632 + p3633 + p3039 + p3038 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p3037 + p3036 + p3035 + p3034 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p3033 + p3032 + p3031 + p3030 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p2370 + p2371 + p2372 + p2373 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3029 + p3028 + p3027 + p3026 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p3025 + p3024 + p3023 + p3022 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3021 + p3020 + p3019 + p3018 + p3017 + p3016 + p3015 + p3014 + p3013 + p3012 + p3011 + p3010 + p3003 + p3002 + p3001 + p3000 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p3740 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p3766 + p3767 + p3768 + p3769 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p4297 + p4296 + p4295 + p4294 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p3776 + p3777 + p3778 + p3779 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p4293 + p4292 + p3780 + p3781 + p3782 + p3783 + p3784 + p3785 + p3786 + p3787 + p3788 + p3789 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p3790 + p3791 + p3792 + p3793 + p3794 + p3795 + p3796 + p3797 + p3798 + p3799 + p4291 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2506 + p2507 + p2508 + p2509 + p4284 + p4283 + p3800 + p3801 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p3808 + p3809 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p4276 + p4275 + p4274 + p4273 + p4272 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p4271 + p4270 + p4263 + p4262 + p3820 + p3821 + p3822 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3829 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p4261 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p2540 + p2541 + p4260 + p4259 + p4258 + p4257 + p4256 + p4255 + p2548 + p2549 + p4254 + p3840 + p3841 + p3842 + p3843 + p4253 + p4252 + p4251 + p4250 + p4249 + p4248 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p4247 + p4246 + p4245 + p4244 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p4243 + p4242 + p4241 + p4240 + p4239 + p3860 + p3861 + p3862 + p3863 + p3864 + p3865 + p3866 + p3867 + p3868 + p3869 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p4238 + p4237 + p3870 + p3871 + p3872 + p3873 + p3874 + p3875 + p3876 + p3877 + p3878 + p3879 + p2580 + p2581 + p2582 + p2583 + p4236 + p4235 + p4234 + p4233 + p4232 + p4231 + p4230 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p4229 + p4228 + p4221 + p4220 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p4219 + p4218 + p3892 + p3893 + p3894 + p3895 + p3896 + p3897 + p3898 + p3899 + p4217 + p4216 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p3907 + p3908 + p3909 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p4208 + p3910 + p3911 + p3912 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p4207 + p4206 + p4205 + p4204 + p4203 + p4202 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p4201 + p4200 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p3934 + p3935 + p3936 + p3937 + p3938 + p3939 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p3940 + p3941 + p3942 + p3943 + p3944 + p3945 + p3946 + p3947 + p3948 + p3949 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p3950 + p3951 + p3952 + p3953 + p3954 + p3955 + p3956 + p3957 + p3958 + p3959 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p3960 + p3961 + p3962 + p3963 + p3964 + p3965 + p3966 + p3967 + p3968 + p3969 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p3976 + p3977 + p3978 + p3979 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p3980 + p3981 + p3982 + p3983 + p3984 + p3985 + p3986 + p3987 + p3988 + p3989 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p3990 + p3991 + p3992 + p3993 + p3994 + p3995 + p3996 + p3997 + p3998 + p3999 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p4199 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p4198 + p4197 + p2790 + p2791 + p2792 + p2793 + p4196 + p4195 + p4194 + p4193 + p4192 + p4191 + p4190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4189 + p4188 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p4187 + p4186 + p4179 + p4178 + p4177 + p4176 + p4175 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p4174 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p4173 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p4165 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4158 + p4157 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p4156 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p4155 + p4154 + p4153 + p4152 + p4151 + p4150 + p4149 + p4148 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p4147 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p4146 + p4145 + p4144 + p4137 + p4136 + p4135 + p4134 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p4133 + p4132 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4131 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p2926 + p2927 + p2928 + p2929 + p4124 + p4123 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p4122 + p4121 + p4120 + p4119 + p4118 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p4117 + p4116 + p4115 + p4114 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p4113 + p2960 + p2961 + p4112 + p4111 + p4110 + p4109 + p4108 + p4107 + p2968 + p2969 + p4106 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p4105 + p4104 + p4103 + p4102 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p4095 + p4094 + p4093 + p4092 + p4091 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999 + p4090 + p4089 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4074 + p4073 + p4072 + p4071 + p4070 + p4069 + p4068 + p4067 + p4066 + p4065 + p4064 + p4063 + p4062 + p4061 + p4060 + p4053 + p4052 + p4051 + p4050 + p4049 + p4048 + p4047 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4032 + p4031 + p4030 + p4029 + p4028 + p4027 + p4026 + p4025 + p4024 + p4023 + p4022 + p4021 + p4020 + p4019 + p4018 + p4011 + p4010 + p4009 + p4008 + p4007 + p4006 + p4005 + p4004 + p4003 + p4002 + p4001 + p4000)
lola: after: (3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)
lola: LP says that atomic proposition is always false: (3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239)
lola: after: (0 <= 5)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: LP says that atomic proposition is always true: (p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: after: (6 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: LP says that atomic proposition is always false: (6 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999)
lola: after: (2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: LP says that atomic proposition is always false: (2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (36 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999)
lola: after: (1 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4523 + p4524 + p4525 + p4526 + p4527 + p4528 + p4529 + p4530 + p4531 + p4532 + p4533 + p4534 + p4535 + p4536 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p4543 + p4544 + p4545 + p4546 + p4547 + p4548 + p4549 + p4514 + p4513 + p4512 + p4511 + p4550 + p4551 + p4552 + p4553 + p4554 + p4555 + p4556 + p4557 + p4558 + p4559 + p4510 + p4560 + p4561 + p4562 + p4563 + p4564 + p4565 + p4566 + p4567 + p4568 + p4569 + p4570 + p4571 + p4572 + p4573 + p4574 + p4575 + p4576 + p4577 + p4578 + p4579 + p4580 + p4581 + p4582 + p4583 + p4584 + p4585 + p4586 + p4587 + p4588 + p4589 + p4590 + p4591 + p4592 + p4593 + p4594 + p4595 + p4596 + p4597 + p4598 + p4509 + p4508 + p4507 + p4506 + p4505 + p4504 + p4503 + p4502 + p4501 + p4500 + p4499 + p4498 + p4497 + p4496 + p4495 + p4494 + p4493 + p4492 + p4491 + p4490 + p4489 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p4482 + p4481 + p4480 + p4479 + p4478 + p4477 + p4476 + p4475 + p4474 + p4473 + p4472 + p4471 + p4470 + p4469 + p4468 + p4467 + p4466 + p4465 + p4464 + p4463 + p4462 + p4461 + p4460 + p4459 + p4458 + p4457 + p4456 + p4455 + p4454 + p4453 + p4452 + p4451 + p4450 + p4449 + p4448 + p4447 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p4439 + p4438 + p4437 + p4436 + p4435 + p4434 + p4433 + p4432 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4416 + p4415 + p4414 + p4413 + p4412 + p4411 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p4399 + p4398 + p4397 + p4396 + p4395 + p4394 + p4393 + p4392 + p4391 + p4390 + p4389 + p4388 + p4387 + p4386 + p4385 + p4384 + p4383 + p4382 + p4381 + p4380 + p4379 + p4378 + p4377 + p4376 + p4375 + p4374 + p4373 + p4372 + p4371 + p4370 + p4369 + p4368 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p4361 + p4360 + p4359 + p4358 + p4357 + p4356 + p4355 + p4354 + p4353 + p4352 + p4351 + p4350 + p4349 + p4348 + p4347 + p4346 + p4345 + p4344 + p4343 + p4342 + p4341 + p4340 + p4339 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p4329 + p4328 + p4327 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3213 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3212 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p3204 + p3203 + p3202 + p3201 + p3200 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3310 + p3311 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3346 + p3347 + p3348 + p3349 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3199 + p3198 + p3197 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3196 + p3195 + p3194 + p3193 + p3192 + p3191 + p3190 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3377 + p3378 + p3379 + p3189 + p3188 + p3187 + p3186 + p3185 + p3380 + p3381 + p3184 + p3183 + p3182 + p3181 + p3180 + p3388 + p3389 + p3179 + p3178 + p3171 + p3170 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3169 + p3168 + p3167 + p3166 + p3165 + p3164 + p3163 + p3162 + p3161 + p3160 + p3159 + p3158 + p3157 + p3156 + p3155 + p3154 + p3153 + p3152 + p3151 + p3150 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3149 + p3148 + p3147 + p3146 + p3145 + p3410 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3144 + p3143 + p3142 + p3141 + p3420 + p3421 + p3422 + p3423 + p3140 + p3139 + p3138 + p3137 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3136 + p3129 + p3128 + p3440 + p3441 + p3442 + p3443 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3113 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3103 + p3102 + p3101 + p3100 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p3540 + p3541 + p3542 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3079 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p3556 + p3557 + p3558 + p3559 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p3570 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3577 + p3578 + p3579 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3072 + p3071 + p3070 + p2296 + p2297 + p2298 + p2299 + p3590 + p3591 + p3598 + p3599 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p3045 + p3044 + p3043 + p3042 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p3041 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p2330 + p2331 + p3040 + p2338 + p2339 + p3630 + p3631 + p3632 + p3633 + p3039 + p3038 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p3037 + p3036 + p3035 + p3034 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p3033 + p3032 + p3031 + p3030 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p2370 + p2371 + p2372 + p2373 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3029 + p3028 + p3027 + p3026 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p3025 + p3024 + p3023 + p3022 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3021 + p3020 + p3019 + p3018 + p3017 + p3016 + p3015 + p3014 + p3013 + p3012 + p3011 + p3010 + p3003 + p3002 + p3001 + p3000 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p3740 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p3766 + p3767 + p3768 + p3769 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p4297 + p4296 + p4295 + p4294 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p3776 + p3777 + p3778 + p3779 