About the Execution of ITS-Tools.M for HypertorusGrid-PT-d5k3p2b10
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15919.180 | 3600000.00 | 11508532.00 | 1554.00 | [undef] | Time out reached |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/local/x2003239/mcc2019-input.r195-csrt-155246555000818.qcow2', fmt=qcow2 size=4294967296 backing_file=/local/x2003239/mcc2019-input.qcow2 encryption=off cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
......................................................................................................
=====================================================================
Generated by BenchKit 2-3954
Executing tool itstoolsm
Input is HypertorusGrid-PT-d5k3p2b10, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r195-csrt-155246555000818
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 14M
-rw-r--r-- 1 mcc users 4.7K Feb 11 05:53 CTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Feb 11 05:53 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.0K Feb 7 05:09 CTLFireability.txt
-rw-r--r-- 1 mcc users 19K Feb 7 05:09 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.9K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 114 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 352 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.8K Feb 5 00:03 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K Feb 5 00:03 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.5K Feb 4 22:36 LTLFireability.txt
-rw-r--r-- 1 mcc users 9.5K Feb 4 22:36 LTLFireability.xml
-rw-r--r-- 1 mcc users 5.8K Feb 3 11:46 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 24K Feb 3 11:46 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 4.2K Jan 31 06:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 18K Jan 31 06:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 2.0K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.0K Feb 4 22:21 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Jan 29 09:34 equiv_col
-rw-r--r-- 1 mcc users 10 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 6 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 0 Jan 29 09:34 model-fix.log
-rwxr-xr-x 1 mcc users 14M Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-00
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-01
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-02
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-03
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-04
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-05
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-06
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-07
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-08
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-09
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-10
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-11
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-12
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-13
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-14
FORMULA_NAME HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1553765187369
Working with output stream class java.io.PrintStream
Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O2, model.c], workingDir=/home/mcc/execution]
Running greatSPN : CommandLine [args=[/home/mcc/BenchKit//greatspn//bin/pinvar, /home/mcc/execution/gspn], workingDir=/home/mcc/execution]
Run of greatSPN captured in /home/mcc/execution/outPut.txt
Running greatSPN : CommandLine [args=[/home/mcc/BenchKit//greatspn//bin/RGMEDD2, /home/mcc/execution/gspn, -META, -varord-only], workingDir=/home/mcc/execution]
Run of greatSPN captured in /home/mcc/execution/outPut.txt
Using order generated by GreatSPN with heuristic : META
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201903251645/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness, --load-order, /home/mcc/execution/model.ord], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201903251645/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness --load-order /home/mcc/execution/model.ord
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
// Phase 1: matrix 24300 rows 7533 cols
Successfully loaded order from file /home/mcc/execution/model.ord
Loading property file ReachabilityCardinality.prop.
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-00 with value :(pb_d5_n2_1_3_2_1_2>=1)
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-01 with value :((((pb_d3_n2_3_1_3_2_3<=po_d4_n1_1_2_1_2_1)||(pb_d2_n1_3_2_1_3_3<=po_d4_n1_1_3_1_2_2))||(!(pb_d5_n2_3_1_2_3_1<=pol_d5_n1_2_1_2_1_3)))||(((pil_d3_n1_3_2_2_1_2<=pb_d2_n2_1_1_1_3_2)||(pil_d2_n1_2_3_1_1_2>=3))||(pil_d3_n1_3_1_3_1_1<=pb_d2_n1_2_1_3_2_3)))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-02 with value :(pb_d2_n2_2_2_2_2_1>=1)
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-03 with value :(!(((pi_d2_n1_1_1_1_3_3<=pb_d2_n1_2_2_1_2_2)&&(po_d4_n1_2_2_2_2_3<=pol_d2_n1_3_2_1_2_1))||((pi_d5_n1_3_1_2_1_3<=pol_d5_n1_1_1_1_2_1)&&(pb_d2_n1_1_1_2_1_2<=pil_d4_n1_3_2_3_3_1))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-04 with value :((pol_d2_n1_3_2_2_2_3>=1)&&(((pol_d2_n1_2_2_2_2_2<=pol_d4_n1_3_1_2_1_1)&&(pb_d3_n2_2_1_3_1_1>=3))||((pol_d2_n1_1_1_2_2_2<=pol_d3_n1_3_3_1_1_1)&&(pol_d3_n1_1_1_1_2_1>=2))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-05 with value :(!(pb_d4_n2_1_3_1_3_2>=2))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-06 with value :((pol_d2_n1_3_2_2_3_1<=pil_d1_n1_1_2_1_3_3)||(po_d5_n1_3_3_1_2_2<=pi_d4_n1_3_2_1_1_2))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-07 with value :((((pi_d5_n1_3_1_1_1_2<=pi_d4_n1_2_1_1_3_1)||(po_d3_n1_2_1_3_2_3<=pol_d5_n1_1_1_3_1_3))||(pol_d2_n1_1_3_2_3_3>=3))||(!((pb_d1_n2_1_3_3_2_2<=po_d3_n1_1_2_1_1_2)||(pi_d5_n1_2_3_1_1_2<=pb_d1_n2_2_3_3_2_3))))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-08 with value :(((!(pb_d2_n2_1_3_3_2_3<=pi_d4_n1_3_3_2_2_3))||(!(po_d2_n1_2_1_2_3_2>=1)))||(((pol_d1_n1_1_1_2_3_2<=pb_d1_n1_2_3_1_3_1)||(pbl_1_2_2_2_2<=pi_d2_n1_2_3_2_2_1))||(pol_d1_n1_2_1_2_1_1<=pb_d4_n1_1_2_2_3_2)))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-09 with value :(((pil_d5_n1_1_3_3_1_2>=3)&&((po_d5_n1_2_1_3_1_3>=2)&&(pol_d5_n1_1_2_2_1_3<=pi_d4_n1_1_3_1_1_3)))||((!(pb_d2_n2_2_2_2_2_2<=pb_d1_n2_1_3_3_1_2))&&((pb_d4_n2_3_2_2_1_1<=po_d2_n1_2_3_1_1_1)&&(pol_d3_n1_3_2_1_1_2>=2))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-10 with value :((!((pi_d2_n1_1_2_1_3_2<=pil_d2_n1_3_3_2_1_3)||(pi_d3_n1_2_1_3_1_3<=pil_d4_n1_3_2_3_3_3)))&&(((pb_d4_n1_3_2_3_2_1>=3)&&(pol_d2_n1_1_3_1_2_2<=pil_d4_n1_2_2_3_1_2))&&((po_d1_n1_1_2_3_2_2>=3)||(pi_d2_n1_1_1_1_3_1<=pb_d3_n1_2_2_1_1_1))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-11 with value :(!(((po_d2_n1_1_1_2_2_1>=2)||(pb_d5_n2_1_3_1_3_3>=1))||((pi_d4_n1_2_3_3_2_1>=2)||(po_d2_n1_3_1_3_2_2<=pil_d5_n1_3_3_2_2_2))))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-12 with value :(pb_d5_n2_2_3_2_3_2<=pb_d5_n2_3_1_1_3_1)
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-13 with value :((!((pi_d1_n1_2_2_3_1_3>=2)&&(pol_d1_n1_3_3_1_2_2>=2)))||(((pb_d3_n2_3_2_2_1_2<=pol_d4_n1_3_3_1_2_1)&&(pil_d1_n1_3_1_3_2_3>=2))||(pb_d3_n1_2_3_3_2_2>=1)))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-14 with value :((((pil_d1_n1_2_3_2_2_2>=2)&&(pil_d3_n1_1_1_1_3_3<=pi_d1_n1_3_1_1_3_2))||(!(po_d2_n1_2_1_1_3_2<=pb_d1_n2_2_1_2_2_2)))||((!(pil_d5_n1_1_1_1_2_2<=pb_d3_n1_2_3_2_3_1))&&(!(pi_d3_n1_2_1_2_3_2<=pil_d5_n1_1_1_2_1_3))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-15 with value :((((pil_d1_n1_1_2_3_2_2<=po_d4_n1_1_1_3_3_2)&&(po_d2_n1_3_3_3_2_1>=1))||((pb_d2_n2_2_2_2_1_1<=po_d3_n1_3_3_2_2_2)||(pi_d4_n1_3_3_1_1_3<=pb_d2_n2_2_3_1_3_2)))&&(!(pil_d4_n1_1_1_2_2_3<=pb_d3_n2_1_3_3_3_3)))
invariant :pi_d1_n1_2_1_3_2_2 + pil_d1_n1_2_1_3_2_2 = 1
invariant :po_d2_n1_3_2_2_2_2 + pol_d2_n1_3_2_2_2_2 = 1
invariant :po_d2_n1_2_2_1_2_2 + pol_d2_n1_2_2_1_2_2 = 1
invariant :po_d1_n1_1_1_2_3_2 + pol_d1_n1_1_1_2_3_2 = 1
invariant :po_d3_n1_1_3_1_1_2 + pol_d3_n1_1_3_1_1_2 = 1
invariant :po_d3_n1_2_2_3_1_1 + pol_d3_n1_2_2_3_1_1 = 1
invariant :po_d2_n1_2_1_3_3_1 + pol_d2_n1_2_1_3_3_1 = 1
invariant :pi_d2_n1_3_3_2_2_1 + pil_d2_n1_3_3_2_2_1 = 1
invariant :po_d5_n1_3_3_2_3_3 + pol_d5_n1_3_3_2_3_3 = 1
invariant :po_d3_n1_3_3_3_1_2 + pol_d3_n1_3_3_3_1_2 = 1
invariant :pi_d3_n1_2_1_2_3_1 + pil_d3_n1_2_1_2_3_1 = 1
invariant :pb_d1_n1_1_1_1_3_3 + pb_d1_n2_1_1_1_3_3 + pb_d2_n1_1_1_1_3_3 + pb_d2_n2_1_1_1_3_3 + pb_d3_n1_1_1_1_3_3 + pb_d3_n2_1_1_1_3_3 + pb_d4_n1_1_1_1_3_3 + pb_d4_n2_1_1_1_3_3 + pb_d5_n1_1_1_1_3_3 + pb_d5_n2_1_1_1_3_3 + pbl_1_1_1_3_3 = 30
invariant :pi_d1_n1_1_2_1_1_3 + pil_d1_n1_1_2_1_1_3 = 1
invariant :pb_d1_n1_3_2_3_3_3 + pb_d1_n2_3_2_3_3_3 + pb_d2_n1_3_2_3_3_3 + pb_d2_n2_3_2_3_3_3 + pb_d3_n1_3_2_3_3_3 + pb_d3_n2_3_2_3_3_3 + pb_d4_n1_3_2_3_3_3 + pb_d4_n2_3_2_3_3_3 + pb_d5_n1_3_2_3_3_3 + pb_d5_n2_3_2_3_3_3 + pbl_3_2_3_3_3 = 30
invariant :po_d1_n1_3_3_2_2_2 + pol_d1_n1_3_3_2_2_2 = 1
invariant :pi_d5_n1_2_1_3_3_1 + pil_d5_n1_2_1_3_3_1 = 1
invariant :po_d1_n1_3_1_1_3_2 + pol_d1_n1_3_1_1_3_2 = 1
invariant :pi_d5_n1_3_2_1_3_2 + pil_d5_n1_3_2_1_3_2 = 1
invariant :pi_d4_n1_1_3_2_3_1 + pil_d4_n1_1_3_2_3_1 = 1
invariant :po_d1_n1_1_1_1_2_2 + pol_d1_n1_1_1_1_2_2 = 1
invariant :po_d5_n1_2_3_3_2_1 + pol_d5_n1_2_3_3_2_1 = 1
invariant :po_d5_n1_3_1_3_1_3 + pol_d5_n1_3_1_3_1_3 = 1
invariant :po_d3_n1_1_1_3_1_1 + pol_d3_n1_1_1_3_1_1 = 1
invariant :pi_d5_n1_2_1_2_2_1 + pil_d5_n1_2_1_2_2_1 = 1
invariant :pi_d2_n1_3_2_2_2_1 + pil_d2_n1_3_2_2_2_1 = 1
invariant :pi_d2_n1_1_3_1_1_3 + pil_d2_n1_1_3_1_1_3 = 1
invariant :pi_d4_n1_3_2_3_3_1 + pil_d4_n1_3_2_3_3_1 = 1
invariant :pi_d1_n1_1_1_3_2_3 + pil_d1_n1_1_1_3_2_3 = 1
invariant :pi_d1_n1_3_2_2_1_2 + pil_d1_n1_3_2_2_1_2 = 1
invariant :pi_d3_n1_3_1_3_1_3 + pil_d3_n1_3_1_3_1_3 = 1
invariant :pi_d5_n1_3_1_3_3_1 + pil_d5_n1_3_1_3_3_1 = 1
invariant :pb_d1_n1_1_3_2_1_2 + pb_d1_n2_1_3_2_1_2 + pb_d2_n1_1_3_2_1_2 + pb_d2_n2_1_3_2_1_2 + pb_d3_n1_1_3_2_1_2 + pb_d3_n2_1_3_2_1_2 + pb_d4_n1_1_3_2_1_2 + pb_d4_n2_1_3_2_1_2 + pb_d5_n1_1_3_2_1_2 + pb_d5_n2_1_3_2_1_2 + pbl_1_3_2_1_2 = 30
invariant :pi_d5_n1_1_3_2_2_3 + pil_d5_n1_1_3_2_2_3 = 1
invariant :po_d5_n1_2_2_3_1_3 + pol_d5_n1_2_2_3_1_3 = 1
invariant :po_d3_n1_1_3_1_3_2 + pol_d3_n1_1_3_1_3_2 = 1
invariant :po_d4_n1_2_2_1_2_3 + pol_d4_n1_2_2_1_2_3 = 1
invariant :pi_d1_n1_3_2_1_1_3 + pil_d1_n1_3_2_1_1_3 = 1
invariant :po_d3_n1_3_3_1_3_1 + pol_d3_n1_3_3_1_3_1 = 1
invariant :pi_d4_n1_2_3_3_1_1 + pil_d4_n1_2_3_3_1_1 = 1
invariant :po_d1_n1_2_1_3_2_1 + pol_d1_n1_2_1_3_2_1 = 1
invariant :pi_d4_n1_1_1_2_2_3 + pil_d4_n1_1_1_2_2_3 = 1
invariant :pi_d2_n1_1_3_1_3_1 + pil_d2_n1_1_3_1_3_1 = 1
invariant :pi_d5_n1_3_2_3_1_3 + pil_d5_n1_3_2_3_1_3 = 1
invariant :pi_d4_n1_3_1_3_2_1 + pil_d4_n1_3_1_3_2_1 = 1
invariant :po_d5_n1_2_3_2_2_1 + pol_d5_n1_2_3_2_2_1 = 1
invariant :po_d3_n1_3_2_2_2_3 + pol_d3_n1_3_2_2_2_3 = 1
invariant :pi_d4_n1_2_2_2_3_1 + pil_d4_n1_2_2_2_3_1 = 1
invariant :po_d2_n1_3_3_2_2_1 + pol_d2_n1_3_3_2_2_1 = 1
invariant :po_d5_n1_3_2_1_1_1 + pol_d5_n1_3_2_1_1_1 = 1
invariant :pi_d2_n1_2_3_2_1_2 + pil_d2_n1_2_3_2_1_2 = 1
invariant :pi_d5_n1_2_1_2_3_1 + pil_d5_n1_2_1_2_3_1 = 1
invariant :pi_d2_n1_3_2_2_3_1 + pil_d2_n1_3_2_2_3_1 = 1
invariant :pi_d4_n1_1_3_2_3_2 + pil_d4_n1_1_3_2_3_2 = 1
invariant :pi_d5_n1_1_3_2_3_1 + pil_d5_n1_1_3_2_3_1 = 1
invariant :pi_d1_n1_1_3_1_3_1 + pil_d1_n1_1_3_1_3_1 = 1
invariant :po_d4_n1_2_2_3_1_1 + pol_d4_n1_2_2_3_1_1 = 1
invariant :po_d4_n1_2_3_3_1_3 + pol_d4_n1_2_3_3_1_3 = 1
invariant :pi_d1_n1_3_3_2_1_2 + pil_d1_n1_3_3_2_1_2 = 1
invariant :pb_d1_n1_2_2_1_3_1 + pb_d1_n2_2_2_1_3_1 + pb_d2_n1_2_2_1_3_1 + pb_d2_n2_2_2_1_3_1 + pb_d3_n1_2_2_1_3_1 + pb_d3_n2_2_2_1_3_1 + pb_d4_n1_2_2_1_3_1 + pb_d4_n2_2_2_1_3_1 + pb_d5_n1_2_2_1_3_1 + pb_d5_n2_2_2_1_3_1 + pbl_2_2_1_3_1 = 30
invariant :pi_d1_n1_2_3_2_2_2 + pil_d1_n1_2_3_2_2_2 = 1
invariant :pi_d3_n1_1_2_2_1_2 + pil_d3_n1_1_2_2_1_2 = 1
invariant :pi_d1_n1_3_1_3_2_2 + pil_d1_n1_3_1_3_2_2 = 1
invariant :pb_d1_n1_1_2_1_3_1 + pb_d1_n2_1_2_1_3_1 + pb_d2_n1_1_2_1_3_1 + pb_d2_n2_1_2_1_3_1 + pb_d3_n1_1_2_1_3_1 + pb_d3_n2_1_2_1_3_1 + pb_d4_n1_1_2_1_3_1 + pb_d4_n2_1_2_1_3_1 + pb_d5_n1_1_2_1_3_1 + pb_d5_n2_1_2_1_3_1 + pbl_1_2_1_3_1 = 30
invariant :pi_d4_n1_3_2_2_2_2 + pil_d4_n1_3_2_2_2_2 = 1
invariant :pi_d3_n1_3_3_2_2_2 + pil_d3_n1_3_3_2_2_2 = 1
invariant :pi_d4_n1_1_3_1_3_1 + pil_d4_n1_1_3_1_3_1 = 1
invariant :po_d1_n1_1_3_1_3_1 + pol_d1_n1_1_3_1_3_1 = 1
invariant :po_d3_n1_2_1_3_1_3 + pol_d3_n1_2_1_3_1_3 = 1
invariant :po_d5_n1_2_1_1_1_2 + pol_d5_n1_2_1_1_1_2 = 1
invariant :pi_d5_n1_2_2_1_1_2 + pil_d5_n1_2_2_1_1_2 = 1
invariant :po_d1_n1_3_1_3_2_3 + pol_d1_n1_3_1_3_2_3 = 1
invariant :po_d3_n1_2_2_2_1_3 + pol_d3_n1_2_2_2_1_3 = 1
invariant :pi_d3_n1_3_1_1_1_1 + pil_d3_n1_3_1_1_1_1 = 1
invariant :po_d4_n1_3_2_3_1_3 + pol_d4_n1_3_2_3_1_3 = 1
invariant :po_d5_n1_2_2_1_3_2 + pol_d5_n1_2_2_1_3_2 = 1
invariant :pb_d1_n1_3_1_1_3_1 + pb_d1_n2_3_1_1_3_1 + pb_d2_n1_3_1_1_3_1 + pb_d2_n2_3_1_1_3_1 + pb_d3_n1_3_1_1_3_1 + pb_d3_n2_3_1_1_3_1 + pb_d4_n1_3_1_1_3_1 + pb_d4_n2_3_1_1_3_1 + pb_d5_n1_3_1_1_3_1 + pb_d5_n2_3_1_1_3_1 + pbl_3_1_1_3_1 = 30
invariant :pi_d1_n1_2_2_3_3_2 + pil_d1_n1_2_2_3_3_2 = 1
invariant :pi_d4_n1_2_2_3_3_3 + pil_d4_n1_2_2_3_3_3 = 1
invariant :pi_d3_n1_3_2_2_3_1 + pil_d3_n1_3_2_2_3_1 = 1
invariant :pi_d1_n1_3_1_1_3_3 + pil_d1_n1_3_1_1_3_3 = 1
invariant :pi_d5_n1_2_2_1_2_3 + pil_d5_n1_2_2_1_2_3 = 1
invariant :po_d2_n1_2_2_3_3_3 + pol_d2_n1_2_2_3_3_3 = 1
invariant :po_d4_n1_1_2_1_1_2 + pol_d4_n1_1_2_1_1_2 = 1
invariant :po_d5_n1_2_1_1_2_2 + pol_d5_n1_2_1_1_2_2 = 1
invariant :po_d4_n1_3_3_1_2_1 + pol_d4_n1_3_3_1_2_1 = 1
invariant :pi_d4_n1_1_1_3_3_3 + pil_d4_n1_1_1_3_3_3 = 1
invariant :po_d1_n1_2_2_3_1_1 + pol_d1_n1_2_2_3_1_1 = 1
invariant :pb_d1_n1_2_2_2_3_2 + pb_d1_n2_2_2_2_3_2 + pb_d2_n1_2_2_2_3_2 + pb_d2_n2_2_2_2_3_2 + pb_d3_n1_2_2_2_3_2 + pb_d3_n2_2_2_2_3_2 + pb_d4_n1_2_2_2_3_2 + pb_d4_n2_2_2_2_3_2 + pb_d5_n1_2_2_2_3_2 + pb_d5_n2_2_2_2_3_2 + pbl_2_2_2_3_2 = 30
invariant :pi_d1_n1_1_1_3_3_2 + pil_d1_n1_1_1_3_3_2 = 1
invariant :pi_d3_n1_1_2_3_2_3 + pil_d3_n1_1_2_3_2_3 = 1
invariant :po_d4_n1_1_2_3_3_3 + pol_d4_n1_1_2_3_3_3 = 1
invariant :po_d2_n1_1_2_2_2_1 + pol_d2_n1_1_2_2_2_1 = 1
invariant :pi_d3_n1_3_2_1_3_3 + pil_d3_n1_3_2_1_3_3 = 1
invariant :po_d1_n1_1_2_1_3_3 + pol_d1_n1_1_2_1_3_3 = 1
invariant :pi_d5_n1_1_1_3_2_3 + pil_d5_n1_1_1_3_2_3 = 1
invariant :pi_d2_n1_2_3_2_1_1 + pil_d2_n1_2_3_2_1_1 = 1
invariant :po_d3_n1_3_3_3_2_1 + pol_d3_n1_3_3_3_2_1 = 1
invariant :po_d2_n1_3_1_3_3_2 + pol_d2_n1_3_1_3_3_2 = 1
invariant :pi_d2_n1_3_2_2_2_3 + pil_d2_n1_3_2_2_2_3 = 1
invariant :po_d3_n1_3_2_2_3_2 + pol_d3_n1_3_2_2_3_2 = 1
invariant :po_d2_n1_2_2_2_1_1 + pol_d2_n1_2_2_2_1_1 = 1
invariant :pi_d5_n1_2_1_2_2_3 + pil_d5_n1_2_1_2_2_3 = 1
invariant :po_d1_n1_2_3_1_2_1 + pol_d1_n1_2_3_1_2_1 = 1
invariant :pb_d1_n1_3_1_3_1_3 + pb_d1_n2_3_1_3_1_3 + pb_d2_n1_3_1_3_1_3 + pb_d2_n2_3_1_3_1_3 + pb_d3_n1_3_1_3_1_3 + pb_d3_n2_3_1_3_1_3 + pb_d4_n1_3_1_3_1_3 + pb_d4_n2_3_1_3_1_3 + pb_d5_n1_3_1_3_1_3 + pb_d5_n2_3_1_3_1_3 + pbl_3_1_3_1_3 = 30
invariant :pi_d5_n1_3_1_1_2_1 + pil_d5_n1_3_1_1_2_1 = 1
invariant :pi_d2_n1_3_1_1_2_3 + pil_d2_n1_3_1_1_2_3 = 1
invariant :pi_d2_n1_1_1_2_3_2 + pil_d2_n1_1_1_2_3_2 = 1
invariant :pi_d2_n1_1_2_1_1_3 + pil_d2_n1_1_2_1_1_3 = 1
invariant :pb_d1_n1_1_3_3_2_3 + pb_d1_n2_1_3_3_2_3 + pb_d2_n1_1_3_3_2_3 + pb_d2_n2_1_3_3_2_3 + pb_d3_n1_1_3_3_2_3 + pb_d3_n2_1_3_3_2_3 + pb_d4_n1_1_3_3_2_3 + pb_d4_n2_1_3_3_2_3 + pb_d5_n1_1_3_3_2_3 + pb_d5_n2_1_3_3_2_3 + pbl_1_3_3_2_3 = 30
invariant :pi_d2_n1_2_1_1_2_2 + pil_d2_n1_2_1_1_2_2 = 1
invariant :po_d2_n1_1_2_3_1_3 + pol_d2_n1_1_2_3_1_3 = 1
invariant :pi_d1_n1_2_2_2_3_2 + pil_d1_n1_2_2_2_3_2 = 1
invariant :po_d4_n1_3_2_3_2_3 + pol_d4_n1_3_2_3_2_3 = 1
invariant :pi_d5_n1_3_3_1_1_1 + pil_d5_n1_3_3_1_1_1 = 1
invariant :po_d2_n1_1_2_3_2_2 + pol_d2_n1_1_2_3_2_2 = 1
invariant :pi_d5_n1_2_3_1_3_2 + pil_d5_n1_2_3_1_3_2 = 1
invariant :po_d4_n1_3_1_1_2_1 + pol_d4_n1_3_1_1_2_1 = 1
invariant :pi_d1_n1_2_3_2_1_1 + pil_d1_n1_2_3_2_1_1 = 1
