About the Execution of 2019-Gold for BART-PT-005
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4295.820 | 29167.00 | 6239.00 | 12.50 | FTTFTFFTFFTTFFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2020-input.r030-oct2-158897741100019.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2020-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................
=====================================================================
Generated by BenchKit 2-4028
Executing tool win2019
Input is BART-PT-005, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r030-oct2-158897741100019
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 2.4M
-rw-r--r-- 1 mcc users 4.0K Apr 15 13:39 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Apr 15 13:39 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.7K Apr 15 13:31 CTLFireability.txt
-rw-r--r-- 1 mcc users 18K Apr 15 13:31 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 24 05:37 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 24 05:37 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 125K Apr 8 14:42 LTLCardinality.txt
-rw-r--r-- 1 mcc users 341K Apr 28 14:00 LTLCardinality.xml
-rw-r--r-- 1 mcc users 150K Apr 8 14:42 LTLFireability.txt
-rw-r--r-- 1 mcc users 399K Apr 28 14:00 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K Apr 15 13:26 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K Apr 15 13:26 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.7K Apr 15 13:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 17K Apr 15 13:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Apr 15 13:29 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Apr 15 13:29 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 24 05:37 equiv_col
-rw-r--r-- 1 mcc users 4 Mar 24 05:37 instance
-rw-r--r-- 1 mcc users 6 Mar 24 05:37 iscolored
-rw-r--r-- 1 mcc users 1.3M Mar 24 05:37 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME BART-PT-005-00
FORMULA_NAME BART-PT-005-01
FORMULA_NAME BART-PT-005-02
FORMULA_NAME BART-PT-005-03
FORMULA_NAME BART-PT-005-04
FORMULA_NAME BART-PT-005-05
FORMULA_NAME BART-PT-005-06
FORMULA_NAME BART-PT-005-07
FORMULA_NAME BART-PT-005-08
FORMULA_NAME BART-PT-005-09
FORMULA_NAME BART-PT-005-10
FORMULA_NAME BART-PT-005-11
FORMULA_NAME BART-PT-005-12
FORMULA_NAME BART-PT-005-13
FORMULA_NAME BART-PT-005-14
FORMULA_NAME BART-PT-005-15
=== Now, execution of the tool begins
BK_START 1589298813987
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ BART-PT-005 @ 3569 seconds
FORMULA BART-PT-005-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-08 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-01 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-04 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA BART-PT-005-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 3539
rslt: Output for LTLCardinality @ BART-PT-005
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3569",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Tue May 12 15:53:34 2020
",
"timelimit": 3569
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 237
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 274
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 297
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 324
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 396
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 445
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 163
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 509
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 509
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 2,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 2,
"taut": 0,
"tconj": 1,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (F (((1 <= TrainState_4_4_20) AND F (G ((1 <= TrainState_4_4_20))))))",
"processed_size": 71,
"rewrites": 163
},
"result":
{
"edges": 18,
"markings": 18,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 9,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 594
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 163
},
"result":
{
"edges": 180,
"markings": 181,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 713
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 163
},
"result":
{
"edges": 180,
"markings": 181,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 891
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X ((1 <= TrainState_4_4_14)))",
"processed_size": 32,
"rewrites": 163
},
"result":
{
"edges": 39,
"markings": 39,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1188
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "A (X (X (G ((TrainState_1_1_6 <= 0)))))",
"processed_size": 39,
"rewrites": 163
},
"result":
{
"edges": 90,
"markings": 85,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 4
},
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1782
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 163
},
"result":
{
"edges": 180,
"markings": 181,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 3565
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "(TrainState_4_1_17 <= 0)",
"processed_size": 24,
"rewrites": 165
},
"result":
{
"edges": 17,
"markings": 17,
"produced_by": "state space / EG",
"value": false
},
"task":
{
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 4
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
}
],
"exit":
{
"error": null,
"memory": 43716,
"runtime": 5.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "FALSE : A(X(TRUE)) : A(X(TRUE)) : FALSE : A(X(TRUE)) : FALSE : FALSE : TRUE : FALSE : (A(X(**)) AND A(F((** AND F(G(**)))))) : TRUE : TRUE : A(F(**)) : A(X(**)) : A(X(X(G(*)))) : TRUE"
},
"net":
{
"arcs": 8100,
"conflict_clusters": 7,
"places": 870,
"places_significant": 655,
"singleton_clusters": 0,
"transitions": 1010
},
"result":
{
"preliminary_value": "no yes yes no yes no no yes no no yes yes no no no yes ",
"value": "no yes yes no yes no no yes no no yes yes no no no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3569 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 1880/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 870
lola: finding significant places
lola: 870 places, 1010 transitions, 655 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (1 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_5 + DistStation_6 + DistStation_7 + DistStation_8 + DistStation_9 + DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10 <= NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9)
lola: after: (0 <= 133)
lola: place invariant simplifies atomic proposition
lola: before: (StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1 <= DistStation_5 + DistStation_6 + DistStation_7 + DistStation_8 + DistStation_9 + DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10)
lola: after: (0 <= 31)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 5)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9 <= DistStation_5 + DistStation_6 + DistStation_7 + DistStation_8 + DistStation_9 + DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10)
lola: after: (133 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_5 + DistStation_6 + DistStation_7 + DistStation_8 + DistStation_9 + DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10 <= NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9)
lola: after: (0 <= 133)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 3)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 2)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9 <= TrainState_5_0_0 + TrainState_5_1_39 + TrainState_3_3_10 + TrainState_3_3_11 + TrainState_3_3_12 + TrainState_3_3_13 + TrainState_3_3_14 + TrainState_3_3_15 + TrainState_3_3_16 + TrainState_3_3_17 + TrainState_3_3_18 + TrainState_3_3_19 + TrainState_3_3_20 + TrainState_3_3_21 + TrainState_3_3_22 + TrainState_3_3_23 + TrainState_3_3_24 + TrainState_3_3_25 + TrainState_3_3_26 + TrainState_3_3_27 + TrainState_3_3_28 + TrainState_3_3_29 + TrainState_3_3_30 + TrainState_3_3_31 + TrainState_3_3_32 + TrainState_3_3_33 + TrainState_3_3_34 + TrainState_3_3_35 + TrainState_3_3_36 + TrainState_3_3_37 + TrainState_5_1_38 + TrainState_5_1_37 + TrainState_5_1_36 + TrainState_5_1_35 + TrainState_1_0_0 + TrainState_5_1_34 + TrainState_5_1_33 + TrainState_5_1_32 + TrainState_5_1_1 + TrainState_5_1_2 + TrainState_5_1_3 + TrainState_5_1_4 + TrainState_5_1_5 + TrainState_5_1_6 + TrainState_5_1_7 + TrainState_5_1_8 + TrainState_5_1_9 + TrainState_5_1_31 + TrainState_5_1_30 + TrainState_5_1_29 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_5_1_28 + TrainState_5_2_4 + TrainState_5_2_5 + TrainState_5_2_6 + TrainState_5_2_7 + TrainState_5_2_8 + TrainState_5_2_9 + TrainState_5_1_27 + TrainState_5_1_26 + TrainState_5_1_25 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_5_1_24 + TrainState_5_3_7 + TrainState_5_3_8 + TrainState_5_3_9 + TrainState_5_1_23 + TrainState_3_2_10 + TrainState_3_2_11 + TrainState_3_2_12 + TrainState_3_2_13 + TrainState_3_2_14 + TrainState_3_2_15 + TrainState_3_2_16 + TrainState_3_2_17 + TrainState_3_2_18 + TrainState_3_2_19 + TrainState_3_2_20 + TrainState_3_2_21 + TrainState_3_2_22 + TrainState_3_2_23 + TrainState_3_2_24 + TrainState_3_2_25 + TrainState_3_2_26 + TrainState_3_2_27 + TrainState_3_2_28 + TrainState_3_2_29 + TrainState_3_2_30 + TrainState_3_2_31 + TrainState_3_2_32 + TrainState_3_2_33 + TrainState_3_2_34 + TrainState_3_2_35 + TrainState_3_2_36 + TrainState_3_2_37 + TrainState_3_2_38 + TrainState_3_2_39 + TrainState_5_1_22 + TrainState_5_1_21 + TrainState_5_1_20 + TrainState_5_1_19 + TrainState_5_1_18 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_5_1_17 + TrainState_5_1_16 + TrainState_5_1_15 + TrainState_5_1_14 + TrainState_5_1_13 + TrainState_5_1_12 + TrainState_5_1_11 + TrainState_5_1_10 + TrainState_1_4_11 + TrainState_1_4_12 + TrainState_1_4_13 + TrainState_1_4_14 + TrainState_1_4_15 + TrainState_1_4_16 + TrainState_1_4_17 + TrainState_1_4_18 + TrainState_1_4_19 + TrainState_1_4_20 + TrainState_1_4_21 + TrainState_1_4_22 + TrainState_1_4_23 + TrainState_1_4_24 + TrainState_1_4_25 + TrainState_1_4_26 + TrainState_1_4_27 + TrainState_1_4_28 + TrainState_1_4_29 + TrainState_1_4_30 + TrainState_1_4_31 + TrainState_1_4_32 + TrainState_1_4_33 + TrainState_1_4_34 + TrainState_3_4_33 + TrainState_3_4_32 + TrainState_3_4_31 + TrainState_3_4_30 + TrainState_3_4_29 + TrainState_3_4_28 + TrainState_3_4_27 + TrainState_3_4_26 + TrainState_3_4_25 + TrainState_3_4_24 + TrainState_3_4_23 + TrainState_3_4_22 + TrainState_3_4_21 + TrainState_3_4_20 + TrainState_3_4_19 + TrainState_3_4_18 + TrainState_3_4_17 + TrainState_3_4_16 + TrainState_3_4_15 + TrainState_3_4_14 + TrainState_3_4_13 + TrainState_3_4_12 + TrainState_3_4_11 + TrainState_5_2_39 + TrainState_5_2_38 + TrainState_5_2_37 + TrainState_5_2_36 + TrainState_5_2_35 + TrainState_5_2_34 + TrainState_5_2_33 + TrainState_5_2_32 + TrainState_5_2_31 + TrainState_5_2_30 + TrainState_5_2_29 + TrainState_5_2_28 + TrainState_5_2_27 + TrainState_5_2_26 + TrainState_5_2_25 + TrainState_5_2_24 + TrainState_3_1_10 + TrainState_3_1_11 + TrainState_3_1_12 + TrainState_3_1_13 + TrainState_3_1_14 + TrainState_3_1_15 + TrainState_3_1_16 + TrainState_3_1_17 + TrainState_3_1_18 + TrainState_3_1_19 + TrainState_5_2_23 + TrainState_3_1_20 + TrainState_3_1_21 + TrainState_3_1_22 + TrainState_3_1_23 + TrainState_3_1_24 + TrainState_3_1_25 + TrainState_3_1_26 + TrainState_3_1_27 + TrainState_3_1_28 + TrainState_3_1_29 + TrainState_3_1_30 + TrainState_3_1_31 + TrainState_3_1_32 + TrainState_3_1_33 + TrainState_3_1_34 + TrainState_3_1_35 + TrainState_3_1_36 + TrainState_3_1_37 + TrainState_3_1_38 + TrainState_3_1_39 + TrainState_3_1_40 + TrainState_5_2_22 + TrainState_5_2_21 + TrainState_5_2_20 + TrainState_5_2_19 + TrainState_5_2_18 + TrainState_5_2_17 + TrainState_5_2_16 + TrainState_5_2_15 + TrainState_5_2_14 + TrainState_1_3_10 + TrainState_1_3_11 + TrainState_1_3_12 + TrainState_1_3_13 + TrainState_1_3_14 + TrainState_1_3_15 + TrainState_1_3_16 + TrainState_1_3_17 + TrainState_1_3_18 + TrainState_1_3_19 + TrainState_1_3_20 + TrainState_1_3_21 + TrainState_1_3_22 + TrainState_1_3_23 + TrainState_1_3_24 + TrainState_1_3_25 + TrainState_1_3_26 + TrainState_1_3_27 + TrainState_1_3_28 + TrainState_1_3_29 + TrainState_1_3_30 + TrainState_1_3_31 + TrainState_1_3_32 + TrainState_1_3_33 + TrainState_1_3_34 + TrainState_1_3_35 + TrainState_1_3_36 + TrainState_1_3_37 + TrainState_5_2_13 + TrainState_5_2_12 + TrainState_5_2_11 + TrainState_5_2_10 + TrainState_4_3_8 + TrainState_2_0_0 + TrainState_4_3_7 + TrainState_4_2_9 + TrainState_2_1_1 + TrainState_2_1_2 + TrainState_2_1_3 + TrainState_2_1_4 + TrainState_2_1_5 + TrainState_2_1_6 + TrainState_2_1_7 + TrainState_2_1_8 + TrainState_2_1_9 + TrainState_4_4_11 + TrainState_4_4_12 + TrainState_4_4_13 + TrainState_4_4_14 + TrainState_4_4_15 + TrainState_4_4_16 + TrainState_4_4_17 + TrainState_4_4_18 + TrainState_4_4_19 + TrainState_4_4_20 + TrainState_4_4_21 + TrainState_4_4_22 + TrainState_4_4_23 + TrainState_4_4_24 + TrainState_4_4_25 + TrainState_4_4_26 + TrainState_4_4_27 + TrainState_4_4_28 + TrainState_4_4_29 + TrainState_4_4_30 + TrainState_4_4_31 + TrainState_4_4_32 + TrainState_4_4_33 + TrainState_4_4_34 + TrainState_4_2_8 + TrainState_4_2_7 + TrainState_4_2_6 + TrainState_4_2_5 + TrainState_4_2_4 + TrainState_2_1_39 + TrainState_1_2_10 + TrainState_1_2_11 + TrainState_1_2_12 + TrainState_1_2_13 + TrainState_1_2_14 + TrainState_1_2_15 + TrainState_1_2_16 + TrainState_1_2_17 + TrainState_1_2_18 + TrainState_1_2_19 + TrainState_1_2_20 + TrainState_1_2_21 + TrainState_1_2_22 + TrainState_1_2_23 + TrainState_1_2_24 + TrainState_1_2_25 + TrainState_1_2_26 + TrainState_1_2_27 + TrainState_1_2_28 + TrainState_1_2_29 + TrainState_1_2_30 + TrainState_1_2_31 + TrainState_1_2_32 + TrainState_1_2_33 + TrainState_1_2_34 + TrainState_1_2_35 + TrainState_1_2_36 + TrainState_1_2_37 + TrainState_1_2_38 + TrainState_1_2_39 + TrainState_2_2_4 + TrainState_2_2_5 + TrainState_2_2_6 + TrainState_2_2_7 + TrainState_2_2_8 + TrainState_2_2_9 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_3_7 + TrainState_2_3_8 + TrainState_2_3_9 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_4_3_10 + TrainState_4_3_11 + TrainState_4_3_12 + TrainState_4_3_13 + TrainState_4_3_14 + TrainState_4_3_15 + TrainState_4_3_16 + TrainState_4_3_17 + TrainState_4_3_18 + TrainState_4_3_19 + TrainState_4_3_20 + TrainState_4_3_21 + TrainState_4_3_22 + TrainState_4_3_23 + TrainState_4_3_24 + TrainState_4_3_25 + TrainState_4_3_26 + TrainState_4_3_27 + TrainState_4_3_28 + TrainState_4_3_29 + TrainState_4_3_30 + TrainState_4_3_31 + TrainState_4_3_32 + TrainState_4_3_33 + TrainState_4_3_34 + TrainState_4_3_35 + TrainState_4_3_36 + TrainState_4_3_37 + TrainState_2_1_30 + TrainState_2_1_29 + TrainState_2_1_28 + TrainState_2_1_27 + TrainState_2_1_26 + TrainState_2_1_25 + TrainState_2_1_24 + TrainState_2_1_23 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_2_1_22 + TrainState_2_1_21 + TrainState_2_1_20 + TrainState_2_1_19 + TrainState_2_1_18 + TrainState_2_1_17 + TrainState_2_1_16 + TrainState_2_1_15 + TrainState_2_1_14 + TrainState_2_1_13 + TrainState_2_1_12 + TrainState_4_2_10 + TrainState_4_2_11 + TrainState_4_2_12 + TrainState_4_2_13 + TrainState_4_2_14 + TrainState_4_2_15 + TrainState_4_2_16 + TrainState_4_2_17 + TrainState_4_2_18 + TrainState_4_2_19 + TrainState_4_2_20 + TrainState_4_2_21 + TrainState_4_2_22 + TrainState_4_2_23 + TrainState_4_2_24 + TrainState_4_2_25 + TrainState_4_2_26 + TrainState_4_2_27 + TrainState_4_2_28 + TrainState_4_2_29 + TrainState_4_2_30 + TrainState_4_2_31 + TrainState_4_2_32 + TrainState_4_2_33 + TrainState_4_2_34 + TrainState_4_2_35 + TrainState_4_2_36 + TrainState_4_2_37 + TrainState_4_2_38 + TrainState_4_2_39 + TrainState_2_1_11 + TrainState_2_1_10 + TrainState_4_1_9 + TrainState_4_1_8 + TrainState_4_1_7 + TrainState_4_1_6 + TrainState_4_1_5 + TrainState_4_1_4 + TrainState_3_0_0 + TrainState_4_1_3 + TrainState_2_4_11 + TrainState_2_4_12 + TrainState_2_4_13 + TrainState_2_4_14 + TrainState_2_4_15 + TrainState_2_4_16 + TrainState_2_4_17 + TrainState_2_4_18 + TrainState_2_4_19 + TrainState_2_4_20 + TrainState_2_4_21 + TrainState_2_4_22 + TrainState_2_4_23 + TrainState_2_4_24 + TrainState_2_4_25 + TrainState_2_4_26 + TrainState_2_4_27 + TrainState_2_4_28 + TrainState_2_4_29 + TrainState_2_4_30 + TrainState_2_4_31 + TrainState_2_4_32 + TrainState_2_4_33 + TrainState_2_4_34 + TrainState_4_1_2 + TrainState_4_1_1 + TrainState_3_1_1 + TrainState_3_1_2 + TrainState_3_1_3 + TrainState_3_1_4 + TrainState_3_1_5 + TrainState_3_1_6 + TrainState_3_1_7 + TrainState_3_1_8 + TrainState_3_1_9 + TrainState_5_3_37 + TrainState_5_3_36 + TrainState_5_3_35 + TrainState_3_2_4 + TrainState_3_2_5 + TrainState_3_2_6 + TrainState_3_2_7 + TrainState_3_2_8 + TrainState_3_2_9 + TrainState_4_1_10 + TrainState_4_1_11 + TrainState_4_1_12 + TrainState_4_1_13 + TrainState_4_1_14 + TrainState_4_1_15 + TrainState_4_1_16 + TrainState_4_1_17 + TrainState_4_1_18 + TrainState_4_1_19 + TrainState_4_1_20 + TrainState_4_1_21 + TrainState_4_1_22 + TrainState_4_1_23 + TrainState_4_1_24 + TrainState_4_1_25 + TrainState_4_1_26 + TrainState_4_1_27 + TrainState_4_1_28 + TrainState_4_1_29 + TrainState_4_1_30 + TrainState_4_1_31 + TrainState_4_1_32 + TrainState_4_1_33 + TrainState_4_1_34 + TrainState_4_1_35 + TrainState_4_1_36 + TrainState_4_1_37 + TrainState_4_1_38 + TrainState_4_1_39 + TrainState_4_1_40 + TrainState_5_3_34 + TrainState_5_3_33 + TrainState_5_3_32 + TrainState_5_3_31 + TrainState_3_3_7 + TrainState_3_3_8 + TrainState_3_3_9 + TrainState_5_3_30 + TrainState_5_3_29 + TrainState_5_3_28 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_5_3_27 + TrainState_5_3_26 + TrainState_5_3_25 + TrainState_5_3_24 + TrainState_5_3_23 + TrainState_5_3_22 + TrainState_5_3_21 + TrainState_5_3_20 + TrainState_5_3_19 + TrainState_5_3_18 + TrainState_5_3_17 + TrainState_5_3_16 + TrainState_5_4_11 + TrainState_5_4_12 + TrainState_5_4_13 + TrainState_5_4_14 + TrainState_5_4_15 + TrainState_5_4_16 + TrainState_5_4_17 + TrainState_5_4_18 + TrainState_5_4_19 + TrainState_5_4_20 + TrainState_5_4_21 + TrainState_5_4_22 + TrainState_5_4_23 + TrainState_5_4_24 + TrainState_5_4_25 + TrainState_5_4_26 + TrainState_5_4_27 + TrainState_5_4_28 + TrainState_5_4_29 + TrainState_5_4_30 + TrainState_5_4_31 + TrainState_5_4_32 + TrainState_5_4_33 + TrainState_5_4_34 + TrainState_5_3_15 + TrainState_5_3_14 + TrainState_5_3_13 + TrainState_5_3_12 + TrainState_5_3_11 + TrainState_5_3_10 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_4_0_0 + TrainState_1_1_40 + TrainState_2_1_40 + TrainState_4_3_9 + TrainState_3_4_34 + TrainState_5_1_40)
lola: after: (164 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9)
lola: after: (0 <= 168)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 3)
lola: place invariant simplifies atomic proposition
lola: before: (TrainState_5_0_0 + TrainState_5_1_39 + TrainState_3_3_10 + TrainState_3_3_11 + TrainState_3_3_12 + TrainState_3_3_13 + TrainState_3_3_14 + TrainState_3_3_15 + TrainState_3_3_16 + TrainState_3_3_17 + TrainState_3_3_18 + TrainState_3_3_19 + TrainState_3_3_20 + TrainState_3_3_21 + TrainState_3_3_22 + TrainState_3_3_23 + TrainState_3_3_24 + TrainState_3_3_25 + TrainState_3_3_26 + TrainState_3_3_27 + TrainState_3_3_28 + TrainState_3_3_29 + TrainState_3_3_30 + TrainState_3_3_31 + TrainState_3_3_32 + TrainState_3_3_33 + TrainState_3_3_34 + TrainState_3_3_35 + TrainState_3_3_36 + TrainState_3_3_37 + TrainState_5_1_38 + TrainState_5_1_37 + TrainState_5_1_36 + TrainState_5_1_35 + TrainState_1_0_0 + TrainState_5_1_34 + TrainState_5_1_33 + TrainState_5_1_32 + TrainState_5_1_1 + TrainState_5_1_2 + TrainState_5_1_3 + TrainState_5_1_4 + TrainState_5_1_5 + TrainState_5_1_6 + TrainState_5_1_7 + TrainState_5_1_8 + TrainState_5_1_9 + TrainState_5_1_31 + TrainState_5_1_30 + TrainState_5_1_29 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_5_1_28 + TrainState_5_2_4 + TrainState_5_2_5 + TrainState_5_2_6 + TrainState_5_2_7 + TrainState_5_2_8 + TrainState_5_2_9 + TrainState_5_1_27 + TrainState_5_1_26 + TrainState_5_1_25 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_5_1_24 + TrainState_5_3_7 + TrainState_5_3_8 + TrainState_5_3_9 + TrainState_5_1_23 + TrainState_3_2_10 + TrainState_3_2_11 + TrainState_3_2_12 + TrainState_3_2_13 + TrainState_3_2_14 + TrainState_3_2_15 + TrainState_3_2_16 + TrainState_3_2_17 + TrainState_3_2_18 + TrainState_3_2_19 + TrainState_3_2_20 + TrainState_3_2_21 + TrainState_3_2_22 + TrainState_3_2_23 + TrainState_3_2_24 + TrainState_3_2_25 + TrainState_3_2_26 + TrainState_3_2_27 + TrainState_3_2_28 + TrainState_3_2_29 + TrainState_3_2_30 + TrainState_3_2_31 + TrainState_3_2_32 + TrainState_3_2_33 + TrainState_3_2_34 + TrainState_3_2_35 + TrainState_3_2_36 + TrainState_3_2_37 + TrainState_3_2_38 + TrainState_3_2_39 + TrainState_5_1_22 + TrainState_5_1_21 + TrainState_5_1_20 + TrainState_5_1_19 + TrainState_5_1_18 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_5_1_17 + TrainState_5_1_16 + TrainState_5_1_15 + TrainState_5_1_14 + TrainState_5_1_13 + TrainState_5_1_12 + TrainState_5_1_11 + TrainState_5_1_10 + TrainState_1_4_11 + TrainState_1_4_12 + TrainState_1_4_13 + TrainState_1_4_14 + TrainState_1_4_15 + TrainState_1_4_16 + TrainState_1_4_17 + TrainState_1_4_18 + TrainState_1_4_19 + TrainState_1_4_20 + TrainState_1_4_21 + TrainState_1_4_22 + TrainState_1_4_23 + TrainState_1_4_24 + TrainState_1_4_25 + TrainState_1_4_26 + TrainState_1_4_27 + TrainState_1_4_28 + TrainState_1_4_29 + TrainState_1_4_30 + TrainState_1_4_31 + TrainState_1_4_32 + TrainState_1_4_33 + TrainState_1_4_34 + TrainState_3_4_33 + TrainState_3_4_32 + TrainState_3_4_31 + TrainState_3_4_30 + TrainState_3_4_29 + TrainState_3_4_28 + TrainState_3_4_27 + TrainState_3_4_26 + TrainState_3_4_25 + TrainState_3_4_24 + TrainState_3_4_23 + TrainState_3_4_22 + TrainState_3_4_21 + TrainState_3_4_20 + TrainState_3_4_19 + TrainState_3_4_18 + TrainState_3_4_17 + TrainState_3_4_16 + TrainState_3_4_15 + TrainState_3_4_14 + TrainState_3_4_13 + TrainState_3_4_12 + TrainState_3_4_11 + TrainState_5_2_39 + TrainState_5_2_38 + TrainState_5_2_37 + TrainState_5_2_36 + TrainState_5_2_35 + TrainState_5_2_34 + TrainState_5_2_33 + TrainState_5_2_32 + TrainState_5_2_31 + TrainState_5_2_30 + TrainState_5_2_29 + TrainState_5_2_28 + TrainState_5_2_27 + TrainState_5_2_26 + TrainState_5_2_25 + TrainState_5_2_24 + TrainState_3_1_10 + TrainState_3_1_11 + TrainState_3_1_12 + TrainState_3_1_13 + TrainState_3_1_14 + TrainState_3_1_15 + TrainState_3_1_16 + TrainState_3_1_17 + TrainState_3_1_18 + TrainState_3_1_19 + TrainState_5_2_23 + TrainState_3_1_20 + TrainState_3_1_21 + TrainState_3_1_22 + TrainState_3_1_23 + TrainState_3_1_24 + TrainState_3_1_25 + TrainState_3_1_26 + TrainState_3_1_27 + TrainState_3_1_28 + TrainState_3_1_29 + TrainState_3_1_30 + TrainState_3_1_31 + TrainState_3_1_32 + TrainState_3_1_33 + TrainState_3_1_34 + TrainState_3_1_35 + TrainState_3_1_36 + TrainState_3_1_37 + TrainState_3_1_38 + TrainState_3_1_39 + TrainState_3_1_40 + TrainState_5_2_22 + TrainState_5_2_21 + TrainState_5_2_20 + TrainState_5_2_19 + TrainState_5_2_18 + TrainState_5_2_17 + TrainState_5_2_16 + TrainState_5_2_15 + TrainState_5_2_14 + TrainState_1_3_10 + TrainState_1_3_11 + TrainState_1_3_12 + TrainState_1_3_13 + TrainState_1_3_14 + TrainState_1_3_15 + TrainState_1_3_16 + TrainState_1_3_17 + TrainState_1_3_18 + TrainState_1_3_19 + TrainState_1_3_20 + TrainState_1_3_21 + TrainState_1_3_22 + TrainState_1_3_23 + TrainState_1_3_24 + TrainState_1_3_25 + TrainState_1_3_26 + TrainState_1_3_27 + TrainState_1_3_28 + TrainState_1_3_29 + TrainState_1_3_30 + TrainState_1_3_31 + TrainState_1_3_32 + TrainState_1_3_33 + TrainState_1_3_34 + TrainState_1_3_35 + TrainState_1_3_36 + TrainState_1_3_37 + TrainState_5_2_13 + TrainState_5_2_12 + TrainState_5_2_11 + TrainState_5_2_10 + TrainState_4_3_8 + TrainState_2_0_0 + TrainState_4_3_7 + TrainState_4_2_9 + TrainState_2_1_1 + TrainState_2_1_2 + TrainState_2_1_3 + TrainState_2_1_4 + TrainState_2_1_5 + TrainState_2_1_6 + TrainState_2_1_7 + TrainState_2_1_8 + TrainState_2_1_9 + TrainState_4_4_11 + TrainState_4_4_12 + TrainState_4_4_13 + TrainState_4_4_14 + TrainState_4_4_15 + TrainState_4_4_16 + TrainState_4_4_17 + TrainState_4_4_18 + TrainState_4_4_19 + TrainState_4_4_20 + TrainState_4_4_21 + TrainState_4_4_22 + TrainState_4_4_23 + TrainState_4_4_24 + TrainState_4_4_25 + TrainState_4_4_26 + TrainState_4_4_27 + TrainState_4_4_28 + TrainState_4_4_29 + TrainState_4_4_30 + TrainState_4_4_31 + TrainState_4_4_32 + TrainState_4_4_33 + TrainState_4_4_34 + TrainState_4_2_8 + TrainState_4_2_7 + TrainState_4_2_6 + TrainState_4_2_5 + TrainState_4_2_4 + TrainState_2_1_39 + TrainState_1_2_10 + TrainState_1_2_11 + TrainState_1_2_12 + TrainState_1_2_13 + TrainState_1_2_14 + TrainState_1_2_15 + TrainState_1_2_16 + TrainState_1_2_17 + TrainState_1_2_18 + TrainState_1_2_19 + TrainState_1_2_20 + TrainState_1_2_21 + TrainState_1_2_22 + TrainState_1_2_23 + TrainState_1_2_24 + TrainState_1_2_25 + TrainState_1_2_26 + TrainState_1_2_27 + TrainState_1_2_28 + TrainState_1_2_29 + TrainState_1_2_30 + TrainState_1_2_31 + TrainState_1_2_32 + TrainState_1_2_33 + TrainState_1_2_34 + TrainState_1_2_35 + TrainState_1_2_36 + TrainState_1_2_37 + TrainState_1_2_38 + TrainState_1_2_39 + TrainState_2_2_4 + TrainState_2_2_5 + TrainState_2_2_6 + TrainState_2_2_7 + TrainState_2_2_8 + TrainState_2_2_9 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_3_7 + TrainState_2_3_8 + TrainState_2_3_9 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_4_3_10 + TrainState_4_3_11 + TrainState_4_3_12 + TrainState_4_3_13 + TrainState_4_3_14 + TrainState_4_3_15 + TrainState_4_3_16 + TrainState_4_3_17 + TrainState_4_3_18 + TrainState_4_3_19 + TrainState_4_3_20 + TrainState_4_3_21 + TrainState_4_3_22 + TrainState_4_3_23 + TrainState_4_3_24 + TrainState_4_3_25 + TrainState_4_3_26 + TrainState_4_3_27 + TrainState_4_3_28 + TrainState_4_3_29 + TrainState_4_3_30 + TrainState_4_3_31 + TrainState_4_3_32 + TrainState_4_3_33 + TrainState_4_3_34 + TrainState_4_3_35 + TrainState_4_3_36 + TrainState_4_3_37 + TrainState_2_1_30 + TrainState_2_1_29 + TrainState_2_1_28 + TrainState_2_1_27 + TrainState_2_1_26 + TrainState_2_1_25 + TrainState_2_1_24 + TrainState_2_1_23 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_2_1_22 + TrainState_2_1_21 + TrainState_2_1_20 + TrainState_2_1_19 + TrainState_2_1_18 + TrainState_2_1_17 + TrainState_2_1_16 + TrainState_2_1_15 + TrainState_2_1_14 + TrainState_2_1_13 + TrainState_2_1_12 + TrainState_4_2_10 + TrainState_4_2_11 + TrainState_4_2_12 + TrainState_4_2_13 + TrainState_4_2_14 + TrainState_4_2_15 + TrainState_4_2_16 + TrainState_4_2_17 + TrainState_4_2_18 + TrainState_4_2_19 + TrainState_4_2_20 + TrainState_4_2_21 + TrainState_4_2_22 + TrainState_4_2_23 + TrainState_4_2_24 + TrainState_4_2_25 + TrainState_4_2_26 + TrainState_4_2_27 + TrainState_4_2_28 + TrainState_4_2_29 + TrainState_4_2_30 + TrainState_4_2_31 + TrainState_4_2_32 + TrainState_4_2_33 + TrainState_4_2_34 + TrainState_4_2_35 + TrainState_4_2_36 + TrainState_4_2_37 + TrainState_4_2_38 + TrainState_4_2_39 + TrainState_2_1_11 + TrainState_2_1_10 + TrainState_4_1_9 + TrainState_4_1_8 + TrainState_4_1_7 + TrainState_4_1_6 + TrainState_4_1_5 + TrainState_4_1_4 + TrainState_3_0_0 + TrainState_4_1_3 + TrainState_2_4_11 + TrainState_2_4_12 + TrainState_2_4_13 + TrainState_2_4_14 + TrainState_2_4_15 + TrainState_2_4_16 + TrainState_2_4_17 + TrainState_2_4_18 + TrainState_2_4_19 + TrainState_2_4_20 + TrainState_2_4_21 + TrainState_2_4_22 + TrainState_2_4_23 + TrainState_2_4_24 + TrainState_2_4_25 + TrainState_2_4_26 + TrainState_2_4_27 + TrainState_2_4_28 + TrainState_2_4_29 + TrainState_2_4_30 + TrainState_2_4_31 + TrainState_2_4_32 + TrainState_2_4_33 + TrainState_2_4_34 + TrainState_4_1_2 + TrainState_4_1_1 + TrainState_3_1_1 + TrainState_3_1_2 + TrainState_3_1_3 + TrainState_3_1_4 + TrainState_3_1_5 + TrainState_3_1_6 + TrainState_3_1_7 + TrainState_3_1_8 + TrainState_3_1_9 + TrainState_5_3_37 + TrainState_5_3_36 + TrainState_5_3_35 + TrainState_3_2_4 + TrainState_3_2_5 + TrainState_3_2_6 + TrainState_3_2_7 + TrainState_3_2_8 + TrainState_3_2_9 + TrainState_4_1_10 + TrainState_4_1_11 + TrainState_4_1_12 + TrainState_4_1_13 + TrainState_4_1_14 + TrainState_4_1_15 + TrainState_4_1_16 + TrainState_4_1_17 + TrainState_4_1_18 + TrainState_4_1_19 + TrainState_4_1_20 + TrainState_4_1_21 + TrainState_4_1_22 + TrainState_4_1_23 + TrainState_4_1_24 + TrainState_4_1_25 + TrainState_4_1_26 + TrainState_4_1_27 + TrainState_4_1_28 + TrainState_4_1_29 + TrainState_4_1_30 + TrainState_4_1_31 + TrainState_4_1_32 + TrainState_4_1_33 + TrainState_4_1_34 + TrainState_4_1_35 + TrainState_4_1_36 + TrainState_4_1_37 + TrainState_4_1_38 + TrainState_4_1_39 + TrainState_4_1_40 + TrainState_5_3_34 + TrainState_5_3_33 + TrainState_5_3_32 + TrainState_5_3_31 + TrainState_3_3_7 + TrainState_3_3_8 + TrainState_3_3_9 + TrainState_5_3_30 + TrainState_5_3_29 + TrainState_5_3_28 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_5_3_27 + TrainState_5_3_26 + TrainState_5_3_25 + TrainState_5_3_24 + TrainState_5_3_23 + TrainState_5_3_22 + TrainState_5_3_21 + TrainState_5_3_20 + TrainState_5_3_19 + TrainState_5_3_18 + TrainState_5_3_17 + TrainState_5_3_16 + TrainState_5_4_11 + TrainState_5_4_12 + TrainState_5_4_13 + TrainState_5_4_14 + TrainState_5_4_15 + TrainState_5_4_16 + TrainState_5_4_17 + TrainState_5_4_18 + TrainState_5_4_19 + TrainState_5_4_20 + TrainState_5_4_21 + TrainState_5_4_22 + TrainState_5_4_23 + TrainState_5_4_24 + TrainState_5_4_25 + TrainState_5_4_26 + TrainState_5_4_27 + TrainState_5_4_28 + TrainState_5_4_29 + TrainState_5_4_30 + TrainState_5_4_31 + TrainState_5_4_32 + TrainState_5_4_33 + TrainState_5_4_34 + TrainState_5_3_15 + TrainState_5_3_14 + TrainState_5_3_13 + TrainState_5_3_12 + TrainState_5_3_11 + TrainState_5_3_10 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_4_0_0 + TrainState_1_1_40 + TrainState_2_1_40 + TrainState_4_3_9 + TrainState_3_4_34 + TrainState_5_1_40 <= NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9)
lola: after: (0 <= 164)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 2)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 2)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 2)
lola: place invariant simplifies atomic proposition
lola: before: (0 <= NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9)
lola: after: (0 <= 169)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_5 + DistStation_6 + DistStation_7 + DistStation_8 + DistStation_9 + DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (31 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1 <= TrainState_5_0_0 + TrainState_5_1_39 + TrainState_3_3_10 + TrainState_3_3_11 + TrainState_3_3_12 + TrainState_3_3_13 + TrainState_3_3_14 + TrainState_3_3_15 + TrainState_3_3_16 + TrainState_3_3_17 + TrainState_3_3_18 + TrainState_3_3_19 + TrainState_3_3_20 + TrainState_3_3_21 + TrainState_3_3_22 + TrainState_3_3_23 + TrainState_3_3_24 + TrainState_3_3_25 + TrainState_3_3_26 + TrainState_3_3_27 + TrainState_3_3_28 + TrainState_3_3_29 + TrainState_3_3_30 + TrainState_3_3_31 + TrainState_3_3_32 + TrainState_3_3_33 + TrainState_3_3_34 + TrainState_3_3_35 + TrainState_3_3_36 + TrainState_3_3_37 + TrainState_5_1_38 + TrainState_5_1_37 + TrainState_5_1_36 + TrainState_5_1_35 + TrainState_1_0_0 + TrainState_5_1_34 + TrainState_5_1_33 + TrainState_5_1_32 + TrainState_5_1_1 + TrainState_5_1_2 + TrainState_5_1_3 + TrainState_5_1_4 + TrainState_5_1_5 + TrainState_5_1_6 + TrainState_5_1_7 + TrainState_5_1_8 + TrainState_5_1_9 + TrainState_5_1_31 + TrainState_5_1_30 + TrainState_5_1_29 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_5_1_28 + TrainState_5_2_4 + TrainState_5_2_5 + TrainState_5_2_6 + TrainState_5_2_7 + TrainState_5_2_8 + TrainState_5_2_9 + TrainState_5_1_27 + TrainState_5_1_26 + TrainState_5_1_25 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_5_1_24 + TrainState_5_3_7 + TrainState_5_3_8 + TrainState_5_3_9 + TrainState_5_1_23 + TrainState_3_2_10 + TrainState_3_2_11 + TrainState_3_2_12 + TrainState_3_2_13 + TrainState_3_2_14 + TrainState_3_2_15 + TrainState_3_2_16 + TrainState_3_2_17 + TrainState_3_2_18 + TrainState_3_2_19 + TrainState_3_2_20 + TrainState_3_2_21 + TrainState_3_2_22 + TrainState_3_2_23 + TrainState_3_2_24 + TrainState_3_2_25 + TrainState_3_2_26 + TrainState_3_2_27 + TrainState_3_2_28 + TrainState_3_2_29 + TrainState_3_2_30 + TrainState_3_2_31 + TrainState_3_2_32 + TrainState_3_2_33 + TrainState_3_2_34 + TrainState_3_2_35 + TrainState_3_2_36 + TrainState_3_2_37 + TrainState_3_2_38 + TrainState_3_2_39 + TrainState_5_1_22 + TrainState_5_1_21 + TrainState_5_1_20 + TrainState_5_1_19 + TrainState_5_1_18 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_5_1_17 + TrainState_5_1_16 + TrainState_5_1_15 + TrainState_5_1_14 + TrainState_5_1_13 + TrainState_5_1_12 + TrainState_5_1_11 + TrainState_5_1_10 + TrainState_1_4_11 + TrainState_1_4_12 + TrainState_1_4_13 + TrainState_1_4_14 + TrainState_1_4_15 + TrainState_1_4_16 + TrainState_1_4_17 + TrainState_1_4_18 + TrainState_1_4_19 + TrainState_1_4_20 + TrainState_1_4_21 + TrainState_1_4_22 + TrainState_1_4_23 + TrainState_1_4_24 + TrainState_1_4_25 + TrainState_1_4_26 + TrainState_1_4_27 + TrainState_1_4_28 + TrainState_1_4_29 + TrainState_1_4_30 + TrainState_1_4_31 + TrainState_1_4_32 + TrainState_1_4_33 + TrainState_1_4_34 + TrainState_3_4_33 + TrainState_3_4_32 + TrainState_3_4_31 + TrainState_3_4_30 + TrainState_3_4_29 + TrainState_3_4_28 + TrainState_3_4_27 + TrainState_3_4_26 + TrainState_3_4_25 + TrainState_3_4_24 + TrainState_3_4_23 + TrainState_3_4_22 + TrainState_3_4_21 + TrainState_3_4_20 + TrainState_3_4_19 + TrainState_3_4_18 + TrainState_3_4_17 + TrainState_3_4_16 + TrainState_3_4_15 + TrainState_3_4_14 + TrainState_3_4_13 + TrainState_3_4_12 + TrainState_3_4_11 + TrainState_5_2_39 + TrainState_5_2_38 + TrainState_5_2_37 + TrainState_5_2_36 + TrainState_5_2_35 + TrainState_5_2_34 + TrainState_5_2_33 + TrainState_5_2_32 + TrainState_5_2_31 + TrainState_5_2_30 + TrainState_5_2_29 + TrainState_5_2_28 + TrainState_5_2_27 + TrainState_5_2_26 + TrainState_5_2_25 + TrainState_5_2_24 + TrainState_3_1_10 + TrainState_3_1_11 + TrainState_3_1_12 + TrainState_3_1_13 + TrainState_3_1_14 + TrainState_3_1_15 + TrainState_3_1_16 + TrainState_3_1_17 + TrainState_3_1_18 + TrainState_3_1_19 + TrainState_5_2_23 + TrainState_3_1_20 + TrainState_3_1_21 + TrainState_3_1_22 + TrainState_3_1_23 + TrainState_3_1_24 + TrainState_3_1_25 + TrainState_3_1_26 + TrainState_3_1_27 + TrainState_3_1_28 + TrainState_3_1_29 + TrainState_3_1_30 + TrainState_3_1_31 + TrainState_3_1_32 + TrainState_3_1_33 + TrainState_3_1_34 + TrainState_3_1_35 + TrainState_3_1_36 + TrainState_3_1_37 + TrainState_3_1_38 + TrainState_3_1_39 + TrainState_3_1_40 + TrainState_5_2_22 + TrainState_5_2_21 + TrainState_5_2_20 + TrainState_5_2_19 + TrainState_5_2_18 + TrainState_5_2_17 + TrainState_5_2_16 + TrainState_5_2_15 + TrainState_5_2_14 + TrainState_1_3_10 + TrainState_1_3_11 + TrainState_1_3_12 + TrainState_1_3_13 + TrainState_1_3_14 + TrainState_1_3_15 + TrainState_1_3_16 + TrainState_1_3_17 + TrainState_1_3_18 + TrainState_1_3_19 + TrainState_1_3_20 + TrainState_1_3_21 + TrainState_1_3_22 + TrainState_1_3_23 + TrainState_1_3_24 + TrainState_1_3_25 + TrainState_1_3_26 + TrainState_1_3_27 + TrainState_1_3_28 + TrainState_1_3_29 + TrainState_1_3_30 + TrainState_1_3_31 + TrainState_1_3_32 + TrainState_1_3_33 + TrainState_1_3_34 + TrainState_1_3_35 + TrainState_1_3_36 + TrainState_1_3_37 + TrainState_5_2_13 + TrainState_5_2_12 + TrainState_5_2_11 + TrainState_5_2_10 + TrainState_4_3_8 + TrainState_2_0_0 + TrainState_4_3_7 + TrainState_4_2_9 + TrainState_2_1_1 + TrainState_2_1_2 + TrainState_2_1_3 + TrainState_2_1_4 + TrainState_2_1_5 + TrainState_2_1_6 + TrainState_2_1_7 + TrainState_2_1_8 + TrainState_2_1_9 + TrainState_4_4_11 + TrainState_4_4_12 + TrainState_4_4_13 + TrainState_4_4_14 + TrainState_4_4_15 + TrainState_4_4_16 + TrainState_4_4_17 + TrainState_4_4_18 + TrainState_4_4_19 + TrainState_4_4_20 + TrainState_4_4_21 + TrainState_4_4_22 + TrainState_4_4_23 + TrainState_4_4_24 + TrainState_4_4_25 + TrainState_4_4_26 + TrainState_4_4_27 + TrainState_4_4_28 + TrainState_4_4_29 + TrainState_4_4_30 + TrainState_4_4_31 + TrainState_4_4_32 + TrainState_4_4_33 + TrainState_4_4_34 + TrainState_4_2_8 + TrainState_4_2_7 + TrainState_4_2_6 + TrainState_4_2_5 + TrainState_4_2_4 + TrainState_2_1_39 + TrainState_1_2_10 + TrainState_1_2_11 + TrainState_1_2_12 + TrainState_1_2_13 + TrainState_1_2_14 + TrainState_1_2_15 + TrainState_1_2_16 + TrainState_1_2_17 + TrainState_1_2_18 + TrainState_1_2_19 + TrainState_1_2_20 + TrainState_1_2_21 + TrainState_1_2_22 + TrainState_1_2_23 + TrainState_1_2_24 + TrainState_1_2_25 + TrainState_1_2_26 + TrainState_1_2_27 + TrainState_1_2_28 + TrainState_1_2_29 + TrainState_1_2_30 + TrainState_1_2_31 + TrainState_1_2_32 + TrainState_1_2_33 + TrainState_1_2_34 + TrainState_1_2_35 + TrainState_1_2_36 + TrainState_1_2_37 + TrainState_1_2_38 + TrainState_1_2_39 + TrainState_2_2_4 + TrainState_2_2_5 + TrainState_2_2_6 + TrainState_2_2_7 + TrainState_2_2_8 + TrainState_2_2_9 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_3_7 + TrainState_2_3_8 + TrainState_2_3_9 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_4_3_10 + TrainState_4_3_11 + TrainState_4_3_12 + TrainState_4_3_13 + TrainState_4_3_14 + TrainState_4_3_15 + TrainState_4_3_16 + TrainState_4_3_17 + TrainState_4_3_18 + TrainState_4_3_19 + TrainState_4_3_20 + TrainState_4_3_21 + TrainState_4_3_22 + TrainState_4_3_23 + TrainState_4_3_24 + TrainState_4_3_25 + TrainState_4_3_26 + TrainState_4_3_27 + TrainState_4_3_28 + TrainState_4_3_29 + TrainState_4_3_30 + TrainState_4_3_31 + TrainState_4_3_32 + TrainState_4_3_33 + TrainState_4_3_34 + TrainState_4_3_35 + TrainState_4_3_36 + TrainState_4_3_37 + TrainState_2_1_30 + TrainState_2_1_29 + TrainState_2_1_28 + TrainState_2_1_27 + TrainState_2_1_26 + TrainState_2_1_25 + TrainState_2_1_24 + TrainState_2_1_23 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_2_1_22 + TrainState_2_1_21 + TrainState_2_1_20 + TrainState_2_1_19 + TrainState_2_1_18 + TrainState_2_1_17 + TrainState_2_1_16 + TrainState_2_1_15 + TrainState_2_1_14 + TrainState_2_1_13 + TrainState_2_1_12 + TrainState_4_2_10 + TrainState_4_2_11 + TrainState_4_2_12 + TrainState_4_2_13 + TrainState_4_2_14 + TrainState_4_2_15 + TrainState_4_2_16 + TrainState_4_2_17 + TrainState_4_2_18 + TrainState_4_2_19 + TrainState_4_2_20 + TrainState_4_2_21 + TrainState_4_2_22 + TrainState_4_2_23 + TrainState_4_2_24 + TrainState_4_2_25 + TrainState_4_2_26 + TrainState_4_2_27 + TrainState_4_2_28 + TrainState_4_2_29 + TrainState_4_2_30 + TrainState_4_2_31 + TrainState_4_2_32 + TrainState_4_2_33 + TrainState_4_2_34 + TrainState_4_2_35 + TrainState_4_2_36 + TrainState_4_2_37 + TrainState_4_2_38 + TrainState_4_2_39 + TrainState_2_1_11 + TrainState_2_1_10 + TrainState_4_1_9 + TrainState_4_1_8 + TrainState_4_1_7 + TrainState_4_1_6 + TrainState_4_1_5 + TrainState_4_1_4 + TrainState_3_0_0 + TrainState_4_1_3 + TrainState_2_4_11 + TrainState_2_4_12 + TrainState_2_4_13 + TrainState_2_4_14 + TrainState_2_4_15 + TrainState_2_4_16 + TrainState_2_4_17 + TrainState_2_4_18 + TrainState_2_4_19 + TrainState_2_4_20 + TrainState_2_4_21 + TrainState_2_4_22 + TrainState_2_4_23 + TrainState_2_4_24 + TrainState_2_4_25 + TrainState_2_4_26 + TrainState_2_4_27 + TrainState_2_4_28 + TrainState_2_4_29 + TrainState_2_4_30 + TrainState_2_4_31 + TrainState_2_4_32 + TrainState_2_4_33 + TrainState_2_4_34 + TrainState_4_1_2 + TrainState_4_1_1 + TrainState_3_1_1 + TrainState_3_1_2 + TrainState_3_1_3 + TrainState_3_1_4 + TrainState_3_1_5 + TrainState_3_1_6 + TrainState_3_1_7 + TrainState_3_1_8 + TrainState_3_1_9 + TrainState_5_3_37 + TrainState_5_3_36 + TrainState_5_3_35 + TrainState_3_2_4 + TrainState_3_2_5 + TrainState_3_2_6 + TrainState_3_2_7 + TrainState_3_2_8 + TrainState_3_2_9 + TrainState_4_1_10 + TrainState_4_1_11 + TrainState_4_1_12 + TrainState_4_1_13 + TrainState_4_1_14 + TrainState_4_1_15 + TrainState_4_1_16 + TrainState_4_1_17 + TrainState_4_1_18 + TrainState_4_1_19 + TrainState_4_1_20 + TrainState_4_1_21 + TrainState_4_1_22 + TrainState_4_1_23 + TrainState_4_1_24 + TrainState_4_1_25 + TrainState_4_1_26 + TrainState_4_1_27 + TrainState_4_1_28 + TrainState_4_1_29 + TrainState_4_1_30 + TrainState_4_1_31 + TrainState_4_1_32 + TrainState_4_1_33 + TrainState_4_1_34 + TrainState_4_1_35 + TrainState_4_1_36 + TrainState_4_1_37 + TrainState_4_1_38 + TrainState_4_1_39 + TrainState_4_1_40 + TrainState_5_3_34 + TrainState_5_3_33 + TrainState_5_3_32 + TrainState_5_3_31 + TrainState_3_3_7 + TrainState_3_3_8 + TrainState_3_3_9 + TrainState_5_3_30 + TrainState_5_3_29 + TrainState_5_3_28 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_5_3_27 + TrainState_5_3_26 + TrainState_5_3_25 + TrainState_5_3_24 + TrainState_5_3_23 + TrainState_5_3_22 + TrainState_5_3_21 + TrainState_5_3_20 + TrainState_5_3_19 + TrainState_5_3_18 + TrainState_5_3_17 + TrainState_5_3_16 + TrainState_5_4_11 + TrainState_5_4_12 + TrainState_5_4_13 + TrainState_5_4_14 + TrainState_5_4_15 + TrainState_5_4_16 + TrainState_5_4_17 + TrainState_5_4_18 + TrainState_5_4_19 + TrainState_5_4_20 + TrainState_5_4_21 + TrainState_5_4_22 + TrainState_5_4_23 + TrainState_5_4_24 + TrainState_5_4_25 + TrainState_5_4_26 + TrainState_5_4_27 + TrainState_5_4_28 + TrainState_5_4_29 + TrainState_5_4_30 + TrainState_5_4_31 + TrainState_5_4_32 + TrainState_5_4_33 + TrainState_5_4_34 + TrainState_5_3_15 + TrainState_5_3_14 + TrainState_5_3_13 + TrainState_5_3_12 + TrainState_5_3_11 + TrainState_5_3_10 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_4_0_0 + TrainState_1_1_40 + TrainState_2_1_40 + TrainState_4_3_9 + TrainState_3_4_34 + TrainState_5_1_40)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1 <= TrainState_5_0_0 + TrainState_5_1_39 + TrainState_3_3_10 + TrainState_3_3_11 + TrainState_3_3_12 + TrainState_3_3_13 + TrainState_3_3_14 + TrainState_3_3_15 + TrainState_3_3_16 + TrainState_3_3_17 + TrainState_3_3_18 + TrainState_3_3_19 + TrainState_3_3_20 + TrainState_3_3_21 + TrainState_3_3_22 + TrainState_3_3_23 + TrainState_3_3_24 + TrainState_3_3_25 + TrainState_3_3_26 + TrainState_3_3_27 + TrainState_3_3_28 + TrainState_3_3_29 + TrainState_3_3_30 + TrainState_3_3_31 + TrainState_3_3_32 + TrainState_3_3_33 + TrainState_3_3_34 + TrainState_3_3_35 + TrainState_3_3_36 + TrainState_3_3_37 + TrainState_5_1_38 + TrainState_5_1_37 + TrainState_5_1_36 + TrainState_5_1_35 + TrainState_1_0_0 + TrainState_5_1_34 + TrainState_5_1_33 + TrainState_5_1_32 + TrainState_5_1_1 + TrainState_5_1_2 + TrainState_5_1_3 + TrainState_5_1_4 + TrainState_5_1_5 + TrainState_5_1_6 + TrainState_5_1_7 + TrainState_5_1_8 + TrainState_5_1_9 + TrainState_5_1_31 + TrainState_5_1_30 + TrainState_5_1_29 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_5_1_28 + TrainState_5_2_4 + TrainState_5_2_5 + TrainState_5_2_6 + TrainState_5_2_7 + TrainState_5_2_8 + TrainState_5_2_9 + TrainState_5_1_27 + TrainState_5_1_26 + TrainState_5_1_25 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_5_1_24 + TrainState_5_3_7 + TrainState_5_3_8 + TrainState_5_3_9 + TrainState_5_1_23 + TrainState_3_2_10 + TrainState_3_2_11 + TrainState_3_2_12 + TrainState_3_2_13 + TrainState_3_2_14 + TrainState_3_2_15 + TrainState_3_2_16 + TrainState_3_2_17 + TrainState_3_2_18 + TrainState_3_2_19 + TrainState_3_2_20 + TrainState_3_2_21 + TrainState_3_2_22 + TrainState_3_2_23 + TrainState_3_2_24 + TrainState_3_2_25 + TrainState_3_2_26 + TrainState_3_2_27 + TrainState_3_2_28 + TrainState_3_2_29 + TrainState_3_2_30 + TrainState_3_2_31 + TrainState_3_2_32 + TrainState_3_2_33 + TrainState_3_2_34 + TrainState_3_2_35 + TrainState_3_2_36 + TrainState_3_2_37 + TrainState_3_2_38 + TrainState_3_2_39 + TrainState_5_1_22 + TrainState_5_1_21 + TrainState_5_1_20 + TrainState_5_1_19 + TrainState_5_1_18 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_5_1_17 + TrainState_5_1_16 + TrainState_5_1_15 + TrainState_5_1_14 + TrainState_5_1_13 + TrainState_5_1_12 + TrainState_5_1_11 + TrainState_5_1_10 + TrainState_1_4_11 + TrainState_1_4_12 + TrainState_1_4_13 + TrainState_1_4_14 + TrainState_1_4_15 + TrainState_1_4_16 + TrainState_1_4_17 + TrainState_1_4_18 + TrainState_1_4_19 + TrainState_1_4_20 + TrainState_1_4_21 + TrainState_1_4_22 + TrainState_1_4_23 + TrainState_1_4_24 + TrainState_1_4_25 + TrainState_1_4_26 + TrainState_1_4_27 + TrainState_1_4_28 + TrainState_1_4_29 + TrainState_1_4_30 + TrainState_1_4_31 + TrainState_1_4_32 + TrainState_1_4_33 + TrainState_1_4_34 + TrainState_3_4_33 + TrainState_3_4_32 + TrainState_3_4_31 + TrainState_3_4_30 + TrainState_3_4_29 + TrainState_3_4_28 + TrainState_3_4_27 + TrainState_3_4_26 + TrainState_3_4_25 + TrainState_3_4_24 + TrainState_3_4_23 + TrainState_3_4_22 + TrainState_3_4_21 + TrainState_3_4_20 + TrainState_3_4_19 + TrainState_3_4_18 + TrainState_3_4_17 + TrainState_3_4_16 + TrainState_3_4_15 + TrainState_3_4_14 + TrainState_3_4_13 + TrainState_3_4_12 + TrainState_3_4_11 + TrainState_5_2_39 + TrainState_5_2_38 + TrainState_5_2_37 + TrainState_5_2_36 + TrainState_5_2_35 + TrainState_5_2_34 + TrainState_5_2_33 + TrainState_5_2_32 + TrainState_5_2_31 + TrainState_5_2_30 + TrainState_5_2_29 + TrainState_5_2_28 + TrainState_5_2_27 + TrainState_5_2_26 + TrainState_5_2_25 + TrainState_5_2_24 + TrainState_3_1_10 + TrainState_3_1_11 + TrainState_3_1_12 + TrainState_3_1_13 + TrainState_3_1_14 + TrainState_3_1_15 + TrainState_3_1_16 + TrainState_3_1_17 + TrainState_3_1_18 + TrainState_3_1_19 + TrainState_5_2_23 + TrainState_3_1_20 + TrainState_3_1_21 + TrainState_3_1_22 + TrainState_3_1_23 + TrainState_3_1_24 + TrainState_3_1_25 + TrainState_3_1_26 + TrainState_3_1_27 + TrainState_3_1_28 + TrainState_3_1_29 + TrainState_3_1_30 + TrainState_3_1_31 + TrainState_3_1_32 + TrainState_3_1_33 + TrainState_3_1_34 + TrainState_3_1_35 + TrainState_3_1_36 + TrainState_3_1_37 + TrainState_3_1_38 + TrainState_3_1_39 + TrainState_3_1_40 + TrainState_5_2_22 + TrainState_5_2_21 + TrainState_5_2_20 + TrainState_5_2_19 + TrainState_5_2_18 + TrainState_5_2_17 + TrainState_5_2_16 + TrainState_5_2_15 + TrainState_5_2_14 + TrainState_1_3_10 + TrainState_1_3_11 + TrainState_1_3_12 + TrainState_1_3_13 + TrainState_1_3_14 + TrainState_1_3_15 + TrainState_1_3_16 + TrainState_1_3_17 + TrainState_1_3_18 + TrainState_1_3_19 + TrainState_1_3_20 + TrainState_1_3_21 + TrainState_1_3_22 + TrainState_1_3_23 + TrainState_1_3_24 + TrainState_1_3_25 + TrainState_1_3_26 + TrainState_1_3_27 + TrainState_1_3_28 + TrainState_1_3_29 + TrainState_1_3_30 + TrainState_1_3_31 + TrainState_1_3_32 + TrainState_1_3_33 + TrainState_1_3_34 + TrainState_1_3_35 + TrainState_1_3_36 + TrainState_1_3_37 + TrainState_5_2_13 + TrainState_5_2_12 + TrainState_5_2_11 + TrainState_5_2_10 + TrainState_4_3_8 + TrainState_2_0_0 + TrainState_4_3_7 + TrainState_4_2_9 + TrainState_2_1_1 + TrainState_2_1_2 + TrainState_2_1_3 + TrainState_2_1_4 + TrainState_2_1_5 + TrainState_2_1_6 + TrainState_2_1_7 + TrainState_2_1_8 + TrainState_2_1_9 + TrainState_4_4_11 + TrainState_4_4_12 + TrainState_4_4_13 + TrainState_4_4_14 + TrainState_4_4_15 + TrainState_4_4_16 + TrainState_4_4_17 + TrainState_4_4_18 + TrainState_4_4_19 + TrainState_4_4_20 + TrainState_4_4_21 + TrainState_4_4_22 + TrainState_4_4_23 + TrainState_4_4_24 + TrainState_4_4_25 + TrainState_4_4_26 + TrainState_4_4_27 + TrainState_4_4_28 + TrainState_4_4_29 + TrainState_4_4_30 + TrainState_4_4_31 + TrainState_4_4_32 + TrainState_4_4_33 + TrainState_4_4_34 + TrainState_4_2_8 + TrainState_4_2_7 + TrainState_4_2_6 + TrainState_4_2_5 + TrainState_4_2_4 + TrainState_2_1_39 + TrainState_1_2_10 + TrainState_1_2_11 + TrainState_1_2_12 + TrainState_1_2_13 + TrainState_1_2_14 + TrainState_1_2_15 + TrainState_1_2_16 + TrainState_1_2_17 + TrainState_1_2_18 + TrainState_1_2_19 + TrainState_1_2_20 + TrainState_1_2_21 + TrainState_1_2_22 + TrainState_1_2_23 + TrainState_1_2_24 + TrainState_1_2_25 + TrainState_1_2_26 + TrainState_1_2_27 + TrainState_1_2_28 + TrainState_1_2_29 + TrainState_1_2_30 + TrainState_1_2_31 + TrainState_1_2_32 + TrainState_1_2_33 + TrainState_1_2_34 + TrainState_1_2_35 + TrainState_1_2_36 + TrainState_1_2_37 + TrainState_1_2_38 + TrainState_1_2_39 + TrainState_2_2_4 + TrainState_2_2_5 + TrainState_2_2_6 + TrainState_2_2_7 + TrainState_2_2_8 + TrainState_2_2_9 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_3_7 + TrainState_2_3_8 + TrainState_2_3_9 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_4_3_10 + TrainState_4_3_11 + TrainState_4_3_12 + TrainState_4_3_13 + TrainState_4_3_14 + TrainState_4_3_15 + TrainState_4_3_16 + TrainState_4_3_17 + TrainState_4_3_18 + TrainState_4_3_19 + TrainState_4_3_20 + TrainState_4_3_21 + TrainState_4_3_22 + TrainState_4_3_23 + TrainState_4_3_24 + TrainState_4_3_25 + TrainState_4_3_26 + TrainState_4_3_27 + TrainState_4_3_28 + TrainState_4_3_29 + TrainState_4_3_30 + TrainState_4_3_31 + TrainState_4_3_32 + TrainState_4_3_33 + TrainState_4_3_34 + TrainState_4_3_35 + TrainState_4_3_36 + TrainState_4_3_37 + TrainState_2_1_30 + TrainState_2_1_29 + TrainState_2_1_28 + TrainState_2_1_27 + TrainState_2_1_26 + TrainState_2_1_25 + TrainState_2_1_24 + TrainState_2_1_23 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_2_1_22 + TrainState_2_1_21 + TrainState_2_1_20 + TrainState_2_1_19 + TrainState_2_1_18 + TrainState_2_1_17 + TrainState_2_1_16 + TrainState_2_1_15 + TrainState_2_1_14 + TrainState_2_1_13 + TrainState_2_1_12 + TrainState_4_2_10 + TrainState_4_2_11 + TrainState_4_2_12 + TrainState_4_2_13 + TrainState_4_2_14 + TrainState_4_2_15 + TrainState_4_2_16 + TrainState_4_2_17 + TrainState_4_2_18 + TrainState_4_2_19 + TrainState_4_2_20 + TrainState_4_2_21 + TrainState_4_2_22 + TrainState_4_2_23 + TrainState_4_2_24 + TrainState_4_2_25 + TrainState_4_2_26 + TrainState_4_2_27 + TrainState_4_2_28 + TrainState_4_2_29 + TrainState_4_2_30 + TrainState_4_2_31 + TrainState_4_2_32 + TrainState_4_2_33 + TrainState_4_2_34 + TrainState_4_2_35 + TrainState_4_2_36 + TrainState_4_2_37 + TrainState_4_2_38 + TrainState_4_2_39 + TrainState_2_1_11 + TrainState_2_1_10 + TrainState_4_1_9 + TrainState_4_1_8 + TrainState_4_1_7 + TrainState_4_1_6 + TrainState_4_1_5 + TrainState_4_1_4 + TrainState_3_0_0 + TrainState_4_1_3 + TrainState_2_4_11 + TrainState_2_4_12 + TrainState_2_4_13 + TrainState_2_4_14 + TrainState_2_4_15 + TrainState_2_4_16 + TrainState_2_4_17 + TrainState_2_4_18 + TrainState_2_4_19 + TrainState_2_4_20 + TrainState_2_4_21 + TrainState_2_4_22 + TrainState_2_4_23 + TrainState_2_4_24 + TrainState_2_4_25 + TrainState_2_4_26 + TrainState_2_4_27 + TrainState_2_4_28 + TrainState_2_4_29 + TrainState_2_4_30 + TrainState_2_4_31 + TrainState_2_4_32 + TrainState_2_4_33 + TrainState_2_4_34 + TrainState_4_1_2 + TrainState_4_1_1 + TrainState_3_1_1 + TrainState_3_1_2 + TrainState_3_1_3 + TrainState_3_1_4 + TrainState_3_1_5 + TrainState_3_1_6 + TrainState_3_1_7 + TrainState_3_1_8 + TrainState_3_1_9 + TrainState_5_3_37 + TrainState_5_3_36 + TrainState_5_3_35 + TrainState_3_2_4 + TrainState_3_2_5 + TrainState_3_2_6 + TrainState_3_2_7 + TrainState_3_2_8 + TrainState_3_2_9 + TrainState_4_1_10 + TrainState_4_1_11 + TrainState_4_1_12 + TrainState_4_1_13 + TrainState_4_1_14 + TrainState_4_1_15 + TrainState_4_1_16 + TrainState_4_1_17 + TrainState_4_1_18 + TrainState_4_1_19 + TrainState_4_1_20 + TrainState_4_1_21 + TrainState_4_1_22 + TrainState_4_1_23 + TrainState_4_1_24 + TrainState_4_1_25 + TrainState_4_1_26 + TrainState_4_1_27 + TrainState_4_1_28 + TrainState_4_1_29 + TrainState_4_1_30 + TrainState_4_1_31 + TrainState_4_1_32 + TrainState_4_1_33 + TrainState_4_1_34 + TrainState_4_1_35 + TrainState_4_1_36 + TrainState_4_1_37 + TrainState_4_1_38 + TrainState_4_1_39 + TrainState_4_1_40 + TrainState_5_3_34 + TrainState_5_3_33 + TrainState_5_3_32 + TrainState_5_3_31 + TrainState_3_3_7 + TrainState_3_3_8 + TrainState_3_3_9 + TrainState_5_3_30 + TrainState_5_3_29 + TrainState_5_3_28 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_5_3_27 + TrainState_5_3_26 + TrainState_5_3_25 + TrainState_5_3_24 + TrainState_5_3_23 + TrainState_5_3_22 + TrainState_5_3_21 + TrainState_5_3_20 + TrainState_5_3_19 + TrainState_5_3_18 + TrainState_5_3_17 + TrainState_5_3_16 + TrainState_5_4_11 + TrainState_5_4_12 + TrainState_5_4_13 + TrainState_5_4_14 + TrainState_5_4_15 + TrainState_5_4_16 + TrainState_5_4_17 + TrainState_5_4_18 + TrainState_5_4_19 + TrainState_5_4_20 + TrainState_5_4_21 + TrainState_5_4_22 + TrainState_5_4_23 + TrainState_5_4_24 + TrainState_5_4_25 + TrainState_5_4_26 + TrainState_5_4_27 + TrainState_5_4_28 + TrainState_5_4_29 + TrainState_5_4_30 + TrainState_5_4_31 + TrainState_5_4_32 + TrainState_5_4_33 + TrainState_5_4_34 + TrainState_5_3_15 + TrainState_5_3_14 + TrainState_5_3_13 + TrainState_5_3_12 + TrainState_5_3_11 + TrainState_5_3_10 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_4_0_0 + TrainState_1_1_40 + TrainState_2_1_40 + TrainState_4_3_9 + TrainState_3_4_34 + TrainState_5_1_40)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1 <= TrainState_5_0_0 + TrainState_5_1_39 + TrainState_3_3_10 + TrainState_3_3_11 + TrainState_3_3_12 + TrainState_3_3_13 + TrainState_3_3_14 + TrainState_3_3_15 + TrainState_3_3_16 + TrainState_3_3_17 + TrainState_3_3_18 + TrainState_3_3_19 + TrainState_3_3_20 + TrainState_3_3_21 + TrainState_3_3_22 + TrainState_3_3_23 + TrainState_3_3_24 + TrainState_3_3_25 + TrainState_3_3_26 + TrainState_3_3_27 + TrainState_3_3_28 + TrainState_3_3_29 + TrainState_3_3_30 + TrainState_3_3_31 + TrainState_3_3_32 + TrainState_3_3_33 + TrainState_3_3_34 + TrainState_3_3_35 + TrainState_3_3_36 + TrainState_3_3_37 + TrainState_5_1_38 + TrainState_5_1_37 + TrainState_5_1_36 + TrainState_5_1_35 + TrainState_1_0_0 + TrainState_5_1_34 + TrainState_5_1_33 + TrainState_5_1_32 + TrainState_5_1_1 + TrainState_5_1_2 + TrainState_5_1_3 + TrainState_5_1_4 + TrainState_5_1_5 + TrainState_5_1_6 + TrainState_5_1_7 + TrainState_5_1_8 + TrainState_5_1_9 + TrainState_5_1_31 + TrainState_5_1_30 + TrainState_5_1_29 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_5_1_28 + TrainState_5_2_4 + TrainState_5_2_5 + TrainState_5_2_6 + TrainState_5_2_7 + TrainState_5_2_8 + TrainState_5_2_9 + TrainState_5_1_27 + TrainState_5_1_26 + TrainState_5_1_25 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_5_1_24 + TrainState_5_3_7 + TrainState_5_3_8 + TrainState_5_3_9 + TrainState_5_1_23 + TrainState_3_2_10 + TrainState_3_2_11 + TrainState_3_2_12 + TrainState_3_2_13 + TrainState_3_2_14 + TrainState_3_2_15 + TrainState_3_2_16 + TrainState_3_2_17 + TrainState_3_2_18 + TrainState_3_2_19 + TrainState_3_2_20 + TrainState_3_2_21 + TrainState_3_2_22 + TrainState_3_2_23 + TrainState_3_2_24 + TrainState_3_2_25 + TrainState_3_2_26 + TrainState_3_2_27 + TrainState_3_2_28 + TrainState_3_2_29 + TrainState_3_2_30 + TrainState_3_2_31 + TrainState_3_2_32 + TrainState_3_2_33 + TrainState_3_2_34 + TrainState_3_2_35 + TrainState_3_2_36 + TrainState_3_2_37 + TrainState_3_2_38 + TrainState_3_2_39 + TrainState_5_1_22 + TrainState_5_1_21 + TrainState_5_1_20 + TrainState_5_1_19 + TrainState_5_1_18 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_5_1_17 + TrainState_5_1_16 + TrainState_5_1_15 + TrainState_5_1_14 + TrainState_5_1_13 + TrainState_5_1_12 + TrainState_5_1_11 + TrainState_5_1_10 + TrainState_1_4_11 + TrainState_1_4_12 + TrainState_1_4_13 + TrainState_1_4_14 + TrainState_1_4_15 + TrainState_1_4_16 + TrainState_1_4_17 + TrainState_1_4_18 + TrainState_1_4_19 + TrainState_1_4_20 + TrainState_1_4_21 + TrainState_1_4_22 + TrainState_1_4_23 + TrainState_1_4_24 + TrainState_1_4_25 + TrainState_1_4_26 + TrainState_1_4_27 + TrainState_1_4_28 + TrainState_1_4_29 + TrainState_1_4_30 + TrainState_1_4_31 + TrainState_1_4_32 + TrainState_1_4_33 + TrainState_1_4_34 + TrainState_3_4_33 + TrainState_3_4_32 + TrainState_3_4_31 + TrainState_3_4_30 + TrainState_3_4_29 + TrainState_3_4_28 + TrainState_3_4_27 + TrainState_3_4_26 + TrainState_3_4_25 + TrainState_3_4_24 + TrainState_3_4_23 + TrainState_3_4_22 + TrainState_3_4_21 + TrainState_3_4_20 + TrainState_3_4_19 + TrainState_3_4_18 + TrainState_3_4_17 + TrainState_3_4_16 + TrainState_3_4_15 + TrainState_3_4_14 + TrainState_3_4_13 + TrainState_3_4_12 + TrainState_3_4_11 + TrainState_5_2_39 + TrainState_5_2_38 + TrainState_5_2_37 + TrainState_5_2_36 + TrainState_5_2_35 + TrainState_5_2_34 + TrainState_5_2_33 + TrainState_5_2_32 + TrainState_5_2_31 + TrainState_5_2_30 + TrainState_5_2_29 + TrainState_5_2_28 + TrainState_5_2_27 + TrainState_5_2_26 + TrainState_5_2_25 + TrainState_5_2_24 + TrainState_3_1_10 + TrainState_3_1_11 + TrainState_3_1_12 + TrainState_3_1_13 + TrainState_3_1_14 + TrainState_3_1_15 + TrainState_3_1_16 + TrainState_3_1_17 + TrainState_3_1_18 + TrainState_3_1_19 + TrainState_5_2_23 + TrainState_3_1_20 + TrainState_3_1_21 + TrainState_3_1_22 + TrainState_3_1_23 + TrainState_3_1_24 + TrainState_3_1_25 + TrainState_3_1_26 + TrainState_3_1_27 + TrainState_3_1_28 + TrainState_3_1_29 + TrainState_3_1_30 + TrainState_3_1_31 + TrainState_3_1_32 + TrainState_3_1_33 + TrainState_3_1_34 + TrainState_3_1_35 + TrainState_3_1_36 + TrainState_3_1_37 + TrainState_3_1_38 + TrainState_3_1_39 + TrainState_3_1_40 + TrainState_5_2_22 + TrainState_5_2_21 + TrainState_5_2_20 + TrainState_5_2_19 + TrainState_5_2_18 + TrainState_5_2_17 + TrainState_5_2_16 + TrainState_5_2_15 + TrainState_5_2_14 + TrainState_1_3_10 + TrainState_1_3_11 + TrainState_1_3_12 + TrainState_1_3_13 + TrainState_1_3_14 + TrainState_1_3_15 + TrainState_1_3_16 + TrainState_1_3_17 + TrainState_1_3_18 + TrainState_1_3_19 + TrainState_1_3_20 + TrainState_1_3_21 + TrainState_1_3_22 + TrainState_1_3_23 + TrainState_1_3_24 + TrainState_1_3_25 + TrainState_1_3_26 + TrainState_1_3_27 + TrainState_1_3_28 + TrainState_1_3_29 + TrainState_1_3_30 + TrainState_1_3_31 + TrainState_1_3_32 + TrainState_1_3_33 + TrainState_1_3_34 + TrainState_1_3_35 + TrainState_1_3_36 + TrainState_1_3_37 + TrainState_5_2_13 + TrainState_5_2_12 + TrainState_5_2_11 + TrainState_5_2_10 + TrainState_4_3_8 + TrainState_2_0_0 + TrainState_4_3_7 + TrainState_4_2_9 + TrainState_2_1_1 + TrainState_2_1_2 + TrainState_2_1_3 + TrainState_2_1_4 + TrainState_2_1_5 + TrainState_2_1_6 + TrainState_2_1_7 + TrainState_2_1_8 + TrainState_2_1_9 + TrainState_4_4_11 + TrainState_4_4_12 + TrainState_4_4_13 + TrainState_4_4_14 + TrainState_4_4_15 + TrainState_4_4_16 + TrainState_4_4_17 + TrainState_4_4_18 + TrainState_4_4_19 + TrainState_4_4_20 + TrainState_4_4_21 + TrainState_4_4_22 + TrainState_4_4_23 + TrainState_4_4_24 + TrainState_4_4_25 + TrainState_4_4_26 + TrainState_4_4_27 + TrainState_4_4_28 + TrainState_4_4_29 + TrainState_4_4_30 + TrainState_4_4_31 + TrainState_4_4_32 + TrainState_4_4_33 + TrainState_4_4_34 + TrainState_4_2_8 + TrainState_4_2_7 + TrainState_4_2_6 + TrainState_4_2_5 + TrainState_4_2_4 + TrainState_2_1_39 + TrainState_1_2_10 + TrainState_1_2_11 + TrainState_1_2_12 + TrainState_1_2_13 + TrainState_1_2_14 + TrainState_1_2_15 + TrainState_1_2_16 + TrainState_1_2_17 + TrainState_1_2_18 + TrainState_1_2_19 + TrainState_1_2_20 + TrainState_1_2_21 + TrainState_1_2_22 + TrainState_1_2_23 + TrainState_1_2_24 + TrainState_1_2_25 + TrainState_1_2_26 + TrainState_1_2_27 + TrainState_1_2_28 + TrainState_1_2_29 + TrainState_1_2_30 + TrainState_1_2_31 + TrainState_1_2_32 + TrainState_1_2_33 + TrainState_1_2_34 + TrainState_1_2_35 + TrainState_1_2_36 + TrainState_1_2_37 + TrainState_1_2_38 + TrainState_1_2_39 + TrainState_2_2_4 + TrainState_2_2_5 + TrainState_2_2_6 + TrainState_2_2_7 + TrainState_2_2_8 + TrainState_2_2_9 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_3_7 + TrainState_2_3_8 + TrainState_2_3_9 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_4_3_10 + TrainState_4_3_11 + TrainState_4_3_12 + TrainState_4_3_13 + TrainState_4_3_14 + TrainState_4_3_15 + TrainState_4_3_16 + TrainState_4_3_17 + TrainState_4_3_18 + TrainState_4_3_19 + TrainState_4_3_20 + TrainState_4_3_21 + TrainState_4_3_22 + TrainState_4_3_23 + TrainState_4_3_24 + TrainState_4_3_25 + TrainState_4_3_26 + TrainState_4_3_27 + TrainState_4_3_28 + TrainState_4_3_29 + TrainState_4_3_30 + TrainState_4_3_31 + TrainState_4_3_32 + TrainState_4_3_33 + TrainState_4_3_34 + TrainState_4_3_35 + TrainState_4_3_36 + TrainState_4_3_37 + TrainState_2_1_30 + TrainState_2_1_29 + TrainState_2_1_28 + TrainState_2_1_27 + TrainState_2_1_26 + TrainState_2_1_25 + TrainState_2_1_24 + TrainState_2_1_23 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_2_1_22 + TrainState_2_1_21 + TrainState_2_1_20 + TrainState_2_1_19 + TrainState_2_1_18 + TrainState_2_1_17 + TrainState_2_1_16 + TrainState_2_1_15 + TrainState_2_1_14 + TrainState_2_1_13 + TrainState_2_1_12 + TrainState_4_2_10 + TrainState_4_2_11 + TrainState_4_2_12 + TrainState_4_2_13 + TrainState_4_2_14 + TrainState_4_2_15 + TrainState_4_2_16 + TrainState_4_2_17 + TrainState_4_2_18 + TrainState_4_2_19 + TrainState_4_2_20 + TrainState_4_2_21 + TrainState_4_2_22 + TrainState_4_2_23 + TrainState_4_2_24 + TrainState_4_2_25 + TrainState_4_2_26 + TrainState_4_2_27 + TrainState_4_2_28 + TrainState_4_2_29 + TrainState_4_2_30 + TrainState_4_2_31 + TrainState_4_2_32 + TrainState_4_2_33 + TrainState_4_2_34 + TrainState_4_2_35 + TrainState_4_2_36 + TrainState_4_2_37 + TrainState_4_2_38 + TrainState_4_2_39 + TrainState_2_1_11 + TrainState_2_1_10 + TrainState_4_1_9 + TrainState_4_1_8 + TrainState_4_1_7 + TrainState_4_1_6 + TrainState_4_1_5 + TrainState_4_1_4 + TrainState_3_0_0 + TrainState_4_1_3 + TrainState_2_4_11 + TrainState_2_4_12 + TrainState_2_4_13 + TrainState_2_4_14 + TrainState_2_4_15 + TrainState_2_4_16 + TrainState_2_4_17 + TrainState_2_4_18 + TrainState_2_4_19 + TrainState_2_4_20 + TrainState_2_4_21 + TrainState_2_4_22 + TrainState_2_4_23 + TrainState_2_4_24 + TrainState_2_4_25 + TrainState_2_4_26 + TrainState_2_4_27 + TrainState_2_4_28 + TrainState_2_4_29 + TrainState_2_4_30 + TrainState_2_4_31 + TrainState_2_4_32 + TrainState_2_4_33 + TrainState_2_4_34 + TrainState_4_1_2 + TrainState_4_1_1 + TrainState_3_1_1 + TrainState_3_1_2 + TrainState_3_1_3 + TrainState_3_1_4 + TrainState_3_1_5 + TrainState_3_1_6 + TrainState_3_1_7 + TrainState_3_1_8 + TrainState_3_1_9 + TrainState_5_3_37 + TrainState_5_3_36 + TrainState_5_3_35 + TrainState_3_2_4 + TrainState_3_2_5 + TrainState_3_2_6 + TrainState_3_2_7 + TrainState_3_2_8 + TrainState_3_2_9 + TrainState_4_1_10 + TrainState_4_1_11 + TrainState_4_1_12 + TrainState_4_1_13 + TrainState_4_1_14 + TrainState_4_1_15 + TrainState_4_1_16 + TrainState_4_1_17 + TrainState_4_1_18 + TrainState_4_1_19 + TrainState_4_1_20 + TrainState_4_1_21 + TrainState_4_1_22 + TrainState_4_1_23 + TrainState_4_1_24 + TrainState_4_1_25 + TrainState_4_1_26 + TrainState_4_1_27 + TrainState_4_1_28 + TrainState_4_1_29 + TrainState_4_1_30 + TrainState_4_1_31 + TrainState_4_1_32 + TrainState_4_1_33 + TrainState_4_1_34 + TrainState_4_1_35 + TrainState_4_1_36 + TrainState_4_1_37 + TrainState_4_1_38 + TrainState_4_1_39 + TrainState_4_1_40 + TrainState_5_3_34 + TrainState_5_3_33 + TrainState_5_3_32 + TrainState_5_3_31 + TrainState_3_3_7 + TrainState_3_3_8 + TrainState_3_3_9 + TrainState_5_3_30 + TrainState_5_3_29 + TrainState_5_3_28 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_5_3_27 + TrainState_5_3_26 + TrainState_5_3_25 + TrainState_5_3_24 + TrainState_5_3_23 + TrainState_5_3_22 + TrainState_5_3_21 + TrainState_5_3_20 + TrainState_5_3_19 + TrainState_5_3_18 + TrainState_5_3_17 + TrainState_5_3_16 + TrainState_5_4_11 + TrainState_5_4_12 + TrainState_5_4_13 + TrainState_5_4_14 + TrainState_5_4_15 + TrainState_5_4_16 + TrainState_5_4_17 + TrainState_5_4_18 + TrainState_5_4_19 + TrainState_5_4_20 + TrainState_5_4_21 + TrainState_5_4_22 + TrainState_5_4_23 + TrainState_5_4_24 + TrainState_5_4_25 + TrainState_5_4_26 + TrainState_5_4_27 + TrainState_5_4_28 + TrainState_5_4_29 + TrainState_5_4_30 + TrainState_5_4_31 + TrainState_5_4_32 + TrainState_5_4_33 + TrainState_5_4_34 + TrainState_5_3_15 + TrainState_5_3_14 + TrainState_5_3_13 + TrainState_5_3_12 + TrainState_5_3_11 + TrainState_5_3_10 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_4_0_0 + TrainState_1_1_40 + TrainState_2_1_40 + TrainState_4_3_9 + TrainState_3_4_34 + TrainState_5_1_40)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1 <= NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9)
lola: after: (0 <= 164)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 3)
lola: place invariant simplifies atomic proposition