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p4293 + p4292 + p3780 + p3781 + p3782 + p3783 + p3784 + p3785 + p3786 + p3787 + p3788 + p3789 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p3790 + p3791 + p3792 + p3793 + p3794 + p3795 + p3796 + p3797 + p3798 + p3799 + p4291 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2506 + p2507 + p2508 + p2509 + p4284 + p4283 + p3800 + p3801 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p3808 + p3809 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p4276 + p4275 + p4274 + p4273 + p4272 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p4271 + p4270 + p4263 + p4262 + p3820 + p3821 + p3822 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3829 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p4261 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p2540 + p2541 + p4260 + p4259 + p4258 + p4257 + p4256 + p4255 + p2548 + p2549 + p4254 + p3840 + p3841 + p3842 + p3843 + p4253 + p4252 + p4251 + p4250 + p4249 + p4248 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p4247 + p4246 + p4245 + p4244 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p4243 + p4242 + p4241 + p4240 + p4239 + p3860 + p3861 + p3862 + p3863 + p3864 + p3865 + p3866 + p3867 + p3868 + p3869 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p4238 + p4237 + p3870 + p3871 + p3872 + p3873 + p3874 + p3875 + p3876 + p3877 + p3878 + p3879 + p2580 + p2581 + p2582 + p2583 + p4236 + p4235 + p4234 + p4233 + p4232 + p4231 + p4230 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p4229 + p4228 + p4221 + p4220 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p4219 + p4218 + p3892 + p3893 + p3894 + p3895 + p3896 + p3897 + p3898 + p3899 + p4217 + p4216 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p3907 + p3908 + p3909 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p4208 + p3910 + p3911 + p3912 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p4207 + p4206 + p4205 + p4204 + p4203 + p4202 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p4201 + p4200 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p3934 + p3935 + p3936 + p3937 + p3938 + p3939 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p3940 + p3941 + p3942 + p3943 + p3944 + p3945 + p3946 + p3947 + p3948 + p3949 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p3950 + p3951 + p3952 + p3953 + p3954 + p3955 + p3956 + p3957 + p3958 + p3959 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p3960 + p3961 + p3962 + p3963 + p3964 + p3965 + p3966 + p3967 + p3968 + p3969 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p3976 + p3977 + p3978 + p3979 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p3980 + p3981 + p3982 + p3983 + p3984 + p3985 + p3986 + p3987 + p3988 + p3989 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p3990 + p3991 + p3992 + p3993 + p3994 + p3995 + p3996 + p3997 + p3998 + p3999 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p4199 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p4198 + p4197 + p2790 + p2791 + p2792 + p2793 + p4196 + p4195 + p4194 + p4193 + p4192 + p4191 + p4190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4189 + p4188 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p4187 + p4186 + p4179 + p4178 + p4177 + p4176 + p4175 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p4174 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p4173 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p4165 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4158 + p4157 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p4156 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p4155 + p4154 + p4153 + p4152 + p4151 + p4150 + p4149 + p4148 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p4147 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p4146 + p4145 + p4144 + p4137 + p4136 + p4135 + p4134 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p4133 + p4132 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4131 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p2926 + p2927 + p2928 + p2929 + p4124 + p4123 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p4122 + p4121 + p4120 + p4119 + p4118 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p4117 + p4116 + p4115 + p4114 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p4113 + p2960 + p2961 + p4112 + p4111 + p4110 + p4109 + p4108 + p4107 + p2968 + p2969 + p4106 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p4105 + p4104 + p4103 + p4102 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p4095 + p4094 + p4093 + p4092 + p4091 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999 + p4090 + p4089 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4074 + p4073 + p4072 + p4071 + p4070 + p4069 + p4068 + p4067 + p4066 + p4065 + p4064 + p4063 + p4062 + p4061 + p4060 + p4053 + p4052 + p4051 + p4050 + p4049 + p4048 + p4047 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4032 + p4031 + p4030 + p4029 + p4028 + p4027 + p4026 + p4025 + p4024 + p4023 + p4022 + p4021 + p4020 + p4019 + p4018 + p4011 + p4010 + p4009 + p4008 + p4007 + p4006 + p4005 + p4004 + p4003 + p4002 + p4001 + p4000 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: after: (p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: LP says that atomic proposition is always true: (p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599)
lola: after: (0 <= p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599)
lola: place invariant simplifies atomic proposition
lola: before: (p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3213 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3212 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p3204 + p3203 + p3202 + p3201 + p3200 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3310 + p3311 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3346 + p3347 + p3348 + p3349 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3199 + p3198 + p3197 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3196 + p3195 + p3194 + p3193 + p3192 + p3191 + p3190 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3377 + p3378 + p3379 + p3189 + p3188 + p3187 + p3186 + p3185 + p3380 + p3381 + p3184 + p3183 + p3182 + p3181 + p3180 + p3388 + p3389 + p3179 + p3178 + p3171 + p3170 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3169 + p3168 + p3167 + p3166 + p3165 + p3164 + p3163 + p3162 + p3161 + p3160 + p3159 + p3158 + p3157 + p3156 + p3155 + p3154 + p3153 + p3152 + p3151 + p3150 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3149 + p3148 + p3147 + p3146 + p3145 + p3410 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3144 + p3143 + p3142 + p3141 + p3420 + p3421 + p3422 + p3423 + p3140 + p3139 + p3138 + p3137 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3136 + p3129 + p3128 + p3440 + p3441 + p3442 + p3443 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3113 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3103 + p3102 + p3101 + p3100 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p3540 + p3541 + p3542 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3079 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p3556 + p3557 + p3558 + p3559 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p3570 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3577 + p3578 + p3579 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3072 + p3071 + p3070 + p2296 + p2297 + p2298 + p2299 + p3590 + p3591 + p3598 + p3599 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p3045 + p3044 + p3043 + p3042 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p3041 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p2330 + p2331 + p3040 + p2338 + p2339 + p3630 + p3631 + p3632 + p3633 + p3039 + p3038 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p3037 + p3036 + p3035 + p3034 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p3033 + p3032 + p3031 + p3030 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p2370 + p2371 + p2372 + p2373 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3029 + p3028 + p3027 + p3026 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p3025 + p3024 + p3023 + p3022 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3021 + p3020 + p3019 + p3018 + p3017 + p3016 + p3015 + p3014 + p3013 + p3012 + p3011 + p3010 + p3003 + p3002 + p3001 + p3000 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p3740 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p3766 + p3767 + p3768 + p3769 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p4297 + p4296 + p4295 + p4294 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p3776 + p3777 + p3778 + p3779 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p4293 + p4292 + p3780 + p3781 + p3782 + p3783 + p3784 + p3785 + p3786 + p3787 + p3788 + p3789 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p3790 + p3791 + p3792 + p3793 + p3794 + p3795 + p3796 + p3797 + p3798 + p3799 + p4291 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2506 + p2507 + p2508 + p2509 + p4284 + p4283 + p3800 + p3801 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p3808 + p3809 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p4276 + p4275 + p4274 + p4273 + p4272 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p4271 + p4270 + p4263 + p4262 + p3820 + p3821 + p3822 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3829 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p4261 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p2540 + p2541 + p4260 + p4259 + p4258 + p4257 + p4256 + p4255 + p2548 + p2549 + p4254 + p3840 + p3841 + p3842 + p3843 + p4253 + p4252 + p4251 + p4250 + p4249 + p4248 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p4247 + p4246 + p4245 + p4244 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p4243 + p4242 + p4241 + p4240 + p4239 + p3860 + p3861 + p3862 + p3863 + p3864 + p3865 + p3866 + p3867 + p3868 + p3869 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p4238 + p4237 + p3870 + p3871 + p3872 + p3873 + p3874 + p3875 + p3876 + p3877 + p3878 + p3879 + p2580 + p2581 + p2582 + p2583 + p4236 + p4235 + p4234 + p4233 + p4232 + p4231 + p4230 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p4229 + p4228 + p4221 + p4220 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p4219 + p4218 + p3892 + p3893 + p3894 + p3895 + p3896 + p3897 + p3898 + p3899 + p4217 + p4216 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p3907 + p3908 + p3909 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p2619 + p4208 + p3910 + p3911 + p3912 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p4207 + p4206 + p4205 + p4204 + p4203 + p4202 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p4201 + p4200 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p3934 + p3935 + p3936 + p3937 + p3938 + p3939 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p3940 + p3941 + p3942 + p3943 + p3944 + p3945 + p3946 + p3947 + p3948 + p3949 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p3950 + p3951 + p3952 + p3953 + p3954 + p3955 + p3956 + p3957 + p3958 + p3959 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p3960 + p3961 + p3962 + p3963 + p3964 + p3965 + p3966 + p3967 + p3968 + p3969 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p3976 + p3977 + p3978 + p3979 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p3980 + p3981 + p3982 + p3983 + p3984 + p3985 + p3986 + p3987 + p3988 + p3989 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p3990 + p3991 + p3992 + p3993 + p3994 + p3995 + p3996 + p3997 + p3998 + p3999 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p4199 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p4198 + p4197 + p2790 + p2791 + p2792 + p2793 + p4196 + p4195 + p4194 + p4193 + p4192 + p4191 + p4190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4189 + p4188 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p4187 + p4186 + p4179 + p4178 + p4177 + p4176 + p4175 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p4174 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p4173 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p4165 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4158 + p4157 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p4156 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p4155 + p4154 + p4153 + p4152 + p4151 + p4150 + p4149 + p4148 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p4147 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p4146 + p4145 + p4144 + p4137 + p4136 + p4135 + p4134 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p4133 + p4132 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4131 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p2926 + p2927 + p2928 + p2929 + p4124 + p4123 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p4122 + p4121 + p4120 + p4119 + p4118 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p4117 + p4116 + p4115 + p4114 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p4113 + p2960 + p2961 + p4112 + p4111 + p4110 + p4109 + p4108 + p4107 + p2968 + p2969 + p4106 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p4105 + p4104 + p4103 + p4102 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p4095 + p4094 + p4093 + p4092 + p4091 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999 + p4090 + p4089 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4074 + p4073 + p4072 + p4071 + p4070 + p4069 + p4068 + p4067 + p4066 + p4065 + p4064 + p4063 + p4062 + p4061 + p4060 + p4053 + p4052 + p4051 + p4050 + p4049 + p4048 + p4047 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4032 + p4031 + p4030 + p4029 + p4028 + p4027 + p4026 + p4025 + p4024 + p4023 + p4022 + p4021 + p4020 + p4019 + p4018 + p4011 + p4010 + p4009 + p4008 + p4007 + p4006 + p4005 + p4004 + p4003 + p4002 + p4001 + p4000)