invariant :po_d5_n1_3_1_2_2_2 + pol_d5_n1_3_1_2_2_2 = 1
invariant :po_d1_n1_2_2_3_2_2 + pol_d1_n1_2_2_3_2_2 = 1
invariant :po_d3_n1_3_2_3_1_2 + pol_d3_n1_3_2_3_1_2 = 1
invariant :pi_d5_n1_1_3_1_2_3 + pil_d5_n1_1_3_1_2_3 = 1
invariant :po_d5_n1_1_1_2_1_1 + pol_d5_n1_1_1_2_1_1 = 1
invariant :po_d5_n1_1_2_2_3_2 + pol_d5_n1_1_2_2_3_2 = 1
invariant :po_d3_n1_1_2_1_2_3 + pol_d3_n1_1_2_1_2_3 = 1
invariant :pi_d1_n1_1_1_2_3_2 + pil_d1_n1_1_1_2_3_2 = 1
invariant :pi_d1_n1_2_1_1_3_3 + pil_d1_n1_2_1_1_3_3 = 1
invariant :po_d4_n1_2_2_2_3_3 + pol_d4_n1_2_2_2_3_3 = 1
invariant :pi_d4_n1_2_1_2_1_2 + pil_d4_n1_2_1_2_1_2 = 1
invariant :pi_d5_n1_3_3_2_1_1 + pil_d5_n1_3_3_2_1_1 = 1
invariant :pi_d5_n1_3_3_2_2_3 + pil_d5_n1_3_3_2_2_3 = 1
invariant :pi_d1_n1_3_3_1_3_3 + pil_d1_n1_3_3_1_3_3 = 1
invariant :pi_d1_n1_1_2_2_2_1 + pil_d1_n1_1_2_2_2_1 = 1
invariant :pi_d1_n1_2_2_3_2_2 + pil_d1_n1_2_2_3_2_2 = 1
invariant :po_d4_n1_1_1_2_2_3 + pol_d4_n1_1_1_2_2_3 = 1
invariant :po_d1_n1_3_1_2_1_3 + pol_d1_n1_3_1_2_1_3 = 1
invariant :po_d4_n1_3_2_1_2_3 + pol_d4_n1_3_2_1_2_3 = 1
invariant :po_d4_n1_2_1_2_2_2 + pol_d4_n1_2_1_2_2_2 = 1
invariant :pb_d1_n1_2_1_3_3_3 + pb_d1_n2_2_1_3_3_3 + pb_d2_n1_2_1_3_3_3 + pb_d2_n2_2_1_3_3_3 + pb_d3_n1_2_1_3_3_3 + pb_d3_n2_2_1_3_3_3 + pb_d4_n1_2_1_3_3_3 + pb_d4_n2_2_1_3_3_3 + pb_d5_n1_2_1_3_3_3 + pb_d5_n2_2_1_3_3_3 + pbl_2_1_3_3_3 = 30
invariant :pi_d2_n1_2_3_3_3_3 + pil_d2_n1_2_3_3_3_3 = 1
invariant :pb_d1_n1_3_3_3_3_2 + pb_d1_n2_3_3_3_3_2 + pb_d2_n1_3_3_3_3_2 + pb_d2_n2_3_3_3_3_2 + pb_d3_n1_3_3_3_3_2 + pb_d3_n2_3_3_3_3_2 + pb_d4_n1_3_3_3_3_2 + pb_d4_n2_3_3_3_3_2 + pb_d5_n1_3_3_3_3_2 + pb_d5_n2_3_3_3_3_2 + pbl_3_3_3_3_2 = 30
invariant :pi_d4_n1_2_1_2_2_1 + pil_d4_n1_2_1_2_2_1 = 1
invariant :pb_d1_n1_2_2_3_3_3 + pb_d1_n2_2_2_3_3_3 + pb_d2_n1_2_2_3_3_3 + pb_d2_n2_2_2_3_3_3 + pb_d3_n1_2_2_3_3_3 + pb_d3_n2_2_2_3_3_3 + pb_d4_n1_2_2_3_3_3 + pb_d4_n2_2_2_3_3_3 + pb_d5_n1_2_2_3_3_3 + pb_d5_n2_2_2_3_3_3 + pbl_2_2_3_3_3 = 30
invariant :pi_d4_n1_2_1_3_3_1 + pil_d4_n1_2_1_3_3_1 = 1
invariant :pb_d1_n1_3_3_1_1_1 + pb_d1_n2_3_3_1_1_1 + pb_d2_n1_3_3_1_1_1 + pb_d2_n2_3_3_1_1_1 + pb_d3_n1_3_3_1_1_1 + pb_d3_n2_3_3_1_1_1 + pb_d4_n1_3_3_1_1_1 + pb_d4_n2_3_3_1_1_1 + pb_d5_n1_3_3_1_1_1 + pb_d5_n2_3_3_1_1_1 + pbl_3_3_1_1_1 = 30
invariant :pi_d4_n1_3_2_1_1_1 + pil_d4_n1_3_2_1_1_1 = 1
invariant :po_d3_n1_1_3_2_3_3 + pol_d3_n1_1_3_2_3_3 = 1
invariant :pi_d1_n1_2_1_1_3_1 + pil_d1_n1_2_1_1_3_1 = 1
invariant :po_d3_n1_1_2_2_3_2 + pol_d3_n1_1_2_2_3_2 = 1
invariant :pi_d2_n1_1_2_1_3_1 + pil_d2_n1_1_2_1_3_1 = 1
invariant :pi_d4_n1_3_3_3_1_1 + pil_d4_n1_3_3_3_1_1 = 1
invariant :pi_d1_n1_2_2_1_2_3 + pil_d1_n1_2_2_1_2_3 = 1
invariant :pi_d4_n1_2_2_3_1_2 + pil_d4_n1_2_2_3_1_2 = 1
invariant :po_d2_n1_3_1_2_3_3 + pol_d2_n1_3_1_2_3_3 = 1
invariant :pi_d4_n1_1_3_1_1_2 + pil_d4_n1_1_3_1_1_2 = 1
invariant :pb_d1_n1_1_3_2_1_3 + pb_d1_n2_1_3_2_1_3 + pb_d2_n1_1_3_2_1_3 + pb_d2_n2_1_3_2_1_3 + pb_d3_n1_1_3_2_1_3 + pb_d3_n2_1_3_2_1_3 + pb_d4_n1_1_3_2_1_3 + pb_d4_n2_1_3_2_1_3 + pb_d5_n1_1_3_2_1_3 + pb_d5_n2_1_3_2_1_3 + pbl_1_3_2_1_3 = 30
invariant :po_d5_n1_2_2_1_1_3 + pol_d5_n1_2_2_1_1_3 = 1
invariant :pi_d4_n1_2_2_3_2_3 + pil_d4_n1_2_2_3_2_3 = 1
invariant :pi_d4_n1_3_3_2_3_1 + pil_d4_n1_3_3_2_3_1 = 1
invariant :pi_d1_n1_1_1_2_3_3 + pil_d1_n1_1_1_2_3_3 = 1
invariant :pi_d1_n1_2_2_3_2_3 + pil_d1_n1_2_2_3_2_3 = 1
invariant :pi_d3_n1_3_1_2_3_3 + pil_d3_n1_3_1_2_3_3 = 1
invariant :pi_d4_n1_3_3_3_3_2 + pil_d4_n1_3_3_3_3_2 = 1
invariant :pi_d3_n1_3_1_1_3_3 + pil_d3_n1_3_1_1_3_3 = 1
invariant :pi_d4_n1_1_2_1_1_3 + pil_d4_n1_1_2_1_1_3 = 1
invariant :pi_d3_n1_1_2_2_3_1 + pil_d3_n1_1_2_2_3_1 = 1
invariant :po_d5_n1_2_2_1_1_2 + pol_d5_n1_2_2_1_1_2 = 1
invariant :pi_d3_n1_3_3_1_1_2 + pil_d3_n1_3_3_1_1_2 = 1
invariant :pb_d1_n1_3_1_3_1_2 + pb_d1_n2_3_1_3_1_2 + pb_d2_n1_3_1_3_1_2 + pb_d2_n2_3_1_3_1_2 + pb_d3_n1_3_1_3_1_2 + pb_d3_n2_3_1_3_1_2 + pb_d4_n1_3_1_3_1_2 + pb_d4_n2_3_1_3_1_2 + pb_d5_n1_3_1_3_1_2 + pb_d5_n2_3_1_3_1_2 + pbl_3_1_3_1_2 = 30
invariant :pb_d1_n1_2_3_3_3_3 + pb_d1_n2_2_3_3_3_3 + pb_d2_n1_2_3_3_3_3 + pb_d2_n2_2_3_3_3_3 + pb_d3_n1_2_3_3_3_3 + pb_d3_n2_2_3_3_3_3 + pb_d4_n1_2_3_3_3_3 + pb_d4_n2_2_3_3_3_3 + pb_d5_n1_2_3_3_3_3 + pb_d5_n2_2_3_3_3_3 + pbl_2_3_3_3_3 = 30
invariant :pi_d2_n1_2_3_3_1_2 + pil_d2_n1_2_3_3_1_2 = 1
invariant :po_d1_n1_3_2_2_3_3 + pol_d1_n1_3_2_2_3_3 = 1
invariant :pi_d4_n1_2_1_3_1_1 + pil_d4_n1_2_1_3_1_1 = 1
invariant :po_d2_n1_1_1_3_2_1 + pol_d2_n1_1_1_3_2_1 = 1
invariant :pi_d2_n1_2_3_3_2_2 + pil_d2_n1_2_3_3_2_2 = 1
invariant :po_d3_n1_3_1_1_3_1 + pol_d3_n1_3_1_1_3_1 = 1
invariant :po_d5_n1_3_2_1_2_2 + pol_d5_n1_3_2_1_2_2 = 1
invariant :pi_d4_n1_2_2_2_1_2 + pil_d4_n1_2_2_2_1_2 = 1
invariant :pi_d4_n1_2_2_3_2_2 + pil_d4_n1_2_2_3_2_2 = 1
invariant :pi_d5_n1_3_1_2_1_1 + pil_d5_n1_3_1_2_1_1 = 1
invariant :pi_d3_n1_3_1_1_2_1 + pil_d3_n1_3_1_1_2_1 = 1
invariant :pi_d3_n1_1_2_3_3_3 + pil_d3_n1_1_2_3_3_3 = 1
invariant :pb_d1_n1_2_1_1_1_2 + pb_d1_n2_2_1_1_1_2 + pb_d2_n1_2_1_1_1_2 + pb_d2_n2_2_1_1_1_2 + pb_d3_n1_2_1_1_1_2 + pb_d3_n2_2_1_1_1_2 + pb_d4_n1_2_1_1_1_2 + pb_d4_n2_2_1_1_1_2 + pb_d5_n1_2_1_1_1_2 + pb_d5_n2_2_1_1_1_2 + pbl_2_1_1_1_2 = 30
invariant :po_d2_n1_1_1_1_2_1 + pol_d2_n1_1_1_1_2_1 = 1
invariant :po_d2_n1_2_2_3_2_1 + pol_d2_n1_2_2_3_2_1 = 1
invariant :pi_d2_n1_2_2_2_3_2 + pil_d2_n1_2_2_2_3_2 = 1
invariant :po_d3_n1_2_3_3_3_2 + pol_d3_n1_2_3_3_3_2 = 1
invariant :po_d5_n1_1_3_2_3_2 + pol_d5_n1_1_3_2_3_2 = 1
invariant :po_d3_n1_3_2_1_3_3 + pol_d3_n1_3_2_1_3_3 = 1
invariant :po_d3_n1_2_3_3_2_3 + pol_d3_n1_2_3_3_2_3 = 1
invariant :pi_d1_n1_2_2_1_2_2 + pil_d1_n1_2_2_1_2_2 = 1
invariant :po_d2_n1_1_3_2_3_1 + pol_d2_n1_1_3_2_3_1 = 1
invariant :po_d4_n1_1_1_3_3_1 + pol_d4_n1_1_1_3_3_1 = 1
invariant :pi_d2_n1_2_2_3_2_1 + pil_d2_n1_2_2_3_2_1 = 1
invariant :pb_d1_n1_2_2_3_1_3 + pb_d1_n2_2_2_3_1_3 + pb_d2_n1_2_2_3_1_3 + pb_d2_n2_2_2_3_1_3 + pb_d3_n1_2_2_3_1_3 + pb_d3_n2_2_2_3_1_3 + pb_d4_n1_2_2_3_1_3 + pb_d4_n2_2_2_3_1_3 + pb_d5_n1_2_2_3_1_3 + pb_d5_n2_2_2_3_1_3 + pbl_2_2_3_1_3 = 30
invariant :pb_d1_n1_1_1_2_1_3 + pb_d1_n2_1_1_2_1_3 + pb_d2_n1_1_1_2_1_3 + pb_d2_n2_1_1_2_1_3 + pb_d3_n1_1_1_2_1_3 + pb_d3_n2_1_1_2_1_3 + pb_d4_n1_1_1_2_1_3 + pb_d4_n2_1_1_2_1_3 + pb_d5_n1_1_1_2_1_3 + pb_d5_n2_1_1_2_1_3 + pbl_1_1_2_1_3 = 30
invariant :po_d4_n1_3_1_3_2_3 + pol_d4_n1_3_1_3_2_3 = 1
invariant :pi_d2_n1_2_1_2_1_2 + pil_d2_n1_2_1_2_1_2 = 1
invariant :pi_d1_n1_1_2_3_2_1 + pil_d1_n1_1_2_3_2_1 = 1
invariant :pb_d1_n1_1_3_2_3_1 + pb_d1_n2_1_3_2_3_1 + pb_d2_n1_1_3_2_3_1 + pb_d2_n2_1_3_2_3_1 + pb_d3_n1_1_3_2_3_1 + pb_d3_n2_1_3_2_3_1 + pb_d4_n1_1_3_2_3_1 + pb_d4_n2_1_3_2_3_1 + pb_d5_n1_1_3_2_3_1 + pb_d5_n2_1_3_2_3_1 + pbl_1_3_2_3_1 = 30
invariant :pi_d3_n1_1_2_2_2_1 + pil_d3_n1_1_2_2_2_1 = 1
invariant :pi_d1_n1_3_1_2_3_2 + pil_d1_n1_3_1_2_3_2 = 1
invariant :po_d3_n1_1_2_3_3_1 + pol_d3_n1_1_2_3_3_1 = 1
invariant :po_d3_n1_3_2_1_1_2 + pol_d3_n1_3_2_1_1_2 = 1
invariant :pi_d5_n1_3_3_3_2_3 + pil_d5_n1_3_3_3_2_3 = 1
invariant :pi_d3_n1_2_3_2_1_3 + pil_d3_n1_2_3_2_1_3 = 1
invariant :pi_d5_n1_3_2_2_1_2 + pil_d5_n1_3_2_2_1_2 = 1
invariant :po_d2_n1_3_2_1_2_2 + pol_d2_n1_3_2_1_2_2 = 1
invariant :pi_d5_n1_2_3_2_3_1 + pil_d5_n1_2_3_2_3_1 = 1
invariant :pb_d1_n1_3_1_3_2_2 + pb_d1_n2_3_1_3_2_2 + pb_d2_n1_3_1_3_2_2 + pb_d2_n2_3_1_3_2_2 + pb_d3_n1_3_1_3_2_2 + pb_d3_n2_3_1_3_2_2 + pb_d4_n1_3_1_3_2_2 + pb_d4_n2_3_1_3_2_2 + pb_d5_n1_3_1_3_2_2 + pb_d5_n2_3_1_3_2_2 + pbl_3_1_3_2_2 = 30
invariant :pi_d3_n1_1_3_2_2_1 + pil_d3_n1_1_3_2_2_1 = 1
invariant :po_d4_n1_1_3_1_2_1 + pol_d4_n1_1_3_1_2_1 = 1
invariant :po_d4_n1_1_3_1_2_3 + pol_d4_n1_1_3_1_2_3 = 1
invariant :pi_d4_n1_2_2_2_2_3 + pil_d4_n1_2_2_2_2_3 = 1
invariant :pi_d4_n1_3_1_1_3_3 + pil_d4_n1_3_1_1_3_3 = 1
invariant :pi_d1_n1_1_3_3_2_1 + pil_d1_n1_1_3_3_2_1 = 1
invariant :pb_d1_n1_3_3_1_2_3 + pb_d1_n2_3_3_1_2_3 + pb_d2_n1_3_3_1_2_3 + pb_d2_n2_3_3_1_2_3 + pb_d3_n1_3_3_1_2_3 + pb_d3_n2_3_3_1_2_3 + pb_d4_n1_3_3_1_2_3 + pb_d4_n2_3_3_1_2_3 + pb_d5_n1_3_3_1_2_3 + pb_d5_n2_3_3_1_2_3 + pbl_3_3_1_2_3 = 30
invariant :po_d3_n1_3_1_2_1_1 + pol_d3_n1_3_1_2_1_1 = 1
invariant :po_d2_n1_1_1_1_3_1 + pol_d2_n1_1_1_1_3_1 = 1
invariant :po_d3_n1_3_1_2_1_2 + pol_d3_n1_3_1_2_1_2 = 1
invariant :po_d1_n1_1_1_3_2_3 + pol_d1_n1_1_1_3_2_3 = 1
invariant :po_d1_n1_1_2_2_2_2 + pol_d1_n1_1_2_2_2_2 = 1
invariant :pi_d4_n1_1_3_1_3_3 + pil_d4_n1_1_3_1_3_3 = 1
invariant :po_d4_n1_2_3_1_1_3 + pol_d4_n1_2_3_1_1_3 = 1
invariant :po_d1_n1_2_1_3_2_2 + pol_d1_n1_2_1_3_2_2 = 1
invariant :pi_d4_n1_3_3_3_1_2 + pil_d4_n1_3_3_3_1_2 = 1
invariant :pi_d4_n1_2_1_3_1_2 + pil_d4_n1_2_1_3_1_2 = 1
invariant :po_d1_n1_3_2_3_1_1 + pol_d1_n1_3_2_3_1_1 = 1
invariant :po_d3_n1_1_2_3_1_2 + pol_d3_n1_1_2_3_1_2 = 1
invariant :pb_d1_n1_2_3_3_2_2 + pb_d1_n2_2_3_3_2_2 + pb_d2_n1_2_3_3_2_2 + pb_d2_n2_2_3_3_2_2 + pb_d3_n1_2_3_3_2_2 + pb_d3_n2_2_3_3_2_2 + pb_d4_n1_2_3_3_2_2 + pb_d4_n2_2_3_3_2_2 + pb_d5_n1_2_3_3_2_2 + pb_d5_n2_2_3_3_2_2 + pbl_2_3_3_2_2 = 30
invariant :po_d3_n1_1_2_2_3_1 + pol_d3_n1_1_2_2_3_1 = 1
invariant :pi_d1_n1_3_1_1_2_2 + pil_d1_n1_3_1_1_2_2 = 1
invariant :pi_d2_n1_3_3_1_2_1 + pil_d2_n1_3_3_1_2_1 = 1
invariant :po_d3_n1_3_2_3_3_1 + pol_d3_n1_3_2_3_3_1 = 1
invariant :po_d5_n1_1_3_2_2_1 + pol_d5_n1_1_3_2_2_1 = 1
invariant :pi_d4_n1_1_2_3_1_3 + pil_d4_n1_1_2_3_1_3 = 1
invariant :po_d4_n1_2_3_1_3_1 + pol_d4_n1_2_3_1_3_1 = 1
invariant :po_d1_n1_3_1_3_1_3 + pol_d1_n1_3_1_3_1_3 = 1
invariant :pi_d3_n1_3_2_1_3_1 + pil_d3_n1_3_2_1_3_1 = 1
invariant :po_d1_n1_3_2_2_1_2 + pol_d1_n1_3_2_2_1_2 = 1
invariant :po_d3_n1_3_3_2_3_1 + pol_d3_n1_3_3_2_3_1 = 1
invariant :pi_d2_n1_1_2_1_2_3 + pil_d2_n1_1_2_1_2_3 = 1
invariant :po_d1_n1_3_3_1_2_2 + pol_d1_n1_3_3_1_2_2 = 1
invariant :pi_d3_n1_2_3_1_2_1 + pil_d3_n1_2_3_1_2_1 = 1
invariant :pi_d3_n1_1_3_2_1_2 + pil_d3_n1_1_3_2_1_2 = 1
invariant :po_d2_n1_2_1_3_1_1 + pol_d2_n1_2_1_3_1_1 = 1
invariant :pi_d2_n1_1_3_2_1_3 + pil_d2_n1_1_3_2_1_3 = 1
invariant :pi_d3_n1_1_3_3_1_3 + pil_d3_n1_1_3_3_1_3 = 1
invariant :po_d2_n1_2_2_1_1_3 + pol_d2_n1_2_2_1_1_3 = 1
invariant :po_d4_n1_2_3_3_3_3 + pol_d4_n1_2_3_3_3_3 = 1
invariant :pi_d2_n1_1_2_3_1_3 + pil_d2_n1_1_2_3_1_3 = 1
invariant :pi_d4_n1_3_3_2_3_3 + pil_d4_n1_3_3_2_3_3 = 1
invariant :po_d4_n1_2_3_3_2_3 + pol_d4_n1_2_3_3_2_3 = 1
invariant :po_d5_n1_3_3_1_1_3 + pol_d5_n1_3_3_1_1_3 = 1
invariant :po_d2_n1_1_1_3_2_3 + pol_d2_n1_1_1_3_2_3 = 1
invariant :po_d4_n1_1_1_3_3_3 + pol_d4_n1_1_1_3_3_3 = 1
invariant :pi_d4_n1_1_1_2_2_1 + pil_d4_n1_1_1_2_2_1 = 1
invariant :pi_d4_n1_3_2_2_3_2 + pil_d4_n1_3_2_2_3_2 = 1
invariant :pi_d2_n1_3_1_1_2_1 + pil_d2_n1_3_1_1_2_1 = 1
invariant :po_d3_n1_3_1_2_1_3 + pol_d3_n1_3_1_2_1_3 = 1
invariant :po_d1_n1_2_3_3_1_2 + pol_d1_n1_2_3_3_1_2 = 1
invariant :po_d5_n1_3_2_2_1_1 + pol_d5_n1_3_2_2_1_1 = 1
invariant :pi_d4_n1_1_2_2_3_1 + pil_d4_n1_1_2_2_3_1 = 1
invariant :po_d3_n1_1_1_2_1_1 + pol_d3_n1_1_1_2_1_1 = 1
invariant :pi_d2_n1_2_3_2_1_3 + pil_d2_n1_2_3_2_1_3 = 1
invariant :po_d4_n1_2_1_3_1_1 + pol_d4_n1_2_1_3_1_1 = 1
invariant :pi_d2_n1_1_1_1_3_2 + pil_d2_n1_1_1_1_3_2 = 1
invariant :pi_d3_n1_1_3_1_2_2 + pil_d3_n1_1_3_1_2_2 = 1
invariant :po_d2_n1_3_2_1_1_1 + pol_d2_n1_3_2_1_1_1 = 1
invariant :pb_d1_n1_2_2_2_1_3 + pb_d1_n2_2_2_2_1_3 + pb_d2_n1_2_2_2_1_3 + pb_d2_n2_2_2_2_1_3 + pb_d3_n1_2_2_2_1_3 + pb_d3_n2_2_2_2_1_3 + pb_d4_n1_2_2_2_1_3 + pb_d4_n2_2_2_2_1_3 + pb_d5_n1_2_2_2_1_3 + pb_d5_n2_2_2_2_1_3 + pbl_2_2_2_1_3 = 30
invariant :po_d1_n1_1_1_3_1_1 + pol_d1_n1_1_1_3_1_1 = 1
invariant :pi_d4_n1_1_1_3_1_1 + pil_d4_n1_1_1_3_1_1 = 1
invariant :pi_d3_n1_1_1_1_1_1 + pil_d3_n1_1_1_1_1_1 = 1
invariant :pi_d5_n1_2_2_3_1_1 + pil_d5_n1_2_2_3_1_1 = 1
invariant :po_d3_n1_2_2_1_2_1 + pol_d3_n1_2_2_1_2_1 = 1
invariant :po_d1_n1_1_2_2_2_1 + pol_d1_n1_1_2_2_2_1 = 1
invariant :pi_d4_n1_1_2_3_2_2 + pil_d4_n1_1_2_3_2_2 = 1
invariant :po_d5_n1_1_3_3_1_1 + pol_d5_n1_1_3_3_1_1 = 1
invariant :pi_d2_n1_1_2_2_3_3 + pil_d2_n1_1_2_2_3_3 = 1
invariant :pi_d3_n1_2_3_3_2_2 + pil_d3_n1_2_3_3_2_2 = 1
invariant :pb_d1_n1_2_1_3_3_1 + pb_d1_n2_2_1_3_3_1 + pb_d2_n1_2_1_3_3_1 + pb_d2_n2_2_1_3_3_1 + pb_d3_n1_2_1_3_3_1 + pb_d3_n2_2_1_3_3_1 + pb_d4_n1_2_1_3_3_1 + pb_d4_n2_2_1_3_3_1 + pb_d5_n1_2_1_3_3_1 + pb_d5_n2_2_1_3_3_1 + pbl_2_1_3_3_1 = 30
invariant :pi_d5_n1_1_2_2_3_2 + pil_d5_n1_1_2_2_3_2 = 1
invariant :po_d2_n1_2_1_1_2_3 + pol_d2_n1_2_1_1_2_3 = 1
invariant :pi_d3_n1_2_2_2_2_1 + pil_d3_n1_2_2_2_2_1 = 1
invariant :po_d4_n1_3_2_2_3_3 + pol_d4_n1_3_2_2_3_3 = 1
invariant :pi_d4_n1_2_2_3_1_1 + pil_d4_n1_2_2_3_1_1 = 1
invariant :pi_d5_n1_2_3_3_2_2 + pil_d5_n1_2_3_3_2_2 = 1
invariant :po_d4_n1_1_3_1_3_3 + pol_d4_n1_1_3_1_3_3 = 1
invariant :po_d5_n1_2_2_2_2_3 + pol_d5_n1_2_2_2_2_3 = 1
invariant :po_d2_n1_3_1_2_3_2 + pol_d2_n1_3_1_2_3_2 = 1
invariant :po_d4_n1_2_3_2_1_1 + pol_d4_n1_2_3_2_1_1 = 1
invariant :pi_d2_n1_1_3_2_3_3 + pil_d2_n1_1_3_2_3_3 = 1
invariant :pi_d2_n1_3_2_1_1_2 + pil_d2_n1_3_2_1_1_2 = 1
invariant :po_d3_n1_1_3_3_3_2 + pol_d3_n1_1_3_3_3_2 = 1
invariant :pi_d3_n1_1_1_2_3_1 + pil_d3_n1_1_1_2_3_1 = 1
invariant :pi_d4_n1_1_2_2_2_3 + pil_d4_n1_1_2_2_2_3 = 1
invariant :pi_d1_n1_2_3_3_2_3 + pil_d1_n1_2_3_3_2_3 = 1
invariant :po_d3_n1_1_3_1_2_3 + pol_d3_n1_1_3_1_2_3 = 1
invariant :po_d2_n1_2_2_2_3_3 + pol_d2_n1_2_2_2_3_3 = 1
invariant :pi_d1_n1_1_1_2_1_1 + pil_d1_n1_1_1_2_1_1 = 1
invariant :pi_d5_n1_3_1_1_1_1 + pil_d5_n1_3_1_1_1_1 = 1
invariant :po_d3_n1_1_1_1_3_3 + pol_d3_n1_1_1_1_3_3 = 1
invariant :pi_d2_n1_3_3_2_2_3 + pil_d2_n1_3_3_2_2_3 = 1
invariant :po_d4_n1_2_2_2_1_2 + pol_d4_n1_2_2_2_1_2 = 1
invariant :po_d5_n1_3_2_3_1_3 + pol_d5_n1_3_2_3_1_3 = 1
invariant :pi_d5_n1_1_1_1_1_1 + pil_d5_n1_1_1_1_1_1 = 1
invariant :pi_d3_n1_3_3_3_1_2 + pil_d3_n1_3_3_3_1_2 = 1
invariant :po_d5_n1_1_2_3_3_2 + pol_d5_n1_1_2_3_3_2 = 1
invariant :po_d2_n1_1_3_1_2_1 + pol_d2_n1_1_3_1_2_1 = 1
invariant :po_d3_n1_2_2_2_2_3 + pol_d3_n1_2_2_2_2_3 = 1
invariant :pi_d3_n1_3_2_1_1_3 + pil_d3_n1_3_2_1_1_3 = 1
invariant :pi_d1_n1_1_3_3_3_1 + pil_d1_n1_1_3_3_3_1 = 1
invariant :pb_d1_n1_1_2_1_2_3 + pb_d1_n2_1_2_1_2_3 + pb_d2_n1_1_2_1_2_3 + pb_d2_n2_1_2_1_2_3 + pb_d3_n1_1_2_1_2_3 + pb_d3_n2_1_2_1_2_3 + pb_d4_n1_1_2_1_2_3 + pb_d4_n2_1_2_1_2_3 + pb_d5_n1_1_2_1_2_3 + pb_d5_n2_1_2_1_2_3 + pbl_1_2_1_2_3 = 30
invariant :po_d3_n1_2_2_1_2_2 + pol_d3_n1_2_2_1_2_2 = 1
invariant :po_d4_n1_2_1_3_2_1 + pol_d4_n1_2_1_3_2_1 = 1
invariant :po_d5_n1_2_1_1_1_3 + pol_d5_n1_2_1_1_1_3 = 1
invariant :po_d2_n1_1_2_2_2_2 + pol_d2_n1_1_2_2_2_2 = 1
invariant :pi_d5_n1_3_1_3_3_2 + pil_d5_n1_3_1_3_3_2 = 1
invariant :po_d3_n1_1_2_2_3_3 + pol_d3_n1_1_2_2_3_3 = 1
invariant :po_d3_n1_3_1_1_3_2 + pol_d3_n1_3_1_1_3_2 = 1
invariant :po_d5_n1_3_1_3_3_3 + pol_d5_n1_3_1_3_3_3 = 1
invariant :pb_d1_n1_2_1_2_1_1 + pb_d1_n2_2_1_2_1_1 + pb_d2_n1_2_1_2_1_1 + pb_d2_n2_2_1_2_1_1 + pb_d3_n1_2_1_2_1_1 + pb_d3_n2_2_1_2_1_1 + pb_d4_n1_2_1_2_1_1 + pb_d4_n2_2_1_2_1_1 + pb_d5_n1_2_1_2_1_1 + pb_d5_n2_2_1_2_1_1 + pbl_2_1_2_1_1 = 30
invariant :pi_d4_n1_2_1_2_2_2 + pil_d4_n1_2_1_2_2_2 = 1
invariant :pb_d1_n1_3_3_2_3_1 + pb_d1_n2_3_3_2_3_1 + pb_d2_n1_3_3_2_3_1 + pb_d2_n2_3_3_2_3_1 + pb_d3_n1_3_3_2_3_1 + pb_d3_n2_3_3_2_3_1 + pb_d4_n1_3_3_2_3_1 + pb_d4_n2_3_3_2_3_1 + pb_d5_n1_3_3_2_3_1 + pb_d5_n2_3_3_2_3_1 + pbl_3_3_2_3_1 = 30
invariant :pi_d2_n1_1_1_3_1_1 + pil_d2_n1_1_1_3_1_1 = 1
invariant :po_d2_n1_3_1_3_1_2 + pol_d2_n1_3_1_3_1_2 = 1
invariant :po_d2_n1_3_3_1_2_1 + pol_d2_n1_3_3_1_2_1 = 1
invariant :po_d3_n1_2_3_1_1_1 + pol_d3_n1_2_3_1_1_1 = 1
invariant :pi_d3_n1_3_3_1_3_2 + pil_d3_n1_3_3_1_3_2 = 1
invariant :po_d2_n1_3_3_2_3_1 + pol_d2_n1_3_3_2_3_1 = 1
invariant :po_d2_n1_2_3_3_3_1 + pol_d2_n1_2_3_3_3_1 = 1
invariant :po_d5_n1_1_2_1_2_1 + pol_d5_n1_1_2_1_2_1 = 1
invariant :pi_d3_n1_3_1_2_2_3 + pil_d3_n1_3_1_2_2_3 = 1
invariant :pi_d5_n1_1_1_2_2_3 + pil_d5_n1_1_1_2_2_3 = 1
invariant :po_d1_n1_2_1_3_3_3 + pol_d1_n1_2_1_3_3_3 = 1
invariant :po_d4_n1_3_1_3_1_2 + pol_d4_n1_3_1_3_1_2 = 1
invariant :po_d5_n1_2_1_2_2_3 + pol_d5_n1_2_1_2_2_3 = 1
invariant :pi_d3_n1_2_2_1_1_3 + pil_d3_n1_2_2_1_1_3 = 1
invariant :po_d4_n1_2_3_1_1_2 + pol_d4_n1_2_3_1_1_2 = 1
invariant :po_d4_n1_3_1_2_3_3 + pol_d4_n1_3_1_2_3_3 = 1
invariant :pi_d3_n1_1_2_1_1_3 + pil_d3_n1_1_2_1_1_3 = 1