lola: before: (StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1 <= NewDistTable_21_1_20 + NewDistTable_12_1_11 + NewDistTable_13_4_9 + NewDistTable_31_5_26 + NewDistTable_22_5_17 + NewDistTable_13_5_8 + NewDistTable_36_4_32 + NewDistTable_27_4_23 + NewDistTable_18_4_14 + NewDistTable_30_1_29 + NewDistTable_7_4_3 + NewDistTable_29_2_27 + NewDistTable_38_2_36 + NewDistTable_15_3_12 + NewDistTable_24_3_21 + NewDistTable_33_3_30 + NewDistTable_7_3_4 + NewDistTable_3_2_1 + NewDistTable_18_5_13 + NewDistTable_27_5_22 + NewDistTable_7_2_5 + NewDistTable_17_1_16 + NewDistTable_26_1_25 + NewDistTable_35_1_34 + NewDistTable_3_1_2 + NewDistTable_12_2_10 + NewDistTable_21_2_19 + NewDistTable_30_2_28 + NewDistTable_7_1_6 + NewDistTable_29_3_26 + NewDistTable_38_3_35 + NewDistTable_15_4_11 + NewDistTable_24_4_20 + NewDistTable_33_4_29 + NewDistTable_17_2_15 + NewDistTable_26_2_24 + NewDistTable_35_2_33 + NewDistTable_33_2_31 + NewDistTable_24_2_22 + NewDistTable_15_2_13 + NewDistTable_21_3_18 + NewDistTable_30_3_27 + NewDistTable_29_4_25 + NewDistTable_15_5_10 + NewDistTable_24_5_19 + NewDistTable_33_5_28 + NewDistTable_12_5_7 + NewDistTable_14_1_13 + NewDistTable_38_1_37 + NewDistTable_29_1_28 + NewDistTable_23_1_22 + NewDistTable_32_1_31 + NewDistTable_12_4_8 + NewDistTable_17_3_14 + NewDistTable_26_3_23 + NewDistTable_35_3_32 + NewDistTable_12_3_9 + NewDistTable_21_4_17 + NewDistTable_30_4_26 + NewDistTable_6_3_3 + NewDistTable_29_5_24 + NewDistTable_2_2_0 + NewDistTable_19_1_18 + NewDistTable_28_1_27 + NewDistTable_37_1_36 + NewDistTable_6_2_4 + NewDistTable_14_2_12 + NewDistTable_23_2_21 + NewDistTable_32_2_30 + NewDistTable_2_1_1 + NewDistTable_6_1_5 + NewDistTable_17_4_13 + NewDistTable_26_4_22 + NewDistTable_35_4_31 + NewDistTable_21_5_16 + NewDistTable_30_5_25 + NewDistTable_11_1_10 + NewDistTable_20_1_19 + NewDistTable_19_2_17 + NewDistTable_28_2_26 + NewDistTable_37_2_35 + NewDistTable_14_3_11 + NewDistTable_23_3_20 + NewDistTable_32_3_29 + NewDistTable_17_5_12 + NewDistTable_31_4_27 + NewDistTable_22_4_18 + NewDistTable_36_3_33 + NewDistTable_27_3_24 + NewDistTable_18_3_15 + NewDistTable_26_5_21 + NewDistTable_16_1_15 + NewDistTable_8_1_7 + NewDistTable_25_1_24 + NewDistTable_34_1_33 + NewDistTable_11_5_6 + NewDistTable_20_2_18 + NewDistTable_19_3_16 + NewDistTable_28_3_25 + NewDistTable_37_3_34 + NewDistTable_11_4_7 + NewDistTable_14_4_10 + NewDistTable_23_4_19 + NewDistTable_32_4_28 + NewDistTable_9_4_5 + NewDistTable_11_3_8 + NewDistTable_5_3_2 + NewDistTable_39_1_38 + NewDistTable_33_1_32 + NewDistTable_24_1_23 + NewDistTable_15_1_14 + NewDistTable_4_1_3 + NewDistTable_10_1_9 + NewDistTable_34_5_29 + NewDistTable_25_5_20 + NewDistTable_16_5_11 + NewDistTable_8_2_6 + NewDistTable_9_3_6 + NewDistTable_16_2_14 + NewDistTable_25_2_23 + NewDistTable_4_2_2 + NewDistTable_34_2_32 + NewDistTable_11_2_9 + NewDistTable_5_2_3 + NewDistTable_20_3_17 + NewDistTable_31_3_28 + NewDistTable_22_3_19 + NewDistTable_13_3_10 + NewDistTable_10_2_8 + NewDistTable_8_3_5 + NewDistTable_36_2_34 + NewDistTable_27_2_25 + NewDistTable_18_2_16 + NewDistTable_4_3_1 + NewDistTable_10_3_7 + NewDistTable_8_4_4 + NewDistTable_20_5_15 + NewDistTable_19_4_15 + NewDistTable_9_2_7 + NewDistTable_28_4_24 + NewDistTable_37_4_33 + NewDistTable_5_1_4 + NewDistTable_23_5_18 + NewDistTable_32_5_27 + NewDistTable_9_1_8 + NewDistTable_13_1_12 + NewDistTable_22_1_21 + NewDistTable_31_1_30 + NewDistTable_40_1_39 + NewDistTable_39_2_37 + NewDistTable_16_3_13 + NewDistTable_25_3_22 + NewDistTable_34_3_31 + NewDistTable_20_4_16 + NewDistTable_19_5_14 + NewDistTable_28_5_23 + NewDistTable_18_1_17 + NewDistTable_27_1_26 + NewDistTable_36_1_35 + NewDistTable_13_2_11 + NewDistTable_22_2_20 + NewDistTable_31_2_29 + NewDistTable_40_2_38 + NewDistTable_39_3_36 + NewDistTable_10_4_6 + NewDistTable_34_4_30 + NewDistTable_25_4_21 + NewDistTable_16_4_12 + NewDistTable_14_5_9)
lola: after: (0 <= 164)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= DistStation_5 + DistStation_6 + DistStation_7 + DistStation_8 + DistStation_9 + DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10)
lola: after: (0 <= 35)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_5 + DistStation_6 + DistStation_7 + DistStation_8 + DistStation_9 + DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10 <= TrainState_5_0_0 + TrainState_5_1_39 + TrainState_3_3_10 + TrainState_3_3_11 + TrainState_3_3_12 + TrainState_3_3_13 + TrainState_3_3_14 + TrainState_3_3_15 + TrainState_3_3_16 + TrainState_3_3_17 + TrainState_3_3_18 + TrainState_3_3_19 + TrainState_3_3_20 + TrainState_3_3_21 + TrainState_3_3_22 + TrainState_3_3_23 + TrainState_3_3_24 + TrainState_3_3_25 + TrainState_3_3_26 + TrainState_3_3_27 + TrainState_3_3_28 + TrainState_3_3_29 + TrainState_3_3_30 + TrainState_3_3_31 + TrainState_3_3_32 + TrainState_3_3_33 + TrainState_3_3_34 + TrainState_3_3_35 + TrainState_3_3_36 + TrainState_3_3_37 + TrainState_5_1_38 + TrainState_5_1_37 + TrainState_5_1_36 + TrainState_5_1_35 + TrainState_1_0_0 + TrainState_5_1_34 + TrainState_5_1_33 + TrainState_5_1_32 + TrainState_5_1_1 + TrainState_5_1_2 + TrainState_5_1_3 + TrainState_5_1_4 + TrainState_5_1_5 + TrainState_5_1_6 + TrainState_5_1_7 + TrainState_5_1_8 + TrainState_5_1_9 + TrainState_5_1_31 + TrainState_5_1_30 + TrainState_5_1_29 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_5_1_28 + TrainState_5_2_4 + TrainState_5_2_5 + TrainState_5_2_6 + TrainState_5_2_7 + TrainState_5_2_8 + TrainState_5_2_9 + TrainState_5_1_27 + TrainState_5_1_26 + TrainState_5_1_25 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_5_1_24 + TrainState_5_3_7 + TrainState_5_3_8 + TrainState_5_3_9 + TrainState_5_1_23 + TrainState_3_2_10 + TrainState_3_2_11 + TrainState_3_2_12 + TrainState_3_2_13 + TrainState_3_2_14 + TrainState_3_2_15 + TrainState_3_2_16 + TrainState_3_2_17 + TrainState_3_2_18 + TrainState_3_2_19 + TrainState_3_2_20 + TrainState_3_2_21 + TrainState_3_2_22 + TrainState_3_2_23 + TrainState_3_2_24 + TrainState_3_2_25 + TrainState_3_2_26 + TrainState_3_2_27 + TrainState_3_2_28 + TrainState_3_2_29 + TrainState_3_2_30 + TrainState_3_2_31 + TrainState_3_2_32 + TrainState_3_2_33 + TrainState_3_2_34 + TrainState_3_2_35 + TrainState_3_2_36 + TrainState_3_2_37 + TrainState_3_2_38 + TrainState_3_2_39 + TrainState_5_1_22 + TrainState_5_1_21 + TrainState_5_1_20 + TrainState_5_1_19 + TrainState_5_1_18 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_5_1_17 + TrainState_5_1_16 + TrainState_5_1_15 + TrainState_5_1_14 + TrainState_5_1_13 + TrainState_5_1_12 + TrainState_5_1_11 + TrainState_5_1_10 + TrainState_1_4_11 + TrainState_1_4_12 + TrainState_1_4_13 + TrainState_1_4_14 + TrainState_1_4_15 + TrainState_1_4_16 + TrainState_1_4_17 + TrainState_1_4_18 + TrainState_1_4_19 + TrainState_1_4_20 + TrainState_1_4_21 + TrainState_1_4_22 + TrainState_1_4_23 + TrainState_1_4_24 + TrainState_1_4_25 + TrainState_1_4_26 + TrainState_1_4_27 + TrainState_1_4_28 + TrainState_1_4_29 + TrainState_1_4_30 + TrainState_1_4_31 + TrainState_1_4_32 + TrainState_1_4_33 + TrainState_1_4_34 + TrainState_3_4_33 + TrainState_3_4_32 + TrainState_3_4_31 + TrainState_3_4_30 + TrainState_3_4_29 + TrainState_3_4_28 + TrainState_3_4_27 + TrainState_3_4_26 + TrainState_3_4_25 + TrainState_3_4_24 + TrainState_3_4_23 + TrainState_3_4_22 + TrainState_3_4_21 + TrainState_3_4_20 + TrainState_3_4_19 + TrainState_3_4_18 + TrainState_3_4_17 + TrainState_3_4_16 + TrainState_3_4_15 + TrainState_3_4_14 + TrainState_3_4_13 + TrainState_3_4_12 + TrainState_3_4_11 + TrainState_5_2_39 + TrainState_5_2_38 + TrainState_5_2_37 + TrainState_5_2_36 + TrainState_5_2_35 + TrainState_5_2_34 + TrainState_5_2_33 + TrainState_5_2_32 + TrainState_5_2_31 + TrainState_5_2_30 + TrainState_5_2_29 + TrainState_5_2_28 + TrainState_5_2_27 + TrainState_5_2_26 + TrainState_5_2_25 + TrainState_5_2_24 + TrainState_3_1_10 + TrainState_3_1_11 + TrainState_3_1_12 + TrainState_3_1_13 + TrainState_3_1_14 + TrainState_3_1_15 + TrainState_3_1_16 + TrainState_3_1_17 + TrainState_3_1_18 + TrainState_3_1_19 + TrainState_5_2_23 + TrainState_3_1_20 + TrainState_3_1_21 + TrainState_3_1_22 + TrainState_3_1_23 + TrainState_3_1_24 + TrainState_3_1_25 + TrainState_3_1_26 + TrainState_3_1_27 + TrainState_3_1_28 + TrainState_3_1_29 + TrainState_3_1_30 + TrainState_3_1_31 + TrainState_3_1_32 + TrainState_3_1_33 + TrainState_3_1_34 + TrainState_3_1_35 + TrainState_3_1_36 + TrainState_3_1_37 + TrainState_3_1_38 + TrainState_3_1_39 + TrainState_3_1_40 + TrainState_5_2_22 + TrainState_5_2_21 + TrainState_5_2_20 + TrainState_5_2_19 + TrainState_5_2_18 + TrainState_5_2_17 + TrainState_5_2_16 + TrainState_5_2_15 + TrainState_5_2_14 + TrainState_1_3_10 + TrainState_1_3_11 + TrainState_1_3_12 + TrainState_1_3_13 + TrainState_1_3_14 + TrainState_1_3_15 + TrainState_1_3_16 + TrainState_1_3_17 + TrainState_1_3_18 + TrainState_1_3_19 + TrainState_1_3_20 + TrainState_1_3_21 + TrainState_1_3_22 + TrainState_1_3_23 + TrainState_1_3_24 + TrainState_1_3_25 + TrainState_1_3_26 + TrainState_1_3_27 + TrainState_1_3_28 + TrainState_1_3_29 + TrainState_1_3_30 + TrainState_1_3_31 + TrainState_1_3_32 + TrainState_1_3_33 + TrainState_1_3_34 + TrainState_1_3_35 + TrainState_1_3_36 + TrainState_1_3_37 + TrainState_5_2_13 + TrainState_5_2_12 + TrainState_5_2_11 + TrainState_5_2_10 + TrainState_4_3_8 + TrainState_2_0_0 + TrainState_4_3_7 + TrainState_4_2_9 + TrainState_2_1_1 + TrainState_2_1_2 + TrainState_2_1_3 + TrainState_2_1_4 + TrainState_2_1_5 + TrainState_2_1_6 + TrainState_2_1_7 + TrainState_2_1_8 + TrainState_2_1_9 + TrainState_4_4_11 + TrainState_4_4_12 + TrainState_4_4_13 + TrainState_4_4_14 + TrainState_4_4_15 + TrainState_4_4_16 + TrainState_4_4_17 + TrainState_4_4_18 + TrainState_4_4_19 + TrainState_4_4_20 + TrainState_4_4_21 + TrainState_4_4_22 + TrainState_4_4_23 + TrainState_4_4_24 + TrainState_4_4_25 + TrainState_4_4_26 + TrainState_4_4_27 + TrainState_4_4_28 + TrainState_4_4_29 + TrainState_4_4_30 + TrainState_4_4_31 + TrainState_4_4_32 + TrainState_4_4_33 + TrainState_4_4_34 + TrainState_4_2_8 + TrainState_4_2_7 + TrainState_4_2_6 + TrainState_4_2_5 + TrainState_4_2_4 + TrainState_2_1_39 + TrainState_1_2_10 + TrainState_1_2_11 + TrainState_1_2_12 + TrainState_1_2_13 + TrainState_1_2_14 + TrainState_1_2_15 + TrainState_1_2_16 + TrainState_1_2_17 + TrainState_1_2_18 + TrainState_1_2_19 + TrainState_1_2_20 + TrainState_1_2_21 + TrainState_1_2_22 + TrainState_1_2_23 + TrainState_1_2_24 + TrainState_1_2_25 + TrainState_1_2_26 + TrainState_1_2_27 + TrainState_1_2_28 + TrainState_1_2_29 + TrainState_1_2_30 + TrainState_1_2_31 + TrainState_1_2_32 + TrainState_1_2_33 + TrainState_1_2_34 + TrainState_1_2_35 + TrainState_1_2_36 + TrainState_1_2_37 + TrainState_1_2_38 + TrainState_1_2_39 + TrainState_2_2_4 + TrainState_2_2_5 + TrainState_2_2_6 + TrainState_2_2_7 + TrainState_2_2_8 + TrainState_2_2_9 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_3_7 + TrainState_2_3_8 + TrainState_2_3_9 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_4_3_10 + TrainState_4_3_11 + TrainState_4_3_12 + TrainState_4_3_13 + TrainState_4_3_14 + TrainState_4_3_15 + TrainState_4_3_16 + TrainState_4_3_17 + TrainState_4_3_18 + TrainState_4_3_19 + TrainState_4_3_20 + TrainState_4_3_21 + TrainState_4_3_22 + TrainState_4_3_23 + TrainState_4_3_24 + TrainState_4_3_25 + TrainState_4_3_26 + TrainState_4_3_27 + TrainState_4_3_28 + TrainState_4_3_29 + TrainState_4_3_30 + TrainState_4_3_31 + TrainState_4_3_32 + TrainState_4_3_33 + TrainState_4_3_34 + TrainState_4_3_35 + TrainState_4_3_36 + TrainState_4_3_37 + TrainState_2_1_30 + TrainState_2_1_29 + TrainState_2_1_28 + TrainState_2_1_27 + TrainState_2_1_26 + TrainState_2_1_25 + TrainState_2_1_24 + TrainState_2_1_23 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_2_1_22 + TrainState_2_1_21 + TrainState_2_1_20 + TrainState_2_1_19 + TrainState_2_1_18 + TrainState_2_1_17 + TrainState_2_1_16 + TrainState_2_1_15 + TrainState_2_1_14 + TrainState_2_1_13 + TrainState_2_1_12 + TrainState_4_2_10 + TrainState_4_2_11 + TrainState_4_2_12 + TrainState_4_2_13 + TrainState_4_2_14 + TrainState_4_2_15 + TrainState_4_2_16 + TrainState_4_2_17 + TrainState_4_2_18 + TrainState_4_2_19 + TrainState_4_2_20 + TrainState_4_2_21 + TrainState_4_2_22 + TrainState_4_2_23 + TrainState_4_2_24 + TrainState_4_2_25 + TrainState_4_2_26 + TrainState_4_2_27 + TrainState_4_2_28 + TrainState_4_2_29 + TrainState_4_2_30 + TrainState_4_2_31 + TrainState_4_2_32 + TrainState_4_2_33 + TrainState_4_2_34 + TrainState_4_2_35 + TrainState_4_2_36 + TrainState_4_2_37 + TrainState_4_2_38 + TrainState_4_2_39 + TrainState_2_1_11 + TrainState_2_1_10 + TrainState_4_1_9 + TrainState_4_1_8 + TrainState_4_1_7 + TrainState_4_1_6 + TrainState_4_1_5 + TrainState_4_1_4 + TrainState_3_0_0 + TrainState_4_1_3 + TrainState_2_4_11 + TrainState_2_4_12 + TrainState_2_4_13 + TrainState_2_4_14 + TrainState_2_4_15 + TrainState_2_4_16 + TrainState_2_4_17 + TrainState_2_4_18 + TrainState_2_4_19 + TrainState_2_4_20 + TrainState_2_4_21 + TrainState_2_4_22 + TrainState_2_4_23 + TrainState_2_4_24 + TrainState_2_4_25 + TrainState_2_4_26 + TrainState_2_4_27 + TrainState_2_4_28 + TrainState_2_4_29 + TrainState_2_4_30 + TrainState_2_4_31 + TrainState_2_4_32 + TrainState_2_4_33 + TrainState_2_4_34 + TrainState_4_1_2 + TrainState_4_1_1 + TrainState_3_1_1 + TrainState_3_1_2 + TrainState_3_1_3 + TrainState_3_1_4 + TrainState_3_1_5 + TrainState_3_1_6 + TrainState_3_1_7 + TrainState_3_1_8 + TrainState_3_1_9 + TrainState_5_3_37 + TrainState_5_3_36 + TrainState_5_3_35 + TrainState_3_2_4 + TrainState_3_2_5 + TrainState_3_2_6 + TrainState_3_2_7 + TrainState_3_2_8 + TrainState_3_2_9 + TrainState_4_1_10 + TrainState_4_1_11 + TrainState_4_1_12 + TrainState_4_1_13 + TrainState_4_1_14 + TrainState_4_1_15 + TrainState_4_1_16 + TrainState_4_1_17 + TrainState_4_1_18 + TrainState_4_1_19 + TrainState_4_1_20 + TrainState_4_1_21 + TrainState_4_1_22 + TrainState_4_1_23 + TrainState_4_1_24 + TrainState_4_1_25 + TrainState_4_1_26 + TrainState_4_1_27 + TrainState_4_1_28 + TrainState_4_1_29 + TrainState_4_1_30 + TrainState_4_1_31 + TrainState_4_1_32 + TrainState_4_1_33 + TrainState_4_1_34 + TrainState_4_1_35 + TrainState_4_1_36 + TrainState_4_1_37 + TrainState_4_1_38 + TrainState_4_1_39 + TrainState_4_1_40 + TrainState_5_3_34 + TrainState_5_3_33 + TrainState_5_3_32 + TrainState_5_3_31 + TrainState_3_3_7 + TrainState_3_3_8 + TrainState_3_3_9 + TrainState_5_3_30 + TrainState_5_3_29 + TrainState_5_3_28 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_5_3_27 + TrainState_5_3_26 + TrainState_5_3_25 + TrainState_5_3_24 + TrainState_5_3_23 + TrainState_5_3_22 + TrainState_5_3_21 + TrainState_5_3_20 + TrainState_5_3_19 + TrainState_5_3_18 + TrainState_5_3_17 + TrainState_5_3_16 + TrainState_5_4_11 + TrainState_5_4_12 + TrainState_5_4_13 + TrainState_5_4_14 + TrainState_5_4_15 + TrainState_5_4_16 + TrainState_5_4_17 + TrainState_5_4_18 + TrainState_5_4_19 + TrainState_5_4_20 + TrainState_5_4_21 + TrainState_5_4_22 + TrainState_5_4_23 + TrainState_5_4_24 + TrainState_5_4_25 + TrainState_5_4_26 + TrainState_5_4_27 + TrainState_5_4_28 + TrainState_5_4_29 + TrainState_5_4_30 + TrainState_5_4_31 + TrainState_5_4_32 + TrainState_5_4_33 + TrainState_5_4_34 + TrainState_5_3_15 + TrainState_5_3_14 + TrainState_5_3_13 + TrainState_5_3_12 + TrainState_5_3_11 + TrainState_5_3_10 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_4_0_0 + TrainState_1_1_40 + TrainState_2_1_40 + TrainState_4_3_9 + TrainState_3_4_34 + TrainState_5_1_40)
lola: after: (31 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= DistStation_16)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_20_4_16 <= DistStation_33)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_36_3_33 <= TrainState_2_3_24)
lola: after: (1 <= TrainState_2_3_24)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_15_3_12 <= TrainState_4_4_20)
lola: after: (1 <= TrainState_4_4_20)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_15_3_12 <= TrainState_4_4_20)
lola: after: (1 <= TrainState_4_4_20)
lola: place invariant simplifies atomic proposition
lola: before: (TrainState_4_2_27 <= NewDistTable_30_5_25)
lola: after: (TrainState_4_2_27 <= 1)
lola: LP says that atomic proposition is always true: (TrainState_4_2_27 <= 1)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_6 <= StopTable_1_1)
lola: after: (0 <= 0)
lola: LP says that atomic proposition is always false: (3 <= TrainState_2_1_30)
lola: LP says that atomic proposition is always false: (3 <= TrainState_2_1_30)
lola: LP says that atomic proposition is always false: (3 <= TrainState_2_1_30)
lola: LP says that atomic proposition is always false: (3 <= TrainState_2_1_30)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_36_3_33 <= DistStation_21)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (TrainState_5_3_32 <= NewDistTable_33_4_29)
lola: after: (TrainState_5_3_32 <= 1)
lola: LP says that atomic proposition is always true: (TrainState_5_3_32 <= 1)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_38 <= NewDistTable_14_1_13)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (StopTable_3_6 <= DistStation_23)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_8 <= TrainState_4_4_14)
lola: after: (1 <= TrainState_4_4_14)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_15 <= StopTable_2_3)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (DistStation_9 <= NewDistTable_33_5_28)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (TrainState_2_4_14 <= NewDistTable_34_3_31)
lola: after: (TrainState_2_4_14 <= 1)
lola: LP says that atomic proposition is always true: (TrainState_2_4_14 <= 1)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_18_2_16 <= TrainState_1_1_6)
lola: after: (1 <= TrainState_1_1_6)
lola: LP says that atomic proposition is always false: (2 <= TrainState_4_1_37)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_23_5_18 <= StopTable_5_15)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_27_1_26 <= StopTable_3_6)
lola: after: (0 <= 0)
lola: A (NOT(F (X ((0 <= 4))))) : A ((X (((0 <= 133) AND NOT(F ((0 <= 31))))) OR G (X (NOT(((0 <= 5) AND X (X ((133 <= 0))))))))) : A (((0 <= 133) U X (X ((G ((0 <= 3)) U F ((0 <= 2))))))) : A (G (((164 <= 0) OR X (F (NOT(((0 <= 168) U (0 <= 4)))))))) : A (X (((4 <= 0) OR F (G ((0 <= 164)))))) : A ((((0 <= 2) U X (NOT(F ((0 <= 2))))) AND G ((((0 <= 2) U (0 <= 169)) OR NOT(X ((31 <= 0))))))) : A (X (X (NOT(X ((G (X ((0 <= 0))) AND ((0 <= 0) OR F (G ((0 <= 0)))))))))) : A (F ((G ((0 <= 164)) U (X ((0 <= 3)) OR F (()))))) : A (G ((F ((1 <= 0)) AND NOT((G ((0 <= 0)) OR X (G (NOT(F (NOT(F ((1 <= TrainState_5_4_14)))))))))))) : A ((X ((1 <= TrainState_2_3_24)) AND F (((1 <= TrainState_4_4_20) AND F (G ((1 <= TrainState_4_4_20))))))) : A (NOT(G (F ((2 <= TrainState_4_2_27))))) : A ((G ((0 <= 0)) OR X (((((3 <= TrainState_2_1_30) OR X ((3 <= TrainState_2_1_30))) OR F ((3 <= TrainState_2_1_30))) U NOT(X ((3 <= TrainState_2_1_30))))))) : A (((F ((0 <= 0)) OR (X (X (G (()))) U (1 <= TrainState_4_1_17))) U ((0 <= 0) U (1 <= TrainState_4_1_17)))) : A (X (((1 <= TrainState_4_4_14) OR G (X ((X ((0 <= 0)) U NOT(X ((0 <= 0))))))))) : A (((TrainState_2_4_14 <= 1) AND X (NOT(F (X (F ((1 <= TrainState_1_1_6)))))))) : A (G ((() U F ((0 <= 0)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:123
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:300
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:536
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:121
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (X ((1 <= TrainState_2_3_24))) AND A (F (((1 <= TrainState_4_4_20) AND F (G ((1 <= TrainState_4_4_20)))))))
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (((1 <= TrainState_4_4_20) AND F (G ((1 <= TrainState_4_4_20))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (((1 <= TrainState_4_4_20) AND F (G ((1 <= TrainState_4_4_20))))))
lola: processed formula length: 71
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 18 markings, 18 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 181 markings, 180 edges
lola: ========================================
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 181 markings, 180 edges
lola: ========================================
lola: subprocess 12 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((1 <= TrainState_4_4_14)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((1 <= TrainState_4_4_14)))
lola: processed formula length: 32
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 39 markings, 39 edges
lola: ========================================
lola: subprocess 13 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (G ((TrainState_1_1_6 <= 0)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G ((TrainState_1_1_6 <= 0)))))
lola: processed formula length: 39
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 85 markings, 90 edges
lola: ========================================
lola: subprocess 14 will run for 1782 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 163 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 181 markings, 180 edges
lola: ========================================
lola: subprocess 15 will run for 3565 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((1 <= TrainState_4_1_17)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (TrainState_4_1_17 <= 0)
lola: processed formula length: 24
lola: 165 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 17 markings, 17 edges
lola: ========================================
lola: RESULT
lola:
SUMMARY: no yes yes no yes no no yes no no yes yes no no no yes
lola:
preliminary result: no yes yes no yes no no yes no no yes yes no no no yes
lola: memory consumption: 43716 KB
lola: time consumption: 5 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished
BK_STOP 1589298843154
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="BART-PT-005"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2019"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-4028"
echo " Executing tool win2019"
echo " Input is BART-PT-005, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r030-oct2-158897741100019"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/BART-PT-005.tgz
mv BART-PT-005 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;