lola: after: (p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617)
lola: after: (0 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (0 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: LP says that atomic proposition is always false: (2 <= p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304)
lola: LP says that atomic proposition is always false: (2 <= p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304)
lola: LP says that atomic proposition is always true: (p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + p4614 + p4615 + p4616 + p4617 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: LP says that atomic proposition is always true: (p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (p2203 + p2200 + p2197 + p2194 + p2191 + p2188 + p2185 + p2182 + p2179 + p2176 + p2173 + p2170 + p2167 + p2164 + p2161 + p2158 + p2155 + p2152 + p2149 + p2146 + p2143 + p2140 + p2137 + p2134 + p2131 + p2128 + p2125 + p2122 + p2119 + p2116 + p2113 + p2110 + p2107 + p2104 + p2101 + p2098 + p2095 + p2092 + p2089 + p2086 + p2083 + p2080 + p2077 + p2074 + p2071 + p2068 + p2065 + p2062 + p2059 + p2058 + p2060 + p2061 + p2063 + p2064 + p2066 + p2067 + p2069 + p2070 + p2072 + p2073 + p2075 + p2076 + p2078 + p2079 + p2081 + p2082 + p2084 + p2085 + p2087 + p2088 + p2090 + p2091 + p2093 + p2094 + p2096 + p2097 + p2099 + p2100 + p2102 + p2103 + p2105 + p2106 + p2108 + p2109 + p2111 + p2112 + p2114 + p2115 + p2117 + p2118 + p2120 + p2121 + p2123 + p2124 + p2126 + p2127 + p2129 + p2130 + p2132 + p2133 + p2135 + p2136 + p2138 + p2139 + p2141 + p2142 + p2144 + p2145 + p2147 + p2148 + p2150 + p2151 + p2153 + p2154 + p2156 + p2157 + p2159 + p2160 + p2162 + p2163 + p2165 + p2166 + p2168 + p2169 + p2171 + p2172 + p2174 + p2175 + p2177 + p2178 + p2180 + p2181 + p2183 + p2184 + p2186 + p2187 + p2189 + p2190 + p2192 + p2193 + p2195 + p2196 + p2198 + p2199 + p2201 + p2202 + p2204 <= p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717)
lola: after: (36 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 + p500 + p501 + p502 + p503 + p505 + p506 + p507 + p508 + p509 + p510 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p540 + p541 + p542 + p543 + p544 + p545 + p547 + p548 + p549 + p550 + p551 + p552 + p499 + p561 + p562 + p563 + p564 + p565 + p566 + p498 + p568 + p569 + p570 + p571 + p572 + p573 + p496 + p575 + p576 + p577 + p578 + p579 + p580 + p495 + p582 + p583 + p584 + p585 + p586 + p587 + p494 + p589 + p590 + p591 + p592 + p593 + p594 + p493 + p492 + p491 + p489 + p488 + p2000 + p2001 + p487 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p486 + p485 + p484 + p482 + p481 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p480 + p2017 + p2018 + p2019 + p479 + p478 + p477 + p468 + p467 + p466 + p2020 + p2021 + p2022 + p465 + p464 + p463 + p461 + p460 + p459 + p458 + p457 + p456 + p454 + p453 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p452 + p2038 + p2039 + p451 + p450 + p449 + p447 + p446 + p445 + p444 + p443 + p442 + p440 + p2040 + p2041 + p2042 + p2043 + p439 + p2045 + p2046 + p2047 + p2048 + p2049 + p438 + p437 + p436 + p435 + p426 + p425 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p415 + p414 + p2050 + p412 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p411 + p410 + p409 + p408 + p407 + p405 + p404 + p403 + p402 + p401 + p400 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p670 + p671 + p673 + p674 + p675 + p676 + p677 + p678 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p398 + p397 + p396 + p395 + p394 + p393 + p384 + p383 + p382 + p381 + p380 + p379 + p377 + p376 + p375 + p374 + p373 + p372 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p356 + p701 + p702 + p703 + p704 + p705 + p706 + p355 + p708 + p709 + p710 + p711 + p712 + p713 + p354 + p715 + p716 + p717 + p718 + p719 + p720 + p353 + p352 + p351 + p342 + p341 + p340 + p339 + p338 + p729 + p730 + p731 + p732 + p733 + p734 + p337 + p736 + p737 + p738 + p739 + p740 + p741 + p335 + p743 + p744 + p745 + p746 + p747 + p748 + p334 + p750 + p751 + p752 + p753 + p754 + p755 + p333 + p757 + p758 + p759 + p760 + p761 + p762 + p332 + p331 + p330 + p328 + p327 + p326 + p325 + p324 + p771 + p772 + p773 + p774 + p775 + p776 + p323 + p778 + p779 + p780 + p781 + p782 + p783 + p321 + p785 + p786 + p787 + p788 + p789 + p790 + p320 + p792 + p793 + p794 + p795 + p796 + p797 + p319 + p799 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p310 + p309 + p300 + p800 + p801 + p802 + p803 + p804 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p834 + p835 + p836 + p837 + p838 + p839 + p841 + p842 + p843 + p844 + p845 + p846 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p897 + p898 + p899 + p1000 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p918 + p919 + p920 + p921 + p922 + p923 + p925 + p926 + p927 + p928 + p929 + p930 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p960 + p961 + p962 + p963 + p964 + p965 + p967 + p968 + p969 + p970 + p971 + p972 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p15 + p16 + p17 + p18 + p19 + p20 + p299 + p22 + p23 + p24 + p25 + p26 + p27 + p298 + p29 + p30 + p31 + p32 + p33 + p34 + p297 + p36 + p37 + p38 + p39 + p40 + p41 + p296 + p43 + p44 + p45 + p46 + p47 + p48 + p295 + p293 + p292 + p291 + p290 + p289 + p288 + p286 + p57 + p58 + p59 + p60 + p61 + p62 + p285 + p64 + p65 + p66 + p67 + p68 + p69 + p284 + p71 + p72 + p73 + p74 + p75 + p76 + p283 + p78 + p79 + p80 + p81 + p82 + p83 + p282 + p85 + p86 + p87 + p88 + p89 + p90 + p281 + p279 + p278 + p277 + p276 + p275 + p274 + p272 + p99 + p271 + p270 + p269 + p268 + p267 + p258 + p257 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p256 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p255 + p254 + p253 + p251 + p250 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p249 + p1128 + p1129 + p248 + p247 + p246 + p244 + p1130 + p1131 + p1132 + p1133 + p243 + p1135 + p1136 + p1137 + p1138 + p1139 + p242 + p241 + p240 + p239 + p1140 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p228 + p1156 + p1157 + p1158 + p1159 + p227 + p226 + p1160 + p1161 + p225 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p216 + p215 + p214 + p213 + p212 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p211 + p1177 + p1178 + p1179 + p209 + p208 + p207 + p206 + p205 + p204 + p1180 + p1181 + p1182 + p202 + p201 + p200 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1338 + p1339 + p199 + p198 + p1340 + p1341 + p1342 + p1343 + p197 + p1345 + p1346 + p1347 + p1348 + p1349 + p195 + p194 + p193 + p192 + p1350 + p191 + p190 + p188 + p187 + p186 + p185 + p184 + p183 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p174 + p1366 + p1367 + p1368 + p1369 + p173 + p172 + p1370 + p1371 + p171 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p170 + p169 + p167 + p166 + p165 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p164 + p1387 + p1388 + p1389 + p163 + p162 + p160 + p159 + p158 + p157 + p1390 + p1391 + p1392 + p156 + p155 + p153 + p152 + p151 + p150 + p149 + p148 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p146 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p145 + p1415 + p1416 + p1417 + p1418 + p1419 + p144 + p143 + p142 + p141 + p132 + p131 + p1420 + p130 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p129 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p128 + p127 + p125 + p124 + p123 + p122 + p121 + p120 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p118 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p117 + p1457 + p1458 + p1459 + p116 + p115 + p114 + p113 + p111 + p110 + p1460 + p1461 + p1462 + p109 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p108 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p107 + p106 + p104 + p103 + p102 + p101 + p100 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p6 + p5 + p4 + p3 + p2 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1 + p1996 + p1997 + p1998 + p1999 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + p4663 + p4664 + p4665 + p4666)
lola: after: (p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p2238 + p2235 + p2232 + p2229 + p2226 + p2223 + p2219 + p2220 + p2221 + p2222 + p2224 + p2225 + p2227 + p2228 + p2230 + p2231 + p2233 + p2234 + p2236 + p2237 + p2239)
lola: after: (0 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829)
lola: after: (0 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829)
lola: A (NOT((G (()) OR ((0 <= 36) AND F ((2 <= 0)))))) : A (X (X ((X ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6)) OR X (F (((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 + 1 <= 0) U F ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 6))))))))) : A (((6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) U NOT((X (X (G ((6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))) U (30 <= p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704))))) : A (F ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 5))) : A (G (F (NOT((NOT((NOT(X ((p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504))) U X ((2 <= 0)))) U F ((30 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613))))))) : A (X (((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND (F ((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 6)) OR G (X (G ((3 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256)))))))) : A (G ((() OR X ((p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613))))) : A (X ((X ((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)) AND ((6 <= p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212) OR X (F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504))))))) : A (X (G (X ((NOT(G ((2 <= p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613))) U NOT((F ((3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)) AND G (((36 <= 0) U (1 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504)))))))))) : A (G (F ((29 <= 0)))) : A (G (X (((p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) OR G (((0 <= 0) OR F (NOT(X (F (X ((0 <= 0)))))))))))) : A (G ((X (NOT(X ((G (F ((0 <= p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599))) U (p4710 + p4709 + p4708 + p4707 + p4706 + p4705 + p4704 <= p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p2967 + p2966 + p2965 + p2964 + p2963 + p2962 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p2883 + p2882 + p2881 + p2880 + p2879 + p2878 + p2841 + p2840 + p2839 + p2838 + p2837 + p2836 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p2799 + p2798 + p2797 + p2796 + p2795 + p2794 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p3975 + p3974 + p3973 + p3972 + p3971 + p3970 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p3933 + p3932 + p3931 + p3930 + p2631 + p2630 + p3929 + p3928 + p2629 + p2628 + p2627 + p2626 + p3891 + p3890 + p3889 + p3888 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p3887 + p3886 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p2547 + p2546 + p2545 + p2544 + p2543 + p2542 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p3765 + p3764 + p3763 + p3762 + p3761 + p3760 + p2463 + p2462 + p2461 + p2460 + p2459 + p2458 + p3723 + p3722 + p3721 + p3720 + p2421 + p2420 + p3719 + p3718 + p2419 + p2418 + p2417 + p2416 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3681 + p3680 + p3679 + p3678 + p3677 + p3676 + p2379 + p2378 + p2377 + p2376 + p2375 + p2374 + p3639 + p3638 + p3637 + p3636 + p3635 + p3634 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p3046 + p3047 + p3048 + p3049 + p3050 + p3051 + p3597 + p3596 + p3595 + p3594 + p3593 + p3592 + p2295 + p2294 + p2293 + p2292 + p2291 + p2290 + p3555 + p3554 + p3553 + p3552 + p3551 + p3550 + p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p3088 + p3089 + p3513 + p3512 + p3511 + p3510 + p3090 + p3091 + p3092 + p3093 + p3509 + p3508 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3130 + p3131 + p3132 + p3133 + p3134 + p3135 + p3429 + p3428 + p3427 + p3426 + p3425 + p3424 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3387 + p3386 + p3385 + p3384 + p3383 + p3382 + p3345 + p3344 + p3343 + p3342 + p3341 + p3340 + p3303 + p3302 + p3301 + p3300 + p3299 + p3298 + p3261 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3260 + p3259 + p3258 + p3257 + p3256))))) U X ((p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 + 1 <= 0))))) : A (((() OR G ((p2211 + p2210 + p2209 + p2208 + p2207 + p2206 + p2205 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829))) U (2 <= p4298 + p4299 + p4300 + p4301 + p4302 + p4303 + p4304))) : A (X (X (((p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212 + 1 <= p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829) AND G ((X ((3 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)) AND (X ((p4654 + p4653 + p4652 + p4651 + p4650 + p4649 + p4648 + p4647 + p4646 + p4645 + p4644 + p4643 + p4642 + p4641 + p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4613 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)) U (36 <= 0)))))))) : A (G (X ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1841 + p1834 + p1827 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1814 + p1813 + p1806 + p1799 + p1792 + p1785 + p1778 + p1777 + p1776 + p1775 + p1774 + p1773 + p1772 + p1771 + p1764 + p1757 + p1750 + p1743 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1729 + p1722 + p1715 + p1708 + p1701 + p1694 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1687 + p1680 + p1673 + p1666 + p1659 + p1652 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1638 + p1631 + p1624 + p1617 + p1610 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p1603 + p1596 + p1589 + p1582 + p1575 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1554 + p1547 + p1540 + p1533 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p1519 + p1512 + p1505 + p1498 + p1491 + p1484 + p1483 + p1482 + p1481 + p1480 + p1479 + p105 + p1478 + p1477 + p1470 + p1463 + p112 + p1456 + p1449 + p119 + p1442 + p1441 + p1440 + p1439 + p1438 + p1437 + p126 + p1436 + p1435 + p1428 + p1421 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p1414 + p1407 + p147 + p1400 + p1399 + p1398 + p1397 + p1396 + p1395 + p154 + p1394 + p1393 + p161 + p1386 + p168 + p1379 + p1372 + p1365 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p1358 + p1357 + p1356 + p1355 + p1354 + p1353 + p189 + p1352 + p1351 + p196 + p1344 + p1337 + p1330 + p1323 + p1316 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p1309 + p1302 + p1295 + p1288 + p1281 + p1274 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1267 + p1260 + p1253 + p1246 + p1239 + p1232 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p1225 + p1218 + p1211 + p1204 + p1197 + p1190 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1183 + p203 + p210 + p1176 + p1169 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p1162 + p1155 + p1148 + p1147 + p231 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p238 + p1134 + p245 + p1127 + p1120 + p252 + p1113 + p1106 + p1105 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p1104 + p1103 + p1102 + p1101 + p1100 + p98 + p273 + p97 + p96 + p95 + p94 + p93 + p92 + p280 + p91 + p84 + p77 + p70 + p63 + p56 + p287 + p55 + p54 + p53 + p52 + p51 + p50 + p294 + p49 + p42 + p35 + p28 + p21 + p14 + p13 + p12 + p11 + p10 + p994 + p987 + p980 + p979 + p978 + p977 + p976 + p975 + p974 + p973 + p966 + p959 + p952 + p945 + p938 + p937 + p936 + p935 + p934 + p933 + p932 + p931 + p924 + p917 + p910 + p903 + p1099 + p1092 + p1085 + p1078 + p1071 + p1064 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1057 + p1050 + p1043 + p1036 + p1029 + p1022 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p1015 + p1008 + p1001 + p896 + p895 + p894 + p893 + p892 + p891 + p890 + p889 + p882 + p875 + p868 + p861 + p854 + p853 + p852 + p851 + p850 + p849 + p848 + p847 + p840 + p833 + p826 + p819 + p812 + p811 + p810 + p809 + p808 + p807 + p806 + p805 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p315 + p798 + p791 + p784 + p322 + p777 + p770 + p769 + p768 + p767 + p766 + p329 + p765 + p764 + p763 + p756 + p749 + p742 + p336 + p735 + p728 + p727 + p726 + p725 + p724 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p723 + p722 + p721 + p714 + p707 + p700 + p357 + p364 + p371 + p378 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p399 + p693 + p686 + p685 + p684 + p683 + p682 + p681 + p680 + p679 + p672 + p665 + p658 + p651 + p644 + p643 + p642 + p641 + p640 + p639 + p638 + p637 + p630 + p623 + p616 + p609 + p602 + p601 + p600 + p406 + p2051 + p413 + p420 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2044 + p441 + p448 + p2037 + p2030 + p455 + p2029 + p2028 + p2027 + p2026 + p462 + p2025 + p2024 + p2023 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p2016 + p483 + p2009 + p2002 + p599 + p598 + p490 + p597 + p596 + p595 + p588 + p581 + p574 + p497 + p567 + p560 + p559 + p558 + p557 + p556 + p555 + p554 + p553 + p546 + p539 + p532 + p525 + p518 + p517 + p516 + p515 + p514 + p513 + p512 + p511 + p504 <= p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662)))) : A (NOT(F (())))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:528
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:525
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:315
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 218 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 233 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 249 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 268 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 291 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 317 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 349 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 388 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 436 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 499 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================
lola: subprocess 10 will run for 582 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (((2 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655) AND F ((2 <= p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + ... (shortened)
lola: processed formula length: 4467
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 409 markings, 409 edges
lola: ========================================
lola: subprocess 11 will run for 699 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((p4605 + p4604 + p4603 + p4602 + p4601 + p4600 + p4599 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)))
lola: processed formula length: 120
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 409 markings, 409 edges
lola: ========================================
lola: subprocess 12 will run for 873 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1983 + p1982 + p1981 + p1974 + p1967 + p1960 + p1953 + p1946 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1939 + p1932 + p1925 + p1918 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1898 + p1897 + p1890 + p1883 + p1876 + p1869 + p1862 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1855 + p1848 + p1... (shortened)
lola: processed formula length: 4696
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 409 markings, 409 edges
lola: ========================================
lola: subprocess 13 will run for 1165 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================
lola: subprocess 14 will run for 1747 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655 <= 5)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (6 <= p4661 + p4660 + p4659 + p4658 + p4657 + p4656 + p4655)
lola: processed formula length: 60
lola: 124 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 15 will run for 3495 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((G ((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 2)) OR F ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((G ((p4703 + p4702 + p4701 + p4700 + p4699 + p4698 + p4697 + p4696 + p4695 + p4694 + p4693 + p4692 + p4691 + p4690 + p4689 + p4688 + p4687 + p4686 + p4685 + p4684 + p4683 + p4682 + p4681 + p4680 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p4669 + p4668 + p4667 + p4662 <= 2)) OR F ((p0 + p1995 + p1988 + p1987 + p1986 + p1985 + p1984 + p7 + p8 + p9 + p1... (shortened)
lola: processed formula length: 4718
lola: 122 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 84014 markings, 385745 edges, 16803 markings/sec, 0 secs
lola: 161189 markings, 820741 edges, 15435 markings/sec, 5 secs
lola: 236572 markings, 1264885 edges, 15077 markings/sec, 10 secs
lola: 315643 markings, 1710913 edges, 15814 markings/sec, 15 secs
lola: 404809 markings, 2148587 edges, 17833 markings/sec, 20 secs
lola: 480817 markings, 2619328 edges, 15202 markings/sec, 25 secs
lola: 554485 markings, 3088248 edges, 14734 markings/sec, 30 secs
lola: 638131 markings, 3550837 edges, 16729 markings/sec, 35 secs
lola: 714477 markings, 4005777 edges, 15269 markings/sec, 40 secs
lola: 789260 markings, 4425907 edges, 14957 markings/sec, 45 secs
lola: 871913 markings, 4832759 edges, 16531 markings/sec, 50 secs
lola: 944440 markings, 5270575 edges, 14505 markings/sec, 55 secs
lola: 1011624 markings, 5726592 edges, 13437 markings/sec, 60 secs
lola: 1076684 markings, 6177018 edges, 13012 markings/sec, 65 secs
lola: 1138152 markings, 6633317 edges, 12294 markings/sec, 70 secs
lola: 1203137 markings, 7076807 edges, 12997 markings/sec, 75 secs
lola: 1279508 markings, 7505559 edges, 15274 markings/sec, 80 secs
lola: 1357334 markings, 7932898 edges, 15565 markings/sec, 85 secs
lola: 1424681 markings, 8377875 edges, 13469 markings/sec, 90 secs
lola: 1496421 markings, 8840329 edges, 14348 markings/sec, 95 secs
lola: 1572083 markings, 9312831 edges, 15132 markings/sec, 100 secs
lola: 1639569 markings, 9797553 edges, 13497 markings/sec, 105 secs
lola: 1708437 markings, 10281375 edges, 13774 markings/sec, 110 secs
lola: 1778851 markings, 10766718 edges, 14083 markings/sec, 115 secs
lola: 1855199 markings, 11232452 edges, 15270 markings/sec, 120 secs
lola: 1928870 markings, 11699959 edges, 14734 markings/sec, 125 secs
lola: 2007591 markings, 12157447 edges, 15744 markings/sec, 130 secs
lola: 2084366 markings, 12617473 edges, 15355 markings/sec, 135 secs
lola: 2150986 markings, 13096994 edges, 13324 markings/sec, 140 secs
lola: 2214728 markings, 13571556 edges, 12748 markings/sec, 145 secs
lola: 2275901 markings, 14011132 edges, 12235 markings/sec, 150 secs