invariant :pb_d1_n1_1_3_3_3_3 + pb_d1_n2_1_3_3_3_3 + pb_d2_n1_1_3_3_3_3 + pb_d2_n2_1_3_3_3_3 + pb_d3_n1_1_3_3_3_3 + pb_d3_n2_1_3_3_3_3 + pb_d4_n1_1_3_3_3_3 + pb_d4_n2_1_3_3_3_3 + pb_d5_n1_1_3_3_3_3 + pb_d5_n2_1_3_3_3_3 + pbl_1_3_3_3_3 = 30
invariant :po_d3_n1_2_1_2_1_3 + pol_d3_n1_2_1_2_1_3 = 1
invariant :pi_d1_n1_1_1_3_1_3 + pil_d1_n1_1_1_3_1_3 = 1
invariant :po_d2_n1_3_2_3_2_2 + pol_d2_n1_3_2_3_2_2 = 1
invariant :po_d5_n1_1_2_3_1_3 + pol_d5_n1_1_2_3_1_3 = 1
invariant :po_d4_n1_1_3_3_3_2 + pol_d4_n1_1_3_3_3_2 = 1
invariant :pb_d1_n1_1_3_3_1_1 + pb_d1_n2_1_3_3_1_1 + pb_d2_n1_1_3_3_1_1 + pb_d2_n2_1_3_3_1_1 + pb_d3_n1_1_3_3_1_1 + pb_d3_n2_1_3_3_1_1 + pb_d4_n1_1_3_3_1_1 + pb_d4_n2_1_3_3_1_1 + pb_d5_n1_1_3_3_1_1 + pb_d5_n2_1_3_3_1_1 + pbl_1_3_3_1_1 = 30
invariant :pb_d1_n1_2_3_2_1_3 + pb_d1_n2_2_3_2_1_3 + pb_d2_n1_2_3_2_1_3 + pb_d2_n2_2_3_2_1_3 + pb_d3_n1_2_3_2_1_3 + pb_d3_n2_2_3_2_1_3 + pb_d4_n1_2_3_2_1_3 + pb_d4_n2_2_3_2_1_3 + pb_d5_n1_2_3_2_1_3 + pb_d5_n2_2_3_2_1_3 + pbl_2_3_2_1_3 = 30
invariant :pi_d4_n1_1_3_1_1_1 + pil_d4_n1_1_3_1_1_1 = 1
invariant :pi_d2_n1_2_2_1_1_1 + pil_d2_n1_2_2_1_1_1 = 1
invariant :po_d2_n1_1_2_1_2_2 + pol_d2_n1_1_2_1_2_2 = 1
invariant :po_d5_n1_2_1_1_3_1 + pol_d5_n1_2_1_1_3_1 = 1
invariant :po_d2_n1_1_2_1_1_3 + pol_d2_n1_1_2_1_1_3 = 1
invariant :pi_d2_n1_2_2_3_1_2 + pil_d2_n1_2_2_3_1_2 = 1
invariant :pi_d1_n1_3_3_3_1_3 + pil_d1_n1_3_3_3_1_3 = 1
invariant :pi_d1_n1_3_2_2_3_3 + pil_d1_n1_3_2_2_3_3 = 1
invariant :po_d1_n1_3_3_2_3_3 + pol_d1_n1_3_3_2_3_3 = 1
invariant :pi_d2_n1_1_2_3_2_2 + pil_d2_n1_1_2_3_2_2 = 1
invariant :pb_d1_n1_3_3_3_1_2 + pb_d1_n2_3_3_3_1_2 + pb_d2_n1_3_3_3_1_2 + pb_d2_n2_3_3_3_1_2 + pb_d3_n1_3_3_3_1_2 + pb_d3_n2_3_3_3_1_2 + pb_d4_n1_3_3_3_1_2 + pb_d4_n2_3_3_3_1_2 + pb_d5_n1_3_3_3_1_2 + pb_d5_n2_3_3_3_1_2 + pbl_3_3_3_1_2 = 30
invariant :po_d1_n1_2_1_1_3_1 + pol_d1_n1_2_1_1_3_1 = 1
invariant :po_d1_n1_2_3_2_1_3 + pol_d1_n1_2_3_2_1_3 = 1
invariant :pi_d5_n1_1_2_1_1_2 + pil_d5_n1_1_2_1_1_2 = 1
invariant :po_d5_n1_3_3_1_2_2 + pol_d5_n1_3_3_1_2_2 = 1
invariant :pi_d3_n1_2_3_3_1_2 + pil_d3_n1_2_3_3_1_2 = 1
invariant :po_d3_n1_3_3_1_1_3 + pol_d3_n1_3_3_1_1_3 = 1
invariant :po_d3_n1_1_1_1_1_1 + pol_d3_n1_1_1_1_1_1 = 1
invariant :po_d4_n1_2_3_1_2_1 + pol_d4_n1_2_3_1_2_1 = 1
invariant :pi_d5_n1_2_3_3_3_2 + pil_d5_n1_2_3_3_3_2 = 1
invariant :pi_d1_n1_1_1_3_2_1 + pil_d1_n1_1_1_3_2_1 = 1
invariant :po_d1_n1_1_1_3_1_3 + pol_d1_n1_1_1_3_1_3 = 1
invariant :po_d2_n1_3_3_3_2_1 + pol_d2_n1_3_3_3_2_1 = 1
invariant :po_d5_n1_3_1_2_1_1 + pol_d5_n1_3_1_2_1_1 = 1
invariant :pi_d2_n1_3_2_3_1_2 + pil_d2_n1_3_2_3_1_2 = 1
invariant :pi_d2_n1_1_2_2_1_2 + pil_d2_n1_1_2_2_1_2 = 1
invariant :po_d1_n1_1_1_3_3_3 + pol_d1_n1_1_1_3_3_3 = 1
invariant :po_d5_n1_1_3_2_1_3 + pol_d5_n1_1_3_2_1_3 = 1
invariant :po_d5_n1_2_2_3_1_1 + pol_d5_n1_2_2_3_1_1 = 1
invariant :po_d5_n1_3_3_1_3_3 + pol_d5_n1_3_3_1_3_3 = 1
invariant :pi_d5_n1_2_2_3_2_1 + pil_d5_n1_2_2_3_2_1 = 1
invariant :po_d4_n1_2_2_3_1_3 + pol_d4_n1_2_2_3_1_3 = 1
invariant :pi_d5_n1_2_1_1_3_2 + pil_d5_n1_2_1_1_3_2 = 1
invariant :pi_d1_n1_3_2_1_3_3 + pil_d1_n1_3_2_1_3_3 = 1
invariant :pi_d1_n1_2_1_3_3_3 + pil_d1_n1_2_1_3_3_3 = 1
invariant :po_d1_n1_1_2_1_2_3 + pol_d1_n1_1_2_1_2_3 = 1
invariant :po_d3_n1_2_2_2_1_1 + pol_d3_n1_2_2_2_1_1 = 1
invariant :pb_d1_n1_1_2_1_2_2 + pb_d1_n2_1_2_1_2_2 + pb_d2_n1_1_2_1_2_2 + pb_d2_n2_1_2_1_2_2 + pb_d3_n1_1_2_1_2_2 + pb_d3_n2_1_2_1_2_2 + pb_d4_n1_1_2_1_2_2 + pb_d4_n2_1_2_1_2_2 + pb_d5_n1_1_2_1_2_2 + pb_d5_n2_1_2_1_2_2 + pbl_1_2_1_2_2 = 30
invariant :po_d5_n1_3_2_3_3_2 + pol_d5_n1_3_2_3_3_2 = 1
invariant :pi_d5_n1_2_2_3_3_1 + pil_d5_n1_2_2_3_3_1 = 1
invariant :pb_d1_n1_3_2_2_3_1 + pb_d1_n2_3_2_2_3_1 + pb_d2_n1_3_2_2_3_1 + pb_d2_n2_3_2_2_3_1 + pb_d3_n1_3_2_2_3_1 + pb_d3_n2_3_2_2_3_1 + pb_d4_n1_3_2_2_3_1 + pb_d4_n2_3_2_2_3_1 + pb_d5_n1_3_2_2_3_1 + pb_d5_n2_3_2_2_3_1 + pbl_3_2_2_3_1 = 30
invariant :pi_d2_n1_3_3_1_1_3 + pil_d2_n1_3_3_1_1_3 = 1
invariant :po_d4_n1_3_1_2_2_3 + pol_d4_n1_3_1_2_2_3 = 1
invariant :pi_d5_n1_1_2_3_1_2 + pil_d5_n1_1_2_3_1_2 = 1
invariant :pi_d4_n1_2_2_3_2_1 + pil_d4_n1_2_2_3_2_1 = 1
invariant :po_d4_n1_1_3_1_1_2 + pol_d4_n1_1_3_1_1_2 = 1
invariant :pb_d1_n1_1_2_3_3_2 + pb_d1_n2_1_2_3_3_2 + pb_d2_n1_1_2_3_3_2 + pb_d2_n2_1_2_3_3_2 + pb_d3_n1_1_2_3_3_2 + pb_d3_n2_1_2_3_3_2 + pb_d4_n1_1_2_3_3_2 + pb_d4_n2_1_2_3_3_2 + pb_d5_n1_1_2_3_3_2 + pb_d5_n2_1_2_3_3_2 + pbl_1_2_3_3_2 = 30
invariant :pi_d3_n1_3_3_2_3_2 + pil_d3_n1_3_3_2_3_2 = 1
invariant :po_d2_n1_3_1_1_2_2 + pol_d2_n1_3_1_1_2_2 = 1
invariant :po_d2_n1_1_1_1_3_2 + pol_d2_n1_1_1_1_3_2 = 1
invariant :po_d4_n1_2_3_3_3_1 + pol_d4_n1_2_3_3_3_1 = 1
invariant :po_d3_n1_3_3_2_3_2 + pol_d3_n1_3_3_2_3_2 = 1
invariant :pb_d1_n1_2_2_3_1_1 + pb_d1_n2_2_2_3_1_1 + pb_d2_n1_2_2_3_1_1 + pb_d2_n2_2_2_3_1_1 + pb_d3_n1_2_2_3_1_1 + pb_d3_n2_2_2_3_1_1 + pb_d4_n1_2_2_3_1_1 + pb_d4_n2_2_2_3_1_1 + pb_d5_n1_2_2_3_1_1 + pb_d5_n2_2_2_3_1_1 + pbl_2_2_3_1_1 = 30
invariant :pi_d3_n1_1_2_1_2_1 + pil_d3_n1_1_2_1_2_1 = 1
invariant :pi_d2_n1_3_1_3_1_1 + pil_d2_n1_3_1_3_1_1 = 1
invariant :po_d2_n1_3_3_1_1_3 + pol_d2_n1_3_3_1_1_3 = 1
invariant :pi_d5_n1_2_1_2_2_2 + pil_d5_n1_2_1_2_2_2 = 1
invariant :po_d1_n1_3_1_1_3_3 + pol_d1_n1_3_1_1_3_3 = 1
invariant :po_d5_n1_3_2_1_2_3 + pol_d5_n1_3_2_1_2_3 = 1
invariant :pi_d4_n1_2_2_2_1_3 + pil_d4_n1_2_2_2_1_3 = 1
invariant :po_d5_n1_2_3_1_1_1 + pol_d5_n1_2_3_1_1_1 = 1
invariant :pb_d1_n1_2_1_2_3_2 + pb_d1_n2_2_1_2_3_2 + pb_d2_n1_2_1_2_3_2 + pb_d2_n2_2_1_2_3_2 + pb_d3_n1_2_1_2_3_2 + pb_d3_n2_2_1_2_3_2 + pb_d4_n1_2_1_2_3_2 + pb_d4_n2_2_1_2_3_2 + pb_d5_n1_2_1_2_3_2 + pb_d5_n2_2_1_2_3_2 + pbl_2_1_2_3_2 = 30
invariant :pb_d1_n1_3_1_3_3_1 + pb_d1_n2_3_1_3_3_1 + pb_d2_n1_3_1_3_3_1 + pb_d2_n2_3_1_3_3_1 + pb_d3_n1_3_1_3_3_1 + pb_d3_n2_3_1_3_3_1 + pb_d4_n1_3_1_3_3_1 + pb_d4_n2_3_1_3_3_1 + pb_d5_n1_3_1_3_3_1 + pb_d5_n2_3_1_3_3_1 + pbl_3_1_3_3_1 = 30
invariant :pi_d1_n1_3_3_2_3_2 + pil_d1_n1_3_3_2_3_2 = 1
invariant :po_d1_n1_3_3_1_2_3 + pol_d1_n1_3_3_1_2_3 = 1
invariant :po_d2_n1_1_2_3_3_1 + pol_d2_n1_1_2_3_3_1 = 1
invariant :po_d2_n1_3_3_3_3_2 + pol_d2_n1_3_3_3_3_2 = 1
invariant :po_d3_n1_1_2_1_3_2 + pol_d3_n1_1_2_1_3_2 = 1
invariant :pi_d2_n1_1_3_3_1_1 + pil_d2_n1_1_3_3_1_1 = 1
invariant :pi_d2_n1_3_1_1_3_1 + pil_d2_n1_3_1_1_3_1 = 1
invariant :pi_d4_n1_3_1_3_2_2 + pil_d4_n1_3_1_3_2_2 = 1
invariant :pb_d1_n1_3_3_3_1_1 + pb_d1_n2_3_3_3_1_1 + pb_d2_n1_3_3_3_1_1 + pb_d2_n2_3_3_3_1_1 + pb_d3_n1_3_3_3_1_1 + pb_d3_n2_3_3_3_1_1 + pb_d4_n1_3_3_3_1_1 + pb_d4_n2_3_3_3_1_1 + pb_d5_n1_3_3_3_1_1 + pb_d5_n2_3_3_3_1_1 + pbl_3_3_3_1_1 = 30
invariant :pi_d5_n1_3_3_1_2_2 + pil_d5_n1_3_3_1_2_2 = 1
invariant :po_d2_n1_2_3_2_3_2 + pol_d2_n1_2_3_2_3_2 = 1
invariant :pi_d4_n1_2_2_2_1_1 + pil_d4_n1_2_2_2_1_1 = 1
invariant :pi_d1_n1_1_1_2_2_3 + pil_d1_n1_1_1_2_2_3 = 1
invariant :pi_d4_n1_3_1_1_2_1 + pil_d4_n1_3_1_1_2_1 = 1
invariant :pi_d1_n1_1_1_2_2_1 + pil_d1_n1_1_1_2_2_1 = 1
invariant :pi_d2_n1_3_3_3_1_2 + pil_d2_n1_3_3_3_1_2 = 1
invariant :po_d3_n1_3_1_2_3_1 + pol_d3_n1_3_1_2_3_1 = 1
invariant :pi_d5_n1_2_1_3_3_3 + pil_d5_n1_2_1_3_3_3 = 1
invariant :po_d1_n1_3_3_3_3_3 + pol_d1_n1_3_3_3_3_3 = 1
invariant :po_d5_n1_2_1_3_3_2 + pol_d5_n1_2_1_3_3_2 = 1
invariant :pi_d5_n1_1_3_1_3_3 + pil_d5_n1_1_3_1_3_3 = 1
invariant :po_d2_n1_2_1_3_3_3 + pol_d2_n1_2_1_3_3_3 = 1
invariant :pi_d5_n1_2_2_2_3_1 + pil_d5_n1_2_2_2_3_1 = 1
invariant :po_d1_n1_3_1_2_3_2 + pol_d1_n1_3_1_2_3_2 = 1
invariant :pi_d2_n1_1_3_2_2_2 + pil_d2_n1_1_3_2_2_2 = 1
invariant :pi_d5_n1_1_3_3_3_1 + pil_d5_n1_1_3_3_3_1 = 1
invariant :pi_d4_n1_2_3_2_1_3 + pil_d4_n1_2_3_2_1_3 = 1
invariant :pi_d2_n1_1_1_2_1_1 + pil_d2_n1_1_1_2_1_1 = 1
invariant :pi_d2_n1_3_1_1_1_2 + pil_d2_n1_3_1_1_1_2 = 1
invariant :pi_d5_n1_3_3_2_3_2 + pil_d5_n1_3_3_2_3_2 = 1
invariant :pb_d1_n1_3_1_3_2_1 + pb_d1_n2_3_1_3_2_1 + pb_d2_n1_3_1_3_2_1 + pb_d2_n2_3_1_3_2_1 + pb_d3_n1_3_1_3_2_1 + pb_d3_n2_3_1_3_2_1 + pb_d4_n1_3_1_3_2_1 + pb_d4_n2_3_1_3_2_1 + pb_d5_n1_3_1_3_2_1 + pb_d5_n2_3_1_3_2_1 + pbl_3_1_3_2_1 = 30
invariant :po_d4_n1_3_1_2_2_1 + pol_d4_n1_3_1_2_2_1 = 1
invariant :pb_d1_n1_1_3_3_2_1 + pb_d1_n2_1_3_3_2_1 + pb_d2_n1_1_3_3_2_1 + pb_d2_n2_1_3_3_2_1 + pb_d3_n1_1_3_3_2_1 + pb_d3_n2_1_3_3_2_1 + pb_d4_n1_1_3_3_2_1 + pb_d4_n2_1_3_3_2_1 + pb_d5_n1_1_3_3_2_1 + pb_d5_n2_1_3_3_2_1 + pbl_1_3_3_2_1 = 30
invariant :pi_d4_n1_1_2_3_1_2 + pil_d4_n1_1_2_3_1_2 = 1
invariant :pi_d4_n1_1_1_2_1_3 + pil_d4_n1_1_1_2_1_3 = 1
invariant :po_d1_n1_2_1_1_2_3 + pol_d1_n1_2_1_1_2_3 = 1
invariant :pi_d2_n1_1_1_3_3_3 + pil_d2_n1_1_1_3_3_3 = 1
invariant :po_d5_n1_1_2_3_2_3 + pol_d5_n1_1_2_3_2_3 = 1
invariant :po_d4_n1_1_1_3_1_3 + pol_d4_n1_1_1_3_1_3 = 1
invariant :po_d3_n1_2_2_3_3_1 + pol_d3_n1_2_2_3_3_1 = 1
invariant :po_d2_n1_3_3_2_2_3 + pol_d2_n1_3_3_2_2_3 = 1
invariant :po_d1_n1_2_1_1_1_3 + pol_d1_n1_2_1_1_1_3 = 1
invariant :po_d2_n1_1_1_2_3_1 + pol_d2_n1_1_1_2_3_1 = 1
invariant :po_d4_n1_3_3_1_3_2 + pol_d4_n1_3_3_1_3_2 = 1
invariant :pi_d2_n1_2_1_1_1_1 + pil_d2_n1_2_1_1_1_1 = 1
invariant :po_d3_n1_3_1_3_3_1 + pol_d3_n1_3_1_3_3_1 = 1
invariant :po_d5_n1_1_3_3_2_2 + pol_d5_n1_1_3_3_2_2 = 1
invariant :po_d1_n1_3_1_3_1_2 + pol_d1_n1_3_1_3_1_2 = 1
invariant :po_d3_n1_2_1_3_3_1 + pol_d3_n1_2_1_3_3_1 = 1
invariant :pi_d2_n1_3_1_3_2_3 + pil_d2_n1_3_1_3_2_3 = 1
invariant :po_d1_n1_3_1_1_1_1 + pol_d1_n1_3_1_1_1_1 = 1
invariant :pi_d3_n1_2_3_2_2_2 + pil_d3_n1_2_3_2_2_2 = 1
invariant :po_d2_n1_2_3_3_2_3 + pol_d2_n1_2_3_3_2_3 = 1
invariant :po_d5_n1_2_2_3_3_2 + pol_d5_n1_2_2_3_3_2 = 1
invariant :pi_d1_n1_1_3_3_3_3 + pil_d1_n1_1_3_3_3_3 = 1
invariant :pb_d1_n1_2_2_1_3_3 + pb_d1_n2_2_2_1_3_3 + pb_d2_n1_2_2_1_3_3 + pb_d2_n2_2_2_1_3_3 + pb_d3_n1_2_2_1_3_3 + pb_d3_n2_2_2_1_3_3 + pb_d4_n1_2_2_1_3_3 + pb_d4_n2_2_2_1_3_3 + pb_d5_n1_2_2_1_3_3 + pb_d5_n2_2_2_1_3_3 + pbl_2_2_1_3_3 = 30
invariant :pi_d5_n1_1_2_3_2_1 + pil_d5_n1_1_2_3_2_1 = 1
invariant :pi_d5_n1_3_1_1_1_3 + pil_d5_n1_3_1_1_1_3 = 1
invariant :pb_d1_n1_3_3_3_2_1 + pb_d1_n2_3_3_3_2_1 + pb_d2_n1_3_3_3_2_1 + pb_d2_n2_3_3_3_2_1 + pb_d3_n1_3_3_3_2_1 + pb_d3_n2_3_3_3_2_1 + pb_d4_n1_3_3_3_2_1 + pb_d4_n2_3_3_3_2_1 + pb_d5_n1_3_3_3_2_1 + pb_d5_n2_3_3_3_2_1 + pbl_3_3_3_2_1 = 30
invariant :pi_d4_n1_2_3_1_2_3 + pil_d4_n1_2_3_1_2_3 = 1
invariant :po_d5_n1_1_3_2_1_1 + pol_d5_n1_1_3_2_1_1 = 1
invariant :pi_d5_n1_1_2_1_2_1 + pil_d5_n1_1_2_1_2_1 = 1
invariant :po_d2_n1_3_1_1_3_2 + pol_d2_n1_3_1_1_3_2 = 1
invariant :pi_d3_n1_2_2_3_2_2 + pil_d3_n1_2_2_3_2_2 = 1
invariant :pb_d1_n1_2_2_2_2_2 + pb_d1_n2_2_2_2_2_2 + pb_d2_n1_2_2_2_2_2 + pb_d2_n2_2_2_2_2_2 + pb_d3_n1_2_2_2_2_2 + pb_d3_n2_2_2_2_2_2 + pb_d4_n1_2_2_2_2_2 + pb_d4_n2_2_2_2_2_2 + pb_d5_n1_2_2_2_2_2 + pb_d5_n2_2_2_2_2_2 + pbl_2_2_2_2_2 = 30
invariant :po_d3_n1_2_3_3_1_2 + pol_d3_n1_2_3_3_1_2 = 1
invariant :pi_d5_n1_2_1_3_1_2 + pil_d5_n1_2_1_3_1_2 = 1
invariant :pi_d3_n1_2_1_1_1_2 + pil_d3_n1_2_1_1_1_2 = 1
invariant :po_d2_n1_1_3_2_1_2 + pol_d2_n1_1_3_2_1_2 = 1
invariant :pi_d2_n1_2_2_1_2_3 + pil_d2_n1_2_2_1_2_3 = 1
invariant :pi_d2_n1_2_2_2_1_3 + pil_d2_n1_2_2_2_1_3 = 1
invariant :pi_d3_n1_1_2_1_2_3 + pil_d3_n1_1_2_1_2_3 = 1
invariant :pi_d3_n1_1_3_1_1_1 + pil_d3_n1_1_3_1_1_1 = 1
invariant :po_d3_n1_1_3_3_1_2 + pol_d3_n1_1_3_3_1_2 = 1
invariant :pb_d1_n1_1_2_1_1_3 + pb_d1_n2_1_2_1_1_3 + pb_d2_n1_1_2_1_1_3 + pb_d2_n2_1_2_1_1_3 + pb_d3_n1_1_2_1_1_3 + pb_d3_n2_1_2_1_1_3 + pb_d4_n1_1_2_1_1_3 + pb_d4_n2_1_2_1_1_3 + pb_d5_n1_1_2_1_1_3 + pb_d5_n2_1_2_1_1_3 + pbl_1_2_1_1_3 = 30
invariant :pi_d3_n1_3_3_1_3_3 + pil_d3_n1_3_3_1_3_3 = 1
invariant :pi_d1_n1_1_2_3_1_1 + pil_d1_n1_1_2_3_1_1 = 1
invariant :pi_d4_n1_1_2_1_1_2 + pil_d4_n1_1_2_1_1_2 = 1
invariant :po_d2_n1_2_1_1_3_2 + pol_d2_n1_2_1_1_3_2 = 1
invariant :po_d4_n1_2_3_1_2_3 + pol_d4_n1_2_3_1_2_3 = 1
invariant :pi_d5_n1_2_2_1_1_3 + pil_d5_n1_2_2_1_1_3 = 1
invariant :pi_d1_n1_3_2_3_2_2 + pil_d1_n1_3_2_3_2_2 = 1
invariant :po_d3_n1_2_3_2_2_1 + pol_d3_n1_2_3_2_2_1 = 1
invariant :po_d4_n1_3_2_3_3_3 + pol_d4_n1_3_2_3_3_3 = 1
invariant :po_d5_n1_1_2_1_1_3 + pol_d5_n1_1_2_1_1_3 = 1
invariant :po_d4_n1_1_2_3_1_2 + pol_d4_n1_1_2_3_1_2 = 1
invariant :po_d1_n1_3_3_3_1_2 + pol_d1_n1_3_3_3_1_2 = 1
invariant :pi_d1_n1_1_2_3_1_2 + pil_d1_n1_1_2_3_1_2 = 1
invariant :po_d1_n1_2_3_3_1_3 + pol_d1_n1_2_3_3_1_3 = 1
invariant :pb_d1_n1_3_1_3_2_3 + pb_d1_n2_3_1_3_2_3 + pb_d2_n1_3_1_3_2_3 + pb_d2_n2_3_1_3_2_3 + pb_d3_n1_3_1_3_2_3 + pb_d3_n2_3_1_3_2_3 + pb_d4_n1_3_1_3_2_3 + pb_d4_n2_3_1_3_2_3 + pb_d5_n1_3_1_3_2_3 + pb_d5_n2_3_1_3_2_3 + pbl_3_1_3_2_3 = 30
invariant :po_d4_n1_2_1_3_3_3 + pol_d4_n1_2_1_3_3_3 = 1
invariant :pi_d3_n1_2_1_3_3_2 + pil_d3_n1_2_1_3_3_2 = 1
invariant :po_d2_n1_2_2_2_1_2 + pol_d2_n1_2_2_2_1_2 = 1
invariant :pi_d4_n1_3_2_3_3_2 + pil_d4_n1_3_2_3_3_2 = 1
invariant :pi_d4_n1_2_2_3_3_1 + pil_d4_n1_2_2_3_3_1 = 1
invariant :po_d1_n1_1_3_1_2_3 + pol_d1_n1_1_3_1_2_3 = 1
invariant :pb_d1_n1_1_2_3_3_3 + pb_d1_n2_1_2_3_3_3 + pb_d2_n1_1_2_3_3_3 + pb_d2_n2_1_2_3_3_3 + pb_d3_n1_1_2_3_3_3 + pb_d3_n2_1_2_3_3_3 + pb_d4_n1_1_2_3_3_3 + pb_d4_n2_1_2_3_3_3 + pb_d5_n1_1_2_3_3_3 + pb_d5_n2_1_2_3_3_3 + pbl_1_2_3_3_3 = 30
invariant :pi_d3_n1_2_2_1_3_1 + pil_d3_n1_2_2_1_3_1 = 1
invariant :pi_d3_n1_2_1_2_3_3 + pil_d3_n1_2_1_2_3_3 = 1
invariant :po_d2_n1_1_2_1_3_1 + pol_d2_n1_1_2_1_3_1 = 1
invariant :po_d4_n1_1_3_3_2_2 + pol_d4_n1_1_3_3_2_2 = 1
invariant :pi_d1_n1_3_2_1_3_1 + pil_d1_n1_3_2_1_3_1 = 1
invariant :po_d4_n1_3_2_1_3_3 + pol_d4_n1_3_2_1_3_3 = 1
invariant :po_d4_n1_1_1_1_3_1 + pol_d4_n1_1_1_1_3_1 = 1
invariant :po_d4_n1_2_3_2_3_2 + pol_d4_n1_2_3_2_3_2 = 1
invariant :pi_d2_n1_3_3_2_3_2 + pil_d2_n1_3_3_2_3_2 = 1
invariant :pi_d5_n1_3_1_1_3_3 + pil_d5_n1_3_1_1_3_3 = 1
invariant :po_d1_n1_3_3_2_3_1 + pol_d1_n1_3_3_2_3_1 = 1
invariant :pi_d1_n1_3_3_3_3_2 + pil_d1_n1_3_3_3_3_2 = 1
invariant :po_d5_n1_2_3_3_3_2 + pol_d5_n1_2_3_3_3_2 = 1
invariant :po_d4_n1_1_2_3_2_1 + pol_d4_n1_1_2_3_2_1 = 1
invariant :pi_d2_n1_2_1_2_2_1 + pil_d2_n1_2_1_2_2_1 = 1
invariant :pi_d3_n1_2_2_2_2_3 + pil_d3_n1_2_2_2_2_3 = 1
invariant :po_d2_n1_3_2_2_1_1 + pol_d2_n1_3_2_2_1_1 = 1
invariant :pi_d2_n1_2_1_2_3_2 + pil_d2_n1_2_1_2_3_2 = 1
invariant :pi_d3_n1_2_1_3_2_3 + pil_d3_n1_2_1_3_2_3 = 1
invariant :pi_d3_n1_2_1_2_1_1 + pil_d3_n1_2_1_2_1_1 = 1
invariant :po_d4_n1_3_3_2_2_1 + pol_d4_n1_3_3_2_2_1 = 1
invariant :po_d3_n1_1_1_1_3_1 + pol_d3_n1_1_1_1_3_1 = 1
invariant :po_d4_n1_3_3_3_1_3 + pol_d4_n1_3_3_3_1_3 = 1
invariant :po_d5_n1_2_1_1_1_1 + pol_d5_n1_2_1_1_1_1 = 1
invariant :po_d2_n1_3_1_1_1_1 + pol_d2_n1_3_1_1_1_1 = 1
invariant :pi_d4_n1_3_3_2_2_3 + pil_d4_n1_3_3_2_2_3 = 1
invariant :po_d1_n1_1_1_2_2_1 + pol_d1_n1_1_1_2_2_1 = 1
invariant :po_d5_n1_3_2_2_3_2 + pol_d5_n1_3_2_2_3_2 = 1
invariant :po_d1_n1_3_1_3_3_3 + pol_d1_n1_3_1_3_3_3 = 1
invariant :pi_d2_n1_2_3_1_3_3 + pil_d2_n1_2_3_1_3_3 = 1
invariant :pi_d3_n1_2_3_1_3_3 + pil_d3_n1_2_3_1_3_3 = 1
invariant :pi_d3_n1_1_3_3_1_1 + pil_d3_n1_1_3_3_1_1 = 1
invariant :pi_d4_n1_1_1_1_3_3 + pil_d4_n1_1_1_1_3_3 = 1
invariant :po_d5_n1_1_1_1_3_1 + pol_d5_n1_1_1_1_3_1 = 1
invariant :po_d5_n1_1_3_1_3_2 + pol_d5_n1_1_3_1_3_2 = 1
invariant :po_d5_n1_1_1_1_1_3 + pol_d5_n1_1_1_1_1_3 = 1
invariant :po_d5_n1_3_1_3_3_2 + pol_d5_n1_3_1_3_3_2 = 1
invariant :pi_d4_n1_2_1_1_2_1 + pil_d4_n1_2_1_1_2_1 = 1
invariant :pi_d1_n1_2_3_2_3_3 + pil_d1_n1_2_3_2_3_3 = 1
invariant :pi_d5_n1_2_2_2_1_2 + pil_d5_n1_2_2_2_1_2 = 1
invariant :po_d4_n1_2_3_3_1_2 + pol_d4_n1_2_3_3_1_2 = 1
invariant :po_d1_n1_2_1_1_1_1 + pol_d1_n1_2_1_1_1_1 = 1
invariant :pb_d1_n1_1_2_3_1_3 + pb_d1_n2_1_2_3_1_3 + pb_d2_n1_1_2_3_1_3 + pb_d2_n2_1_2_3_1_3 + pb_d3_n1_1_2_3_1_3 + pb_d3_n2_1_2_3_1_3 + pb_d4_n1_1_2_3_1_3 + pb_d4_n2_1_2_3_1_3 + pb_d5_n1_1_2_3_1_3 + pb_d5_n2_1_2_3_1_3 + pbl_1_2_3_1_3 = 30
invariant :pi_d1_n1_1_3_3_1_2 + pil_d1_n1_1_3_3_1_2 = 1
invariant :po_d5_n1_1_1_3_1_1 + pol_d5_n1_1_1_3_1_1 = 1
invariant :pi_d1_n1_1_2_3_3_1 + pil_d1_n1_1_2_3_3_1 = 1
invariant :po_d5_n1_1_1_2_3_1 + pol_d5_n1_1_1_2_3_1 = 1
invariant :pi_d2_n1_3_2_1_2_3 + pil_d2_n1_3_2_1_2_3 = 1
invariant :pi_d3_n1_1_1_1_2_1 + pil_d3_n1_1_1_1_2_1 = 1
invariant :pi_d4_n1_1_1_3_1_2 + pil_d4_n1_1_1_3_1_2 = 1
invariant :po_d4_n1_2_1_3_2_2 + pol_d4_n1_2_1_3_2_2 = 1
invariant :po_d4_n1_1_3_2_1_1 + pol_d4_n1_1_3_2_1_1 = 1
invariant :pi_d5_n1_3_2_3_2_1 + pil_d5_n1_3_2_3_2_1 = 1