lola: 2334586 markings, 14456378 edges, 11737 markings/sec, 155 secs
lola: 2398612 markings, 14911844 edges, 12805 markings/sec, 160 secs
lola: 2466289 markings, 15394441 edges, 13535 markings/sec, 165 secs
lola: 2536891 markings, 15883390 edges, 14120 markings/sec, 170 secs
lola: 2604385 markings, 16371272 edges, 13499 markings/sec, 175 secs
lola: 2669722 markings, 16856050 edges, 13067 markings/sec, 180 secs
lola: 2735127 markings, 17345030 edges, 13081 markings/sec, 185 secs
lola: 2805374 markings, 17828638 edges, 14049 markings/sec, 190 secs
lola: 2879357 markings, 18305190 edges, 14797 markings/sec, 195 secs
lola: 2955651 markings, 18783754 edges, 15259 markings/sec, 200 secs
lola: 3025502 markings, 19256981 edges, 13970 markings/sec, 205 secs
lola: 3095705 markings, 19734183 edges, 14041 markings/sec, 210 secs
lola: 3165338 markings, 20226121 edges, 13927 markings/sec, 215 secs
lola: 3237905 markings, 20694274 edges, 14513 markings/sec, 220 secs
lola: 3315881 markings, 21153186 edges, 15595 markings/sec, 225 secs
lola: 3393038 markings, 21612577 edges, 15431 markings/sec, 230 secs
lola: 3465703 markings, 22079738 edges, 14533 markings/sec, 235 secs
lola: 3550688 markings, 22524935 edges, 16997 markings/sec, 240 secs
lola: 3632375 markings, 22972718 edges, 16337 markings/sec, 245 secs
lola: 3705597 markings, 23402804 edges, 14644 markings/sec, 250 secs
lola: 3770897 markings, 23832823 edges, 13060 markings/sec, 255 secs
lola: 3845879 markings, 24246441 edges, 14996 markings/sec, 260 secs
lola: 3920100 markings, 24649435 edges, 14844 markings/sec, 265 secs
lola: 3985811 markings, 25076696 edges, 13142 markings/sec, 270 secs
lola: 4050105 markings, 25521559 edges, 12859 markings/sec, 275 secs
lola: 4130537 markings, 25992474 edges, 16086 markings/sec, 280 secs
lola: 4207471 markings, 26467504 edges, 15387 markings/sec, 285 secs
lola: 4284691 markings, 26941256 edges, 15444 markings/sec, 290 secs
lola: 4368972 markings, 27387396 edges, 16856 markings/sec, 295 secs
lola: 4444086 markings, 27823550 edges, 15023 markings/sec, 300 secs
lola: 4511114 markings, 28272295 edges, 13406 markings/sec, 305 secs
lola: 4573212 markings, 28715069 edges, 12420 markings/sec, 310 secs
lola: 4642724 markings, 29205816 edges, 13902 markings/sec, 315 secs
lola: 4712206 markings, 29700457 edges, 13896 markings/sec, 320 secs
lola: 4786456 markings, 30183955 edges, 14850 markings/sec, 325 secs
lola: 4860307 markings, 30662479 edges, 14770 markings/sec, 330 secs
lola: 4928590 markings, 31151331 edges, 13657 markings/sec, 335 secs
lola: 4995723 markings, 31643022 edges, 13427 markings/sec, 340 secs
lola: 5058320 markings, 32131197 edges, 12519 markings/sec, 345 secs
lola: 5125072 markings, 32605423 edges, 13350 markings/sec, 350 secs
lola: 5194478 markings, 33076712 edges, 13881 markings/sec, 355 secs
lola: 5262294 markings, 33567128 edges, 13563 markings/sec, 360 secs
lola: 5329281 markings, 34063677 edges, 13397 markings/sec, 365 secs
lola: 5397827 markings, 34553439 edges, 13709 markings/sec, 370 secs
lola: 5463970 markings, 35030886 edges, 13229 markings/sec, 375 secs
lola: 5529186 markings, 35513741 edges, 13043 markings/sec, 380 secs
lola: 5596037 markings, 35986497 edges, 13370 markings/sec, 385 secs
lola: 5659746 markings, 36466365 edges, 12742 markings/sec, 390 secs
lola: 5720776 markings, 36946053 edges, 12206 markings/sec, 395 secs
lola: 5782238 markings, 37406277 edges, 12292 markings/sec, 400 secs
lola: 5840346 markings, 37859794 edges, 11622 markings/sec, 405 secs
lola: 5900174 markings, 38313210 edges, 11966 markings/sec, 410 secs
lola: 5960439 markings, 38767993 edges, 12053 markings/sec, 415 secs
lola: 6030032 markings, 39192627 edges, 13919 markings/sec, 420 secs
lola: 6098846 markings, 39624729 edges, 13763 markings/sec, 425 secs
lola: 6164259 markings, 40070988 edges, 13083 markings/sec, 430 secs
lola: 6230410 markings, 40507179 edges, 13230 markings/sec, 435 secs
lola: 6296589 markings, 40944942 edges, 13236 markings/sec, 440 secs
lola: 6368020 markings, 41372298 edges, 14286 markings/sec, 445 secs
lola: 6444050 markings, 41823784 edges, 15206 markings/sec, 450 secs
lola: 6507915 markings, 42255499 edges, 12773 markings/sec, 455 secs
lola: 6569911 markings, 42693854 edges, 12399 markings/sec, 460 secs
lola: 6632832 markings, 43129638 edges, 12584 markings/sec, 465 secs
lola: 6695533 markings, 43567433 edges, 12540 markings/sec, 470 secs
lola: 6763130 markings, 43993554 edges, 13519 markings/sec, 475 secs
lola: 6838572 markings, 44422028 edges, 15088 markings/sec, 480 secs
lola: 6915336 markings, 44886846 edges, 15353 markings/sec, 485 secs
lola: 6987517 markings, 45358305 edges, 14436 markings/sec, 490 secs
lola: 7055127 markings, 45833382 edges, 13522 markings/sec, 495 secs
lola: 7130817 markings, 46290046 edges, 15138 markings/sec, 500 secs
lola: 7201970 markings, 46722223 edges, 14231 markings/sec, 505 secs
lola: 7263965 markings, 47162968 edges, 12399 markings/sec, 510 secs
lola: 7323022 markings, 47608648 edges, 11811 markings/sec, 515 secs
lola: 7381990 markings, 48064388 edges, 11794 markings/sec, 520 secs
lola: 7439895 markings, 48510997 edges, 11581 markings/sec, 525 secs
lola: 7506449 markings, 48947119 edges, 13311 markings/sec, 530 secs
lola: 7573073 markings, 49391830 edges, 13325 markings/sec, 535 secs
lola: 7641983 markings, 49876992 edges, 13782 markings/sec, 540 secs
lola: 7707411 markings, 50361345 edges, 13086 markings/sec, 545 secs
lola: 7776848 markings, 50845181 edges, 13887 markings/sec, 550 secs
lola: 7849013 markings, 51321698 edges, 14433 markings/sec, 555 secs
lola: 7920110 markings, 51809093 edges, 14219 markings/sec, 560 secs
lola: 7986870 markings, 52288102 edges, 13352 markings/sec, 565 secs
lola: 8052685 markings, 52786828 edges, 13163 markings/sec, 570 secs
lola: 8129226 markings, 53276180 edges, 15308 markings/sec, 575 secs
lola: 8203286 markings, 53769900 edges, 14812 markings/sec, 580 secs
lola: 8276546 markings, 54259939 edges, 14652 markings/sec, 585 secs
lola: 8349229 markings, 54733467 edges, 14537 markings/sec, 590 secs
lola: 8425254 markings, 55195575 edges, 15205 markings/sec, 595 secs
lola: 8494904 markings, 55663785 edges, 13930 markings/sec, 600 secs
lola: 8568907 markings, 56129575 edges, 14801 markings/sec, 605 secs
lola: 8646527 markings, 56588481 edges, 15524 markings/sec, 610 secs
lola: 8719313 markings, 57058233 edges, 14557 markings/sec, 615 secs
lola: 8801055 markings, 57503407 edges, 16348 markings/sec, 620 secs
lola: 8884063 markings, 57947827 edges, 16602 markings/sec, 625 secs
lola: 8963157 markings, 58400532 edges, 15819 markings/sec, 630 secs
lola: 9033877 markings, 58865321 edges, 14144 markings/sec, 635 secs
lola: 9114752 markings, 59313671 edges, 16175 markings/sec, 640 secs
lola: 9196044 markings, 59760190 edges, 16258 markings/sec, 645 secs
lola: 9267323 markings, 60226637 edges, 14256 markings/sec, 650 secs
lola: 9339630 markings, 60709263 edges, 14461 markings/sec, 655 secs
lola: 9420061 markings, 61178936 edges, 16086 markings/sec, 660 secs
lola: 9495201 markings, 61650732 edges, 15028 markings/sec, 665 secs
lola: 9574138 markings, 62119133 edges, 15787 markings/sec, 670 secs
lola: 9659900 markings, 62564237 edges, 17152 markings/sec, 675 secs
lola: 9737528 markings, 63039768 edges, 15526 markings/sec, 680 secs
lola: 9811760 markings, 63520571 edges, 14846 markings/sec, 685 secs
lola: 9881656 markings, 64009347 edges, 13979 markings/sec, 690 secs
lola: 9951144 markings, 64500398 edges, 13898 markings/sec, 695 secs
lola: 10019594 markings, 64991638 edges, 13690 markings/sec, 700 secs
lola: 10087563 markings, 65486534 edges, 13594 markings/sec, 705 secs
lola: 10153255 markings, 65986344 edges, 13138 markings/sec, 710 secs
lola: 10218173 markings, 66482290 edges, 12984 markings/sec, 715 secs
lola: 10287274 markings, 66973663 edges, 13820 markings/sec, 720 secs
lola: 10361160 markings, 67452718 edges, 14777 markings/sec, 725 secs
lola: 10432060 markings, 67935297 edges, 14180 markings/sec, 730 secs
lola: 10511881 markings, 68405989 edges, 15964 markings/sec, 735 secs
lola: 10591637 markings, 68880663 edges, 15951 markings/sec, 740 secs
lola: 10665511 markings, 69362295 edges, 14775 markings/sec, 745 secs
lola: 10740832 markings, 69842099 edges, 15064 markings/sec, 750 secs
lola: 10806827 markings, 70294654 edges, 13199 markings/sec, 755 secs
lola: 10870341 markings, 70726610 edges, 12703 markings/sec, 760 secs
lola: 10929856 markings, 71182067 edges, 11903 markings/sec, 765 secs
lola: 10992024 markings, 71623305 edges, 12434 markings/sec, 770 secs
lola: 11058543 markings, 72066626 edges, 13304 markings/sec, 775 secs
lola: 11137676 markings, 72493072 edges, 15827 markings/sec, 780 secs
lola: 11214674 markings, 72944826 edges, 15400 markings/sec, 785 secs
lola: 11299681 markings, 73395582 edges, 17001 markings/sec, 790 secs
lola: 11373027 markings, 73866339 edges, 14669 markings/sec, 795 secs
lola: 11453248 markings, 74330965 edges, 16044 markings/sec, 800 secs
lola: 11537852 markings, 74776764 edges, 16921 markings/sec, 805 secs
lola: 11608623 markings, 75252949 edges, 14154 markings/sec, 810 secs
lola: 11675235 markings, 75746797 edges, 13322 markings/sec, 815 secs
lola: 11755003 markings, 76216731 edges, 15954 markings/sec, 820 secs
lola: 11829181 markings, 76697270 edges, 14836 markings/sec, 825 secs
lola: 11902317 markings, 77180605 edges, 14627 markings/sec, 830 secs
lola: 11970945 markings, 77667905 edges, 13726 markings/sec, 835 secs
lola: 12044040 markings, 78136784 edges, 14619 markings/sec, 840 secs
lola: 12121382 markings, 78600992 edges, 15468 markings/sec, 845 secs
lola: 12189520 markings, 79085111 edges, 13628 markings/sec, 850 secs
lola: 12254285 markings, 79569265 edges, 12953 markings/sec, 855 secs
lola: 12319237 markings, 80048927 edges, 12990 markings/sec, 860 secs
lola: 12386653 markings, 80528287 edges, 13483 markings/sec, 865 secs
lola: 12451699 markings, 81022906 edges, 13009 markings/sec, 870 secs
lola: 12521910 markings, 81505408 edges, 14042 markings/sec, 875 secs
lola: 12594943 markings, 81980521 edges, 14607 markings/sec, 880 secs
lola: 12663695 markings, 82463965 edges, 13750 markings/sec, 885 secs
lola: 12736901 markings, 82934689 edges, 14641 markings/sec, 890 secs
lola: 12811256 markings, 83395543 edges, 14871 markings/sec, 895 secs
lola: 12889307 markings, 83853817 edges, 15610 markings/sec, 900 secs
lola: 12971439 markings, 84305206 edges, 16426 markings/sec, 905 secs
lola: 13045980 markings, 84768848 edges, 14908 markings/sec, 910 secs
lola: 13127071 markings, 85222257 edges, 16218 markings/sec, 915 secs
lola: 13200339 markings, 85690923 edges, 14654 markings/sec, 920 secs
lola: 13269829 markings, 86161538 edges, 13898 markings/sec, 925 secs
lola: 13345947 markings, 86627483 edges, 15224 markings/sec, 930 secs
lola: 13425365 markings, 87076539 edges, 15884 markings/sec, 935 secs
lola: 13497182 markings, 87548340 edges, 14363 markings/sec, 940 secs
lola: 13563555 markings, 88037702 edges, 13275 markings/sec, 945 secs
lola: 13630381 markings, 88521002 edges, 13365 markings/sec, 950 secs
lola: 13694050 markings, 89007111 edges, 12734 markings/sec, 955 secs
lola: 13756157 markings, 89495502 edges, 12421 markings/sec, 960 secs
lola: 13823556 markings, 89977592 edges, 13480 markings/sec, 965 secs
lola: 13889684 markings, 90458926 edges, 13226 markings/sec, 970 secs
lola: 13954535 markings, 90944332 edges, 12970 markings/sec, 975 secs
lola: 14017024 markings, 91432931 edges, 12498 markings/sec, 980 secs
lola: 14083972 markings, 91920655 edges, 13390 markings/sec, 985 secs
lola: 14148909 markings, 92402238 edges, 12987 markings/sec, 990 secs
lola: 14214912 markings, 92889713 edges, 13201 markings/sec, 995 secs
lola: 14284102 markings, 93369495 edges, 13838 markings/sec, 1000 secs
lola: 14351200 markings, 93853857 edges, 13420 markings/sec, 1005 secs
lola: 14419903 markings, 94337699 edges, 13741 markings/sec, 1010 secs
lola: 14489068 markings, 94824942 edges, 13833 markings/sec, 1015 secs
lola: 14557086 markings, 95316180 edges, 13604 markings/sec, 1020 secs
lola: 14628829 markings, 95794908 edges, 14349 markings/sec, 1025 secs
lola: 14694428 markings, 96278570 edges, 13120 markings/sec, 1030 secs
lola: 14758232 markings, 96765087 edges, 12761 markings/sec, 1035 secs
lola: 14824622 markings, 97249211 edges, 13278 markings/sec, 1040 secs
lola: 14887466 markings, 97741050 edges, 12569 markings/sec, 1045 secs
lola: 14952409 markings, 98232137 edges, 12989 markings/sec, 1050 secs
lola: 15018385 markings, 98725712 edges, 13195 markings/sec, 1055 secs
lola: 15084796 markings, 99216464 edges, 13282 markings/sec, 1060 secs
lola: 15151447 markings, 99707335 edges, 13330 markings/sec, 1065 secs
lola: 15214194 markings, 100197699 edges, 12549 markings/sec, 1070 secs
lola: 15276502 markings, 100688849 edges, 12462 markings/sec, 1075 secs
lola: 15341248 markings, 101170728 edges, 12949 markings/sec, 1080 secs
lola: 15415512 markings, 101647375 edges, 14853 markings/sec, 1085 secs
lola: 15486065 markings, 102122983 edges, 14111 markings/sec, 1090 secs
lola: 15560565 markings, 102600688 edges, 14900 markings/sec, 1095 secs
lola: 15632918 markings, 103083408 edges, 14471 markings/sec, 1100 secs
lola: 15710037 markings, 103551521 edges, 15424 markings/sec, 1105 secs
lola: 15778070 markings, 104029023 edges, 13607 markings/sec, 1110 secs
lola: 15847996 markings, 104508815 edges, 13985 markings/sec, 1115 secs
lola: 15922398 markings, 104984446 edges, 14880 markings/sec, 1120 secs
lola: 16001016 markings, 105453306 edges, 15724 markings/sec, 1125 secs
lola: 16072213 markings, 105934029 edges, 14239 markings/sec, 1130 secs
lola: 16148434 markings, 106408323 edges, 15244 markings/sec, 1135 secs
lola: 16213912 markings, 106899188 edges, 13096 markings/sec, 1140 secs
lola: 16285312 markings, 107381840 edges, 14280 markings/sec, 1145 secs
lola: 16353301 markings, 107866474 edges, 13598 markings/sec, 1150 secs
lola: 16421567 markings, 108349771 edges, 13653 markings/sec, 1155 secs
lola: 16484665 markings, 108839831 edges, 12620 markings/sec, 1160 secs
lola: 16554164 markings, 109321145 edges, 13900 markings/sec, 1165 secs
lola: 16622247 markings, 109810421 edges, 13617 markings/sec, 1170 secs
lola: 16692189 markings, 110296967 edges, 13988 markings/sec, 1175 secs
lola: 16761459 markings, 110784386 edges, 13854 markings/sec, 1180 secs
lola: 16829666 markings, 111274611 edges, 13641 markings/sec, 1185 secs
lola: 16899679 markings, 111750000 edges, 14003 markings/sec, 1190 secs
lola: 16973368 markings, 112223080 edges, 14738 markings/sec, 1195 secs
lola: 17043350 markings, 112696075 edges, 13996 markings/sec, 1200 secs
lola: 17117327 markings, 113166688 edges, 14795 markings/sec, 1205 secs
lola: 17192520 markings, 113633088 edges, 15039 markings/sec, 1210 secs
lola: 17269113 markings, 114092270 edges, 15319 markings/sec, 1215 secs
lola: 17341727 markings, 114543260 edges, 14523 markings/sec, 1220 secs
lola: 17420469 markings, 114984201 edges, 15748 markings/sec, 1225 secs
lola: 17494697 markings, 115444666 edges, 14846 markings/sec, 1230 secs
lola: 17574440 markings, 115893985 edges, 15949 markings/sec, 1235 secs
lola: 17645503 markings, 116360843 edges, 14213 markings/sec, 1240 secs
lola: 17713510 markings, 116813892 edges, 13601 markings/sec, 1245 secs
lola: 17784312 markings, 117285393 edges, 14160 markings/sec, 1250 secs
lola: 17860855 markings, 117748827 edges, 15309 markings/sec, 1255 secs
lola: 17936710 markings, 118210511 edges, 15171 markings/sec, 1260 secs
lola: 18018048 markings, 118652448 edges, 16268 markings/sec, 1265 secs
lola: 18092285 markings, 119120960 edges, 14847 markings/sec, 1270 secs
lola: 18165588 markings, 119591320 edges, 14661 markings/sec, 1275 secs
lola: 18233175 markings, 120075231 edges, 13517 markings/sec, 1280 secs
lola: 18299083 markings, 120565732 edges, 13182 markings/sec, 1285 secs
lola: 18366831 markings, 121050954 edges, 13550 markings/sec, 1290 secs
lola: 18431029 markings, 121537457 edges, 12840 markings/sec, 1295 secs
lola: 18500059 markings, 122016820 edges, 13806 markings/sec, 1300 secs
lola: 18566260 markings, 122500120 edges, 13240 markings/sec, 1305 secs
lola: 18631387 markings, 122989494 edges, 13025 markings/sec, 1310 secs
lola: 18703233 markings, 123458258 edges, 14369 markings/sec, 1315 secs
lola: 18773381 markings, 123934825 edges, 14030 markings/sec, 1320 secs
lola: 18843651 markings, 124415712 edges, 14054 markings/sec, 1325 secs
lola: 18910466 markings, 124905758 edges, 13363 markings/sec, 1330 secs
lola: 18977732 markings, 125386185 edges, 13453 markings/sec, 1335 secs
lola: 19044567 markings, 125874107 edges, 13367 markings/sec, 1340 secs
lola: 19110277 markings, 126368231 edges, 13142 markings/sec, 1345 secs
lola: 19175809 markings, 126853166 edges, 13106 markings/sec, 1350 secs
lola: 19239043 markings, 127338613 edges, 12647 markings/sec, 1355 secs
lola: 19302798 markings, 127823119 edges, 12751 markings/sec, 1360 secs
lola: 19365165 markings, 128303823 edges, 12473 markings/sec, 1365 secs
lola: 19425967 markings, 128769724 edges, 12160 markings/sec, 1370 secs
lola: 19490575 markings, 129229702 edges, 12922 markings/sec, 1375 secs
lola: 19556097 markings, 129712844 edges, 13104 markings/sec, 1380 secs
lola: 19625672 markings, 130191336 edges, 13915 markings/sec, 1385 secs
lola: 19696814 markings, 130662329 edges, 14228 markings/sec, 1390 secs
lola: 19768216 markings, 131127573 edges, 14280 markings/sec, 1395 secs
lola: 19847940 markings, 131589668 edges, 15945 markings/sec, 1400 secs
lola: 19926790 markings, 132053843 edges, 15770 markings/sec, 1405 secs
lola: 19996657 markings, 132532374 edges, 13973 markings/sec, 1410 secs
lola: 20066740 markings, 133004275 edges, 14017 markings/sec, 1415 secs
lola: 20138544 markings, 133463283 edges, 14361 markings/sec, 1420 secs
lola: 20202105 markings, 133942024 edges, 12712 markings/sec, 1425 secs
lola: 20260918 markings, 134390878 edges, 11763 markings/sec, 1430 secs
lola: 20324739 markings, 134825084 edges, 12764 markings/sec, 1435 secs
lola: 20391699 markings, 135251802 edges, 13392 markings/sec, 1440 secs
lola: 20463810 markings, 135678411 edges, 14422 markings/sec, 1445 secs
lola: 20529849 markings, 136103862 edges, 13208 markings/sec, 1450 secs
lola: 20610828 markings, 136528248 edges, 16196 markings/sec, 1455 secs
lola: 20683777 markings, 136956432 edges, 14590 markings/sec, 1460 secs
lola: 20762665 markings, 137366595 edges, 15778 markings/sec, 1465 secs
lola: 20828721 markings, 137796731 edges, 13211 markings/sec, 1470 secs
lola: 20904514 markings, 138228870 edges, 15159 markings/sec, 1475 secs
lola: 20982293 markings, 138654234 edges, 15556 markings/sec, 1480 secs
lola: 21051348 markings, 139079684 edges, 13811 markings/sec, 1485 secs
lola: 21113213 markings, 139528488 edges, 12373 markings/sec, 1490 secs
lola: 21186051 markings, 140014292 edges, 14568 markings/sec, 1495 secs
lola: 21266388 markings, 140489983 edges, 16067 markings/sec, 1500 secs
lola: 21341822 markings, 140975692 edges, 15087 markings/sec, 1505 secs
lola: 21411140 markings, 141472425 edges, 13864 markings/sec, 1510 secs
lola: 21485098 markings, 141958570 edges, 14792 markings/sec, 1515 secs
lola: 21561800 markings, 142430514 edges, 15340 markings/sec, 1520 secs
lola: 21633360 markings, 142906819 edges, 14312 markings/sec, 1525 secs
lola: 21698715 markings, 143395258 edges, 13071 markings/sec, 1530 secs
lola: 21763701 markings, 143883634 edges, 12997 markings/sec, 1535 secs
lola: 21831438 markings, 144363282 edges, 13547 markings/sec, 1540 secs
lola: 21895647 markings, 144849451 edges, 12842 markings/sec, 1545 secs
lola: 21964671 markings, 145346884 edges, 13805 markings/sec, 1550 secs
lola: 22040482 markings, 145832208 edges, 15162 markings/sec, 1555 secs
lola: 22111488 markings, 146326016 edges, 14201 markings/sec, 1560 secs
lola: 22184683 markings, 146811159 edges, 14639 markings/sec, 1565 secs
lola: 22261901 markings, 147280935 edges, 15444 markings/sec, 1570 secs
lola: 22343828 markings, 147746926 edges, 16385 markings/sec, 1575 secs
lola: 22423001 markings, 148218868 edges, 15835 markings/sec, 1580 secs
lola: 22503958 markings, 148686854 edges, 16191 markings/sec, 1585 secs
lola: 22576912 markings, 149164781 edges, 14591 markings/sec, 1590 secs
lola: 22652984 markings, 149629852 edges, 15214 markings/sec, 1595 secs
lola: 22732064 markings, 150089988 edges, 15816 markings/sec, 1600 secs
lola: 22804543 markings, 150573109 edges, 14496 markings/sec, 1605 secs
lola: 22871650 markings, 151069280 edges, 13421 markings/sec, 1610 secs
lola: 22939082 markings, 151558120 edges, 13486 markings/sec, 1615 secs
lola: 23002046 markings, 152037129 edges, 12593 markings/sec, 1620 secs
lola: 23064828 markings, 152526892 edges, 12556 markings/sec, 1625 secs
lola: 23137161 markings, 152998004 edges, 14467 markings/sec, 1630 secs
lola: 23208289 markings, 153474689 edges, 14226 markings/sec, 1635 secs
lola: 23273105 markings, 153968123 edges, 12963 markings/sec, 1640 secs
lola: 23344429 markings, 154452219 edges, 14265 markings/sec, 1645 secs
lola: 23418656 markings, 154940060 edges, 14845 markings/sec, 1650 secs
lola: 23488652 markings, 155424770 edges, 13999 markings/sec, 1655 secs
lola: 23562514 markings, 155881455 edges, 14772 markings/sec, 1660 secs
lola: 23632298 markings, 156360529 edges, 13957 markings/sec, 1665 secs
lola: 23698846 markings, 156849599 edges, 13310 markings/sec, 1670 secs
lola: 23772138 markings, 157334772 edges, 14658 markings/sec, 1675 secs
lola: 23839450 markings, 157823558 edges, 13462 markings/sec, 1680 secs
lola: 23902321 markings, 158312325 edges, 12574 markings/sec, 1685 secs
lola: 23970010 markings, 158785749 edges, 13538 markings/sec, 1690 secs
lola: 24033640 markings, 159261345 edges, 12726 markings/sec, 1695 secs
lola: 24097749 markings, 159738723 edges, 12822 markings/sec, 1700 secs
lola: 24164109 markings, 160227634 edges, 13272 markings/sec, 1705 secs
lola: 24227132 markings, 160719584 edges, 12605 markings/sec, 1710 secs
lola: 24289713 markings, 161213216 edges, 12516 markings/sec, 1715 secs
lola: 24355840 markings, 161697721 edges, 13225 markings/sec, 1720 secs
lola: 24429858 markings, 162177300 edges, 14804 markings/sec, 1725 secs
lola: 24502821 markings, 162662407 edges, 14593 markings/sec, 1730 secs
lola: 24578240 markings, 163117605 edges, 15084 markings/sec, 1735 secs
lola: 24646162 markings, 163598163 edges, 13584 markings/sec, 1740 secs
lola: 24716484 markings, 164078158 edges, 14064 markings/sec, 1745 secs
lola: 24795765 markings, 164549600 edges, 15856 markings/sec, 1750 secs
lola: 24869180 markings, 165047312 edges, 14683 markings/sec, 1755 secs
lola: 24946038 markings, 165516584 edges, 15372 markings/sec, 1760 secs
lola: 25010477 markings, 165986968 edges, 12888 markings/sec, 1765 secs
lola: 25072318 markings, 166473439 edges, 12368 markings/sec, 1770 secs
lola: 25144294 markings, 166959441 edges, 14395 markings/sec, 1775 secs
lola: 25211668 markings, 167452278 edges, 13475 markings/sec, 1780 secs
lola: 25282933 markings, 167939730 edges, 14253 markings/sec, 1785 secs
lola: 25350653 markings, 168423127 edges, 13544 markings/sec, 1790 secs
lola: 25418985 markings, 168906074 edges, 13666 markings/sec, 1795 secs
lola: 25491813 markings, 169394172 edges, 14566 markings/sec, 1800 secs
lola: 25566627 markings, 169872536 edges, 14963 markings/sec, 1805 secs
lola: 25638699 markings, 170350578 edges, 14414 markings/sec, 1810 secs
lola: 25715504 markings, 170826204 edges, 15361 markings/sec, 1815 secs
lola: 25795070 markings, 171297604 edges, 15913 markings/sec, 1820 secs
lola: 25878004 markings, 171745420 edges, 16587 markings/sec, 1825 secs
lola: 25952561 markings, 172210030 edges, 14911 markings/sec, 1830 secs
lola: 26032703 markings, 172664740 edges, 16028 markings/sec, 1835 secs
lola: 26106969 markings, 173137902 edges, 14853 markings/sec, 1840 secs
lola: 26178727 markings, 173616629 edges, 14352 markings/sec, 1845 secs
lola: 26255811 markings, 174090541 edges, 15417 markings/sec, 1850 secs
lola: 26336207 markings, 174539018 edges, 16079 markings/sec, 1855 secs
lola: 26407115 markings, 175024465 edges, 14182 markings/sec, 1860 secs
lola: 26473208 markings, 175516082 edges, 13219 markings/sec, 1865 secs
lola: 26542191 markings, 176001857 edges, 13797 markings/sec, 1870 secs
lola: 26608454 markings, 176498980 edges, 13253 markings/sec, 1875 secs
lola: 26681879 markings, 176975070 edges, 14685 markings/sec, 1880 secs
lola: 26749074 markings, 177458321 edges, 13439 markings/sec, 1885 secs
lola: 26815923 markings, 177948801 edges, 13370 markings/sec, 1890 secs
lola: 26880260 markings, 178450238 edges, 12867 markings/sec, 1895 secs
lola: 26950124 markings, 178939245 edges, 13973 markings/sec, 1900 secs
lola: 27019878 markings, 179425682 edges, 13951 markings/sec, 1905 secs
lola: 27087766 markings, 179896978 edges, 13578 markings/sec, 1910 secs
lola: 27151345 markings, 180377445 edges, 12716 markings/sec, 1915 secs
lola: 27222622 markings, 180844350 edges, 14255 markings/sec, 1920 secs
lola: 27291627 markings, 181318659 edges, 13801 markings/sec, 1925 secs
lola: 27357629 markings, 181798639 edges, 13200 markings/sec, 1930 secs
lola: 27422216 markings, 182288240 edges, 12917 markings/sec, 1935 secs
lola: 27487696 markings, 182782123 edges, 13096 markings/sec, 1940 secs
lola: 27558916 markings, 183265574 edges, 14244 markings/sec, 1945 secs
lola: 27632950 markings, 183741536 edges, 14807 markings/sec, 1950 secs
lola: 27704485 markings, 184227245 edges, 14307 markings/sec, 1955 secs
lola: 27782699 markings, 184695842 edges, 15643 markings/sec, 1960 secs
lola: 27853039 markings, 185181758 edges, 14068 markings/sec, 1965 secs
lola: 27921692 markings, 185669861 edges, 13731 markings/sec, 1970 secs
lola: 27990987 markings, 186161378 edges, 13859 markings/sec, 1975 secs
lola: 28069585 markings, 186634624 edges, 15720 markings/sec, 1980 secs
lola: 28143807 markings, 187110966 edges, 14844 markings/sec, 1985 secs
lola: 28215082 markings, 187598372 edges, 14255 markings/sec, 1990 secs
lola: 28281554 markings, 188096671 edges, 13294 markings/sec, 1995 secs
lola: 28356401 markings, 188552050 edges, 14969 markings/sec, 2000 secs
lola: 28429365 markings, 188967413 edges, 14593 markings/sec, 2005 secs
lola: 28503653 markings, 189395040 edges, 14858 markings/sec, 2010 secs
lola: 28573835 markings, 189879320 edges, 14036 markings/sec, 2015 secs
lola: 28649256 markings, 190344421 edges, 15084 markings/sec, 2020 secs
lola: 28712336 markings, 190777538 edges, 12616 markings/sec, 2025 secs
lola: 28777092 markings, 191207848 edges, 12951 markings/sec, 2030 secs
lola: 28839065 markings, 191667732 edges, 12395 markings/sec, 2035 secs
lola: 28906684 markings, 192158016 edges, 13524 markings/sec, 2040 secs
lola: 28978158 markings, 192640197 edges, 14295 markings/sec, 2045 secs
lola: 29055358 markings, 193101080 edges, 15440 markings/sec, 2050 secs
lola: 29134661 markings, 193563132 edges, 15861 markings/sec, 2055 secs
lola: 29211701 markings, 194028018 edges, 15408 markings/sec, 2060 secs
lola: 29284898 markings, 194498170 edges, 14639 markings/sec, 2065 secs
lola: 29358702 markings, 194969623 edges, 14761 markings/sec, 2070 secs
lola: 29432010 markings, 195438645 edges, 14662 markings/sec, 2075 secs
lola: 29495414 markings, 195932610 edges, 12681 markings/sec, 2080 secs
lola: 29560226 markings, 196420028 edges, 12962 markings/sec, 2085 secs
lola: 29625198 markings, 196913804 edges, 12994 markings/sec, 2090 secs
lola: 29688251 markings, 197401402 edges, 12611 markings/sec, 2095 secs
lola: 29751193 markings, 197890765 edges, 12588 markings/sec, 2100 secs
lola: 29816543 markings, 198379054 edges, 13070 markings/sec, 2105 secs
lola: 29880271 markings, 198865989 edges, 12746 markings/sec, 2110 secs
lola: 29942251 markings, 199357112 edges, 12396 markings/sec, 2115 secs
lola: 30007591 markings, 199840514 edges, 13068 markings/sec, 2120 secs
lola: 30071581 markings, 200327392 edges, 12798 markings/sec, 2125 secs
lola: 30136256 markings, 200812859 edges, 12935 markings/sec, 2130 secs
lola: 30201522 markings, 201302537 edges, 13053 markings/sec, 2135 secs
lola: 30266260 markings, 201792300 edges, 12948 markings/sec, 2140 secs
lola: 30329088 markings, 202281554 edges, 12566 markings/sec, 2145 secs
lola: 30391941 markings, 202769803 edges, 12571 markings/sec, 2150 secs
lola: 30458362 markings, 203260111 edges, 13284 markings/sec, 2155 secs
lola: 30521377 markings, 203751586 edges, 12603 markings/sec, 2160 secs
lola: 30586741 markings, 204240277 edges, 13073 markings/sec, 2165 secs
lola: 30652787 markings, 204725614 edges, 13209 markings/sec, 2170 secs
lola: 30717521 markings, 205205525 edges, 12947 markings/sec, 2175 secs
lola: 30783221 markings, 205689935 edges, 13140 markings/sec, 2180 secs
lola: 30851016 markings, 206179744 edges, 13559 markings/sec, 2185 secs
lola: 30919501 markings, 206668503 edges, 13697 markings/sec, 2190 secs
lola: 30983897 markings, 207158820 edges, 12879 markings/sec, 2195 secs
lola: 31045684 markings, 207651613 edges, 12357 markings/sec, 2200 secs
lola: 31107865 markings, 208142596 edges, 12436 markings/sec, 2205 secs
lola: 31172470 markings, 208634201 edges, 12921 markings/sec, 2210 secs
lola: 31237477 markings, 209126299 edges, 13001 markings/sec, 2215 secs
lola: 31299869 markings, 209613229 edges, 12478 markings/sec, 2220 secs
lola: 31372752 markings, 210089772 edges, 14577 markings/sec, 2225 secs
lola: 31445098 markings, 210569854 edges, 14469 markings/sec, 2230 secs
lola: 31517087 markings, 211049742 edges, 14398 markings/sec, 2235 secs
lola: 31589523 markings, 211525555 edges, 14487 markings/sec, 2240 secs
lola: 31662528 markings, 212004058 edges, 14601 markings/sec, 2245 secs
lola: 31737624 markings, 212478008 edges, 15019 markings/sec, 2250 secs
lola: 31810147 markings, 212962781 edges, 14505 markings/sec, 2255 secs
lola: 31878236 markings, 213453830 edges, 13618 markings/sec, 2260 secs
lola: 31946890 markings, 213934207 edges, 13731 markings/sec, 2265 secs
lola: 32013065 markings, 214415250 edges, 13235 markings/sec, 2270 secs
lola: 32078875 markings, 214890568 edges, 13162 markings/sec, 2275 secs
lola: 32144893 markings, 215369620 edges, 13204 markings/sec, 2280 secs
lola: 32214153 markings, 215862736 edges, 13852 markings/sec, 2285 secs
lola: 32285532 markings, 216348156 edges, 14276 markings/sec, 2290 secs
lola: 32355809 markings, 216830336 edges, 14055 markings/sec, 2295 secs
lola: 32431547 markings, 217296782 edges, 15148 markings/sec, 2300 secs
lola: 32503705 markings, 217757629 edges, 14432 markings/sec, 2305 secs
lola: 32575092 markings, 218223576 edges, 14277 markings/sec, 2310 secs
lola: 32653150 markings, 218682007 edges, 15612 markings/sec, 2315 secs
lola: 32733995 markings, 219149436 edges, 16169 markings/sec, 2320 secs
lola: 32802665 markings, 219634254 edges, 13734 markings/sec, 2325 secs
lola: 32872665 markings, 220119391 edges, 14000 markings/sec, 2330 secs
lola: 32945789 markings, 220598098 edges, 14625 markings/sec, 2335 secs
lola: 33021612 markings, 221065238 edges, 15165 markings/sec, 2340 secs
lola: 33100674 markings, 221517946 edges, 15812 markings/sec, 2345 secs
lola: 33173320 markings, 221982162 edges, 14529 markings/sec, 2350 secs
lola: 33245216 markings, 222440445 edges, 14379 markings/sec, 2355 secs
lola: 33312334 markings, 222929194 edges, 13424 markings/sec, 2360 secs
lola: 33378573 markings, 223416321 edges, 13248 markings/sec, 2365 secs
lola: 33444439 markings, 223896181 edges, 13173 markings/sec, 2370 secs
lola: 33508118 markings, 224379341 edges, 12736 markings/sec, 2375 secs
lola: 33577630 markings, 224860743 edges, 13902 markings/sec, 2380 secs
lola: 33644019 markings, 225347324 edges, 13278 markings/sec, 2385 secs
lola: 33710028 markings, 225834365 edges, 13202 markings/sec, 2390 secs
lola: 33782858 markings, 226303779 edges, 14566 markings/sec, 2395 secs
lola: 33852207 markings, 226782819 edges, 13870 markings/sec, 2400 secs
lola: 33921869 markings, 227264340 edges, 13932 markings/sec, 2405 secs
lola: 33988478 markings, 227755630 edges, 13322 markings/sec, 2410 secs
lola: 34055188 markings, 228240278 edges, 13342 markings/sec, 2415 secs
lola: 34119239 markings, 228728448 edges, 12810 markings/sec, 2420 secs
lola: 34182222 markings, 229220013 edges, 12597 markings/sec, 2425 secs
lola: 34250804 markings, 229710506 edges, 13716 markings/sec, 2430 secs
lola: 34316961 markings, 230204958 edges, 13231 markings/sec, 2435 secs
lola: 34384013 markings, 230690536 edges, 13410 markings/sec, 2440 secs
lola: 34447450 markings, 231178549 edges, 12687 markings/sec, 2445 secs
lola: 34511509 markings, 231665915 edges, 12812 markings/sec, 2450 secs
lola: 34579041 markings, 232149310 edges, 13506 markings/sec, 2455 secs
lola: 34644262 markings, 232642054 edges, 13044 markings/sec, 2460 secs
lola: 34715779 markings, 233116686 edges, 14303 markings/sec, 2465 secs
lola: 34786271 markings, 233589715 edges, 14098 markings/sec, 2470 secs
lola: 34857854 markings, 234063082 edges, 14317 markings/sec, 2475 secs
lola: 34922112 markings, 234551409 edges, 12852 markings/sec, 2480 secs
lola: 34989919 markings, 235029553 edges, 13561 markings/sec, 2485 secs
lola: 35056303 markings, 235525002 edges, 13277 markings/sec, 2490 secs
lola: 35123507 markings, 236002668 edges, 13441 markings/sec, 2495 secs
lola: 35194821 markings, 236467537 edges, 14263 markings/sec, 2500 secs
lola: 35259827 markings, 236947695 edges, 13001 markings/sec, 2505 secs
lola: 35324532 markings, 237431182 edges, 12941 markings/sec, 2510 secs
lola: 35390457 markings, 237912445 edges, 13185 markings/sec, 2515 secs
lola: 35456689 markings, 238392737 edges, 13246 markings/sec, 2520 secs
lola: 35525110 markings, 238865669 edges, 13684 markings/sec, 2525 secs
lola: 35588312 markings, 239354586 edges, 12640 markings/sec, 2530 secs
lola: 35653084 markings, 239857975 edges, 12954 markings/sec, 2535 secs
lola: 35717824 markings, 240361330 edges, 12948 markings/sec, 2540 secs
lola: 35784096 markings, 240861366 edges, 13254 markings/sec, 2545 secs
lola: 35851510 markings, 241364471 edges, 13483 markings/sec, 2550 secs
lola: 35918771 markings, 241865642 edges, 13452 markings/sec, 2555 secs
lola: 35981722 markings, 242357174 edges, 12590 markings/sec, 2560 secs
lola: 36042617 markings, 242839108 edges, 12179 markings/sec, 2565 secs
lola: 36106095 markings, 243318674 edges, 12696 markings/sec, 2570 secs
lola: 36171846 markings, 243806823 edges, 13150 markings/sec, 2575 secs
lola: 36239436 markings, 244285870 edges, 13518 markings/sec, 2580 secs
lola: 36307579 markings, 244758866 edges, 13629 markings/sec, 2585 secs
lola: 36382880 markings, 245219399 edges, 15060 markings/sec, 2590 secs
lola: 36458682 markings, 245677188 edges, 15160 markings/sec, 2595 secs
lola: 36534889 markings, 246144085 edges, 15241 markings/sec, 2600 secs
lola: 36607349 markings, 246621078 edges, 14492 markings/sec, 2605 secs
lola: 36678077 markings, 247104233 edges, 14146 markings/sec, 2610 secs
lola: 36748549 markings, 247574325 edges, 14094 markings/sec, 2615 secs
lola: 36812089 markings, 248060894 edges, 12708 markings/sec, 2620 secs
lola: 36879807 markings, 248544619 edges, 13544 markings/sec, 2625 secs
lola: 36950735 markings, 249011860 edges, 14186 markings/sec, 2630 secs
lola: 37024140 markings, 249451466 edges, 14681 markings/sec, 2635 secs
lola: 37090207 markings, 249875505 edges, 13213 markings/sec, 2640 secs
lola: 37160747 markings, 250305654 edges, 14108 markings/sec, 2645 secs
lola: 37229435 markings, 250807050 edges, 13738 markings/sec, 2650 secs
lola: 37297315 markings, 251313746 edges, 13576 markings/sec, 2655 secs
lola: 37364035 markings, 251810017 edges, 13344 markings/sec, 2660 secs
lola: 37426767 markings, 252295755 edges, 12546 markings/sec, 2665 secs
lola: 37495537 markings, 252777450 edges, 13754 markings/sec, 2670 secs
lola: 37565408 markings, 253232008 edges, 13974 markings/sec, 2675 secs
lola: 37627159 markings, 253666804 edges, 12350 markings/sec, 2680 secs
lola: 37687274 markings, 254113054 edges, 12023 markings/sec, 2685 secs
lola: 37755009 markings, 254573843 edges, 13547 markings/sec, 2690 secs
lola: 37829230 markings, 255053958 edges, 14844 markings/sec, 2695 secs
lola: 37899392 markings, 255542742 edges, 14032 markings/sec, 2700 secs
lola: 37978026 markings, 256009987 edges, 15727 markings/sec, 2705 secs
lola: 38050301 markings, 256471605 edges, 14455 markings/sec, 2710 secs
lola: 38136730 markings, 256939893 edges, 17286 markings/sec, 2715 secs
lola: 38212070 markings, 257372406 edges, 15068 markings/sec, 2720 secs
lola: 38289935 markings, 257792187 edges, 15573 markings/sec, 2725 secs
lola: 38358929 markings, 258215000 edges, 13799 markings/sec, 2730 secs
lola: 38433827 markings, 258651691 edges, 14980 markings/sec, 2735 secs
lola: 38511577 markings, 259092061 edges, 15550 markings/sec, 2740 secs
lola: 38588542 markings, 259543701 edges, 15393 markings/sec, 2745 secs
lola: 38652829 markings, 260008673 edges, 12857 markings/sec, 2750 secs
lola: 38716118 markings, 260444716 edges, 12658 markings/sec, 2755 secs
lola: 38789408 markings, 260866252 edges, 14658 markings/sec, 2760 secs
lola: 38856160 markings, 261307739 edges, 13350 markings/sec, 2765 secs
lola: 38925732 markings, 261775487 edges, 13914 markings/sec, 2770 secs
lola: 38995067 markings, 262250346 edges, 13867 markings/sec, 2775 secs
lola: 39066479 markings, 262712649 edges, 14282 markings/sec, 2780 secs
lola: 39143166 markings, 263169689 edges, 15337 markings/sec, 2785 secs
lola: 39208658 markings, 263651273 edges, 13098 markings/sec, 2790 secs
lola: 39273395 markings, 264133933 edges, 12947 markings/sec, 2795 secs
lola: 39335252 markings, 264592920 edges, 12371 markings/sec, 2800 secs
lola: 39394564 markings, 265025681 edges, 11862 markings/sec, 2805 secs
lola: 39453731 markings, 265462221 edges, 11833 markings/sec, 2810 secs
lola: 39516452 markings, 265901850 edges, 12544 markings/sec, 2815 secs
lola: 39583022 markings, 266338282 edges, 13314 markings/sec, 2820 secs
lola: 39648425 markings, 266776543 edges, 13081 markings/sec, 2825 secs
lola: 39713063 markings, 267220367 edges, 12928 markings/sec, 2830 secs
lola: 39782360 markings, 267648899 edges, 13859 markings/sec, 2835 secs
lola: 39850973 markings, 268069204 edges, 13723 markings/sec, 2840 secs
lola: 39926854 markings, 268481265 edges, 15176 markings/sec, 2845 secs
lola: 40000276 markings, 268937161 edges, 14684 markings/sec, 2850 secs
lola: 40078504 markings, 269385851 edges, 15646 markings/sec, 2855 secs
lola: 40150201 markings, 269854020 edges, 14339 markings/sec, 2860 secs
lola: 40225548 markings, 270314991 edges, 15069 markings/sec, 2865 secs
lola: 40305627 markings, 270764030 edges, 16016 markings/sec, 2870 secs
lola: 40375332 markings, 271244518 edges, 13941 markings/sec, 2875 secs
lola: 40442318 markings, 271728441 edges, 13397 markings/sec, 2880 secs
lola: 40512030 markings, 272199264 edges, 13942 markings/sec, 2885 secs
lola: 40577505 markings, 272672934 edges, 13095 markings/sec, 2890 secs
lola: 40640754 markings, 273153729 edges, 12650 markings/sec, 2895 secs
lola: 40707337 markings, 273627711 edges, 13317 markings/sec, 2900 secs
lola: 40772263 markings, 274113727 edges, 12985 markings/sec, 2905 secs
lola: 40837878 markings, 274597325 edges, 13123 markings/sec, 2910 secs
lola: 40903446 markings, 275079893 edges, 13114 markings/sec, 2915 secs
lola: 40966015 markings, 275562123 edges, 12514 markings/sec, 2920 secs
lola: 41028588 markings, 276047647 edges, 12515 markings/sec, 2925 secs
lola: 41090187 markings, 276527271 edges, 12320 markings/sec, 2930 secs
lola: 41162390 markings, 276986260 edges, 14441 markings/sec, 2935 secs
lola: 41232933 markings, 277456188 edges, 14109 markings/sec, 2940 secs
lola: 41309288 markings, 277926112 edges, 15271 markings/sec, 2945 secs
lola: 41378384 markings, 278399392 edges, 13819 markings/sec, 2950 secs
lola: 41446338 markings, 278875983 edges, 13591 markings/sec, 2955 secs
lola: 41522857 markings, 279337740 edges, 15304 markings/sec, 2960 secs
lola: 41595910 markings, 279810241 edges, 14611 markings/sec, 2965 secs
lola: 41668972 markings, 280281321 edges, 14612 markings/sec, 2970 secs
lola: 41738531 markings, 280759102 edges, 13912 markings/sec, 2975 secs
lola: 41802609 markings, 281245512 edges, 12816 markings/sec, 2980 secs
lola: 41872250 markings, 281727316 edges, 13928 markings/sec, 2985 secs
lola: 41941457 markings, 282207784 edges, 13841 markings/sec, 2990 secs
lola: 42009050 markings, 282691428 edges, 13519 markings/sec, 2995 secs
lola: 42078000 markings, 283172089 edges, 13790 markings/sec, 3000 secs
lola: 42145285 markings, 283657473 edges, 13457 markings/sec, 3005 secs
lola: 42216965 markings, 284133626 edges, 14336 markings/sec, 3010 secs
lola: 42285961 markings, 284604487 edges, 13799 markings/sec, 3015 secs
lola: 42356492 markings, 285073627 edges, 14106 markings/sec, 3020 secs
lola: 42431572 markings, 285534574 edges, 15016 markings/sec, 3025 secs
lola: 42508250 markings, 285979503 edges, 15336 markings/sec, 3030 secs
lola: 42585415 markings, 286420513 edges, 15433 markings/sec, 3035 secs
lola: 42659026 markings, 286864343 edges, 14722 markings/sec, 3040 secs
lola: 42733714 markings, 287319770 edges, 14938 markings/sec, 3045 secs
lola: 42807086 markings, 287781984 edges, 14674 markings/sec, 3050 secs
lola: 42881855 markings, 288241459 edges, 14954 markings/sec, 3055 secs
lola: 42959190 markings, 288690483 edges, 15467 markings/sec, 3060 secs
lola: 43022236 markings, 289164689 edges, 12609 markings/sec, 3065 secs
lola: 43089905 markings, 289635477 edges, 13534 markings/sec, 3070 secs
lola: 43159032 markings, 290109290 edges, 13825 markings/sec, 3075 secs
lola: 43232843 markings, 290574931 edges, 14762 markings/sec, 3080 secs
lola: 43308666 markings, 291031160 edges, 15165 markings/sec, 3085 secs
lola: 43377597 markings, 291501379 edges, 13786 markings/sec, 3090 secs
lola: 43442551 markings, 291965169 edges, 12991 markings/sec, 3095 secs
lola: 43509174 markings, 292442578 edges, 13325 markings/sec, 3100 secs
lola: 43582855 markings, 292902071 edges, 14736 markings/sec, 3105 secs
lola: 43656510 markings, 293361178 edges, 14731 markings/sec, 3110 secs
lola: 43725382 markings, 293832740 edges, 13774 markings/sec, 3115 secs
lola: 43791531 markings, 294314519 edges, 13230 markings/sec, 3120 secs
lola: 43855624 markings, 294796719 edges, 12819 markings/sec, 3125 secs
lola: 43919226 markings, 295283057 edges, 12720 markings/sec, 3130 secs
lola: 43989366 markings, 295754461 edges, 14028 markings/sec, 3135 secs
lola: 44063832 markings, 296218032 edges, 14893 markings/sec, 3140 secs
lola: 44136850 markings, 296686850 edges, 14604 markings/sec, 3145 secs
lola: 44207374 markings, 297154469 edges, 14105 markings/sec, 3150 secs
lola: 44269444 markings, 297633906 edges, 12414 markings/sec, 3155 secs
lola: 44341724 markings, 298100648 edges, 14456 markings/sec, 3160 secs
lola: 44423967 markings, 298551371 edges, 16449 markings/sec, 3165 secs
lola: 44499585 markings, 298997060 edges, 15124 markings/sec, 3170 secs
lola: 44568411 markings, 299455507 edges, 13765 markings/sec, 3175 secs
lola: 44641949 markings, 299916831 edges, 14708 markings/sec, 3180 secs
lola: 44712225 markings, 300391844 edges, 14055 markings/sec, 3185 secs
lola: 44783090 markings, 300863029 edges, 14173 markings/sec, 3190 secs
lola: 44847524 markings, 301344563 edges, 12887 markings/sec, 3195 secs
lola: 44914417 markings, 301825250 edges, 13379 markings/sec, 3200 secs
lola: 44985644 markings, 302300027 edges, 14245 markings/sec, 3205 secs
lola: 45060382 markings, 302755817 edges, 14948 markings/sec, 3210 secs
lola: 45139019 markings, 303210524 edges, 15727 markings/sec, 3215 secs
lola: 45212642 markings, 303675697 edges, 14725 markings/sec, 3220 secs
lola: 45289999 markings, 304134934 edges, 15471 markings/sec, 3225 secs
lola: 45353568 markings, 304616643 edges, 12714 markings/sec, 3230 secs
lola: 45416611 markings, 305099747 edges, 12609 markings/sec, 3235 secs
lola: 45480633 markings, 305584505 edges, 12804 markings/sec, 3240 secs
lola: 45543357 markings, 306063495 edges, 12545 markings/sec, 3245 secs
lola: 45605223 markings, 306542600 edges, 12373 markings/sec, 3250 secs
lola: 45672379 markings, 307021082 edges, 13431 markings/sec, 3255 secs
lola: 45738899 markings, 307498128 edges, 13304 markings/sec, 3260 secs
lola: 45810156 markings, 307969641 edges, 14251 markings/sec, 3265 secs
lola: 45876153 markings, 308448763 edges, 13199 markings/sec, 3270 secs
lola: 45945967 markings, 308923094 edges, 13963 markings/sec, 3275 secs
lola: 46016094 markings, 309398879 edges, 14025 markings/sec, 3280 secs
lola: 46080424 markings, 309883386 edges, 12866 markings/sec, 3285 secs
lola: 46141936 markings, 310366150 edges, 12302 markings/sec, 3290 secs
lola: 46207330 markings, 310849020 edges, 13079 markings/sec, 3295 secs
lola: 46269698 markings, 311334933 edges, 12474 markings/sec, 3300 secs
lola: 46334309 markings, 311817207 edges, 12922 markings/sec, 3305 secs
lola: 46399305 markings, 312290897 edges, 12999 markings/sec, 3310 secs
lola: 46462897 markings, 312759997 edges, 12718 markings/sec, 3315 secs
lola: 46529413 markings, 313234325 edges, 13303 markings/sec, 3320 secs
lola: 46594010 markings, 313708778 edges, 12919 markings/sec, 3325 secs
lola: 46656495 markings, 314187617 edges, 12497 markings/sec, 3330 secs
lola: 46719239 markings, 314670317 edges, 12549 markings/sec, 3335 secs
lola: 46783076 markings, 315151996 edges, 12767 markings/sec, 3340 secs
lola: 46844700 markings, 315634085 edges, 12325 markings/sec, 3345 secs
lola: 46914788 markings, 316106475 edges, 14018 markings/sec, 3350 secs
lola: 46988081 markings, 316581862 edges, 14659 markings/sec, 3355 secs
lola: 47058655 markings, 317054304 edges, 14115 markings/sec, 3360 secs
lola: 47133603 markings, 317521811 edges, 14990 markings/sec, 3365 secs
lola: 47205315 markings, 317992035 edges, 14342 markings/sec, 3370 secs
lola: 47271664 markings, 318470735 edges, 13270 markings/sec, 3375 secs
lola: 47337095 markings, 318949850 edges, 13086 markings/sec, 3380 secs
lola: 47399075 markings, 319386877 edges, 12396 markings/sec, 3385 secs
lola: 47460758 markings, 319824499 edges, 12337 markings/sec, 3390 secs
lola: 47526007 markings, 320273697 edges, 13050 markings/sec, 3395 secs
lola: 47594815 markings, 320740418 edges, 13762 markings/sec, 3400 secs
lola: 47669538 markings, 321199264 edges, 14945 markings/sec, 3405 secs
lola: 47743585 markings, 321654322 edges, 14809 markings/sec, 3410 secs
lola: 47813584 markings, 322070638 edges, 14000 markings/sec, 3415 secs
lola: 47883223 markings, 322483056 edges, 13928 markings/sec, 3420 secs
lola: 47946960 markings, 322906055 edges, 12747 markings/sec, 3425 secs
lola: 48013082 markings, 323364108 edges, 13224 markings/sec, 3430 secs
lola: 48087533 markings, 323823204 edges, 14890 markings/sec, 3435 secs
lola: 48163281 markings, 324274045 edges, 15150 markings/sec, 3440 secs
lola: 48226886 markings, 324753620 edges, 12721 markings/sec, 3445 secs
lola: 48292020 markings, 325229540 edges, 13027 markings/sec, 3450 secs
lola: 48355064 markings, 325713893 edges, 12609 markings/sec, 3455 secs
lola: 48416247 markings, 326193632 edges, 12237 markings/sec, 3460 secs
lola: 48484221 markings, 326660821 edges, 13595 markings/sec, 3465 secs
lola: 48545499 markings, 327124452 edges, 12256 markings/sec, 3470 secs
lola: 48606386 markings, 327556607 edges, 12177 markings/sec, 3475 secs
lola: 48672448 markings, 327991168 edges, 13212 markings/sec, 3480 secs
lola: 48734024 markings, 328435738 edges, 12315 markings/sec, 3485 secs
lola: time limit reached - aborting
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola: memory consumption: 8201724 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no yes yes yes yes no yes no unknown no yes no no no no no
rslt: finished

BK_STOP 1590340701324

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-6"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is NeoElection-COL-6, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r120-csrt-158961292500063"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-6.tgz
mv NeoElection-COL-6 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;