invariant :po_d3_n1_3_3_3_1_3 + pol_d3_n1_3_3_3_1_3 = 1
invariant :pi_d1_n1_1_1_1_2_3 + pil_d1_n1_1_1_1_2_3 = 1
invariant :po_d1_n1_3_3_1_3_2 + pol_d1_n1_3_3_1_3_2 = 1
invariant :pi_d2_n1_3_2_3_2_1 + pil_d2_n1_3_2_3_2_1 = 1
invariant :pi_d1_n1_1_3_1_2_3 + pil_d1_n1_1_3_1_2_3 = 1
invariant :pi_d3_n1_1_1_1_3_3 + pil_d3_n1_1_1_1_3_3 = 1
invariant :pi_d4_n1_3_2_2_1_3 + pil_d4_n1_3_2_2_1_3 = 1
invariant :pb_d1_n1_2_3_3_1_3 + pb_d1_n2_2_3_3_1_3 + pb_d2_n1_2_3_3_1_3 + pb_d2_n2_2_3_3_1_3 + pb_d3_n1_2_3_3_1_3 + pb_d3_n2_2_3_3_1_3 + pb_d4_n1_2_3_3_1_3 + pb_d4_n2_2_3_3_1_3 + pb_d5_n1_2_3_3_1_3 + pb_d5_n2_2_3_3_1_3 + pbl_2_3_3_1_3 = 30
invariant :pb_d1_n1_3_1_2_3_2 + pb_d1_n2_3_1_2_3_2 + pb_d2_n1_3_1_2_3_2 + pb_d2_n2_3_1_2_3_2 + pb_d3_n1_3_1_2_3_2 + pb_d3_n2_3_1_2_3_2 + pb_d4_n1_3_1_2_3_2 + pb_d4_n2_3_1_2_3_2 + pb_d5_n1_3_1_2_3_2 + pb_d5_n2_3_1_2_3_2 + pbl_3_1_2_3_2 = 30
invariant :po_d4_n1_2_3_3_2_2 + pol_d4_n1_2_3_3_2_2 = 1
invariant :pi_d3_n1_1_1_1_3_2 + pil_d3_n1_1_1_1_3_2 = 1
invariant :pi_d5_n1_2_2_3_2_2 + pil_d5_n1_2_2_3_2_2 = 1
invariant :pi_d5_n1_2_2_3_3_2 + pil_d5_n1_2_2_3_3_2 = 1
invariant :pi_d2_n1_1_1_3_3_2 + pil_d2_n1_1_1_3_3_2 = 1
invariant :po_d4_n1_2_3_2_3_3 + pol_d4_n1_2_3_2_3_3 = 1
invariant :pi_d5_n1_2_1_3_1_3 + pil_d5_n1_2_1_3_1_3 = 1
invariant :po_d1_n1_3_1_3_2_1 + pol_d1_n1_3_1_3_2_1 = 1
invariant :pi_d2_n1_3_2_2_1_2 + pil_d2_n1_3_2_2_1_2 = 1
invariant :po_d3_n1_1_2_3_1_1 + pol_d3_n1_1_2_3_1_1 = 1
invariant :pi_d3_n1_1_1_3_3_1 + pil_d3_n1_1_1_3_3_1 = 1
invariant :po_d3_n1_1_2_2_1_1 + pol_d3_n1_1_2_2_1_1 = 1
invariant :pi_d3_n1_3_2_2_3_2 + pil_d3_n1_3_2_2_3_2 = 1
invariant :pb_d1_n1_2_2_1_2_1 + pb_d1_n2_2_2_1_2_1 + pb_d2_n1_2_2_1_2_1 + pb_d2_n2_2_2_1_2_1 + pb_d3_n1_2_2_1_2_1 + pb_d3_n2_2_2_1_2_1 + pb_d4_n1_2_2_1_2_1 + pb_d4_n2_2_2_1_2_1 + pb_d5_n1_2_2_1_2_1 + pb_d5_n2_2_2_1_2_1 + pbl_2_2_1_2_1 = 30
invariant :po_d3_n1_1_1_3_1_2 + pol_d3_n1_1_1_3_1_2 = 1
invariant :pi_d2_n1_2_2_1_3_2 + pil_d2_n1_2_2_1_3_2 = 1
invariant :pb_d1_n1_1_1_1_1_1 + pb_d1_n2_1_1_1_1_1 + pb_d2_n1_1_1_1_1_1 + pb_d2_n2_1_1_1_1_1 + pb_d3_n1_1_1_1_1_1 + pb_d3_n2_1_1_1_1_1 + pb_d4_n1_1_1_1_1_1 + pb_d4_n2_1_1_1_1_1 + pb_d5_n1_1_1_1_1_1 + pb_d5_n2_1_1_1_1_1 + pbl_1_1_1_1_1 = 30
invariant :pi_d1_n1_3_3_2_1_1 + pil_d1_n1_3_3_2_1_1 = 1
invariant :po_d3_n1_1_2_2_2_3 + pol_d3_n1_1_2_2_2_3 = 1
invariant :po_d3_n1_3_2_3_3_3 + pol_d3_n1_3_2_3_3_3 = 1
invariant :pb_d1_n1_3_1_2_2_3 + pb_d1_n2_3_1_2_2_3 + pb_d2_n1_3_1_2_2_3 + pb_d2_n2_3_1_2_2_3 + pb_d3_n1_3_1_2_2_3 + pb_d3_n2_3_1_2_2_3 + pb_d4_n1_3_1_2_2_3 + pb_d4_n2_3_1_2_2_3 + pb_d5_n1_3_1_2_2_3 + pb_d5_n2_3_1_2_2_3 + pbl_3_1_2_2_3 = 30
invariant :pi_d1_n1_1_1_1_2_1 + pil_d1_n1_1_1_1_2_1 = 1
invariant :pi_d2_n1_2_1_3_3_2 + pil_d2_n1_2_1_3_3_2 = 1
invariant :po_d4_n1_3_3_2_1_2 + pol_d4_n1_3_3_2_1_2 = 1
invariant :po_d4_n1_2_1_1_1_1 + pol_d4_n1_2_1_1_1_1 = 1
invariant :po_d1_n1_1_3_3_1_2 + pol_d1_n1_1_3_3_1_2 = 1
invariant :po_d3_n1_2_1_1_3_2 + pol_d3_n1_2_1_1_3_2 = 1
invariant :pi_d5_n1_1_1_3_2_2 + pil_d5_n1_1_1_3_2_2 = 1
invariant :pi_d4_n1_1_1_1_1_2 + pil_d4_n1_1_1_1_1_2 = 1
invariant :po_d4_n1_1_3_2_3_1 + pol_d4_n1_1_3_2_3_1 = 1
invariant :pi_d3_n1_1_1_2_1_1 + pil_d3_n1_1_1_2_1_1 = 1
invariant :pi_d5_n1_2_3_3_1_2 + pil_d5_n1_2_3_3_1_2 = 1
invariant :pi_d2_n1_3_1_2_2_1 + pil_d2_n1_3_1_2_2_1 = 1
invariant :pb_d1_n1_3_3_3_2_2 + pb_d1_n2_3_3_3_2_2 + pb_d2_n1_3_3_3_2_2 + pb_d2_n2_3_3_3_2_2 + pb_d3_n1_3_3_3_2_2 + pb_d3_n2_3_3_3_2_2 + pb_d4_n1_3_3_3_2_2 + pb_d4_n2_3_3_3_2_2 + pb_d5_n1_3_3_3_2_2 + pb_d5_n2_3_3_3_2_2 + pbl_3_3_3_2_2 = 30
invariant :pb_d1_n1_2_1_3_1_2 + pb_d1_n2_2_1_3_1_2 + pb_d2_n1_2_1_3_1_2 + pb_d2_n2_2_1_3_1_2 + pb_d3_n1_2_1_3_1_2 + pb_d3_n2_2_1_3_1_2 + pb_d4_n1_2_1_3_1_2 + pb_d4_n2_2_1_3_1_2 + pb_d5_n1_2_1_3_1_2 + pb_d5_n2_2_1_3_1_2 + -1'pbl_1_1_1_1_1 + -1'pbl_1_1_1_1_2 + -1'pbl_1_1_1_1_3 + -1'pbl_1_1_1_2_1 + -1'pbl_1_1_1_2_2 + -1'pbl_1_1_1_2_3 + -1'pbl_1_1_1_3_1 + -1'pbl_1_1_1_3_2 + -1'pbl_1_1_1_3_3 + -1'pbl_1_1_2_1_1 + -1'pbl_1_1_2_1_2 + -1'pbl_1_1_2_1_3 + -1'pbl_1_1_2_2_1 + -1'pbl_1_1_2_2_2 + -1'pbl_1_1_2_2_3 + -1'pbl_1_1_2_3_1 + -1'pbl_1_1_2_3_2 + -1'pbl_1_1_2_3_3 + -1'pbl_1_1_3_1_1 + -1'pbl_1_1_3_1_2 + -1'pbl_1_1_3_1_3 + -1'pbl_1_1_3_2_1 + -1'pbl_1_1_3_2_2 + -1'pbl_1_1_3_2_3 + -1'pbl_1_1_3_3_1 + -1'pbl_1_1_3_3_2 + -1'pbl_1_1_3_3_3 + -1'pbl_1_2_1_1_1 + -1'pbl_1_2_1_1_2 + -1'pbl_1_2_1_1_3 + -1'pbl_1_2_1_2_1 + -1'pbl_1_2_1_2_2 + -1'pbl_1_2_1_2_3 + -1'pbl_1_2_1_3_1 + -1'pbl_1_2_1_3_2 + -1'pbl_1_2_1_3_3 + -1'pbl_1_2_2_1_1 + -1'pbl_1_2_2_1_2 + -1'pbl_1_2_2_1_3 + -1'pbl_1_2_2_2_1 + -1'pbl_1_2_2_2_2 + -1'pbl_1_2_2_2_3 + -1'pbl_1_2_2_3_1 + -1'pbl_1_2_2_3_2 + -1'pbl_1_2_2_3_3 + -1'pbl_1_2_3_1_1 + -1'pbl_1_2_3_1_2 + -1'pbl_1_2_3_1_3 + -1'pbl_1_2_3_2_1 + -1'pbl_1_2_3_2_2 + -1'pbl_1_2_3_2_3 + -1'pbl_1_2_3_3_1 + -1'pbl_1_2_3_3_2 + -1'pbl_1_2_3_3_3 + -1'pbl_1_3_1_1_1 + -1'pbl_1_3_1_1_2 + -1'pbl_1_3_1_1_3 + -1'pbl_1_3_1_2_1 + -1'pbl_1_3_1_2_2 + -1'pbl_1_3_1_2_3 + -1'pbl_1_3_1_3_1 + -1'pbl_1_3_1_3_2 + -1'pbl_1_3_1_3_3 + -1'pbl_1_3_2_1_1 + -1'pbl_1_3_2_1_2 + -1'pbl_1_3_2_1_3 + -1'pbl_1_3_2_2_1 + -1'pbl_1_3_2_2_2 + -1'pbl_1_3_2_2_3 + -1'pbl_1_3_2_3_1 + -1'pbl_1_3_2_3_2 + -1'pbl_1_3_2_3_3 + -1'pbl_1_3_3_1_1 + -1'pbl_1_3_3_1_2 + -1'pbl_1_3_3_1_3 + -1'pbl_1_3_3_2_1 + -1'pbl_1_3_3_2_2 + -1'pbl_1_3_3_2_3 + -1'pbl_1_3_3_3_1 + -1'pbl_1_3_3_3_2 + -1'pbl_1_3_3_3_3 + -1'pbl_2_1_1_1_1 + -1'pbl_2_1_1_1_2 + -1'pbl_2_1_1_1_3 + -1'pbl_2_1_1_2_1 + -1'pbl_2_1_1_2_2 + -1'pbl_2_1_1_2_3 + -1'pbl_2_1_1_3_1 + -1'pbl_2_1_1_3_2 + -1'pbl_2_1_1_3_3 + -1'pbl_2_1_2_1_1 + -1'pbl_2_1_2_1_2 + -1'pbl_2_1_2_1_3 + -1'pbl_2_1_2_2_1 + -1'pbl_2_1_2_2_2 + -1'pbl_2_1_2_2_3 + -1'pbl_2_1_2_3_1 + -1'pbl_2_1_2_3_2 + -1'pbl_2_1_2_3_3 + -1'pbl_2_1_3_1_1 + -1'pbl_2_1_3_1_3 + -1'pbl_2_1_3_2_1 + -1'pbl_2_1_3_2_2 + -1'pbl_2_1_3_2_3 + -1'pbl_2_1_3_3_1 + -1'pbl_2_1_3_3_2 + -1'pbl_2_1_3_3_3 + -1'pbl_2_2_1_1_1 + -1'pbl_2_2_1_1_2 + -1'pbl_2_2_1_1_3 + -1'pbl_2_2_1_2_1 + -1'pbl_2_2_1_2_2 + -1'pbl_2_2_1_2_3 + -1'pbl_2_2_1_3_1 + -1'pbl_2_2_1_3_2 + -1'pbl_2_2_1_3_3 + -1'pbl_2_2_2_1_1 + -1'pbl_2_2_2_1_2 + -1'pbl_2_2_2_1_3 + -1'pbl_2_2_2_2_1 + -1'pbl_2_2_2_2_2 + -1'pbl_2_2_2_2_3 + -1'pbl_2_2_2_3_1 + -1'pbl_2_2_2_3_2 + -1'pbl_2_2_2_3_3 + -1'pbl_2_2_3_1_1 + -1'pbl_2_2_3_1_2 + -1'pbl_2_2_3_1_3 + -1'pbl_2_2_3_2_1 + -1'pbl_2_2_3_2_2 + -1'pbl_2_2_3_2_3 + -1'pbl_2_2_3_3_1 + -1'pbl_2_2_3_3_2 + -1'pbl_2_2_3_3_3 + -1'pbl_2_3_1_1_1 + -1'pbl_2_3_1_1_2 + -1'pbl_2_3_1_1_3 + -1'pbl_2_3_1_2_1 + -1'pbl_2_3_1_2_2 + -1'pbl_2_3_1_2_3 + -1'pbl_2_3_1_3_1 + -1'pbl_2_3_1_3_2 + -1'pbl_2_3_1_3_3 + -1'pbl_2_3_2_1_1 + -1'pbl_2_3_2_1_2 + -1'pbl_2_3_2_1_3 + -1'pbl_2_3_2_2_1 + -1'pbl_2_3_2_2_2 + -1'pbl_2_3_2_2_3 + -1'pbl_2_3_2_3_1 + -1'pbl_2_3_2_3_2 + -1'pbl_2_3_2_3_3 + -1'pbl_2_3_3_1_1 + -1'pbl_2_3_3_1_2 + -1'pbl_2_3_3_1_3 + -1'pbl_2_3_3_2_1 + -1'pbl_2_3_3_2_2 + -1'pbl_2_3_3_2_3 + -1'pbl_2_3_3_3_1 + -1'pbl_2_3_3_3_2 + -1'pbl_2_3_3_3_3 + -1'pbl_3_1_1_1_1 + -1'pbl_3_1_1_1_2 + -1'pbl_3_1_1_1_3 + -1'pbl_3_1_1_2_1 + -1'pbl_3_1_1_2_2 + -1'pbl_3_1_1_2_3 + -1'pbl_3_1_1_3_1 + -1'pbl_3_1_1_3_2 + -1'pbl_3_1_1_3_3 + -1'pbl_3_1_2_1_1 + -1'pbl_3_1_2_1_2 + -1'pbl_3_1_2_1_3 + -1'pbl_3_1_2_2_1 + -1'pbl_3_1_2_2_2 + -1'pbl_3_1_2_2_3 + -1'pbl_3_1_2_3_1 + -1'pbl_3_1_2_3_2 + -1'pbl_3_1_2_3_3 + -1'pbl_3_1_3_1_1 + -1'pbl_3_1_3_1_2 + -1'pbl_3_1_3_1_3 + -1'pbl_3_1_3_2_1 + -1'pbl_3_1_3_2_2 + -1'pbl_3_1_3_2_3 + -1'pbl_3_1_3_3_1 + -1'pbl_3_1_3_3_2 + -1'pbl_3_1_3_3_3 + -1'pbl_3_2_1_1_1 + -1'pbl_3_2_1_1_2 + -1'pbl_3_2_1_1_3 + -1'pbl_3_2_1_2_1 + -1'pbl_3_2_1_2_2 + -1'pbl_3_2_1_2_3 + -1'pbl_3_2_1_3_1 + -1'pbl_3_2_1_3_2 + -1'pbl_3_2_1_3_3 + -1'pbl_3_2_2_1_1 + -1'pbl_3_2_2_1_2 + -1'pbl_3_2_2_1_3 + -1'pbl_3_2_2_2_1 + -1'pbl_3_2_2_2_2 + -1'pbl_3_2_2_2_3 + -1'pbl_3_2_2_3_1 + -1'pbl_3_2_2_3_2 + -1'pbl_3_2_2_3_3 + -1'pbl_3_2_3_1_1 + -1'pbl_3_2_3_1_2 + -1'pbl_3_2_3_1_3 + -1'pbl_3_2_3_2_1 + -1'pbl_3_2_3_2_2 + -1'pbl_3_2_3_2_3 + -1'pbl_3_2_3_3_1 + -1'pbl_3_2_3_3_2 + -1'pbl_3_2_3_3_3 + -1'pbl_3_3_1_1_1 + -1'pbl_3_3_1_1_2 + -1'pbl_3_3_1_1_3 + -1'pbl_3_3_1_2_1 + -1'pbl_3_3_1_2_2 + -1'pbl_3_3_1_2_3 + -1'pbl_3_3_1_3_1 + -1'pbl_3_3_1_3_2 + -1'pbl_3_3_1_3_3 + -1'pbl_3_3_2_1_1 + -1'pbl_3_3_2_1_2 + -1'pbl_3_3_2_1_3 + -1'pbl_3_3_2_2_1 + -1'pbl_3_3_2_2_2 + -1'pbl_3_3_2_2_3 + -1'pbl_3_3_2_3_1 + -1'pbl_3_3_2_3_2 + -1'pbl_3_3_2_3_3 + -1'pbl_3_3_3_1_1 + -1'pbl_3_3_3_1_2 + -1'pbl_3_3_3_1_3 + -1'pbl_3_3_3_2_1 + -1'pbl_3_3_3_2_2 + -1'pbl_3_3_3_2_3 + -1'pbl_3_3_3_3_1 + -1'pbl_3_3_3_3_2 + -1'pbl_3_3_3_3_3 + -1'pil_d1_n1_1_1_1_1_1 + -1'pil_d1_n1_1_1_1_1_2 + -1'pil_d1_n1_1_1_1_1_3 + -1'pil_d1_n1_1_1_1_2_1 + -1'pil_d1_n1_1_1_1_2_2 + -1'pil_d1_n1_1_1_1_2_3 + -1'pil_d1_n1_1_1_1_3_1 + -1'pil_d1_n1_1_1_1_3_2 + -1'pil_d1_n1_1_1_1_3_3 + -1'pil_d1_n1_1_1_2_1_1 + -1'pil_d1_n1_1_1_2_1_2 + -1'pil_d1_n1_1_1_2_1_3 + -1'pil_d1_n1_1_1_2_2_1 + -1'pil_d1_n1_1_1_2_2_2 + -1'pil_d1_n1_1_1_2_2_3 + -1'pil_d1_n1_1_1_2_3_1 + -1'pil_d1_n1_1_1_2_3_2 + -1'pil_d1_n1_1_1_2_3_3 + -1'pil_d1_n1_1_1_3_1_1 + -1'pil_d1_n1_1_1_3_1_2 + -1'pil_d1_n1_1_1_3_1_3 + -1'pil_d1_n1_1_1_3_2_1 + -1'pil_d1_n1_1_1_3_2_2 + -1'pil_d1_n1_1_1_3_2_3 + -1'pil_d1_n1_1_1_3_3_1 + -1'pil_d1_n1_1_1_3_3_2 + -1'pil_d1_n1_1_1_3_3_3 + -1'pil_d1_n1_1_2_1_1_1 + -1'pil_d1_n1_1_2_1_1_2 + -1'pil_d1_n1_1_2_1_1_3 + -1'pil_d1_n1_1_2_1_2_1 + -1'pil_d1_n1_1_2_1_2_2 + -1'pil_d1_n1_1_2_1_2_3 + -1'pil_d1_n1_1_2_1_3_1 + -1'pil_d1_n1_1_2_1_3_2 + -1'pil_d1_n1_1_2_1_3_3 + -1'pil_d1_n1_1_2_2_1_1 + -1'pil_d1_n1_1_2_2_1_2 + -1'pil_d1_n1_1_2_2_1_3 + -1'pil_d1_n1_1_2_2_2_1 + -1'pil_d1_n1_1_2_2_2_2 + -1'pil_d1_n1_1_2_2_2_3 + -1'pil_d1_n1_1_2_2_3_1 + -1'pil_d1_n1_1_2_2_3_2 + -1'pil_d1_n1_1_2_2_3_3 + -1'pil_d1_n1_1_2_3_1_1 + -1'pil_d1_n1_1_2_3_1_2 + -1'pil_d1_n1_1_2_3_1_3 + -1'pil_d1_n1_1_2_3_2_1 + -1'pil_d1_n1_1_2_3_2_2 + -1'pil_d1_n1_1_2_3_2_3 + -1'pil_d1_n1_1_2_3_3_1 + -1'pil_d1_n1_1_2_3_3_2 + -1'pil_d1_n1_1_2_3_3_3 + -1'pil_d1_n1_1_3_1_1_1 + -1'pil_d1_n1_1_3_1_1_2 + -1'pil_d1_n1_1_3_1_1_3 + -1'pil_d1_n1_1_3_1_2_1 + -1'pil_d1_n1_1_3_1_2_2 + -1'pil_d1_n1_1_3_1_2_3 + -1'pil_d1_n1_1_3_1_3_1 + -1'pil_d1_n1_1_3_1_3_2 + -1'pil_d1_n1_1_3_1_3_3 + -1'pil_d1_n1_1_3_2_1_1 + -1'pil_d1_n1_1_3_2_1_2 + -1'pil_d1_n1_1_3_2_1_3 + -1'pil_d1_n1_1_3_2_2_1 + -1'pil_d1_n1_1_3_2_2_2 + -1'pil_d1_n1_1_3_2_2_3 + -1'pil_d1_n1_1_3_2_3_1 + -1'pil_d1_n1_1_3_2_3_2 + -1'pil_d1_n1_1_3_2_3_3 + -1'pil_d1_n1_1_3_3_1_1 + -1'pil_d1_n1_1_3_3_1_2 + -1'pil_d1_n1_1_3_3_1_3 + -1'pil_d1_n1_1_3_3_2_1 + -1'pil_d1_n1_1_3_3_2_2 + -1'pil_d1_n1_1_3_3_2_3 + -1'pil_d1_n1_1_3_3_3_1 + -1'pil_d1_n1_1_3_3_3_2 + -1'pil_d1_n1_1_3_3_3_3 + -1'pil_d1_n1_2_1_1_1_1 + -1'pil_d1_n1_2_1_1_1_2 + -1'pil_d1_n1_2_1_1_1_3 + -1'pil_d1_n1_2_1_1_2_1 + -1'pil_d1_n1_2_1_1_2_2 + -1'pil_d1_n1_2_1_1_2_3 + -1'pil_d1_n1_2_1_1_3_1 + -1'pil_d1_n1_2_1_1_3_2 + -1'pil_d1_n1_2_1_1_3_3 + -1'pil_d1_n1_2_1_2_1_1 + -1'pil_d1_n1_2_1_2_1_2 + -1'pil_d1_n1_2_1_2_1_3 + -1'pil_d1_n1_2_1_2_2_1 + -1'pil_d1_n1_2_1_2_2_2 + -1'pil_d1_n1_2_1_2_2_3 + -1'pil_d1_n1_2_1_2_3_1 + -1'pil_d1_n1_2_1_2_3_2 + -1'pil_d1_n1_2_1_2_3_3 + -1'pil_d1_n1_2_1_3_1_1 + -1'pil_d1_n1_2_1_3_1_2 + -1'pil_d1_n1_2_1_3_1_3 + -1'pil_d1_n1_2_1_3_2_1 + -1'pil_d1_n1_2_1_3_2_2 + -1'pil_d1_n1_2_1_3_2_3 + -1'pil_d1_n1_2_1_3_3_1 + -1'pil_d1_n1_2_1_3_3_2 + -1'pil_d1_n1_2_1_3_3_3 + -1'pil_d1_n1_2_2_1_1_1 + -1'pil_d1_n1_2_2_1_1_2 + -1'pil_d1_n1_2_2_1_1_3 + -1'pil_d1_n1_2_2_1_2_1 + -1'pil_d1_n1_2_2_1_2_2 + -1'pil_d1_n1_2_2_1_2_3 + -1'pil_d1_n1_2_2_1_3_1 + -1'pil_d1_n1_2_2_1_3_2 + -1'pil_d1_n1_2_2_1_3_3 + -1'pil_d1_n1_2_2_2_1_1 + -1'pil_d1_n1_2_2_2_1_2 + -1'pil_d1_n1_2_2_2_1_3 + -1'pil_d1_n1_2_2_2_2_1 + -1'pil_d1_n1_2_2_2_2_2 + -1'pil_d1_n1_2_2_2_2_3 + -1'pil_d1_n1_2_2_2_3_1 + -1'pil_d1_n1_2_2_2_3_2 + -1'pil_d1_n1_2_2_2_3_3 + -1'pil_d1_n1_2_2_3_1_1 + -1'pil_d1_n1_2_2_3_1_2 + -1'pil_d1_n1_2_2_3_1_3 + -1'pil_d1_n1_2_2_3_2_1 + -1'pil_d1_n1_2_2_3_2_2 + -1'pil_d1_n1_2_2_3_2_3 + -1'pil_d1_n1_2_2_3_3_1 + -1'pil_d1_n1_2_2_3_3_2 + -1'pil_d1_n1_2_2_3_3_3 + -1'pil_d1_n1_2_3_1_1_1 + -1'pil_d1_n1_2_3_1_1_2 + -1'pil_d1_n1_2_3_1_1_3 + -1'pil_d1_n1_2_3_1_2_1 + -1'pil_d1_n1_2_3_1_2_2 + -1'pil_d1_n1_2_3_1_2_3 + -1'pil_d1_n1_2_3_1_3_1 + -1'pil_d1_n1_2_3_1_3_2 + -1'pil_d1_n1_2_3_1_3_3 + -1'pil_d1_n1_2_3_2_1_1 + -1'pil_d1_n1_2_3_2_1_2 + -1'pil_d1_n1_2_3_2_1_3 + -1'pil_d1_n1_2_3_2_2_1 + -1'pil_d1_n1_2_3_2_2_2 + -1'pil_d1_n1_2_3_2_2_3 + -1'pil_d1_n1_2_3_2_3_1 + -1'pil_d1_n1_2_3_2_3_2 + -1'pil_d1_n1_2_3_2_3_3 + -1'pil_d1_n1_2_3_3_1_1 + -1'pil_d1_n1_2_3_3_1_2 + -1'pil_d1_n1_2_3_3_1_3 + -1'pil_d1_n1_2_3_3_2_1 + -1'pil_d1_n1_2_3_3_2_2 + -1'pil_d1_n1_2_3_3_2_3 + -1'pil_d1_n1_2_3_3_3_1 + -1'pil_d1_n1_2_3_3_3_2 + -1'pil_d1_n1_2_3_3_3_3 + -1'pil_d1_n1_3_1_1_1_1 + -1'pil_d1_n1_3_1_1_1_2 + -1'pil_d1_n1_3_1_1_1_3 + -1'pil_d1_n1_3_1_1_2_1 + -1'pil_d1_n1_3_1_1_2_2 + -1'pil_d1_n1_3_1_1_2_3 + -1'pil_d1_n1_3_1_1_3_1 + -1'pil_d1_n1_3_1_1_3_2 + -1'pil_d1_n1_3_1_1_3_3 + -1'pil_d1_n1_3_1_2_1_1 + -1'pil_d1_n1_3_1_2_1_2 + -1'pil_d1_n1_3_1_2_1_3 + -1'pil_d1_n1_3_1_2_2_1 + -1'pil_d1_n1_3_1_2_2_2 + -1'pil_d1_n1_3_1_2_2_3 + -1'pil_d1_n1_3_1_2_3_1 + -1'pil_d1_n1_3_1_2_3_2 + -1'pil_d1_n1_3_1_2_3_3 + -1'pil_d1_n1_3_1_3_1_1 + -1'pil_d1_n1_3_1_3_1_2 + -1'pil_d1_n1_3_1_3_1_3 + -1'pil_d1_n1_3_1_3_2_1 + -1'pil_d1_n1_3_1_3_2_2 + -1'pil_d1_n1_3_1_3_2_3 + -1'pil_d1_n1_3_1_3_3_1 + -1'pil_d1_n1_3_1_3_3_2 + -1'pil_d1_n1_3_1_3_3_3 + -1'pil_d1_n1_3_2_1_1_1 + -1'pil_d1_n1_3_2_1_1_2 + -1'pil_d1_n1_3_2_1_1_3 + -1'pil_d1_n1_3_2_1_2_1 + -1'pil_d1_n1_3_2_1_2_2 + -1'pil_d1_n1_3_2_1_2_3 + -1'pil_d1_n1_3_2_1_3_1 + -1'pil_d1_n1_3_2_1_3_2 + -1'pil_d1_n1_3_2_1_3_3 + -1'pil_d1_n1_3_2_2_1_1 + -1'pil_d1_n1_3_2_2_1_2 + -1'pil_d1_n1_3_2_2_1_3 + -1'pil_d1_n1_3_2_2_2_1 + -1'pil_d1_n1_3_2_2_2_2 + -1'pil_d1_n1_3_2_2_2_3 + -1'pil_d1_n1_3_2_2_3_1 + -1'pil_d1_n1_3_2_2_3_2 + -1'pil_d1_n1_3_2_2_3_3 + -1'pil_d1_n1_3_2_3_1_1 + -1'pil_d1_n1_3_2_3_1_2 + -1'pil_d1_n1_3_2_3_1_3 + -1'pil_d1_n1_3_2_3_2_1 + -1'pil_d1_n1_3_2_3_2_2 + -1'pil_d1_n1_3_2_3_2_3 + -1'pil_d1_n1_3_2_3_3_1 + -1'pil_d1_n1_3_2_3_3_2 + -1'pil_d1_n1_3_2_3_3_3 + -1'pil_d1_n1_3_3_1_1_1 + -1'pil_d1_n1_3_3_1_1_2 + -1'pil_d1_n1_3_3_1_1_3 + -1'pil_d1_n1_3_3_1_2_1 + -1'pil_d1_n1_3_3_1_2_2 + -1'pil_d1_n1_3_3_1_2_3 + -1'pil_d1_n1_3_3_1_3_1 + -1'pil_d1_n1_3_3_1_3_2 + -1'pil_d1_n1_3_3_1_3_3 + -1'pil_d1_n1_3_3_2_1_1 + -1'pil_d1_n1_3_3_2_1_2 + -1'pil_d1_n1_3_3_2_1_3 + -1'pil_d1_n1_3_3_2_2_1 + -1'pil_d1_n1_3_3_2_2_2 + -1'pil_d1_n1_3_3_2_2_3 + -1'pil_d1_n1_3_3_2_3_1 + -1'pil_d1_n1_3_3_2_3_2 + -1'pil_d1_n1_3_3_2_3_3 + -1'pil_d1_n1_3_3_3_1_1 + -1'pil_d1_n1_3_3_3_1_2 + -1'pil_d1_n1_3_3_3_1_3 + -1'pil_d1_n1_3_3_3_2_1 + -1'pil_d1_n1_3_3_3_2_2 + -1'pil_d1_n1_3_3_3_2_3 + -1'pil_d1_n1_3_3_3_3_1 + -1'pil_d1_n1_3_3_3_3_2 + -1'pil_d1_n1_3_3_3_3_3 + -1'pil_d2_n1_1_1_1_1_1 + -1'pil_d2_n1_1_1_1_1_2 + -1'pil_d2_n1_1_1_1_1_3 + -1'pil_d2_n1_1_1_1_2_1 + -1'pil_d2_n1_1_1_1_2_2 + -1'pil_d2_n1_1_1_1_2_3 + -1'pil_d2_n1_1_1_1_3_1 + -1'pil_d2_n1_1_1_1_3_2 + -1'pil_d2_n1_1_1_1_3_3 + -1'pil_d2_n1_1_1_2_1_1 + -1'pil_d2_n1_1_1_2_1_2 + -1'pil_d2_n1_1_1_2_1_3 + -1'pil_d2_n1_1_1_2_2_1 + -1'pil_d2_n1_1_1_2_2_2 + -1'pil_d2_n1_1_1_2_2_3 + -1'pil_d2_n1_1_1_2_3_1 + -1'pil_d2_n1_1_1_2_3_2 + -1'pil_d2_n1_1_1_2_3_3 + -1'pil_d2_n1_1_1_3_1_1 + -1'pil_d2_n1_1_1_3_1_2 + -1'pil_d2_n1_1_1_3_1_3 + -1'pil_d2_n1_1_1_3_2_1 + -1'pil_d2_n1_1_1_3_2_2 + -1'pil_d2_n1_1_1_3_2_3 + -1'pil_d2_n1_1_1_3_3_1 + -1'pil_d2_n1_1_1_3_3_2 + -1'pil_d2_n1_1_1_3_3_3 + -1'pil_d2_n1_1_2_1_1_1 + -1'pil_d2_n1_1_2_1_1_2 + -1'pil_d2_n1_1_2_1_1_3 + -1'pil_d2_n1_1_2_1_2_1 + -1'pil_d2_n1_1_2_1_2_2 + -1'pil_d2_n1_1_2_1_2_3 + -1'pil_d2_n1_1_2_1_3_1 + -1'pil_d2_n1_1_2_1_3_2 + -1'pil_d2_n1_1_2_1_3_3 + -1'pil_d2_n1_1_2_2_1_1 + -1'pil_d2_n1_1_2_2_1_2 + -1'pil_d2_n1_1_2_2_1_3 + -1'pil_d2_n1_1_2_2_2_1 + -1'pil_d2_n1_1_2_2_2_2 + -1'pil_d2_n1_1_2_2_2_3 + -1'pil_d2_n1_1_2_2_3_1 + -1'pil_d2_n1_1_2_2_3_2 + -1'pil_d2_n1_1_2_2_3_3 + -1'pil_d2_n1_1_2_3_1_1 + -1'pil_d2_n1_1_2_3_1_2 + -1'pil_d2_n1_1_2_3_1_3 + -1'pil_d2_n1_1_2_3_2_1 + -1'pil_d2_n1_1_2_3_2_2 + -1'pil_d2_n1_1_2_3_2_3 + -1'pil_d2_n1_1_2_3_3_1 + -1'pil_d2_n1_1_2_3_3_2 + -1'pil_d2_n1_1_2_3_3_3 + -1'pil_d2_n1_1_3_1_1_1 + -1'pil_d2_n1_1_3_1_1_2 + -1'pil_d2_n1_1_3_1_1_3 + -1'pil_d2_n1_1_3_1_2_1 + -1'pil_d2_n1_1_3_1_2_2 + -1'pil_d2_n1_1_3_1_2_3 + -1'pil_d2_n1_1_3_1_3_1 + -1'pil_d2_n1_1_3_1_3_2 + -1'pil_d2_n1_1_3_1_3_3 + -1'pil_d2_n1_1_3_2_1_1 + -1'pil_d2_n1_1_3_2_1_2 + -1'pil_d2_n1_1_3_2_1_3 + -1'pil_d2_n1_1_3_2_2_1 + -1'pil_d2_n1_1_3_2_2_2 + -1'pil_d2_n1_1_3_2_2_3 + -1'pil_d2_n1_1_3_2_3_1 + -1'pil_d2_n1_1_3_2_3_2 + -1'pil_d2_n1_1_3_2_3_3 + -1'pil_d2_n1_1_3_3_1_1 + -1'pil_d2_n1_1_3_3_1_2 + -1'pil_d2_n1_1_3_3_1_3 + -1'pil_d2_n1_1_3_3_2_1 + -1'pil_d2_n1_1_3_3_2_2 + -1'pil_d2_n1_1_3_3_2_3 + -1'pil_d2_n1_1_3_3_3_1 + -1'pil_d2_n1_1_3_3_3_2 + -1'pil_d2_n1_1_3_3_3_3 + -1'pil_d2_n1_2_1_1_1_1 + -1'pil_d2_n1_2_1_1_1_2 + -1'pil_d2_n1_2_1_1_1_3 + -1'pil_d2_n1_2_1_1_2_1 + -1'pil_d2_n1_2_1_1_2_2 + -1'pil_d2_n1_2_1_1_2_3 + -1'pil_d2_n1_2_1_1_3_1 + -1'pil_d2_n1_2_1_1_3_2 + -1'pil_d2_n1_2_1_1_3_3 + -1'pil_d2_n1_2_1_2_1_1 + -1'pil_d2_n1_2_1_2_1_2 + -1'pil_d2_n1_2_1_2_1_3 + -1'pil_d2_n1_2_1_2_2_1 + -1'pil_d2_n1_2_1_2_2_2 + -1'pil_d2_n1_2_1_2_2_3 + -1'pil_d2_n1_2_1_2_3_1 + -1'pil_d2_n1_2_1_2_3_2 + -1'pil_d2_n1_2_1_2_3_3 + -1'pil_d2_n1_2_1_3_1_1 + -1'pil_d2_n1_2_1_3_1_2 + -1'pil_d2_n1_2_1_3_1_3 + -1'pil_d2_n1_2_1_3_2_1 + -1'pil_d2_n1_2_1_3_2_2 + -1'pil_d2_n1_2_1_3_2_3 + -1'pil_d2_n1_2_1_3_3_1 + -1'pil_d2_n1_2_1_3_3_2 + -1'pil_d2_n1_2_1_3_3_3 + -1'pil_d2_n1_2_2_1_1_1 + -1'pil_d2_n1_2_2_1_1_2 + -1'pil_d2_n1_2_2_1_1_3 + -1'pil_d2_n1_2_2_1_2_1 + -1'pil_d2_n1_2_2_1_2_2 + -1'pil_d2_n1_2_2_1_2_3 + -1'pil_d2_n1_2_2_1_3_1 + -1'pil_d2_n1_2_2_1_3_2 + -1'pil_d2_n1_2_2_1_3_3 + -1'pil_d2_n1_2_2_2_1_1 + -1'pil_d2_n1_2_2_2_1_2 + -1'pil_d2_n1_2_2_2_1_3 + -1'pil_d2_n1_2_2_2_2_1 + -1'pil_d2_n1_2_2_2_2_2 + -1'pil_d2_n1_2_2_2_2_3 + -1'pil_d2_n1_2_2_2_3_1 + -1'pil_d2_n1_2_2_2_3_2 + -1'pil_d2_n1_2_2_2_3_3 + -1'pil_d2_n1_2_2_3_1_1 + -1'pil_d2_n1_2_2_3_1_2 + -1'pil_d2_n1_2_2_3_1_3 + -1'pil_d2_n1_2_2_3_2_1 + -1'pil_d2_n1_2_2_3_2_2 + -1'pil_d2_n1_2_2_3_2_3 + -1'pil_d2_n1_2_2_3_3_1 + -1'pil_d2_n1_2_2_3_3_2 + -1'pil_d2_n1_2_2_3_3_3 + -1'pil_d2_n1_2_3_1_1_1 + -1'pil_d2_n1_2_3_1_1_2 + -1'pil_d2_n1_2_3_1_1_3 + -1'pil_d2_n1_2_3_1_2_1 + -1'pil_d2_n1_2_3_1_2_2 + -1'pil_d2_n1_2_3_1_2_3 + -1'pil_d2_n1_2_3_1_3_1 + -1'pil_d2_n1_2_3_1_3_2 + -1'pil_d2_n1_2_3_1_3_3 + -1'pil_d2_n1_2_3_2_1_1 + -1'pil_d2_n1_2_3_2_1_2 + -1'pil_d2_n1_2_3_2_1_3 + -1'pil_d2_n1_2_3_2_2_1 + -1'pil_d2_n1_2_3_2_2_2 + -1'pil_d2_n1_2_3_2_2_3 + -1'pil_d2_n1_2_3_2_3_1 + -1'pil_d2_n1_2_3_2_3_2 + -1'pil_d2_n1_2_3_2_3_3 + -1'pil_d2_n1_2_3_3_1_1 + -1'pil_d2_n1_2_3_3_1_2 + -1'pil_d2_n1_2_3_3_1_3 + -1'pil_d2_n1_2_3_3_2_1 + -1'pil_d2_n1_2_3_3_2_2 + -1'pil_d2_n1_2_3_3_2_3 + -1'pil_d2_n1_2_3_3_3_1 + -1'pil_d2_n1_2_3_3_3_2 + -1'pil_d2_n1_2_3_3_3_3 + -1'pil_d2_n1_3_1_1_1_1 + -1'pil_d2_n1_3_1_1_1_2 + -1'pil_d2_n1_3_1_1_1_3 + -1'pil_d2_n1_3_1_1_2_1 + -1'pil_d2_n1_3_1_1_2_2 + -1'pil_d2_n1_3_1_1_2_3 + -1'pil_d2_n1_3_1_1_3_1 + -1'pil_d2_n1_3_1_1_3_2 + -1'pil_d2_n1_3_1_1_3_3 + -1'pil_d2_n1_3_1_2_1_1 + -1'pil_d2_n1_3_1_2_1_2 + -1'pil_d2_n1_3_1_2_1_3 + -1'pil_d2_n1_3_1_2_2_1 + -1'pil_d2_n1_3_1_2_2_2 + -1'pil_d2_n1_3_1_2_2_3 + -1'pil_d2_n1_3_1_2_3_1 + -1'pil_d2_n1_3_1_2_3_2 + -1'pil_d2_n1_3_1_2_3_3 + -1'pil_d2_n1_3_1_3_1_1 + -1'pil_d2_n1_3_1_3_1_2 + -1'pil_d2_n1_3_1_3_1_3 + -1'pil_d2_n1_3_1_3_2_1 + -1'pil_d2_n1_3_1_3_2_2 + -1'pil_d2_n1_3_1_3_2_3 + -1'pil_d2_n1_3_1_3_3_1 + -1'pil_d2_n1_3_1_3_3_2 + -1'pil_d2_n1_3_1_3_3_3 + -1'pil_d2_n1_3_2_1_1_1 + -1'pil_d2_n1_3_2_1_1_2 + -1'pil_d2_n1_3_2_1_1_3 + -1'pil_d2_n1_3_2_1_2_1 + -1'pil_d2_n1_3_2_1_2_2 + -1'pil_d2_n1_3_2_1_2_3 + -1'pil_d2_n1_3_2_1_3_1 + -1'pil_d2_n1_3_2_1_3_2 + -1'pil_d2_n1_3_2_1_3_3 + -1'pil_d2_n1_3_2_2_1_1 + -1'pil_d2_n1_3_2_2_1_2 + -1'pil_d2_n1_3_2_2_1_3 + -1'pil_d2_n1_3_2_2_2_1 + -1'pil_d2_n1_3_2_2_2_2 + -1'pil_d2_n1_3_2_2_2_3 + -1'pil_d2_n1_3_2_2_3_1 + -1'pil_d2_n1_3_2_2_3_2 + -1'pil_d2_n1_3_2_2_3_3 + -1'pil_d2_n1_3_2_3_1_1 + -1'pil_d2_n1_3_2_3_1_2 + -1'pil_d2_n1_3_2_3_1_3 + -1'pil_d2_n1_3_2_3_2_1 + -1'pil_d2_n1_3_2_3_2_2 + -1'pil_d2_n1_3_2_3_2_3 + -1'pil_d2_n1_3_2_3_3_1 + -1'pil_d2_n1_3_2_3_3_2 + -1'pil_d2_n1_3_2_3_3_3 + -1'pil_d2_n1_3_3_1_1_1 + -1'pil_d2_n1_3_3_1_1_2 + -1'pil_d2_n1_3_3_1_1_3 + -1'pil_d2_n1_3_3_1_2_1 + -1'pil_d2_n1_3_3_1_2_2 + -1'pil_d2_n1_3_3_1_2_3 + -1'pil_d2_n1_3_3_1_3_1 + -1'pil_d2_n1_3_3_1_3_2 + -1'pil_d2_n1_3_3_1_3_3 + -1'pil_d2_n1_3_3_2_1_1 + -1'pil_d2_n1_3_3_2_1_2 + -1'pil_d2_n1_3_3_2_1_3 + -1'pil_d2_n1_3_3_2_2_1 + -1'pil_d2_n1_3_3_2_2_2 + -1'pil_d2_n1_3_3_2_2_3 + -1'pil_d2_n1_3_3_2_3_1 + -1'pil_d2_n1_3_3_2_3_2 + -1'pil_d2_n1_3_3_2_3_3 + -1'pil_d2_n1_3_3_3_1_1 + -1'pil_d2_n1_3_3_3_1_2 + -1'pil_d2_n1_3_3_3_1_3 + -1'pil_d2_n1_3_3_3_2_1 + -1'pil_d2_n1_3_3_3_2_2 + -1'pil_d2_n1_3_3_3_2_3 + -1'pil_d2_n1_3_3_3_3_1 + -1'pil_d2_n1_3_3_3_3_2 + -1'pil_d2_n1_3_3_3_3_3 + -1'pil_d3_n1_1_1_1_1_1 + -1'pil_d3_n1_1_1_1_1_2 + -1'pil_d3_n1_1_1_1_1_3 + -1'pil_d3_n1_1_1_1_2_1 + -1'pil_d3_n1_1_1_1_2_2 + -1'pil_d3_n1_1_1_1_2_3 + -1'pil_d3_n1_1_1_1_3_1 + -1'pil_d3_n1_1_1_1_3_2 + -1'pil_d3_n1_1_1_1_3_3 + -1'pil_d3_n1_1_1_2_1_1 + -1'pil_d3_n1_1_1_2_1_2 + -1'pil_d3_n1_1_1_2_1_3 + -1'pil_d3_n1_1_1_2_2_1 + -1'pil_d3_n1_1_1_2_2_2 + -1'pil_d3_n1_1_1_2_2_3 + -1'pil_d3_n1_1_1_2_3_1 + -1'pil_d3_n1_1_1_2_3_2 + -1'pil_d3_n1_1_1_2_3_3 + -1'pil_d3_n1_1_1_3_1_1 + -1'pil_d3_n1_1_1_3_1_2 + -1'pil_d3_n1_1_1_3_1_3 + -1'pil_d3_n1_1_1_3_2_1 + -1'pil_d3_n1_1_1_3_2_2 + -1'pil_d3_n1_1_1_3_2_3 + -1'pil_d3_n1_1_1_3_3_1 + -1'pil_d3_n1_1_1_3_3_2 + -1'pil_d3_n1_1_1_3_3_3 + -1'pil_d3_n1_1_2_1_1_1 + -1'pil_d3_n1_1_2_1_1_2 + -1'pil_d3_n1_1_2_1_1_3 + -1'pil_d3_n1_1_2_1_2_1 + -1'pil_d3_n1_1_2_1_2_2 + -1'pil_d3_n1_1_2_1_2_3 + -1'pil_d3_n1_1_2_1_3_1 + -1'pil_d3_n1_1_2_1_3_2 + -1'pil_d3_n1_1_2_1_3_3 + -1'pil_d3_n1_1_2_2_1_1 + -1'pil_d3_n1_1_2_2_1_2 + -1'pil_d3_n1_1_2_2_1_3 + -1'pil_d3_n1_1_2_2_2_1 + -1'pil_d3_n1_1_2_2_2_2 + -1'pil_d3_n1_1_2_2_2_3 + -1'pil_d3_n1_1_2_2_3_1 + -1'pil_d3_n1_1_2_2_3_2 + -1'pil_d3_n1_1_2_2_3_3 + -1'pil_d3_n1_1_2_3_1_1 + -1'pil_d3_n1_1_2_3_1_2 + -1'pil_d3_n1_1_2_3_1_3 + -1'pil_d3_n1_1_2_3_2_1 + -1'pil_d3_n1_1_2_3_2_2 + -1'pil_d3_n1_1_2_3_2_3 + -1'pil_d3_n1_1_2_3_3_1 + -1'pil_d3_n1_1_2_3_3_2 + -1'pil_d3_n1_1_2_3_3_3 + -1'pil_d3_n1_1_3_1_1_1 + -1'pil_d3_n1_1_3_1_1_2 + -1'pil_d3_n1_1_3_1_1_3 + -1'pil_d3_n1_1_3_1_2_1 + -1'pil_d3_n1_1_3_1_2_2 + -1'pil_d3_n1_1_3_1_2_3 + -1'pil_d3_n1_1_3_1_3_1 + -1'pil_d3_n1_1_3_1_3_2 + -1'pil_d3_n1_1_3_1_3_3 + -1'pil_d3_n1_1_3_2_1_1 + -1'pil_d3_n1_1_3_2_1_2 + -1'pil_d3_n1_1_3_2_1_3 + -1'pil_d3_n1_1_3_2_2_1 + -1'pil_d3_n1_1_3_2_2_2 + -1'pil_d3_n1_1_3_2_2_3 + -1'pil_d3_n1_1_3_2_3_1 + -1'pil_d3_n1_1_3_2_3_2 + -1'pil_d3_n1_1_3_2_3_3 + -1'pil_d3_n1_1_3_3_1_1 + -1'pil_d3_n1_1_3_3_1_2 + -1'pil_d3_n1_1_3_3_1_3 + -1'pil_d3_n1_1_3_3_2_1 + -1'pil_d3_n1_1_3_3_2_2 + -1'pil_d3_n1_1_3_3_2_3 + -1'pil_d3_n1_1_3_3_3_1 + -1'pil_d3_n1_1_3_3_3_2 + -1'pil_d3_n1_1_3_3_3_3 + -1'pil_d3_n1_2_1_1_1_1 + -1'pil_d3_n1_2_1_1_1_2 + -1'pil_d3_n1_2_1_1_1_3 + -1'pil_d3_n1_2_1_1_2_1 + -1'pil_d3_n1_2_1_1_2_2 + -1'pil_d3_n1_2_1_1_2_3 + -1'pil_d3_n1_2_1_1_3_1 + -1'pil_d3_n1_2_1_1_3_2 + -1'pil_d3_n1_2_1_1_3_3 + -1'pil_d3_n1_2_1_2_1_1 + -1'pil_d3_n1_2_1_2_1_2 + -1'pil_d3_n1_2_1_2_1_3 + -1'pil_d3_n1_2_1_2_2_1 + -1'pil_d3_n1_2_1_2_2_2 + -1'pil_d3_n1_2_1_2_2_3 + -1'pil_d3_n1_2_1_2_3_1 + -1'pil_d3_n1_2_1_2_3_2 + -1'pil_d3_n1_2_1_2_3_3 + -1'pil_d3_n1_2_1_3_1_1 + -1'pil_d3_n1_2_1_3_1_2 + -1'pil_d3_n1_2_1_3_1_3 + -1'pil_d3_n1_2_1_3_2_1 + -1'pil_d3_n1_2_1_3_2_2 + -1'pil_d3_n1_2_1_3_2_3 + -1'pil_d3_n1_2_1_3_3_1 + -1'pil_d3_n1_2_1_3_3_2 + -1'pil_d3_n1_2_1_3_3_3 + -1'pil_d3_n1_2_2_1_1_1 + -1'pil_d3_n1_2_2_1_1_2 + -1'pil_d3_n1_2_2_1_1_3 + -1'pil_d3_n1_2_2_1_2_1 + -1'pil_d3_n1_2_2_1_2_2 + -1'pil_d3_n1_2_2_1_2_3 + -1'pil_d3_n1_2_2_1_3_1 + -1'pil_d3_n1_2_2_1_3_2 + -1'pil_d3_n1_2_2_1_3_3 + -1'pil_d3_n1_2_2_2_1_1 + -1'pil_d3_n1_2_2_2_1_2 + -1'pil_d3_n1_2_2_2_1_3 + -1'pil_d3_n1_2_2_2_2_1 + -1'pil_d3_n1_2_2_2_2_2 + -1'pil_d3_n1_2_2_2_2_3 + -1'pil_d3_n1_2_2_2_3_1 + -1'pil_d3_n1_2_2_2_3_2 + -1'pil_d3_n1_2_2_2_3_3 + -1'pil_d3_n1_2_2_3_1_1 + -1'pil_d3_n1_2_2_3_1_2 + -1'pil_d3_n1_2_2_3_1_3 + -1'pil_d3_n1_2_2_3_2_1 + -1'pil_d3_n1_2_2_3_2_2 + -1'pil_d3_n1_2_2_3_2_3 + -1'pil_d3_n1_2_2_3_3_1 + -1'pil_d3_n1_2_2_3_3_2 + -1'pil_d3_n1_2_2_3_3_3 + -1'pil_d3_n1_2_3_1_1_1 + -1'pil_d3_n1_2_3_1_1_2 + -1'pil_d3_n1_2_3_1_1_3 + -1'pil_d3_n1_2_3_1_2_1 + -1'pil_d3_n1_2_3_1_2_2 + -1'pil_d3_n1_2_3_1_2_3 + -1'pil_d3_n1_2_3_1_3_1 + -1'pil_d3_n1_2_3_1_3_2 + -1'pil_d3_n1_2_3_1_3_3 + -1'pil_d3_n1_2_3_2_1_1 + -1'pil_d3_n1_2_3_2_1_2 + -1'pil_d3_n1_2_3_2_1_3 + -1'pil_d3_n1_2_3_2_2_1 + -1'pil_d3_n1_2_3_2_2_2 + -1'pil_d3_n1_2_3_2_2_3 + -1'pil_d3_n1_2_3_2_3_1 + -1'pil_d3_n1_2_3_2_3_2 + -1'pil_d3_n1_2_3_2_3_3 + -1'pil_d3_n1_2_3_3_1_1 + -1'pil_d3_n1_2_3_3_1_2 + -1'pil_d3_n1_2_3_3_1_3 + -1'pil_d3_n1_2_3_3_2_1 + -1'pil_d3_n1_2_3_3_2_2 + -1'pil_d3_n1_2_3_3_2_3 + -1'pil_d3_n1_2_3_3_3_1 + -1'pil_d3_n1_2_3_3_3_2 + -1'pil_d3_n1_2_3_3_3_3 + -1'pil_d3_n1_3_1_1_1_1 + -1'pil_d3_n1_3_1_1_1_2 + -1'pil_d3_n1_3_1_1_1_3 + -1'pil_d3_n1_3_1_1_2_1 + -1'pil_d3_n1_3_1_1_2_2 + -1'pil_d3_n1_3_1_1_2_3 + -1'pil_d3_n1_3_1_1_3_1 + -1'pil_d3_n1_3_1_1_3_2 + -1'pil_d3_n1_3_1_1_3_3 + -1'pil_d3_n1_3_1_2_1_1 + -1'pil_d3_n1_3_1_2_1_2 + -1'pil_d3_n1_3_1_2_1_3 + -1'pil_d3_n1_3_1_2_2_1 + -1'pil_d3_n1_3_1_2_2_2 + -1'pil_d3_n1_3_1_2_2_3 + -1'pil_d3_n1_3_1_2_3_1 + -1'pil_d3_n1_3_1_2_3_2 + -1'pil_d3_n1_3_1_2_3_3 + -1'pil_d3_n1_3_1_3_1_1 + -1'pil_d3_n1_3_1_3_1_2 + -1'pil_d3_n1_3_1_3_1_3 + -1'pil_d3_n1_3_1_3_2_1 + -1'pil_d3_n1_3_1_3_2_2 + -1'pil_d3_n1_3_1_3_2_3 + -1'pil_d3_n1_3_1_3_3_1 + -1'pil_d3_n1_3_1_3_3_2 + -1'pil_d3_n1_3_1_3_3_3 + -1'pil_d3_n1_3_2_1_1_1 + -1'pil_d3_n1_3_2_1_1_2 + -1'pil_d3_n1_3_2_1_1_3 + -1'pil_d3_n1_3_2_1_2_1 + -1'pil_d3_n1_3_2_1_2_2 + -1'pil_d3_n1_3_2_1_2_3 + -1'pil_d3_n1_3_2_1_3_1 + -1'pil_d3_n1_3_2_1_3_2 + -1'pil_d3_n1_3_2_1_3_3 + -1'pil_d3_n1_3_2_2_1_1 + -1'pil_d3_n1_3_2_2_1_2 + -1'pil_d3_n1_3_2_2_1_3 + -1'pil_d3_n1_3_2_2_2_1 + -1'pil_d3_n1_3_2_2_2_2 + -1'pil_d3_n1_3_2_2_2_3 + -1'pil_d3_n1_3_2_2_3_1 + -1'pil_d3_n1_3_2_2_3_2 + -1'pil_d3_n1_3_2_2_3_3 + -1'pil_d3_n1_3_2_3_1_1 + -1'pil_d3_n1_3_2_3_1_2 + -1'pil_d3_n1_3_2_3_1_3 + -1'pil_d3_n1_3_2_3_2_1 + -1'pil_d3_n1_3_2_3_2_2 + -1'pil_d3_n1_3_2_3_2_3 + -1'pil_d3_n1_3_2_3_3_1 + -1'pil_d3_n1_3_2_3_3_2 + -1'pil_d3_n1_3_2_3_3_3 + -1'pil_d3_n1_3_3_1_1_1 + -1'pil_d3_n1_3_3_1_1_2 + -1'pil_d3_n1_3_3_1_1_3 + -1'pil_d3_n1_3_3_1_2_1 + -1'pil_d3_n1_3_3_1_2_2 + -1'pil_d3_n1_3_3_1_2_3 + -1'pil_d3_n1_3_3_1_3_1 + -1'pil_d3_n1_3_3_1_3_2 + -1'pil_d3_n1_3_3_1_3_3 + -1'pil_d3_n1_3_3_2_1_1 + -1'pil_d3_n1_3_3_2_1_2 + -1'pil_d3_n1_3_3_2_1_3 + -1'pil_d3_n1_3_3_2_2_1 + -1'pil_d3_n1_3_3_2_2_2 + -1'pil_d3_n1_3_3_2_2_3 + -1'pil_d3_n1_3_3_2_3_1 + -1'pil_d3_n1_3_3_2_3_2 + -1'pil_d3_n1_3_3_2_3_3 + -1'pil_d3_n1_3_3_3_1_1 + -1'pil_d3_n1_3_3_3_1_2 + -1'pil_d3_n1_3_3_3_1_3 + -1'pil_d3_n1_3_3_3_2_1 + -1'pil_d3_n1_3_3_3_2_2 + -1'pil_d3_n1_3_3_3_2_3 + -1'pil_d3_n1_3_3_3_3_1 + -1'pil_d3_n1_3_3_3_3_2 + -1'pil_d3_n1_3_3_3_3_3 + -1'pil_d4_n1_1_1_1_1_1 + -1'pil_d4_n1_1_1_1_1_2 + -1'pil_d4_n1_1_1_1_1_3 + -1'pil_d4_n1_1_1_1_2_1 + -1'pil_d4_n1_1_1_1_2_2 + -1'pil_d4_n1_1_1_1_2_3 + -1'pil_d4_n1_1_1_1_3_1 + -1'pil_d4_n1_1_1_1_3_2 + -1'pil_d4_n1_1_1_1_3_3 + -1'pil_d4_n1_1_1_2_1_1 + -1'pil_d4_n1_1_1_2_1_2 + -1'pil_d4_n1_1_1_2_1_3 + -1'pil_d4_n1_1_1_2_2_1 + -1'pil_d4_n1_1_1_2_2_2 + -1'pil_d4_n1_1_1_2_2_3 + -1'pil_d4_n1_1_1_2_3_1 + -1'pil_d4_n1_1_1_2_3_2 + -1'pil_d4_n1_1_1_2_3_3 + -1'pil_d4_n1_1_1_3_1_1 + -1'pil_d4_n1_1_1_3_1_2 + -1'pil_d4_n1_1_1_3_1_3 + -1'pil_d4_n1_1_1_3_2_1 + -1'pil_d4_n1_1_1_3_2_2 + -1'pil_d4_n1_1_1_3_2_3 + -1'pil_d4_n1_1_1_3_3_1 + -1'pil_d4_n1_1_1_3_3_2 + -1'pil_d4_n1_1_1_3_3_3 + -1'pil_d4_n1_1_2_1_1_1 + -1'pil_d4_n1_1_2_1_1_2 + -1'pil_d4_n1_1_2_1_1_3 + -1'pil_d4_n1_1_2_1_2_1 + -1'pil_d4_n1_1_2_1_2_2 + -1'pil_d4_n1_1_2_1_2_3 + -1'pil_d4_n1_1_2_1_3_1 + -1'pil_d4_n1_1_2_1_3_2 + -1'pil_d4_n1_1_2_1_3_3 + -1'pil_d4_n1_1_2_2_1_1 + -1'pil_d4_n1_1_2_2_1_2 + -1'pil_d4_n1_1_2_2_1_3 + -1'pil_d4_n1_1_2_2_2_1 + -1'pil_d4_n1_1_2_2_2_2 + -1'pil_d4_n1_1_2_2_2_3 + -1'pil_d4_n1_1_2_2_3_1 + -1'pil_d4_n1_1_2_2_3_2 + -1'pil_d4_n1_1_2_2_3_3 + -1'pil_d4_n1_1_2_3_1_1 + -1'pil_d4_n1_1_2_3_1_2 + -1'pil_d4_n1_1_2_3_1_3 + -1'pil_d4_n1_1_2_3_2_1 + -1'pil_d4_n1_1_2_3_2_2 + -1'pil_d4_n1_1_2_3_2_3 + -1'pil_d4_n1_1_2_3_3_1 + -1'pil_d4_n1_1_2_3_3_2 + -1'pil_d4_n1_1_2_3_3_3 + -1'pil_d4_n1_1_3_1_1_1 + -1'pil_d4_n1_1_3_1_1_2 + -1'pil_d4_n1_1_3_1_1_3 + -1'pil_d4_n1_1_3_1_2_1 + -1'pil_d4_n1_1_3_1_2_2 + -1'pil_d4_n1_1_3_1_2_3 + -1'pil_d4_n1_1_3_1_3_1 + -1'pil_d4_n1_1_3_1_3_2 + -1'pil_d4_n1_1_3_1_3_3 + -1'pil_d4_n1_1_3_2_1_1 + -1'pil_d4_n1_1_3_2_1_2 + -1'pil_d4_n1_1_3_2_1_3 + -1'pil_d4_n1_1_3_2_2_1 + -1'pil_d4_n1_1_3_2_2_2 + -1'pil_d4_n1_1_3_2_2_3 + -1'pil_d4_n1_1_3_2_3_1 + -1'pil_d4_n1_1_3_2_3_2 + -1'pil_d4_n1_1_3_2_3_3 + -1'pil_d4_n1_1_3_3_1_1 + -1'pil_d4_n1_1_3_3_1_2 + -1'pil_d4_n1_1_3_3_1_3 + -1'pil_d4_n1_1_3_3_2_1 + -1'pil_d4_n1_1_3_3_2_2 + -1'pil_d4_n1_1_3_3_2_3 + -1'pil_d4_n1_1_3_3_3_1 + -1'pil_d4_n1_1_3_3_3_2 + -1'pil_d4_n1_1_3_3_3_3 + -1'pil_d4_n1_2_1_1_1_1 + -1'pil_d4_n1_2_1_1_1_2 + -1'pil_d4_n1_2_1_1_1_3 + -1'pil_d4_n1_2_1_1_2_1 + -1'pil_d4_n1_2_1_1_2_2 + -1'pil_d4_n1_2_1_1_2_3 + -1'pil_d4_n1_2_1_1_3_1 + -1'pil_d4_n1_2_1_1_3_2 + -1'pil_d4_n1_2_1_1_3_3 + -1'pil_d4_n1_2_1_2_1_1 + -1'pil_d4_n1_2_1_2_1_2 + -1'pil_d4_n1_2_1_2_1_3 + -1'pil_d4_n1_2_1_2_2_1 + -1'pil_d4_n1_2_1_2_2_2 + -1'pil_d4_n1_2_1_2_2_3 + -1'pil_d4_n1_2_1_2_3_1 + -1'pil_d4_n1_2_1_2_3_2 + -1'pil_d4_n1_2_1_2_3_3 + -1'pil_d4_n1_2_1_3_1_1 + -1'pil_d4_n1_2_1_3_1_2 + -1'pil_d4_n1_2_1_3_1_3 + -1'pil_d4_n1_2_1_3_2_1 + -1'pil_d4_n1_2_1_3_2_2 + -1'pil_d4_n1_2_1_3_2_3 + -1'pil_d4_n1_2_1_3_3_1 + -1'pil_d4_n1_2_1_3_3_2 + -1'pil_d4_n1_2_1_3_3_3 + -1'pil_d4_n1_2_2_1_1_1 + -1'pil_d4_n1_2_2_1_1_2 + -1'pil_d4_n1_2_2_1_1_3 + -1'pil_d4_n1_2_2_1_2_1 + -1'pil_d4_n1_2_2_1_2_2 + -1'pil_d4_n1_2_2_1_2_3 + -1'pil_d4_n1_2_2_1_3_1 + -1'pil_d4_n1_2_2_1_3_2 + -1'pil_d4_n1_2_2_1_3_3 + -1'pil_d4_n1_2_2_2_1_1 + -1'pil_d4_n1_2_2_2_1_2 + -1'pil_d4_n1_2_2_2_1_3 + -1'pil_d4_n1_2_2_2_2_1 + -1'pil_d4_n1_2_2_2_2_2 + -1'pil_d4_n1_2_2_2_2_3 + -1'pil_d4_n1_2_2_2_3_1 + -1'pil_d4_n1_2_2_2_3_2 + -1'pil_d4_n1_2_2_2_3_3 + -1'pil_d4_n1_2_2_3_1_1 + -1'pil_d4_n1_2_2_3_1_2 + -1'pil_d4_n1_2_2_3_1_3 + -1'pil_d4_n1_2_2_3_2_1 + -1'pil_d4_n1_2_2_3_2_2 + -1'pil_d4_n1_2_2_3_2_3 + -1'pil_d4_n1_2_2_3_3_1 + -1'pil_d4_n1_2_2_3_3_2 + -1'pil_d4_n1_2_2_3_3_3 + -1'pil_d4_n1_2_3_1_1_1 + -1'pil_d4_n1_2_3_1_1_2 + -1'pil_d4_n1_2_3_1_1_3 + -1'pil_d4_n1_2_3_1_2_1 + -1'pil_d4_n1_2_3_1_2_2 + -1'pil_d4_n1_2_3_1_2_3 + -1'pil_d4_n1_2_3_1_3_1 + -1'pil_d4_n1_2_3_1_3_2 + -1'pil_d4_n1_2_3_1_3_3 + -1'pil_d4_n1_2_3_2_1_1 + -1'pil_d4_n1_2_3_2_1_2 + -1'pil_d4_n1_2_3_2_1_3 + -1'pil_d4_n1_2_3_2_2_1 + -1'pil_d4_n1_2_3_2_2_2 + -1'pil_d4_n1_2_3_2_2_3 + -1'pil_d4_n1_2_3_2_3_1 + -1'pil_d4_n1_2_3_2_3_2 + -1'pil_d4_n1_2_3_2_3_3 + -1'pil_d4_n1_2_3_3_1_1 + -1'pil_d4_n1_2_3_3_1_2 + -1'pil_d4_n1_2_3_3_1_3 + -1'pil_d4_n1_2_3_3_2_1 + -1'pil_d4_n1_2_3_3_2_2 + -1'pil_d4_n1_2_3_3_2_3 + -1'pil_d4_n1_2_3_3_3_1 + -1'pil_d4_n1_2_3_3_3_2 + -1'pil_d4_n1_2_3_3_3_3 + -1'pil_d4_n1_3_1_1_1_1 + -1'pil_d4_n1_3_1_1_1_2 + -1'pil_d4_n1_3_1_1_1_3 + -1'pil_d4_n1_3_1_1_2_1 + -1'pil_d4_n1_3_1_1_2_2 + -1'pil_d4_n1_3_1_1_2_3 + -1'pil_d4_n1_3_1_1_3_1 + -1'pil_d4_n1_3_1_1_3_2 + -1'pil_d4_n1_3_1_1_3_3 + -1'pil_d4_n1_3_1_2_1_1 + -1'pil_d4_n1_3_1_2_1_2 + -1'pil_d4_n1_3_1_2_1_3 + -1'pil_d4_n1_3_1_2_2_1 + -1'pil_d4_n1_3_1_2_2_2 + -1'pil_d4_n1_3_1_2_2_3 + -1'pil_d4_n1_3_1_2_3_1 + -1'pil_d4_n1_3_1_2_3_2 + -1'pil_d4_n1_3_1_2_3_3 + -1'pil_d4_n1_3_1_3_1_1 + -1'pil_d4_n1_3_1_3_1_2 + -1'pil_d4_n1_3_1_3_1_3 + -1'pil_d4_n1_3_1_3_2_1 + -1'pil_d4_n1_3_1_3_2_2 + -1'pil_d4_n1_3_1_3_2_3 + -1'pil_d4_n1_3_1_3_3_1 + -1'pil_d4_n1_3_1_3_3_2 + -1'pil_d4_n1_3_1_3_3_3 + -1'pil_d4_n1_3_2_1_1_1 + -1'pil_d4_n1_3_2_1_1_2 + -1'pil_d4_n1_3_2_1_1_3 + -1'pil_d4_n1_3_2_1_2_1 + -1'pil_d4_n1_3_2_1_2_2 + -1'pil_d4_n1_3_2_1_2_3 + -1'pil_d4_n1_3_2_1_3_1 + -1'pil_d4_n1_3_2_1_3_2 + -1'pil_d4_n1_3_2_1_3_3 + -1'pil_d4_n1_3_2_2_1_1 + -1'pil_d4_n1_3_2_2_1_2 + -1'pil_d4_n1_3_2_2_1_3 + -1'pil_d4_n1_3_2_2_2_1 + -1'pil_d4_n1_3_2_2_2_2 + -1'pil_d4_n1_3_2_2_2_3 + -1'pil_d4_n1_3_2_2_3_1 + -1'pil_d4_n1_3_2_2_3_2 + -1'pil_d4_n1_3_2_2_3_3 + -1'pil_d4_n1_3_2_3_1_1 + -1'pil_d4_n1_3_2_3_1_2 + -1'pil_d4_n1_3_2_3_1_3 + -1'pil_d4_n1_3_2_3_2_1 + -1'pil_d4_n1_3_2_3_2_2 + -1'pil_d4_n1_3_2_3_2_3 + -1'pil_d4_n1_3_2_3_3_1 + -1'pil_d4_n1_3_2_3_3_2 + -1'pil_d4_n1_3_2_3_3_3 + -1'pil_d4_n1_3_3_1_1_1 + -1'pil_d4_n1_3_3_1_1_2 + -1'pil_d4_n1_3_3_1_1_3 + -1'pil_d4_n1_3_3_1_2_1 + -1'pil_d4_n1_3_3_1_2_2 + -1'pil_d4_n1_3_3_1_2_3 + -1'pil_d4_n1_3_3_1_3_1 + -1'pil_d4_n1_3_3_1_3_2 + -1'pil_d4_n1_3_3_1_3_3 + -1'pil_d4_n1_3_3_2_1_1 + -1'pil_d4_n1_3_3_2_1_2 + -1'pil_d4_n1_3_3_2_1_3 + -1'pil_d4_n1_3_3_2_2_1 + -1'pil_d4_n1_3_3_2_2_2 + -1'pil_d4_n1_3_3_2_2_3 + -1'pil_d4_n1_3_3_2_3_1 + -1'pil_d4_n1_3_3_2_3_2 + -1'pil_d4_n1_3_3_2_3_3 + -1'pil_d4_n1_3_3_3_1_1 + -1'pil_d4_n1_3_3_3_1_2 + -1'pil_d4_n1_3_3_3_1_3 + -1'pil_d4_n1_3_3_3_2_1 + -1'pil_d4_n1_3_3_3_2_2 + -1'pil_d4_n1_3_3_3_2_3 + -1'pil_d4_n1_3_3_3_3_1 + -1'pil_d4_n1_3_3_3_3_2 + -1'pil_d4_n1_3_3_3_3_3 + -1'pil_d5_n1_1_1_1_1_1 + -1'pil_d5_n1_1_1_1_1_2 + -1'pil_d5_n1_1_1_1_1_3 + -1'pil_d5_n1_1_1_1_2_1 + -1'pil_d5_n1_1_1_1_2_2 + -1'pil_d5_n1_1_1_1_2_3 + -1'pil_d5_n1_1_1_1_3_1 + -1'pil_d5_n1_1_1_1_3_2 + -1'pil_d5_n1_1_1_1_3_3 + -1'pil_d5_n1_1_1_2_1_1 + -1'pil_d5_n1_1_1_2_1_2 + -1'pil_d5_n1_1_1_2_1_3 + -1'pil_d5_n1_1_1_2_2_1 + -1'pil_d5_n1_1_1_2_2_2 + -1'pil_d5_n1_1_1_2_2_3 + -1'pil_d5_n1_1_1_2_3_1 + -1'pil_d5_n1_1_1_2_3_2 + -1'pil_d5_n1_1_1_2_3_3 + -1'pil_d5_n1_1_1_3_1_1 + -1'pil_d5_n1_1_1_3_1_2 + -1'pil_d5_n1_1_1_3_1_3 + -1'pil_d5_n1_1_1_3_2_1 + -1'pil_d5_n1_1_1_3_2_2 + -1'pil_d5_n1_1_1_3_2_3 + -1'pil_d5_n1_1_1_3_3_1 + -1'pil_d5_n1_1_1_3_3_2 + -1'pil_d5_n1_1_1_3_3_3 + -1'pil_d5_n1_1_2_1_1_1 + -1'pil_d5_n1_1_2_1_1_2 + -1'pil_d5_n1_1_2_1_1_3 + -1'pil_d5_n1_1_2_1_2_1 + -1'pil_d5_n1_1_2_1_2_2 + -1'pil_d5_n1_1_2_1_2_3 + -1'pil_d5_n1_1_2_1_3_1 + -1'pil_d5_n1_1_2_1_3_2 + -1'pil_d5_n1_1_2_1_3_3 + -1'pil_d5_n1_1_2_2_1_1 + -1'pil_d5_n1_1_2_2_1_2 + -1'pil_d5_n1_1_2_2_1_3 + -1'pil_d5_n1_1_2_2_2_1 + -1'pil_d5_n1_1_2_2_2_2 + -1'pil_d5_n1_1_2_2_2_3 + -1'pil_d5_n1_1_2_2_3_1 + -1'pil_d5_n1_1_2_2_3_2 + -1'pil_d5_n1_1_2_2_3_3 + -1'pil_d5_n1_1_2_3_1_1 + -1'pil_d5_n1_1_2_3_1_2 + -1'pil_d5_n1_1_2_3_1_3 + -1'pil_d5_n1_1_2_3_2_1 + -1'pil_d5_n1_1_2_3_2_2 + -1'pil_d5_n1_1_2_3_2_3 + -1'pil_d5_n1_1_2_3_3_1 + -1'pil_d5_n1_1_2_3_3_2 + -1'pil_d5_n1_1_2_3_3_3 + -1'pil_d5_n1_1_3_1_1_1 + -1'pil_d5_n1_1_3_1_1_2 + -1'pil_d5_n1_1_3_1_1_3 + -1'pil_d5_n1_1_3_1_2_1 + -1'pil_d5_n1_1_3_1_2_2 + -1'pil_d5_n1_1_3_1_2_3 + -1'pil_d5_n1_1_3_1_3_1 + -1'pil_d5_n1_1_3_1_3_2 + -1'pil_d5_n1_1_3_1_3_3 + -1'pil_d5_n1_1_3_2_1_1 + -1'pil_d5_n1_1_3_2_1_2 + -1'pil_d5_n1_1_3_2_1_3 + -1'pil_d5_n1_1_3_2_2_1 + -1'pil_d5_n1_1_3_2_2_2 + -1'pil_d5_n1_1_3_2_2_3 + -1'pil_d5_n1_1_3_2_3_1 + -1'pil_d5_n1_1_3_2_3_2 + -1'pil_d5_n1_1_3_2_3_3 + -1'pil_d5_n1_1_3_3_1_1 + -1'pil_d5_n1_1_3_3_1_2 + -1'pil_d5_n1_1_3_3_1_3 + -1'pil_d5_n1_1_3_3_2_1 + -1'pil_d5_n1_1_3_3_2_2 + -1'pil_d5_n1_1_3_3_2_3 + -1'pil_d5_n1_1_3_3_3_1 + -1'pil_d5_n1_1_3_3_3_2 + -1'pil_d5_n1_1_3_3_3_3 + -1'pil_d5_n1_2_1_1_1_1 + -1'pil_d5_n1_2_1_1_1_2 + -1'pil_d5_n1_2_1_1_1_3 + -1'pil_d5_n1_2_1_1_2_1 + -1'pil_d5_n1_2_1_1_2_2 + -1'pil_d5_n1_2_1_1_2_3 + -1'pil_d5_n1_2_1_1_3_1 + -1'pil_d5_n1_2_1_1_3_2 + -1'pil_d5_n1_2_1_1_3_3 + -1'pil_d5_n1_2_1_2_1_1 + -1'pil_d5_n1_2_1_2_1_2 + -1'pil_d5_n1_2_1_2_1_3 + -1'pil_d5_n1_2_1_2_2_1 + -1'pil_d5_n1_2_1_2_2_2 + -1'pil_d5_n1_2_1_2_2_3 + -1'pil_d5_n1_2_1_2_3_1 + -1'pil_d5_n1_2_1_2_3_2 + -1'pil_d5_n1_2_1_2_3_3 + -1'pil_d5_n1_2_1_3_1_1 + -1'pil_d5_n1_2_1_3_1_2 + -1'pil_d5_n1_2_1_3_1_3 + -1'pil_d5_n1_2_1_3_2_1 + -1'pil_d5_n1_2_1_3_2_2 + -1'pil_d5_n1_2_1_3_2_3 + -1'pil_d5_n1_2_1_3_3_1 + -1'pil_d5_n1_2_1_3_3_2 + -1'pil_d5_n1_2_1_3_3_3 + -1'pil_d5_n1_2_2_1_1_1 + -1'pil_d5_n1_2_2_1_1_2 + -1'pil_d5_n1_2_2_1_1_3 + -1'pil_d5_n1_2_2_1_2_1 + -1'pil_d5_n1_2_2_1_2_2 + -1'pil_d5_n1_2_2_1_2_3 + -1'pil_d5_n1_2_2_1_3_1 + -1'pil_d5_n1_2_2_1_3_2 + -1'pil_d5_n1_2_2_1_3_3 + -1'pil_d5_n1_2_2_2_1_1 + -1'pil_d5_n1_2_2_2_1_2 + -1'pil_d5_n1_2_2_2_1_3 + -1'pil_d5_n1_2_2_2_2_1 + -1'pil_d5_n1_2_2_2_2_2 + -1'pil_d5_n1_2_2_2_2_3 + -1'pil_d5_n1_2_2_2_3_1 + -1'pil_d5_n1_2_2_2_3_2 + -1'pil_d5_n1_2_2_2_3_3 + -1'pil_d5_n1_2_2_3_1_1 + -1'pil_d5_n1_2_2_3_1_2 + -1'pil_d5_n1_2_2_3_1_3 + -1'pil_d5_n1_2_2_3_2_1 + -1'pil_d5_n1_2_2_3_2_2 + -1'pil_d5_n1_2_2_3_2_3 + -1'pil_d5_n1_2_2_3_3_1 + -1'pil_d5_n1_2_2_3_3_2 + -1'pil_d5_n1_2_2_3_3_3 + -1'pil_d5_n1_2_3_1_1_1 + -1'pil_d5_n1_2_3_1_1_2 + -1'pil_d5_n1_2_3_1_1_3 + -1'pil_d5_n1_2_3_1_2_1 + -1'pil_d5_n1_2_3_1_2_2 + -1'pil_d5_n1_2_3_1_2_3 + -1'pil_d5_n1_2_3_1_3_1 + -1'pil_d5_n1_2_3_1_3_2 + -1'pil_d5_n1_2_3_1_3_3 + -1'pil_d5_n1_2_3_2_1_1 + -1'pil_d5_n1_2_3_2_1_2 + -1'pil_d5_n1_2_3_2_1_3 + -1'pil_d5_n1_2_3_2_2_1 + -1'pil_d5_n1_2_3_2_2_2 + -1'pil_d5_n1_2_3_2_2_3 + -1'pil_d5_n1_2_3_2_3_1 + -1'pil_d5_n1_2_3_2_3_2 + -1'pil_d5_n1_2_3_2_3_3 + -1'pil_d5_n1_2_3_3_1_1 + -1'pil_d5_n1_2_3_3_1_2 + -1'pil_d5_n1_2_3_3_1_3 + -1'pil_d5_n1_2_3_3_2_1 + -1'pil_d5_n1_2_3_3_2_2 + -1'pil_d5_n1_2_3_3_2_3 + -1'pil_d5_n1_2_3_3_3_1 + -1'pil_d5_n1_2_3_3_3_2 + -1'pil_d5_n1_2_3_3_3_3 + -1'pil_d5_n1_3_1_1_1_1 + -1'pil_d5_n1_3_1_1_1_2 + -1'pil_d5_n1_3_1_1_1_3 + -1'pil_d5_n1_3_1_1_2_1 + -1'pil_d5_n1_3_1_1_2_2 + -1'pil_d5_n1_3_1_1_2_3 + -1'pil_d5_n1_3_1_1_3_1 + -1'pil_d5_n1_3_1_1_3_2 + -1'pil_d5_n1_3_1_1_3_3 + -1'pil_d5_n1_3_1_2_1_1 + -1'pil_d5_n1_3_1_2_1_2 + -1'pil_d5_n1_3_1_2_1_3 + -1'pil_d5_n1_3_1_2_2_1 + -1'pil_d5_n1_3_1_2_2_2 + -1'pil_d5_n1_3_1_2_2_3 + -1'pil_d5_n1_3_1_2_3_1 + -1'pil_d5_n1_3_1_2_3_2 + -1'pil_d5_n1_3_1_2_3_3 + -1'pil_d5_n1_3_1_3_1_1 + -1'pil_d5_n1_3_1_3_1_2 + -1'pil_d5_n1_3_1_3_1_3 + -1'pil_d5_n1_3_1_3_2_1 + -1'pil_d5_n1_3_1_3_2_2 + -1'pil_d5_n1_3_1_3_2_3 + -1'pil_d5_n1_3_1_3_3_1 + -1'pil_d5_n1_3_1_3_3_2 + -1'pil_d5_n1_3_1_3_3_3 + -1'pil_d5_n1_3_2_1_1_1 + -1'pil_d5_n1_3_2_1_1_2 + -1'pil_d5_n1_3_2_1_1_3 + -1'pil_d5_n1_3_2_1_2_1 + -1'pil_d5_n1_3_2_1_2_2 + -1'pil_d5_n1_3_2_1_2_3 + -1'pil_d5_n1_3_2_1_3_1 + -1'pil_d5_n1_3_2_1_3_2 + -1'pil_d5_n1_3_2_1_3_3 + -1'pil_d5_n1_3_2_2_1_1 + -1'pil_d5_n1_3_2_2_1_2 + -1'pil_d5_n1_3_2_2_1_3 + -1'pil_d5_n1_3_2_2_2_1 + -1'pil_d5_n1_3_2_2_2_2 + -1'pil_d5_n1_3_2_2_2_3 + -1'pil_d5_n1_3_2_2_3_1 + -1'pil_d5_n1_3_2_2_3_2 + -1'pil_d5_n1_3_2_2_3_3 + -1'pil_d5_n1_3_2_3_1_1 + -1'pil_d5_n1_3_2_3_1_2 + -1'pil_d5_n1_3_2_3_1_3 + -1'pil_d5_n1_3_2_3_2_1 + -1'pil_d5_n1_3_2_3_2_2 + -1'pil_d5_n1_3_2_3_2_3 + -1'pil_d5_n1_3_2_3_3_1 + -1'pil_d5_n1_3_2_3_3_2 + -1'pil_d5_n1_3_2_3_3_3 + -1'pil_d5_n1_3_3_1_1_1 + -1'pil_d5_n1_3_3_1_1_2 + -1'pil_d5_n1_3_3_1_1_3 + -1'pil_d5_n1_3_3_1_2_1 + -1'pil_d5_n1_3_3_1_2_2 + -1'pil_d5_n1_3_3_1_2_3 + -1'pil_d5_n1_3_3_1_3_1 + -1'pil_d5_n1_3_3_1_3_2 + -1'pil_d5_n1_3_3_1_3_3 + -1'pil_d5_n1_3_3_2_1_1 + -1'pil_d5_n1_3_3_2_1_2 + -1'pil_d5_n1_3_3_2_1_3 + -1'pil_d5_n1_3_3_2_2_1 + -1'pil_d5_n1_3_3_2_2_2 + -1'pil_d5_n1_3_3_2_2_3 + -1'pil_d5_n1_3_3_2_3_1 + -1'pil_d5_n1_3_3_2_3_2 + -1'pil_d5_n1_3_3_2_3_3 + -1'pil_d5_n1_3_3_3_1_1 + -1'pil_d5_n1_3_3_3_1_2 + -1'pil_d5_n1_3_3_3_1_3 + -1'pil_d5_n1_3_3_3_2_1 + -1'pil_d5_n1_3_3_3_2_2 + -1'pil_d5_n1_3_3_3_2_3 + -1'pil_d5_n1_3_3_3_3_1 + -1'pil_d5_n1_3_3_3_3_2 + -1'pil_d5_n1_3_3_3_3_3 + -1'pol_d1_n1_1_1_1_1_1 + -1'pol_d1_n1_1_1_1_1_2 + -1'pol_d1_n1_1_1_1_1_3 + -1'pol_d1_n1_1_1_1_2_1 + -1'pol_d1_n1_1_1_1_2_2 + -1'pol_d1_n1_1_1_1_2_3 + -1'pol_d1_n1_1_1_1_3_1 + -1'pol_d1_n1_1_1_1_3_2 + -1'pol_d1_n1_1_1_1_3_3 + -1'pol_d1_n1_1_1_2_1_1 + -1'pol_d1_n1_1_1_2_1_2 + -1'pol_d1_n1_1_1_2_1_3 + -1'pol_d1_n1_1_1_2_2_1 + -1'pol_d1_n1_1_1_2_2_2 + -1'pol_d1_n1_1_1_2_2_3 + -1'pol_d1_n1_1_1_2_3_1 + -1'pol_d1_n1_1_1_2_3_2 + -1'pol_d1_n1_1_1_2_3_3 + -1'pol_d1_n1_1_1_3_1_1 + -1'pol_d1_n1_1_1_3_1_2 + -1'pol_d1_n1_1_1_3_1_3 + -1'pol_d1_n1_1_1_3_2_1 + -1'pol_d1_n1_1_1_3_2_2 + -1'pol_d1_n1_1_1_3_2_3 + -1'pol_d1_n1_1_1_3_3_1 + -1'pol_d1_n1_1_1_3_3_2 + -1'pol_d1_n1_1_1_3_3_3 + -1'pol_d1_n1_1_2_1_1_1 + -1'pol_d1_n1_1_2_1_1_2 + -1'pol_d1_n1_1_2_1_1_3 + -1'pol_d1_n1_1_2_1_2_1 + -1'pol_d1_n1_1_2_1_2_2 + -1'pol_d1_n1_1_2_1_2_3 + -1'pol_d1_n1_1_2_1_3_1 + -1'pol_d1_n1_1_2_1_3_2 + -1'pol_d1_n1_1_2_1_3_3 + -1'pol_d1_n1_1_2_2_1_1 + -1'pol_d1_n1_1_2_2_1_2 + -1'pol_d1_n1_1_2_2_1_3 + -1'pol_d1_n1_1_2_2_2_1 + -1'pol_d1_n1_1_2_2_2_2 + -1'pol_d1_n1_1_2_2_2_3 + -1'pol_d1_n1_1_2_2_3_1 + -1'pol_d1_n1_1_2_2_3_2 + -1'pol_d1_n1_1_2_2_3_3 + -1'pol_d1_n1_1_2_3_1_1 + -1'pol_d1_n1_1_2_3_1_2 + -1'pol_d1_n1_1_2_3_1_3 + -1'pol_d1_n1_1_2_3_2_1 + -1'pol_d1_n1_1_2_3_2_2 + -1'pol_d1_n1_1_2_3_2_3 + -1'pol_d1_n1_1_2_3_3_1 + -1'pol_d1_n1_1_2_3_3_2 + -1'pol_d1_n1_1_2_3_3_3 + -1'pol_d1_n1_1_3_1_1_1 + -1'pol_d1_n1_1_3_1_1_2 + -1'pol_d1_n1_1_3_1_1_3 + -1'pol_d1_n1_1_3_1_2_1 + -1'pol_d1_n1_1_3_1_2_2 + -1'pol_d1_n1_1_3_1_2_3 + -1'pol_d1_n1_1_3_1_3_1 + -1'pol_d1_n1_1_3_1_3_2 + -1'pol_d1_n1_1_3_1_3_3 + -1'pol_d1_n1_1_3_2_1_1 + -1'pol_d1_n1_1_3_2_1_2 + -1'pol_d1_n1_1_3_2_1_3 + -1'pol_d1_n1_1_3_2_2_1 + -1'pol_d1_n1_1_3_2_2_2 + -1'pol_d1_n1_1_3_2_2_3 + -1'pol_d1_n1_1_3_2_3_1 + -1'pol_d1_n1_1_3_2_3_2 + -1'pol_d1_n1_1_3_2_3_3 + -1'pol_d1_n1_1_3_3_1_1 + -1'pol_d1_n1_1_3_3_1_2 + -1'pol_d1_n1_1_3_3_1_3 + -1'pol_d1_n1_1_3_3_2_1 + -1'pol_d1_n1_1_3_3_2_2 + -1'pol_d1_n1_1_3_3_2_3 + -1'pol_d1_n1_1_3_3_3_1 + -1'pol_d1_n1_1_3_3_3_2 + -1'pol_d1_n1_1_3_3_3_3 + -1'pol_d1_n1_2_1_1_1_1 + -1'pol_d1_n1_2_1_1_1_2 + -1'pol_d1_n1_2_1_1_1_3 + -1'pol_d1_n1_2_1_1_2_1 + -1'pol_d1_n1_2_1_1_2_2 + -1'pol_d1_n1_2_1_1_2_3 + -1'pol_d1_n1_2_1_1_3_1 + -1'pol_d1_n1_2_1_1_3_2 + -1'pol_d1_n1_2_1_1_3_3 + -1'pol_d1_n1_2_1_2_1_1 + -1'pol_d1_n1_2_1_2_1_2 + -1'pol_d1_n1_2_1_2_1_3 + -1'pol_d1_n1_2_1_2_2_1 + -1'pol_d1_n1_2_1_2_2_2 + -1'pol_d1_n1_2_1_2_2_3 + -1'pol_d1_n1_2_1_2_3_1 + -1'pol_d1_n1_2_1_2_3_2 + -1'pol_d1_n1_2_1_2_3_3 + -1'pol_d1_n1_2_1_3_1_1 + -1'pol_d1_n1_2_1_3_1_2 + -1'pol_d1_n1_2_1_3_1_3 + -1'pol_d1_n1_2_1_3_2_1 + -1'pol_d1_n1_2_1_3_2_2 + -1'pol_d1_n1_2_1_3_2_3 + -1'pol_d1_n1_2_1_3_3_1 + -1'pol_d1_n1_2_1_3_3_2 + -1'pol_d1_n1_2_1_3_3_3 + -1'pol_d1_n1_2_2_1_1_1 + -1'pol_d1_n1_2_2_1_1_2 + -1'pol_d1_n1_2_2_1_1_3 + -1'pol_d1_n1_2_2_1_2_1 + -1'pol_d1_n1_2_2_1_2_2 + -1'pol_d1_n1_2_2_1_2_3 + -1'pol_d1_n1_2_2_1_3_1 + -1'pol_d1_n1_2_2_1_3_2 + -1'pol_d1_n1_2_2_1_3_3 + -1'pol_d1_n1_2_2_2_1_1 + -1'pol_d1_n1_2_2_2_1_2 + -1'pol_d1_n1_2_2_2_1_3 + -1'pol_d1_n1_2_2_2_2_1 + -1'pol_d1_n1_2_2_2_2_2 + -1'pol_d1_n1_2_2_2_2_3 + -1'pol_d1_n1_2_2_2_3_1 + -1'pol_d1_n1_2_2_2_3_2 + -1'pol_d1_n1_2_2_2_3_3 + -1'pol_d1_n1_2_2_3_1_1 + -1'pol_d1_n1_2_2_3_1_2 + -1'pol_d1_n1_2_2_3_1_3 + -1'pol_d1_n1_2_2_3_2_1 + -1'pol_d1_n1_2_2_3_2_2 + -1'pol_d1_n1_2_2_3_2_3 + -1'pol_d1_n1_2_2_3_3_1 + -1'pol_d1_n1_2_2_3_3_2 + -1'pol_d1_n1_2_2_3_3_3 + -1'pol_d1_n1_2_3_1_1_1 + -1'pol_d1_n1_2_3_1_1_2 + -1'pol_d1_n1_2_3_1_1_3 + -1'pol_d1_n1_2_3_1_2_1 + -1'pol_d1_n1_2_3_1_2_2 + -1'pol_d1_n1_2_3_1_2_3 + -1'pol_d1_n1_2_3_1_3_1 + -1'pol_d1_n1_2_3_1_3_2 + -1'pol_d1_n1_2_3_1_3_3 + -1'pol_d1_n1_2_3_2_1_1 + -1'pol_d1_n1_2_3_2_1_2 + -1'pol_d1_n1_2_3_2_1_3 + -1'pol_d1_n1_2_3_2_2_1 + -1'pol_d1_n1_2_3_2_2_2 + -1'pol_d1_n1_2_3_2_2_3 + -1'pol_d1_n1_2_3_2_3_1 + -1'pol_d1_n1_2_3_2_3_2 + -1'pol_d1_n1_2_3_2_3_3 + -1'pol_d1_n1_2_3_3_1_1 + -1'pol_d1_n1_2_3_3_1_2 + -1'pol_d1_n1_2_3_3_1_3 + -1'pol_d1_n1_2_3_3_2_1 + -1'pol_d1_n1_2_3_3_2_2 + -1'pol_d1_n1_2_3_3_2_3 + -1'pol_d1_n1_2_3_3_3_1 + -1'pol_d1_n1_2_3_3_3_2 + -1'pol_d1_n1_2_3_3_3_3 + -1'pol_d1_n1_3_1_1_1_1 + -1'pol_d1_n1_3_1_1_1_2 + -1'pol_d1_n1_3_1_1_1_3 + -1'pol_d1_n1_3_1_1_2_1 + -1'pol_d1_n1_3_1_1_2_2 + -1'pol_d1_n1_3_1_1_2_3 + -1'pol_d1_n1_3_1_1_3_1 + -1'pol_d1_n1_3_1_1_3_2 + -1'pol_d1_n1_3_1_1_3_3 + -1'pol_d1_n1_3_1_2_1_1 + -1'pol_d1_n1_3_1_2_1_2 + -1'pol_d1_n1_3_1_2_1_3 + -1'pol_d1_n1_3_1_2_2_1 + -1'pol_d1_n1_3_1_2_2_2 + -1'pol_d1_n1_3_1_2_2_3 + -1'pol_d1_n1_3_1_2_3_1 + -1'pol_d1_n1_3_1_2_3_2 + -1'pol_d1_n1_3_1_2_3_3 + -1'pol_d1_n1_3_1_3_1_1 + -1'pol_d1_n1_3_1_3_1_2 + -1'pol_d1_n1_3_1_3_1_3 + -1'pol_d1_n1_3_1_3_2_1 + -1'pol_d1_n1_3_1_3_2_2 + -1'pol_d1_n1_3_1_3_2_3 + -1'pol_d1_n1_3_1_3_3_1 + -1'pol_d1_n1_3_1_3_3_2 + -1'pol_d1_n1_3_1_3_3_3 + -1'pol_d1_n1_3_2_1_1_1 + -1'pol_d1_n1_3_2_1_1_2 + -1'pol_d1_n1_3_2_1_1_3 + -1'pol_d1_n1_3_2_1_2_1 + -1'pol_d1_n1_3_2_1_2_2 + -1'pol_d1_n1_3_2_1_2_3 + -1'pol_d1_n1_3_2_1_3_1 + -1'pol_d1_n1_3_2_1_3_2 + -1'pol_d1_n1_3_2_1_3_3 + -1'pol_d1_n1_3_2_2_1_1 + -1'pol_d1_n1_3_2_2_1_2 + -1'pol_d1_n1_3_2_2_1_3 + -1'pol_d1_n1_3_2_2_2_1 + -1'pol_d1_n1_3_2_2_2_2 + -1'pol_d1_n1_3_2_2_2_3 + -1'pol_d1_n1_3_2_2_3_1 + -1'pol_d1_n1_3_2_2_3_2 + -1'pol_d1_n1_3_2_2_3_3 + -1'pol_d1_n1_3_2_3_1_1 + -1'pol_d1_n1_3_2_3_1_2 + -1'pol_d1_n1_3_2_3_1_3 + -1'pol_d1_n1_3_2_3_2_1 + -1'pol_d1_n1_3_2_3_2_2 + -1'pol_d1_n1_3_2_3_2_3 + -1'pol_d1_n1_3_2_3_3_1 + -1'pol_d1_n1_3_2_3_3_2 + -1'pol_d1_n1_3_2_3_3_3 + -1'pol_d1_n1_3_3_1_1_1 + -1'pol_d1_n1_3_3_1_1_2 + -1'pol_d1_n1_3_3_1_1_3 + -1'pol_d1_n1_3_3_1_2_1 + -1'pol_d1_n1_3_3_1_2_2 + -1'pol_d1_n1_3_3_1_2_3 + -1'pol_d1_n1_3_3_1_3_1 + -1'pol_d1_n1_3_3_1_3_2 + -1'pol_d1_n1_3_3_1_3_3 + -1'pol_d1_n1_3_3_2_1_1 + -1'pol_d1_n1_3_3_2_1_2 + -1'pol_d1_n1_3_3_2_1_3 + -1'pol_d1_n1_3_3_2_2_1 + -1'pol_d1_n1_3_3_2_2_2 + -1'pol_d1_n1_3_3_2_2_3 + -1'pol_d1_n1_3_3_2_3_1 + -1'pol_d1_n1_3_3_2_3_2 + -1'pol_d1_n1_3_3_2_3_3 + -1'pol_d1_n1_3_3_3_1_1 + -1'pol_d1_n1_3_3_3_1_2 + -1'pol_d1_n1_3_3_3_1_3 + -1'pol_d1_n1_3_3_3_2_1 + -1'pol_d1_n1_3_3_3_2_2 + -1'pol_d1_n1_3_3_3_2_3 + -1'pol_d1_n1_3_3_3_3_1 + -1'pol_d1_n1_3_3_3_3_2 + -1'pol_d1_n1_3_3_3_3_3 + -1'pol_d2_n1_1_1_1_1_1 + -1'pol_d2_n1_1_1_1_1_2 + -1'pol_d2_n1_1_1_1_1_3 + -1'pol_d2_n1_1_1_1_2_1 + -1'pol_d2_n1_1_1_1_2_2 + -1'pol_d2_n1_1_1_1_2_3 + -1'pol_d2_n1_1_1_1_3_1 + -1'pol_d2_n1_1_1_1_3_2 + -1'pol_d2_n1_1_1_1_3_3 + -1'pol_d2_n1_1_1_2_1_1 + -1'pol_d2_n1_1_1_2_1_2 + -1'pol_d2_n1_1_1_2_1_3 + -1'pol_d2_n1_1_1_2_2_1 + -1'pol_d2_n1_1_1_2_2_2 + -1'pol_d2_n1_1_1_2_2_3 + -1'pol_d2_n1_1_1_2_3_1 + -1'pol_d2_n1_1_1_2_3_2 + -1'pol_d2_n1_1_1_2_3_3 + -1'pol_d2_n1_1_1_3_1_1 + -1'pol_d2_n1_1_1_3_1_2 + -1'pol_d2_n1_1_1_3_1_3 + -1'pol_d2_n1_1_1_3_2_1 + -1'pol_d2_n1_1_1_3_2_2 + -1'pol_d2_n1_1_1_3_2_3 + -1'pol_d2_n1_1_1_3_3_1 + -1'pol_d2_n1_1_1_3_3_2 + -1'pol_d2_n1_1_1_3_3_3 + -1'pol_d2_n1_1_2_1_1_1 + -1'pol_d2_n1_1_2_1_1_2 + -1'pol_d2_n1_1_2_1_1_3 + -1'pol_d2_n1_1_2_1_2_1 + -1'pol_d2_n1_1_2_1_2_2 + -1'pol_d2_n1_1_2_1_2_3 + -1'pol_d2_n1_1_2_1_3_1 + -1'pol_d2_n1_1_2_1_3_2 + -1'pol_d2_n1_1_2_1_3_3 + -1'pol_d2_n1_1_2_2_1_1 + -1'pol_d2_n1_1_2_2_1_2 + -1'pol_d2_n1_1_2_2_1_3 + -1'pol_d2_n1_1_2_2_2_1 + -1'pol_d2_n1_1_2_2_2_2 + -1'pol_d2_n1_1_2_2_2_3 + -1'pol_d2_n1_1_2_2_3_1 + -1'pol_d2_n1_1_2_2_3_2 + -1'pol_d2_n1_1_2_2_3_3 + -1'pol_d2_n1_1_2_3_1_1 + -1'pol_d2_n1_1_2_3_1_2 + -1'pol_d2_n1_1_2_3_1_3 + -1'pol_d2_n1_1_2_3_2_1 + -1'pol_d2_n1_1_2_3_2_2 + -1'pol_d2_n1_1_2_3_2_3 + -1'pol_d2_n1_1_2_3_3_1 + -1'pol_d2_n1_1_2_3_3_2 + -1'pol_d2_n1_1_2_3_3_3 + -1'pol_d2_n1_1_3_1_1_1 + -1'pol_d2_n1_1_3_1_1_2 + -1'pol_d2_n1_1_3_1_1_3 + -1'pol_d2_n1_1_3_1_2_1 + -1'pol_d2_n1_1_3_1_2_2 + -1'pol_d2_n1_1_3_1_2_3 + -1'pol_d2_n1_1_3_1_3_1 + -1'pol_d2_n1_1_3_1_3_2 + -1'pol_d2_n1_1_3_1_3_3 + -1'pol_d2_n1_1_3_2_1_1 + -1'pol_d2_n1_1_3_2_1_2 + -1'pol_d2_n1_1_3_2_1_3 + -1'pol_d2_n1_1_3_2_2_1 + -1'pol_d2_n1_1_3_2_2_2 + -1'pol_d2_n1_1_3_2_2_3 + -1'pol_d2_n1_1_3_2_3_1 + -1'pol_d2_n1_1_3_2_3_2 + -1'pol_d2_n1_1_3_2_3_3 + -1'pol_d2_n1_1_3_3_1_1 + -1'pol_d2_n1_1_3_3_1_2 + -1'pol_d2_n1_1_3_3_1_3 + -1'pol_d2_n1_1_3_3_2_1 + -1'pol_d2_n1_1_3_3_2_2 + -1'pol_d2_n1_1_3_3_2_3 + -1'pol_d2_n1_1_3_3_3_1 + -1'pol_d2_n1_1_3_3_3_2 + -1'pol_d2_n1_1_3_3_3_3 + -1'pol_d2_n1_2_1_1_1_1 + -1'pol_d2_n1_2_1_1_1_2 + -1'pol_d2_n1_2_1_1_1_3 + -1'pol_d2_n1_2_1_1_2_1 + -1'pol_d2_n1_2_1_1_2_2 + -1'pol_d2_n1_2_1_1_2_3 + -1'pol_d2_n1_2_1_1_3_1 + -1'pol_d2_n1_2_1_1_3_2 + -1'pol_d2_n1_2_1_1_3_3 + -1'pol_d2_n1_2_1_2_1_1 + -1'pol_d2_n1_2_1_2_1_2 + -1'pol_d2_n1_2_1_2_1_3 + -1'pol_d2_n1_2_1_2_2_1 + -1'pol_d2_n1_2_1_2_2_2 + -1'pol_d2_n1_2_1_2_2_3 + -1'pol_d2_n1_2_1_2_3_1 + -1'pol_d2_n1_2_1_2_3_2 + -1'pol_d2_n1_2_1_2_3_3 + -1'pol_d2_n1_2_1_3_1_1 + -1'pol_d2_n1_2_1_3_1_2 + -1'pol_d2_n1_2_1_3_1_3 + -1'pol_d2_n1_2_1_3_2_1 + -1'pol_d2_n1_2_1_3_2_2 + -1'pol_d2_n1_2_1_3_2_3 + -1'pol_d2_n1_2_1_3_3_1 + -1'pol_d2_n1_2_1_3_3_2 + -1'pol_d2_n1_2_1_3_3_3 + -1'pol_d2_n1_2_2_1_1_1 + -1'pol_d2_n1_2_2_1_1_2 + -1'pol_d2_n1_2_2_1_1_3 + -1'pol_d2_n1_2_2_1_2_1 + -1'pol_d2_n1_2_2_1_2_2 + -1'pol_d2_n1_2_2_1_2_3 + -1'pol_d2_n1_2_2_1_3_1 + -1'pol_d2_n1_2_2_1_3_2 + -1'pol_d2_n1_2_2_1_3_3 + -1'pol_d2_n1_2_2_2_1_1 + -1'pol_d2_n1_2_2_2_1_2 + -1'pol_d2_n1_2_2_2_1_3 + -1'pol_d2_n1_2_2_2_2_1 + -1'pol_d2_n1_2_2_2_2_2 + -1'pol_d2_n1_2_2_2_2_3 + -1'pol_d2_n1_2_2_2_3_1 + -1'pol_d2_n1_2_2_2_3_2 + -1'pol_d2_n1_2_2_2_3_3 + -1'pol_d2_n1_2_2_3_1_1 + -1'pol_d2_n1_2_2_3_1_2 + -1'pol_d2_n1_2_2_3_1_3 + -1'pol_d2_n1_2_2_3_2_1 + -1'pol_d2_n1_2_2_3_2_2 + -1'pol_d2_n1_2_2_3_2_3 + -1'pol_d2_n1_2_2_3_3_1 + -1'pol_d2_n1_2_2_3_3_2 + -1'pol_d2_n1_2_2_3_3_3 + -1'pol_d2_n1_2_3_1_1_1 + -1'pol_d2_n1_2_3_1_1_2 + -1'pol_d2_n1_2_3_1_1_3 + -1'pol_d2_n1_2_3_1_2_1 + -1'pol_d2_n1_2_3_1_2_2 + -1'pol_d2_n1_2_3_1_2_3 + -1'pol_d2_n1_2_3_1_3_1 + -1'pol_d2_n1_2_3_1_3_2 + -1'pol_d2_n1_2_3_1_3_3 + -1'pol_d2_n1_2_3_2_1_1 + -1'pol_d2_n1_2_3_2_1_2 + -1'pol_d2_n1_2_3_2_1_3 + -1'pol_d2_n1_2_3_2_2_1 + -1'pol_d2_n1_2_3_2_2_2 + -1'pol_d2_n1_2_3_2_2_3 + -1'pol_d2_n1_2_3_2_3_1 + -1'pol_d2_n1_2_3_2_3_2 + -1'pol_d2_n1_2_3_2_3_3 + -1'pol_d2_n1_2_3_3_1_1 + -1'pol_d2_n1_2_3_3_1_2 + -1'pol_d2_n1_2_3_3_1_3 + -1'pol_d2_n1_2_3_3_2_1 + -1'pol_d2_n1_2_3_3_2_2 + -1'pol_d2_n1_2_3_3_2_3 + -1'pol_d2_n1_2_3_3_3_1 + -1'pol_d2_n1_2_3_3_3_2 + -1'pol_d2_n1_2_3_3_3_3 + -1'pol_d2_n1_3_1_1_1_1 + -1'pol_d2_n1_3_1_1_1_2 + -1'pol_d2_n1_3_1_1_1_3 + -1'pol_d2_n1_3_1_1_2_1 + -1'pol_d2_n1_3_1_1_2_2 + -1'pol_d2_n1_3_1_1_2_3 + -1'pol_d2_n1_3_1_1_3_1 + -1'pol_d2_n1_3_1_1_3_2 + -1'pol_d2_n1_3_1_1_3_3 + -1'pol_d2_n1_3_1_2_1_1 + -1'pol_d2_n1_3_1_2_1_2 + -1'pol_d2_n1_3_1_2_1_3 + -1'pol_d2_n1_3_1_2_2_1 + -1'pol_d2_n1_3_1_2_2_2 + -1'pol_d2_n1_3_1_2_2_3 + -1'pol_d2_n1_3_1_2_3_1 + -1'pol_d2_n1_3_1_2_3_2 + -1'pol_d2_n1_3_1_2_3_3 + -1'pol_d2_n1_3_1_3_1_1 + -1'pol_d2_n1_3_1_3_1_2 + -1'pol_d2_n1_3_1_3_1_3 + -1'pol_d2_n1_3_1_3_2_1 + -1'pol_d2_n1_3_1_3_2_2 + -1'pol_d2_n1_3_1_3_2_3 + -1'pol_d2_n1_3_1_3_3_1 + -1'pol_d2_n1_3_1_3_3_2 + -1'pol_d2_n1_3_1_3_3_3 + -1'pol_d2_n1_3_2_1_1_1 + -1'pol_d2_n1_3_2_1_1_2 + -1'pol_d2_n1_3_2_1_1_3 + -1'pol_d2_n1_3_2_1_2_1 + -1'pol_d2_n1_3_2_1_2_2 + -1'pol_d2_n1_3_2_1_2_3 + -1'pol_d2_n1_3_2_1_3_1 + -1'pol_d2_n1_3_2_1_3_2 + -1'pol_d2_n1_3_2_1_3_3 + -1'pol_d2_n1_3_2_2_1_1 + -1'pol_d2_n1_3_2_2_1_2 + -1'pol_d2_n1_3_2_2_1_3 + -1'pol_d2_n1_3_2_2_2_1 + -1'pol_d2_n1_3_2_2_2_2 + -1'pol_d2_n1_3_2_2_2_3 + -1'pol_d2_n1_3_2_2_3_1 + -1'pol_d2_n1_3_2_2_3_2 + -1'pol_d2_n1_3_2_2_3_3 + -1'pol_d2_n1_3_2_3_1_1 + -1'pol_d2_n1_3_2_3_1_2 + -1'pol_d2_n1_3_2_3_1_3 + -1'pol_d2_n1_3_2_3_2_1 + -1'pol_d2_n1_3_2_3_2_2 + -1'pol_d2_n1_3_2_3_2_3 + -1'pol_d2_n1_3_2_3_3_1 + -1'pol_d2_n1_3_2_3_3_2 + -1'pol_d2_n1_3_2_3_3_3 + -1'pol_d2_n1_3_3_1_1_1 + -1'pol_d2_n1_3_3_1_1_2 + -1'pol_d2_n1_3_3_1_1_3 + -1'pol_d2_n1_3_3_1_2_1 + -1'pol_d2_n1_3_3_1_2_2 + -1'pol_d2_n1_3_3_1_2_3 + -1'pol_d2_n1_3_3_1_3_1 + -1'pol_d2_n1_3_3_1_3_2 + -1'pol_d2_n1_3_3_1_3_3 + -1'pol_d2_n1_3_3_2_1_1 + -1'pol_d2_n1_3_3_2_1_2 + -1'pol_d2_n1_3_3_2_1_3 + -1'pol_d2_n1_3_3_2_2_1 + -1'pol_d2_n1_3_3_2_2_2 + -1'pol_d2_n1_3_3_2_2_3 + -1'pol_d2_n1_3_3_2_3_1 + -1'pol_d2_n1_3_3_2_3_2 + -1'pol_d2_n1_3_3_2_3_3 + -1'pol_d2_n1_3_3_3_1_1 + -1'pol_d2_n1_3_3_3_1_2 + -1'pol_d2_n1_3_3_3_1_3 + -1'pol_d2_n1_3_3_3_2_1 + -1'pol_d2_n1_3_3_3_2_2 + -1'pol_d2_n1_3_3_3_2_3 + -1'pol_d2_n1_3_3_3_3_1 + -1'pol_d2_n1_3_3_3_3_2 + -1'pol_d2_n1_3_3_3_3_3 + -1'pol_d3_n1_1_1_1_1_1 + -1'pol_d3_n1_1_1_1_1_2 + -1'pol_d3_n1_1_1_1_1_3 + -1'pol_d3_n1_1_1_1_2_1 + -1'pol_d3_n1_1_1_1_2_2 + -1'pol_d3_n1_1_1_1_2_3 + -1'pol_d3_n1_1_1_1_3_1 + -1'pol_d3_n1_1_1_1_3_2 + -1'pol_d3_n1_1_1_1_3_3 + -1'pol_d3_n1_1_1_2_1_1 + -1'pol_d3_n1_1_1_2_1_2 + -1'pol_d3_n1_1_1_2_1_3 + -1'pol_d3_n1_1_1_2_2_1 + -1'pol_d3_n1_1_1_2_2_2 + -1'pol_d3_n1_1_1_2_2_3 + -1'pol_d3_n1_1_1_2_3_1 + -1'pol_d3_n1_1_1_2_3_2 + -1'pol_d3_n1_1_1_2_3_3 + -1'pol_d3_n1_1_1_3_1_1 + -1'pol_d3_n1_1_1_3_1_2 + -1'pol_d3_n1_1_1_3_1_3 + -1'pol_d3_n1_1_1_3_2_1 + -1'pol_d3_n1_1_1_3_2_2 + -1'pol_d3_n1_1_1_3_2_3 + -1'pol_d3_n1_1_1_3_3_1 + -1'pol_d3_n1_1_1_3_3_2 + -1'pol_d3_n1_1_1_3_3_3 + -1'pol_d3_n1_1_2_1_1_1 + -1'pol_d3_n1_1_2_1_1_2 + -1'pol_d3_n1_1_2_1_1_3 + -1'pol_d3_n1_1_2_1_2_1 + -1'pol_d3_n1_1_2_1_2_2 + -1'pol_d3_n1_1_2_1_2_3 + -1'pol_d3_n1_1_2_1_3_1 + -1'pol_d3_n1_1_2_1_3_2 + -1'pol_d3_n1_1_2_1_3_3 + -1'pol_d3_n1_1_2_2_1_1 + -1'pol_d3_n1_1_2_2_1_2 + -1'pol_d3_n1_1_2_2_1_3 + -1'pol_d3_n1_1_2_2_2_1 + -1'pol_d3_n1_1_2_2_2_2 + -1'pol_d3_n1_1_2_2_2_3 + -1'pol_d3_n1_1_2_2_3_1 + -1'pol_d3_n1_1_2_2_3_2 + -1'pol_d3_n1_1_2_2_3_3 + -1'pol_d3_n1_1_2_3_1_1 + -1'pol_d3_n1_1_2_3_1_2 + -1'pol_d3_n1_1_2_3_1_3 + -1'pol_d3_n1_1_2_3_2_1 + -1'pol_d3_n1_1_2_3_2_2 + -1'pol_d3_n1_1_2_3_2_3 + -1'pol_d3_n1_1_2_3_3_1 + -1'pol_d3_n1_1_2_3_3_2 + -1'pol_d3_n1_1_2_3_3_3 + -1'pol_d3_n1_1_3_1_1_1 + -1'pol_d3_n1_1_3_1_1_2 + -1'pol_d3_n1_1_3_1_1_3 + -1'pol_d3_n1_1_3_1_2_1 + -1'pol_d3_n1_1_3_1_2_2 + -1'pol_d3_n1_1_3_1_2_3 + -1'pol_d3_n1_1_3_1_3_1 + -1'pol_d3_n1_1_3_1_3_2 + -1'pol_d3_n1_1_3_1_3_3 + -1'pol_d3_n1_1_3_2_1_1 + -1'pol_d3_n1_1_3_2_1_2 + -1'pol_d3_n1_1_3_2_1_3 + -1'pol_d3_n1_1_3_2_2_1 + -1'pol_d3_n1_1_3_2_2_2 + -1'pol_d3_n1_1_3_2_2_3 + -1'pol_d3_n1_1_3_2_3_1 + -1'pol_d3_n1_1_3_2_3_2 + -1'pol_d3_n1_1_3_2_3_3 + -1'pol_d3_n1_1_3_3_1_1 + -1'pol_d3_n1_1_3_3_1_2 + -1'pol_d3_n1_1_3_3_1_3 + -1'pol_d3_n1_1_3_3_2_1 + -1'pol_d3_n1_1_3_3_2_2 + -1'pol_d3_n1_1_3_3_2_3 + -1'pol_d3_n1_1_3_3_3_1 + -1'pol_d3_n1_1_3_3_3_2 + -1'pol_d3_n1_1_3_3_3_3 + -1'pol_d3_n1_2_1_1_1_1 + -1'pol_d3_n1_2_1_1_1_2 + -1'pol_d3_n1_2_1_1_1_3 + -1'pol_d3_n1_2_1_1_2_1 + -1'pol_d3_n1_2_1_1_2_2 + -1'pol_d3_n1_2_1_1_2_3 + -1'pol_d3_n1_2_1_1_3_1 + -1'pol_d3_n1_2_1_1_3_2 + -1'pol_d3_n1_2_1_1_3_3 + -1'pol_d3_n1_2_1_2_1_1 + -1'pol_d3_n1_2_1_2_1_2 + -1'pol_d3_n1_2_1_2_1_3 + -1'pol_d3_n1_2_1_2_2_1 + -1'pol_d3_n1_2_1_2_2_2 + -1'pol_d3_n1_2_1_2_2_3 + -1'pol_d3_n1_2_1_2_3_1 + -1'pol_d3_n1_2_1_2_3_2 + -1'pol_d3_n1_2_1_2_3_3 + -1'pol_d3_n1_2_1_3_1_1 + -1'pol_d3_n1_2_1_3_1_2 + -1'pol_d3_n1_2_1_3_1_3 + -1'pol_d3_n1_2_1_3_2_1 + -1'pol_d3_n1_2_1_3_2_2 + -1'pol_d3_n1_2_1_3_2_3 + -1'pol_d3_n1_2_1_3_3_1 + -1'pol_d3_n1_2_1_3_3_2 + -1'pol_d3_n1_2_1_3_3_3 + -1'pol_d3_n1_2_2_1_1_1 + -1'pol_d3_n1_2_2_1_1_2 + -1'pol_d3_n1_2_2_1_1_3 + -1'pol_d3_n1_2_2_1_2_1 + -1'pol_d3_n1_2_2_1_2_2 + -1'pol_d3_n1_2_2_1_2_3 + -1'pol_d3_n1_2_2_1_3_1 + -1'pol_d3_n1_2_2_1_3_2 + -1'pol_d3_n1_2_2_1_3_3 + -1'pol_d3_n1_2_2_2_1_1 + -1'pol_d3_n1_2_2_2_1_2 + -1'pol_d3_n1_2_2_2_1_3 + -1'pol_d3_n1_2_2_2_2_1 + -1'pol_d3_n1_2_2_2_2_2 + -1'pol_d3_n1_2_2_2_2_3 + -1'pol_d3_n1_2_2_2_3_1 + -1'pol_d3_n1_2_2_2_3_2 + -1'pol_d3_n1_2_2_2_3_3 + -1'pol_d3_n1_2_2_3_1_1 + -1'pol_d3_n1_2_2_3_1_2 + -1'pol_d3_n1_2_2_3_1_3 + -1'pol_d3_n1_2_2_3_2_1 + -1'pol_d3_n1_2_2_3_2_2 + -1'pol_d3_n1_2_2_3_2_3 + -1'pol_d3_n1_2_2_3_3_1 + -1'pol_d3_n1_2_2_3_3_2 + -1'pol_d3_n1_2_2_3_3_3 + -1'pol_d3_n1_2_3_1_1_1 + -1'pol_d3_n1_2_3_1_1_2 + -1'pol_d3_n1_2_3_1_1_3 + -1'pol_d3_n1_2_3_1_2_1 + -1'pol_d3_n1_2_3_1_2_2 + -1'pol_d3_n1_2_3_1_2_3 + -1'pol_d3_n1_2_3_1_3_1 + -1'pol_d3_n1_2_3_1_3_2 + -1'pol_d3_n1_2_3_1_3_3 + -1'pol_d3_n1_2_3_2_1_1 + -1'pol_d3_n1_2_3_2_1_2 + -1'pol_d3_n1_2_3_2_1_3 + -1'pol_d3_n1_2_3_2_2_1 + -1'pol_d3_n1_2_3_2_2_2 + -1'pol_d3_n1_2_3_2_2_3 + -1'pol_d3_n1_2_3_2_3_1 + -1'pol_d3_n1_2_3_2_3_2 + -1'pol_d3_n1_2_3_2_3_3 + -1'pol_d3_n1_2_3_3_1_1 + -1'pol_d3_n1_2_3_3_1_2 + -1'pol_d3_n1_2_3_3_1_3 + -1'pol_d3_n1_2_3_3_2_1 + -1'pol_d3_n1_2_3_3_2_2 + -1'pol_d3_n1_2_3_3_2_3 + -1'pol_d3_n1_2_3_3_3_1 + -1'pol_d3_n1_2_3_3_3_2 + -1'pol_d3_n1_2_3_3_3_3 + -1'pol_d3_n1_3_1_1_1_1 + -1'pol_d3_n1_3_1_1_1_2 + -1'pol_d3_n1_3_1_1_1_3 + -1'pol_d3_n1_3_1_1_2_1 + -1'pol_d3_n1_3_1_1_2_2 + -1'pol_d3_n1_3_1_1_2_3 + -1'pol_d3_n1_3_1_1_3_1 + -1'pol_d3_n1_3_1_1_3_2 + -1'pol_d3_n1_3_1_1_3_3 + -1'pol_d3_n1_3_1_2_1_1 + -1'pol_d3_n1_3_1_2_1_2 + -1'pol_d3_n1_3_1_2_1_3 + -1'pol_d3_n1_3_1_2_2_1 + -1'pol_d3_n1_3_1_2_2_2 + -1'pol_d3_n1_3_1_2_2_3 + -1'pol_d3_n1_3_1_2_3_1 + -1'pol_d3_n1_3_1_2_3_2 + -1'pol_d3_n1_3_1_2_3_3 + -1'pol_d3_n1_3_1_3_1_1 + -1'pol_d3_n1_3_1_3_1_2 + -1'pol_d3_n1_3_1_3_1_3 + -1'pol_d3_n1_3_1_3_2_1 + -1'pol_d3_n1_3_1_3_2_2 + -1'pol_d3_n1_3_1_3_2_3 + -1'pol_d3_n1_3_1_3_3_1 + -1'pol_d3_n1_3_1_3_3_2 + -1'pol_d3_n1_3_1_3_3_3 + -1'pol_d3_n1_3_2_1_1_1 + -1'pol_d3_n1_3_2_1_1_2 + -1'pol_d3_n1_3_2_1_1_3 + -1'pol_d3_n1_3_2_1_2_1 + -1'pol_d3_n1_3_2_1_2_2 + -1'pol_d3_n1_3_2_1_2_3 + -1'pol_d3_n1_3_2_1_3_1 + -1'pol_d3_n1_3_2_1_3_2 + -1'pol_d3_n1_3_2_1_3_3 + -1'pol_d3_n1_3_2_2_1_1 + -1'pol_d3_n1_3_2_2_1_2 + -1'pol_d3_n1_3_2_2_1_3 + -1'pol_d3_n1_3_2_2_2_1 + -1'pol_d3_n1_3_2_2_2_2 + -1'pol_d3_n1_3_2_2_2_3 + -1'pol_d3_n1_3_2_2_3_1 + -1'pol_d3_n1_3_2_2_3_2 + -1'pol_d3_n1_3_2_2_3_3 + -1'pol_d3_n1_3_2_3_1_1 + -1'pol_d3_n1_3_2_3_1_2 + -1'pol_d3_n1_3_2_3_1_3 + -1'pol_d3_n1_3_2_3_2_1 + -1'pol_d3_n1_3_2_3_2_2 + -1'pol_d3_n1_3_2_3_2_3 + -1'pol_d3_n1_3_2_3_3_1 + -1'pol_d3_n1_3_2_3_3_2 + -1'pol_d3_n1_3_2_3_3_3 + -1'pol_d3_n1_3_3_1_1_1 + -1'pol_d3_n1_3_3_1_1_2 + -1'pol_d3_n1_3_3_1_1_3 + -1'pol_d3_n1_3_3_1_2_1 + -1'pol_d3_n1_3_3_1_2_2 + -1'pol_d3_n1_3_3_1_2_3 + -1'pol_d3_n1_3_3_1_3_1 + -1'pol_d3_n1_3_3_1_3_2 + -1'pol_d3_n1_3_3_1_3_3 + -1'pol_d3_n1_3_3_2_1_1 + -1'pol_d3_n1_3_3_2_1_2 + -1'pol_d3_n1_3_3_2_1_3 + -1'pol_d3_n1_3_3_2_2_1 + -1'pol_d3_n1_3_3_2_2_2 + -1'pol_d3_n1_3_3_2_2_3 + -1'pol_d3_n1_3_3_2_3_1 + -1'pol_d3_n1_3_3_2_3_2 + -1'pol_d3_n1_3_3_2_3_3 + -1'pol_d3_n1_3_3_3_1_1 + -1'pol_d3_n1_3_3_3_1_2 + -1'pol_d3_n1_3_3_3_1_3 + -1'pol_d3_n1_3_3_3_2_1 + -1'pol_d3_n1_3_3_3_2_2 + -1'pol_d3_n1_3_3_3_2_3 + -1'pol_d3_n1_3_3_3_3_1 + -1'pol_d3_n1_3_3_3_3_2 + -1'pol_d3_n1_3_3_3_3_3 + -1'pol_d4_n1_1_1_1_1_1 + -1'pol_d4_n1_1_1_1_1_2 + -1'pol_d4_n1_1_1_1_1_3 + -1'pol_d4_n1_1_1_1_2_1 + -1'pol_d4_n1_1_1_1_2_2 + -1'pol_d4_n1_1_1_1_2_3 + -1'pol_d4_n1_1_1_1_3_1 + -1'pol_d4_n1_1_1_1_3_2 + -1'pol_d4_n1_1_1_1_3_3 + -1'pol_d4_n1_1_1_2_1_1 + -1'pol_d4_n1_1_1_2_1_2 + -1'pol_d4_n1_1_1_2_1_3 + -1'pol_d4_n1_1_1_2_2_1 + -1'pol_d4_n1_1_1_2_2_2 + -1'pol_d4_n1_1_1_2_2_3 + -1'pol_d4_n1_1_1_2_3_1 + -1'pol_d4_n1_1_1_2_3_2 + -1'pol_d4_n1_1_1_2_3_3 + -1'pol_d4_n1_1_1_3_1_1 + -1'pol_d4_n1_1_1_3_1_2 + -1'pol_d4_n1_1_1_3_1_3 + -1'pol_d4_n1_1_1_3_2_1 + -1'pol_d4_n1_1_1_3_2_2 + -1'pol_d4_n1_1_1_3_2_3 + -1'pol_d4_n1_1_1_3_3_1 + -1'pol_d4_n1_1_1_3_3_2 + -1'pol_d4_n1_1_1_3_3_3 + -1'pol_d4_n1_1_2_1_1_1 + -1'pol_d4_n1_1_2_1_1_2 + -1'pol_d4_n1_1_2_1_1_3 + -1'pol_d4_n1_1_2_1_2_1 + -1'pol_d4_n1_1_2_1_2_2 + -1'pol_d4_n1_1_2_1_2_3 + -1'pol_d4_n1_1_2_1_3_1 + -1'pol_d4_n1_1_2_1_3_2 + -1'pol_d4_n1_1_2_1_3_3 + -1'pol_d4_n1_1_2_2_1_1 + -1'pol_d4_n1_1_2_2_1_2 + -1'pol_d4_n1_1_2_2_1_3 + -1'pol_d4_n1_1_2_2_2_1 + -1'pol_d4_n1_1_2_2_2_2 + -1'pol_d4_n1_1_2_2_2_3 + -1'pol_d4_n1_1_2_2_3_1 + -1'pol_d4_n1_1_2_2_3_2 + -1'pol_d4_n1_1_2_2_3_3 + -1'pol_d4_n1_1_2_3_1_1 + -1'pol_d4_n1_1_2_3_1_2 + -1'pol_d4_n1_1_2_3_1_3 + -1'pol_d4_n1_1_2_3_2_1 + -1'pol_d4_n1_1_2_3_2_2 + -1'pol_d4_n1_1_2_3_2_3 + -1'pol_d4_n1_1_2_3_3_1 + -1'pol_d4_n1_1_2_3_3_2 + -1'pol_d4_n1_1_2_3_3_3 + -1'pol_d4_n1_1_3_1_1_1 + -1'pol_d4_n1_1_3_1_1_2 + -1'pol_d4_n1_1_3_1_1_3 + -1'pol_d4_n1_1_3_1_2_1 + -1'pol_d4_n1_1_3_1_2_2 + -1'pol_d4_n1_1_3_1_2_3 + -1'pol_d4_n1_1_3_1_3_1 + -1'pol_d4_n1_1_3_1_3_2 + -1'pol_d4_n1_1_3_1_3_3 + -1'pol_d4_n1_1_3_2_1_1 + -1'pol_d4_n1_1_3_2_1_2 + -1'pol_d4_n1_1_3_2_1_3 + -1'pol_d4_n1_1_3_2_2_1 + -1'pol_d4_n1_1_3_2_2_2 + -1'pol_d4_n1_1_3_2_2_3 + -1'pol_d4_n1_1_3_2_3_1 + -1'pol_d4_n1_1_3_2_3_2 + -1'pol_d4_n1_1_3_2_3_3 + -1'pol_d4_n1_1_3_3_1_1 + -1'pol_d4_n1_1_3_3_1_2 + -1'pol_d4_n1_1_3_3_1_3 + -1'pol_d4_n1_1_3_3_2_1 + -1'pol_d4_n1_1_3_3_2_2 + -1'pol_d4_n1_1_3_3_2_3 + -1'pol_d4_n1_1_3_3_3_1 + -1'pol_d4_n1_1_3_3_3_2 + -1'pol_d4_n1_1_3_3_3_3 + -1'pol_d4_n1_2_1_1_1_1 + -1'pol_d4_n1_2_1_1_1_2 + -1'pol_d4_n1_2_1_1_1_3 + -1'pol_d4_n1_2_1_1_2_1 + -1'pol_d4_n1_2_1_1_2_2 + -1'pol_d4_n1_2_1_1_2_3 + -1'pol_d4_n1_2_1_1_3_1 + -1'pol_d4_n1_2_1_1_3_2 + -1'pol_d4_n1_2_1_1_3_3 + -1'pol_d4_n1_2_1_2_1_1 + -1'pol_d4_n1_2_1_2_1_2 + -1'pol_d4_n1_2_1_2_1_3 + -1'pol_d4_n1_2_1_2_2_1 + -1'pol_d4_n1_2_1_2_2_2 + -1'pol_d4_n1_2_1_2_2_3 + -1'pol_d4_n1_2_1_2_3_1 + -1'pol_d4_n1_2_1_2_3_2 + -1'pol_d4_n1_2_1_2_3_3 + -1'pol_d4_n1_2_1_3_1_1 + -1'pol_d4_n1_2_1_3_1_2 + -1'pol_d4_n1_2_1_3_1_3 + -1'pol_d4_n1_2_1_3_2_1 + -1'pol_d4_n1_2_1_3_2_2 + -1'pol_d4_n1_2_1_3_2_3 + -1'pol_d4_n1_2_1_3_3_1 + -1'pol_d4_n1_2_1_3_3_2 + -1'pol_d4_n1_2_1_3_3_3 + -1'pol_d4_n1_2_2_1_1_1 + -1'pol_d4_n1_2_2_1_1_2 + -1'pol_d4_n1_2_2_1_1_3 + -1'pol_d4_n1_2_2_1_2_1 + -1'pol_d4_n1_2_2_1_2_2 + -1'pol_d4_n1_2_2_1_2_3 + -1'pol_d4_n1_2_2_1_3_1 + -1'pol_d4_n1_2_2_1_3_2 + -1'pol_d4_n1_2_2_1_3_3 + -1'pol_d4_n1_2_2_2_1_1 + -1'pol_d4_n1_2_2_2_1_2 + -1'pol_d4_n1_2_2_2_1_3 + -1'pol_d4_n1_2_2_2_2_1 + -1'pol_d4_n1_2_2_2_2_2 + -1'pol_d4_n1_2_2_2_2_3 + -1'pol_d4_n1_2_2_2_3_1 + -1'pol_d4_n1_2_2_2_3_2 + -1'pol_d4_n1_2_2_2_3_3 + -1'pol_d4_n1_2_2_3_1_1 + -1'pol_d4_n1_2_2_3_1_2 + -1'pol_d4_n1_2_2_3_1_3 + -1'pol_d4_n1_2_2_3_2_1 + -1'pol_d4_n1_2_2_3_2_2 + -1'pol_d4_n1_2_2_3_2_3 + -1'pol_d4_n1_2_2_3_3_1 + -1'pol_d4_n1_2_2_3_3_2 + -1'pol_d4_n1_2_2_3_3_3 + -1'pol_d4_n1_2_3_1_1_1 + -1'pol_d4_n1_2_3_1_1_2 + -1'pol_d4_n1_2_3_1_1_3 + -1'pol_d4_n1_2_3_1_2_1 + -1'pol_d4_n1_2_3_1_2_2 + -1'pol_d4_n1_2_3_1_2_3 + -1'pol_d4_n1_2_3_1_3_1 + -1'pol_d4_n1_2_3_1_3_2 + -1'pol_d4_n1_2_3_1_3_3 + -1'pol_d4_n1_2_3_2_1_1 + -1'pol_d4_n1_2_3_2_1_2 + -1'pol_d4_n1_2_3_2_1_3 + -1'pol_d4_n1_2_3_2_2_1 + -1'pol_d4_n1_2_3_2_2_2 + -1'pol_d4_n1_2_3_2_2_3 + -1'pol_d4_n1_2_3_2_3_1 + -1'pol_d4_n1_2_3_2_3_2 + -1'pol_d4_n1_2_3_2_3_3 + -1'pol_d4_n1_2_3_3_1_1 + -1'pol_d4_n1_2_3_3_1_2 + -1'pol_d4_n1_2_3_3_1_3 + -1'pol_d4_n1_2_3_3_2_1 + -1'pol_d4_n1_2_3_3_2_2 + -1'pol_d4_n1_2_3_3_2_3 + -1'pol_d4_n1_2_3_3_3_1 + -1'pol_d4_n1_2_3_3_3_2 + -1'pol_d4_n1_2_3_3_3_3 + -1'pol_d4_n1_3_1_1_1_1 + -1'pol_d4_n1_3_1_1_1_2 + -1'pol_d4_n1_3_1_1_1_3 + -1'pol_d4_n1_3_1_1_2_1 + -1'pol_d4_n1_3_1_1_2_2 + -1'pol_d4_n1_3_1_1_2_3 + -1'pol_d4_n1_3_1_1_3_1 + -1'pol_d4_n1_3_1_1_3_2 + -1'pol_d4_n1_3_1_1_3_3 + -1'pol_d4_n1_3_1_2_1_1 + -1'pol_d4_n1_3_1_2_1_2 + -1'pol_d4_n1_3_1_2_1_3 + -1'pol_d4_n1_3_1_2_2_1 + -1'pol_d4_n1_3_1_2_2_2 + -1'pol_d4_n1_3_1_2_2_3 + -1'pol_d4_n1_3_1_2_3_1 + -1'pol_d4_n1_3_1_2_3_2 + -1'pol_d4_n1_3_1_2_3_3 + -1'pol_d4_n1_3_1_3_1_1 + -1'pol_d4_n1_3_1_3_1_2 + -1'pol_d4_n1_3_1_3_1_3 + -1'pol_d4_n1_3_1_3_2_1 + -1'pol_d4_n1_3_1_3_2_2 + -1'pol_d4_n1_3_1_3_2_3 + -1'pol_d4_n1_3_1_3_3_1 + -1'pol_d4_n1_3_1_3_3_2 + -1'pol_d4_n1_3_1_3_3_3 + -1'pol_d4_n1_3_2_1_1_1 + -1'pol_d4_n1_3_2_1_1_2 + -1'pol_d4_n1_3_2_1_1_3 + -1'pol_d4_n1_3_2_1_2_1 + -1'pol_d4_n1_3_2_1_2_2 + -1'pol_d4_n1_3_2_1_2_3 + -1'pol_d4_n1_3_2_1_3_1 + -1'pol_d4_n1_3_2_1_3_2 + -1'pol_d4_n1_3_2_1_3_3 + -1'pol_d4_n1_3_2_2_1_1 + -1'pol_d4_n1_3_2_2_1_2 + -1'pol_d4_n1_3_2_2_1_3 + -1'pol_d4_n1_3_2_2_2_1 + -1'pol_d4_n1_3_2_2_2_2 + -1'pol_d4_n1_3_2_2_2_3 + -1'pol_d4_n1_3_2_2_3_1 + -1'pol_d4_n1_3_2_2_3_2 + -1'pol_d4_n1_3_2_2_3_3 + -1'pol_d4_n1_3_2_3_1_1 + -1'pol_d4_n1_3_2_3_1_2 + -1'pol_d4_n1_3_2_3_1_3 + -1'pol_d4_n1_3_2_3_2_1 + -1'pol_d4_n1_3_2_3_2_2 + -1'pol_d4_n1_3_2_3_2_3 + -1'pol_d4_n1_3_2_3_3_1 + -1'pol_d4_n1_3_2_3_3_2 + -1'pol_d4_n1_3_2_3_3_3 + -1'pol_d4_n1_3_3_1_1_1 + -1'pol_d4_n1_3_3_1_1_2 + -1'pol_d4_n1_3_3_1_1_3 + -1'pol_d4_n1_3_3_1_2_1 + -1'pol_d4_n1_3_3_1_2_2 + -1'pol_d4_n1_3_3_1_2_3 + -1'pol_d4_n1_3_3_1_3_1 + -1'pol_d4_n1_3_3_1_3_2 + -1'pol_d4_n1_3_3_1_3_3 + -1'pol_d4_n1_3_3_2_1_1 + -1'pol_d4_n1_3_3_2_1_2 + -1'pol_d4_n1_3_3_2_1_3 + -1'pol_d4_n1_3_3_2_2_1 + -1'pol_d4_n1_3_3_2_2_2 + -1'pol_d4_n1_3_3_2_2_3 + -1'pol_d4_n1_3_3_2_3_1 + -1'pol_d4_n1_3_3_2_3_2 + -1'pol_d4_n1_3_3_2_3_3 + -1'pol_d4_n1_3_3_3_1_1 + -1'pol_d4_n1_3_3_3_1_2 + -1'pol_d4_n1_3_3_3_1_3 + -1'pol_d4_n1_3_3_3_2_1 + -1'pol_d4_n1_3_3_3_2_2 + -1'pol_d4_n1_3_3_3_2_3 + -1'pol_d4_n1_3_3_3_3_1 + -1'pol_d4_n1_3_3_3_3_2 + -1'pol_d4_n1_3_3_3_3_3 + -1'pol_d5_n1_1_1_1_1_1 + -1'pol_d5_n1_1_1_1_1_2 + -1'pol_d5_n1_1_1_1_1_3 + -1'pol_d5_n1_1_1_1_2_1 + -1'pol_d5_n1_1_1_1_2_2 + -1'pol_d5_n1_1_1_1_2_3 + -1'pol_d5_n1_1_1_1_3_1 + -1'pol_d5_n1_1_1_1_3_2 + -1'pol_d5_n1_1_1_1_3_3 + -1'pol_d5_n1_1_1_2_1_1 + -1'pol_d5_n1_1_1_2_1_2 + -1'pol_d5_n1_1_1_2_1_3 + -1'pol_d5_n1_1_1_2_2_1 + -1'pol_d5_n1_1_1_2_2_2 + -1'pol_d5_n1_1_1_2_2_3 + -1'pol_d5_n1_1_1_2_3_1 + -1'pol_d5_n1_1_1_2_3_2 + -1'pol_d5_n1_1_1_2_3_3 + -1'pol_d5_n1_1_1_3_1_1 + -1'pol_d5_n1_1_1_3_1_2 + -1'pol_d5_n1_1_1_3_1_3 + -1'pol_d5_n1_1_1_3_2_1 + -1'pol_d5_n1_1_1_3_2_2 + -1'pol_d5_n1_1_1_3_2_3 + -1'pol_d5_n1_1_1_3_3_1 + -1'pol_d5_n1_1_1_3_3_2 + -1'pol_d5_n1_1_1_3_3_3 + -1'pol_d5_n1_1_2_1_1_1 + -1'pol_d5_n1_1_2_1_1_2 + -1'pol_d5_n1_1_2_1_1_3 + -1'pol_d5_n1_1_2_1_2_1 + -1'pol_d5_n1_1_2_1_2_2 + -1'pol_d5_n1_1_2_1_2_3 + -1'pol_d5_n1_1_2_1_3_1 + -1'pol_d5_n1_1_2_1_3_2 + -1'pol_d5_n1_1_2_1_3_3 + -1'pol_d5_n1_1_2_2_1_1 + -1'pol_d5_n1_1_2_2_1_2 + -1'pol_d5_n1_1_2_2_1_3 + -1'pol_d5_n1_1_2_2_2_1 + -1'pol_d5_n1_1_2_2_2_2 + -1'pol_d5_n1_1_2_2_2_3 + -1'pol_d5_n1_1_2_2_3_1 + -1'pol_d5_n1_1_2_2_3_2 + -1'pol_d5_n1_1_2_2_3_3 + -1'pol_d5_n1_1_2_3_1_1 + -1'pol_d5_n1_1_2_3_1_2 + -1'pol_d5_n1_1_2_3_1_3 + -1'pol_d5_n1_1_2_3_2_1 + -1'pol_d5_n1_1_2_3_2_2 + -1'pol_d5_n1_1_2_3_2_3 + -1'pol_d5_n1_1_2_3_3_1 + -1'pol_d5_n1_1_2_3_3_2 + -1'pol_d5_n1_1_2_3_3_3 + -1'pol_d5_n1_1_3_1_1_1 + -1'pol_d5_n1_1_3_1_1_2 + -1'pol_d5_n1_1_3_1_1_3 + -1'pol_d5_n1_1_3_1_2_1 + -1'pol_d5_n1_1_3_1_2_2 + -1'pol_d5_n1_1_3_1_2_3 + -1'pol_d5_n1_1_3_1_3_1 + -1'pol_d5_n1_1_3_1_3_2 + -1'pol_d5_n1_1_3_1_3_3 + -1'pol_d5_n1_1_3_2_1_1 + -1'pol_d5_n1_1_3_2_1_2 + -1'pol_d5_n1_1_3_2_1_3 + -1'pol_d5_n1_1_3_2_2_1 + -1'pol_d5_n1_1_3_2_2_2 + -1'pol_d5_n1_1_3_2_2_3 + -1'pol_d5_n1_1_3_2_3_1 + -1'pol_d5_n1_1_3_2_3_2 + -1'pol_d5_n1_1_3_2_3_3 + -1'pol_d5_n1_1_3_3_1_1 + -1'pol_d5_n1_1_3_3_1_2 + -1'pol_d5_n1_1_3_3_1_3 + -1'pol_d5_n1_1_3_3_2_1 + -1'pol_d5_n1_1_3_3_2_2 + -1'pol_d5_n1_1_3_3_2_3 + -1'pol_d5_n1_1_3_3_3_1 + -1'pol_d5_n1_1_3_3_3_2 + -1'pol_d5_n1_1_3_3_3_3 + -1'pol_d5_n1_2_1_1_1_1 + -1'pol_d5_n1_2_1_1_1_2 + -1'pol_d5_n1_2_1_1_1_3 + -1'pol_d5_n1_2_1_1_2_1 + -1'pol_d5_n1_2_1_1_2_2 + -1'pol_d5_n1_2_1_1_2_3 + -1'pol_d5_n1_2_1_1_3_1 + -1'pol_d5_n1_2_1_1_3_2 + -1'pol_d5_n1_2_1_1_3_3 + -1'pol_d5_n1_2_1_2_1_1 + -1'pol_d5_n1_2_1_2_1_2 + -1'pol_d5_n1_2_1_2_1_3 + -1'pol_d5_n1_2_1_2_2_1 + -1'pol_d5_n1_2_1_2_2_2 + -1'pol_d5_n1_2_1_2_2_3 + -1'pol_d5_n1_2_1_2_3_1 + -1'pol_d5_n1_2_1_2_3_2 + -1'pol_d5_n1_2_1_2_3_3 + -1'pol_d5_n1_2_1_3_1_1 + -1'pol_d5_n1_2_1_3_1_2 + -1'pol_d5_n1_2_1_3_1_3 + -1'pol_d5_n1_2_1_3_2_1 + -1'pol_d5_n1_2_1_3_2_2 + -1'pol_d5_n1_2_1_3_2_3 + -1'pol_d5_n1_2_1_3_3_1 + -1'pol_d5_n1_2_1_3_3_2 + -1'pol_d5_n1_2_1_3_3_3 + -1'pol_d5_n1_2_2_1_1_1 + -1'pol_d5_n1_2_2_1_1_2 + -1'pol_d5_n1_2_2_1_1_3 + -1'pol_d5_n1_2_2_1_2_1 + -1'pol_d5_n1_2_2_1_2_2 + -1'pol_d5_n1_2_2_1_2_3 + -1'pol_d5_n1_2_2_1_3_1 + -1'pol_d5_n1_2_2_1_3_2 + -1'pol_d5_n1_2_2_1_3_3 + -1'pol_d5_n1_2_2_2_1_1 + -1'pol_d5_n1_2_2_2_1_2 + -1'pol_d5_n1_2_2_2_1_3 + -1'pol_d5_n1_2_2_2_2_1 + -1'pol_d5_n1_2_2_2_2_2 + -1'pol_d5_n1_2_2_2_2_3 + -1'pol_d5_n1_2_2_2_3_1 + -1'pol_d5_n1_2_2_2_3_2 + -1'pol_d5_n1_2_2_2_3_3 + -1'pol_d5_n1_2_2_3_1_1 + -1'pol_d5_n1_2_2_3_1_2 + -1'pol_d5_n1_2_2_3_1_3 + -1'pol_d5_n1_2_2_3_2_1 + -1'pol_d5_n1_2_2_3_2_2 + -1'pol_d5_n1_2_2_3_2_3 + -1'pol_d5_n1_2_2_3_3_1 + -1'pol_d5_n1_2_2_3_3_2 + -1'pol_d5_n1_2_2_3_3_3 + -1'pol_d5_n1_2_3_1_1_1 + -1'pol_d5_n1_2_3_1_1_2 + -1'pol_d5_n1_2_3_1_1_3 + -1'pol_d5_n1_2_3_1_2_1 + -1'pol_d5_n1_2_3_1_2_2 + -1'pol_d5_n1_2_3_1_2_3 + -1'pol_d5_n1_2_3_1_3_1 + -1'pol_d5_n1_2_3_1_3_2 + -1'pol_d5_n1_2_3_1_3_3 + -1'pol_d5_n1_2_3_2_1_1 + -1'pol_d5_n1_2_3_2_1_2 + -1'pol_d5_n1_2_3_2_1_3 + -1'pol_d5_n1_2_3_2_2_1 + -1'pol_d5_n1_2_3_2_2_2 + -1'pol_d5_n1_2_3_2_2_3 + -1'pol_d5_n1_2_3_2_3_1 + -1'pol_d5_n1_2_3_2_3_2 + -1'pol_d5_n1_2_3_2_3_3 + -1'pol_d5_n1_2_3_3_1_1 + -1'pol_d5_n1_2_3_3_1_2 + -1'pol_d5_n1_2_3_3_1_3 + -1'pol_d5_n1_2_3_3_2_1 + -1'pol_d5_n1_2_3_3_2_2 + -1'pol_d5_n1_2_3_3_2_3 + -1'pol_d5_n1_2_3_3_3_1 + -1'pol_d5_n1_2_3_3_3_2 + -1'pol_d5_n1_2_3_3_3_3 + -1'pol_d5_n1_3_1_1_1_1 + -1'pol_d5_n1_3_1_1_1_2 + -1'pol_d5_n1_3_1_1_1_3 + -1'pol_d5_n1_3_1_1_2_1 + -1'pol_d5_n1_3_1_1_2_2 + -1'pol_d5_n1_3_1_1_2_3 + -1'pol_d5_n1_3_1_1_3_1 + -1'pol_d5_n1_3_1_1_3_2 + -1'pol_d5_n1_3_1_1_3_3 + -1'pol_d5_n1_3_1_2_1_1 + -1'pol_d5_n1_3_1_2_1_2 + -1'pol_d5_n1_3_1_2_1_3 + -1'pol_d5_n1_3_1_2_2_1 + -1'pol_d5_n1_3_1_2_2_2 + -1'pol_d5_n1_3_1_2_2_3 + -1'pol_d5_n1_3_1_2_3_1 + -1'pol_d5_n1_3_1_2_3_2 + -1'pol_d5_n1_3_1_2_3_3 + -1'pol_d5_n1_3_1_3_1_1 + -1'pol_d5_n1_3_1_3_1_2 + -1'pol_d5_n1_3_1_3_1_3 + -1'pol_d5_n1_3_1_3_2_1 + -1'pol_d5_n1_3_1_3_2_2 + -1'pol_d5_n1_3_1_3_2_3 + -1'pol_d5_n1_3_1_3_3_1 + -1'pol_d5_n1_3_1_3_3_2 + -1'pol_d5_n1_3_1_3_3_3 + -1'pol_d5_n1_3_2_1_1_1 + -1'pol_d5_n1_3_2_1_1_2 + -1'pol_d5_n1_3_2_1_1_3 + -1'pol_d5_n1_3_2_1_2_1 + -1'pol_d5_n1_3_2_1_2_2 + -1'pol_d5_n1_3_2_1_2_3 + -1'pol_d5_n1_3_2_1_3_1 + -1'pol_d5_n1_3_2_1_3_2 + -1'pol_d5_n1_3_2_1_3_3 + -1'pol_d5_n1_3_2_2_1_1 + -1'pol_d5_n1_3_2_2_1_2 + -1'pol_d5_n1_3_2_2_1_3 + -1'pol_d5_n1_3_2_2_2_1 + -1'pol_d5_n1_3_2_2_2_2 + -1'pol_d5_n1_3_2_2_2_3 + -1'pol_d5_n1_3_2_2_3_1 + -1'pol_d5_n1_3_2_2_3_2 + -1'pol_d5_n1_3_2_2_3_3 + -1'pol_d5_n1_3_2_3_1_1 + -1'pol_d5_n1_3_2_3_1_2 + -1'pol_d5_n1_3_2_3_1_3 + -1'pol_d5_n1_3_2_3_2_1 + -1'pol_d5_n1_3_2_3_2_2 + -1'pol_d5_n1_3_2_3_2_3 + -1'pol_d5_n1_3_2_3_3_1 + -1'pol_d5_n1_3_2_3_3_2 + -1'pol_d5_n1_3_2_3_3_3 + -1'pol_d5_n1_3_3_1_1_1 + -1'pol_d5_n1_3_3_1_1_2 + -1'pol_d5_n1_3_3_1_1_3 + -1'pol_d5_n1_3_3_1_2_1 + -1'pol_d5_n1_3_3_1_2_2 + -1'pol_d5_n1_3_3_1_2_3 + -1'pol_d5_n1_3_3_1_3_1 + -1'pol_d5_n1_3_3_1_3_2 + -1'pol_d5_n1_3_3_1_3_3 + -1'pol_d5_n1_3_3_2_1_1 + -1'pol_d5_n1_3_3_2_1_2 + -1'pol_d5_n1_3_3_2_1_3 + -1'pol_d5_n1_3_3_2_2_1 + -1'pol_d5_n1_3_3_2_2_2 + -1'pol_d5_n1_3_3_2_2_3 + -1'pol_d5_n1_3_3_2_3_1 + -1'pol_d5_n1_3_3_2_3_2 + -1'pol_d5_n1_3_3_2_3_3 + -1'pol_d5_n1_3_3_3_1_1 + -1'pol_d5_n1_3_3_3_1_2 + -1'pol_d5_n1_3_3_3_1_3 + -1'pol_d5_n1_3_3_3_2_1 + -1'pol_d5_n1_3_3_3_2_2 + -1'pol_d5_n1_3_3_3_2_3 + -1'pol_d5_n1_3_3_3_3_1 + -1'pol_d5_n1_3_3_3_3_2 + -1'pol_d5_n1_3_3_3_3_3 = -4830
invariant :pi_d1_n1_3_1_1_1_3 + pil_d1_n1_3_1_1_1_3 = 1
invariant :po_d1_n1_3_3_2_1_2 + pol_d1_n1_3_3_2_1_2 = 1
invariant :po_d5_n1_1_3_2_2_3 + pol_d5_n1_1_3_2_2_3 = 1
invariant :po_d1_n1_3_2_1_2_3 + pol_d1_n1_3_2_1_2_3 = 1
invariant :po_d5_n1_3_2_1_1_3 + pol_d5_n1_3_2_1_1_3 = 1
invariant :po_d2_n1_1_1_2_2_2 + pol_d2_n1_1_1_2_2_2 = 1
invariant :pi_d5_n1_1_1_1_1_3 + pil_d5_n1_1_1_1_1_3 = 1
invariant :pb_d1_n1_2_2_1_2_3 + pb_d1_n2_2_2_1_2_3 + pb_d2_n1_2_2_1_2_3 + pb_d2_n2_2_2_1_2_3 + pb_d3_n1_2_2_1_2_3 + pb_d3_n2_2_2_1_2_3 + pb_d4_n1_2_2_1_2_3 + pb_d4_n2_2_2_1_2_3 + pb_d5_n1_2_2_1_2_3 + pb_d5_n2_2_2_1_2_3 + pbl_2_2_1_2_3 = 30
invariant :pi_d2_n1_3_1_2_1_3 + pil_d2_n1_3_1_2_1_3 = 1
invariant :pb_d1_n1_3_3_2_2_3 + pb_d1_n2_3_3_2_2_3 + pb_d2_n1_3_3_2_2_3 + pb_d2_n2_3_3_2_2_3 + pb_d3_n1_3_3_2_2_3 + pb_d3_n2_3_3_2_2_3 + pb_d4_n1_3_3_2_2_3 + pb_d4_n2_3_3_2_2_3 + pb_d5_n1_3_3_2_2_3 + pb_d5_n2_3_3_2_2_3 + pbl_3_3_2_2_3 = 30
invariant :pb_d1_n1_3_1_1_3_3 + pb_d1_n2_3_1_1_3_3 + pb_d2_n1_3_1_1_3_3 + pb_d2_n2_3_1_1_3_3 + pb_d3_n1_3_1_1_3_3 + pb_d3_n2_3_1_1_3_3 + pb_d4_n1_3_1_1_3_3 + pb_d4_n2_3_1_1_3_3 + pb_d5_n1_3_1_1_3_3 + pb_d5_n2_3_1_1_3_3 + pbl_3_1_1_3_3 = 30
invariant :po_d2_n1_3_1_2_1_2 + pol_d2_n1_3_1_2_1_2 = 1
invariant :pi_d2_n1_1_1_1_2_1 + pil_d2_n1_1_1_1_2_1 = 1
invariant :pi_d1_n1_2_1_1_2_1 + pil_d1_n1_2_1_1_2_1 = 1
invariant :pi_d1_n1_2_3_3_1_2 + pil_d1_n1_2_3_3_1_2 = 1
invariant :pi_d2_n1_3_1_2_2_3 + pil_d2_n1_3_1_2_2_3 = 1
invariant :pb_d1_n1_2_3_3_3_2 + pb_d1_n2_2_3_3_3_2 + pb_d2_n1_2_3_3_3_2 + pb_d2_n2_2_3_3_3_2 + pb_d3_n1_2_3_3_3_2 + pb_d3_n2_2_3_3_3_2 + pb_d4_n1_2_3_3_3_2 + pb_d4_n2_2_3_3_3_2 + pb_d5_n1_2_3_3_3_2 + pb_d5_n2_2_3_3_3_2 + pbl_2_3_3_3_2 = 30
invariant :pi_d1_n1_2_1_2_3_3 + pil_d1_n1_2_1_2_3_3 = 1
invariant :pi_d3_n1_3_3_1_2_3 + pil_d3_n1_3_3_1_2_3 = 1
invariant :po_d1_n1_2_1_2_1_3 + pol_d1_n1_2_1_2_1_3 = 1
invariant :pi_d3_n1_2_1_1_3_2 + pil_d3_n1_2_1_1_3_2 = 1
invariant :pi_d4_n1_3_1_2_2_1 + pil_d4_n1_3_1_2_2_1 = 1
invariant :pi_d4_n1_3_3_3_3_1 + pil_d4_n1_3_3_3_3_1 = 1
invariant :po_d4_n1_1_1_3_3_2 + pol_d4_n1_1_1_3_3_2 = 1
invariant :pb_d1_n1_1_1_1_3_1 + pb_d1_n2_1_1_1_3_1 + pb_d2_n1_1_1_1_3_1 + pb_d2_n2_1_1_1_3_1 + pb_d3_n1_1_1_1_3_1 + pb_d3_n2_1_1_1_3_1 + pb_d4_n1_1_1_1_3_1 + pb_d4_n2_1_1_1_3_1 + pb_d5_n1_1_1_1_3_1 + pb_d5_n2_1_1_1_3_1 + pbl_1_1_1_3_1 = 30
invariant :po_d2_n1_1_3_1_3_3 + pol_d2_n1_1_3_1_3_3 = 1
invariant :po_d5_n1_2_1_1_3_2 + pol_d5_n1_2_1_1_3_2 = 1
invariant :pi_d5_n1_1_3_2_3_3 + pil_d5_n1_1_3_2_3_3 = 1
invariant :po_d1_n1_3_3_3_1_1 + pol_d1_n1_3_3_3_1_1 = 1
invariant :pi_d2_n1_3_3_3_3_1 + pil_d2_n1_3_3_3_3_1 = 1
invariant :pi_d1_n1_3_3_2_2_2 + pil_d1_n1_3_3_2_2_2 = 1
invariant :po_d3_n1_3_2_2_3_1 + pol_d3_n1_3_2_2_3_1 = 1
invariant :pi_d3_n1_3_1_1_3_2 + pil_d3_n1_3_1_1_3_2 = 1
invariant :po_d4_n1_2_3_2_1_3 + pol_d4_n1_2_3_2_1_3 = 1
invariant :po_d1_n1_3_1_3_3_1 + pol_d1_n1_3_1_3_3_1 = 1
invariant :po_d4_n1_3_2_3_3_1 + pol_d4_n1_3_2_3_3_1 = 1
invariant :pb_d1_n1_1_1_2_2_1 + pb_d1_n2_1_1_2_2_1 + pb_d2_n1_1_1_2_2_1 + pb_d2_n2_1_1_2_2_1 + pb_d3_n1_1_1_2_2_1 + pb_d3_n2_1_1_2_2_1 + pb_d4_n1_1_1_2_2_1 + pb_d4_n2_1_1_2_2_1 + pb_d5_n1_1_1_2_2_1 + pb_d5_n2_1_1_2_2_1 + pbl_1_1_2_2_1 = 30
invariant :pi_d4_n1_3_1_2_2_2 + pil_d4_n1_3_1_2_2_2 = 1
invariant :po_d5_n1_3_2_1_2_1 + pol_d5_n1_3_2_1_2_1 = 1
invariant :pi_d2_n1_1_2_1_1_1 + pil_d2_n1_1_2_1_1_1 = 1
invariant :po_d4_n1_3_2_3_3_2 + pol_d4_n1_3_2_3_3_2 = 1
invariant :pi_d2_n1_3_1_1_3_2 + pil_d2_n1_3_1_1_3_2 = 1
invariant :pi_d5_n1_1_3_3_3_2 + pil_d5_n1_1_3_3_3_2 = 1
invariant :pi_d5_n1_2_1_1_3_3 + pil_d5_n1_2_1_1_3_3 = 1
invariant :po_d1_n1_3_3_2_3_2 + pol_d1_n1_3_3_2_3_2 = 1
invariant :po_d4_n1_3_3_2_2_2 + pol_d4_n1_3_3_2_2_2 = 1
invariant :pi_d1_n1_2_1_1_1_1 + pil_d1_n1_2_1_1_1_1 = 1
invariant :pi_d2_n1_3_1_3_3_1 + pil_d2_n1_3_1_3_3_1 = 1
invariant :pb_d1_n1_2_2_1_1_1 + pb_d1_n2_2_2_1_1_1 + pb_d2_n1_2_2_1_1_1 + pb_d2_n2_2_2_1_1_1 + pb_d3_n1_2_2_1_1_1 + pb_d3_n2_2_2_1_1_1 + pb_d4_n1_2_2_1_1_1 + pb_d4_n2_2_2_1_1_1 + pb_d5_n1_2_2_1_1_1 + pb_d5_n2_2_2_1_1_1 + pbl_2_2_1_1_1 = 30
invariant :pi_d3_n1_1_3_1_1_2 + pil_d3_n1_1_3_1_1_2 = 1
invariant :pi_d5_n1_1_2_2_2_2 + pil_d5_n1_1_2_2_2_2 = 1
invariant :pb_d1_n1_1_2_1_1_2 + pb_d1_n2_1_2_1_1_2 + pb_d2_n1_1_2_1_1_2 + pb_d2_n2_1_2_1_1_2 + pb_d3_n1_1_2_1_1_2 + pb_d3_n2_1_2_1_1_2 + pb_d4_n1_1_2_1_1_2 + pb_d4_n2_1_2_1_1_2 + pb_d5_n1_1_2_1_1_2 + pb_d5_n2_1_2_1_1_2 + pbl_1_2_1_1_2 = 30
invariant :pi_d1_n1_1_2_3_2_2 + pil_d1_n1_1_2_3_2_2 = 1
invariant :pb_d1_n1_3_1_2_1_3 + pb_d1_n2_3_1_2_1_3 + pb_d2_n1_3_1_2_1_3 + pb_d2_n2_3_1_2_1_3 + pb_d3_n1_3_1_2_1_3 + pb_d3_n2_3_1_2_1_3 + pb_d4_n1_3_1_2_1_3 + pb_d4_n2_3_1_2_1_3 + pb_d5_n1_3_1_2_1_3 + pb_d5_n2_3_1_2_1_3 + pbl_3_1_2_1_3 = 30
invariant :po_d2_n1_3_3_1_3_2 + pol_d2_n1_3_3_1_3_2 = 1
invariant :pi_d3_n1_3_1_2_3_1 + pil_d3_n1_3_1_2_3_1 = 1
invariant :pi_d5_n1_2_3_2_3_3 + pil_d5_n1_2_3_2_3_3 = 1
invariant :pi_d1_n1_3_2_3_1_1 + pil_d1_n1_3_2_3_1_1 = 1
invariant :pb_d1_n1_1_2_1_3_3 + pb_d1_n2_1_2_1_3_3 + pb_d2_n1_1_2_1_3_3 + pb_d2_n2_1_2_1_3_3 + pb_d3_n1_1_2_1_3_3 + pb_d3_n2_1_2_1_3_3 + pb_d4_n1_1_2_1_3_3 + pb_d4_n2_1_2_1_3_3 + pb_d5_n1_1_2_1_3_3 + pb_d5_n2_1_2_1_3_3 + pbl_1_2_1_3_3 = 30
invariant :pi_d1_n1_2_3_1_2_3 + pil_d1_n1_2_3_1_2_3 = 1
invariant :pi_d1_n1_3_1_3_2_3 + pil_d1_n1_3_1_3_2_3 = 1
invariant :po_d4_n1_2_3_3_2_1 + pol_d4_n1_2_3_3_2_1 = 1
invariant :pb_d1_n1_2_3_1_1_1 + pb_d1_n2_2_3_1_1_1 + pb_d2_n1_2_3_1_1_1 + pb_d2_n2_2_3_1_1_1 + pb_d3_n1_2_3_1_1_1 + pb_d3_n2_2_3_1_1_1 + pb_d4_n1_2_3_1_1_1 + pb_d4_n2_2_3_1_1_1 + pb_d5_n1_2_3_1_1_1 + pb_d5_n2_2_3_1_1_1 + pbl_2_3_1_1_1 = 30
invariant :pi_d4_n1_2_3_3_1_2 + pil_d4_n1_2_3_3_1_2 = 1
invariant :po_d2_n1_3_1_3_1_1 + pol_d2_n1_3_1_3_1_1 = 1
invariant :po_d2_n1_1_1_2_1_3 + pol_d2_n1_1_1_2_1_3 = 1
invariant :po_d1_n1_2_2_1_1_3 + pol_d1_n1_2_2_1_1_3 = 1
invariant :pi_d1_n1_3_1_3_2_1 + pil_d1_n1_3_1_3_2_1 = 1
invariant :pi_d2_n1_2_3_2_3_3 + pil_d2_n1_2_3_2_3_3 = 1
invariant :po_d3_n1_1_3_2_2_2 + pol_d3_n1_1_3_2_2_2 = 1
invariant :po_d5_n1_1_3_1_2_3 + pol_d5_n1_1_3_1_2_3 = 1
invariant :pi_d4_n1_3_3_1_2_3 + pil_d4_n1_3_3_1_2_3 = 1
invariant :pi_d4_n1_1_2_2_2_1 + pil_d4_n1_1_2_2_2_1 = 1
invariant :pi_d1_n1_2_3_2_2_1 + pil_d1_n1_2_3_2_2_1 = 1
invariant :pi_d4_n1_2_2_1_1_2 + pil_d4_n1_2_2_1_1_2 = 1
invariant :po_d5_n1_1_2_1_1_2 + pol_d5_n1_1_2_1_1_2 = 1
invariant :po_d1_n1_3_2_3_2_1 + pol_d1_n1_3_2_3_2_1 = 1
invariant :pb_d1_n1_3_2_2_1_1 + pb_d1_n2_3_2_2_1_1 + pb_d2_n1_3_2_2_1_1 + pb_d2_n2_3_2_2_1_1 + pb_d3_n1_3_2_2_1_1 + pb_d3_n2_3_2_2_1_1 + pb_d4_n1_3_2_2_1_1 + pb_d4_n2_3_2_2_1_1 + pb_d5_n1_3_2_2_1_1 + pb_d5_n2_3_2_2_1_1 + pbl_3_2_2_1_1 = 30
invariant :pi_d3_n1_2_2_2_1_2 + pil_d3_n1_2_2_2_1_2 = 1
invariant :po_d3_n1_2_3_1_1_3 + pol_d3_n1_2_3_1_1_3 = 1
invariant :po_d5_n1_1_2_1_3_2 + pol_d5_n1_1_2_1_3_2 = 1
invariant :po_d1_n1_3_3_1_1_3 + pol_d1_n1_3_3_1_1_3 = 1
invariant :po_d1_n1_3_2_2_2_2 + pol_d1_n1_3_2_2_2_2 = 1
invariant :pb_d1_n1_2_2_2_1_1 + pb_d1_n2_2_2_2_1_1 + pb_d2_n1_2_2_2_1_1 + pb_d2_n2_2_2_2_1_1 + pb_d3_n1_2_2_2_1_1 + pb_d3_n2_2_2_2_1_1 + pb_d4_n1_2_2_2_1_1 + pb_d4_n2_2_2_2_1_1 + pb_d5_n1_2_2_2_1_1 + pb_d5_n2_2_2_2_1_1 + pbl_2_2_2_1_1 = 30
invariant :po_d5_n1_3_3_2_2_3 + pol_d5_n1_3_3_2_2_3 = 1
invariant :pi_d4_n1_3_3_1_3_2 + pil_d4_n1_3_3_1_3_2 = 1
invariant :pi_d3_n1_3_1_3_3_3 + pil_d3_n1_3_1_3_3_3 = 1
invariant :po_d4_n1_1_2_3_1_1 + pol_d4_n1_1_2_3_1_1 = 1
invariant :pi_d1_n1_3_1_1_2_1 + pil_d1_n1_3_1_1_2_1 = 1
invariant :pi_d5_n1_1_3_1_1_1 + pil_d5_n1_1_3_1_1_1 = 1
invariant :po_d2_n1_3_2_3_2_1 + pol_d2_n1_3_2_3_2_1 = 1
invariant :po_d3_n1_1_1_3_2_2 + pol_d3_n1_1_1_3_2_2 = 1
invariant :pi_d4_n1_1_2_3_3_3 + pil_d4_n1_1_2_3_3_3 = 1
invariant :pi_d4_n1_1_2_1_2_3 + pil_d4_n1_1_2_1_2_3 = 1
invariant :pb_d1_n1_1_1_2_2_3 + pb_d1_n2_1_1_2_2_3 + pb_d2_n1_1_1_2_2_3 + pb_d2_n2_1_1_2_2_3 + pb_d3_n1_1_1_2_2_3 + pb_d3_n2_1_1_2_2_3 + pb_d4_n1_1_1_2_2_3 + pb_d4_n2_1_1_2_2_3 + pb_d5_n1_1_1_2_2_3 + pb_d5_n2_1_1_2_2_3 + pbl_1_1_2_2_3 = 30
invariant :po_d5_n1_1_1_3_2_1 + pol_d5_n1_1_1_3_2_1 = 1
invariant :pi_d5_n1_1_2_1_2_3 + pil_d5_n1_1_2_1_2_3 = 1
invariant :pi_d5_n1_2_1_1_2_3 + pil_d5_n1_2_1_1_2_3 = 1
invariant :po_d5_n1_1_1_1_3_2 + pol_d5_n1_1_1_1_3_2 = 1
invariant :pi_d4_n1_2_1_1_3_3 + pil_d4_n1_2_1_1_3_3 = 1
invariant :pi_d4_n1_1_2_3_1_1 + pil_d4_n1_1_2_3_1_1 = 1
invariant :po_d1_n1_3_3_2_1_3 + pol_d1_n1_3_3_2_1_3 = 1
invariant :po_d5_n1_2_1_3_2_3 + pol_d5_n1_2_1_3_2_3 = 1
invariant :po_d5_n1_2_2_3_1_2 + pol_d5_n1_2_2_3_1_2 = 1
invariant :pi_d5_n1_3_2_2_1_1 + pil_d5_n1_3_2_2_1_1 = 1
invariant :pi_d1_n1_2_3_1_1_2 + pil_d1_n1_2_3_1_1_2 = 1
invariant :pi_d3_n1_3_1_3_2_3 + pil_d3_n1_3_1_3_2_3 = 1
invariant :po_d2_n1_3_1_3_2_1 + pol_d2_n1_3_1_3_2_1 = 1
invariant :po_d1_n1_3_1_1_1_2 + pol_d1_n1_3_1_1_1_2 = 1
invariant :po_d5_n1_3_3_3_3_2 + pol_d5_n1_3_3_3_3_2 = 1
invariant :pi_d4_n1_3_3_3_2_1 + pil_d4_n1_3_3_3_2_1 = 1
invariant :pi_d1_n1_2_2_3_2_1 + pil_d1_n1_2_2_3_2_1 = 1
invariant :po_d3_n1_1_1_3_2_1 + pol_d3_n1_1_1_3_2_1 = 1
invariant :po_d1_n1_1_2_2_1_1 + pol_d1_n1_1_2_2_1_1 = 1
invariant :po_d2_n1_1_2_3_2_3 + pol_d2_n1_1_2_3_2_3 = 1
invariant :pb_d1_n1_2_1_2_3_3 + pb_d1_n2_2_1_2_3_3 + pb_d2_n1_2_1_2_3_3 + pb_d2_n2_2_1_2_3_3 + pb_d3_n1_2_1_2_3_3 + pb_d3_n2_2_1_2_3_3 + pb_d4_n1_2_1_2_3_3 + pb_d4_n2_2_1_2_3_3 + pb_d5_n1_2_1_2_3_3 + pb_d5_n2_2_1_2_3_3 + pbl_2_1_2_3_3 = 30
invariant :po_d4_n1_3_3_3_2_2 + pol_d4_n1_3_3_3_2_2 = 1
invariant :pi_d2_n1_2_1_3_3_3 + pil_d2_n1_2_1_3_3_3 = 1
invariant :po_d4_n1_3_3_2_1_3 + pol_d4_n1_3_3_2_1_3 = 1
invariant :pi_d1_n1_1_1_1_1_2 + pil_d1_n1_1_1_1_1_2 = 1
invariant :po_d3_n1_2_1_2_1_2 + pol_d3_n1_2_1_2_1_2 = 1
invariant :po_d4_n1_3_2_2_1_3 + pol_d4_n1_3_2_2_1_3 = 1
invariant :po_d4_n1_2_2_3_2_2 + pol_d4_n1_2_2_3_2_2 = 1
invariant :pi_d1_n1_3_3_2_2_1 + pil_d1_n1_3_3_2_2_1 = 1
invariant :pi_d1_n1_1_1_3_1_2 + pil_d1_n1_1_1_3_1_2 = 1
invariant :pi_d4_n1_1_2_3_3_2 + pil_d4_n1_1_2_3_3_2 = 1
invariant :po_d4_n1_3_1_1_3_2 + pol_d4_n1_3_1_1_3_2 = 1
invariant :po_d2_n1_2_2_2_3_1 + pol_d2_n1_2_2_2_3_1 = 1
invariant :po_d2_n1_2_3_1_2_3 + pol_d2_n1_2_3_1_2_3 = 1
invariant :pi_d1_n1_1_2_2_3_3 + pil_d1_n1_1_2_2_3_3 = 1
invariant :po_d1_n1_2_3_3_2_1 + pol_d1_n1_2_3_3_2_1 = 1
invariant :pi_d2_n1_1_3_2_1_2 + pil_d2_n1_1_3_2_1_2 = 1
invariant :pi_d5_n1_2_3_1_2_1 + pil_d5_n1_2_3_1_2_1 = 1
invariant :pi_d1_n1_2_3_1_2_2 + pil_d1_n1_2_3_1_2_2 = 1
invariant :po_d2_n1_3_2_1_3_3 + pol_d2_n1_3_2_1_3_3 = 1
invariant :pi_d3_n1_2_2_1_3_3 + pil_d3_n1_2_2_1_3_3 = 1
invariant :po_d3_n1_1_2_3_2_3 + pol_d3_n1_1_2_3_2_3 = 1
invariant :po_d1_n1_1_2_1_2_2 + pol_d1_n1_1_2_1_2_2 = 1
invariant :po_d3_n1_2_3_2_1_2 + pol_d3_n1_2_3_2_1_2 = 1
invariant :po_d1_n1_2_2_2_3_3 + pol_d1_n1_2_2_2_3_3 = 1
invariant :po_d5_n1_2_2_3_2_3 + pol_d5_n1_2_2_3_2_3 = 1
invariant :pi_d3_n1_1_3_3_1_2 + pil_d3_n1_1_3_3_1_2 = 1
invariant :po_d4_n1_2_1_3_2_3 + pol_d4_n1_2_1_3_2_3 = 1
invariant :po_d3_n1_3_3_1_2_3 + pol_d3_n1_3_3_1_2_3 = 1
invariant :pi_d5_n1_2_1_2_3_3 + pil_d5_n1_2_1_2_3_3 = 1
invariant :po_d2_n1_3_2_1_2_1 + pol_d2_n1_3_2_1_2_1 = 1
invariant :po_d3_n1_1_2_1_3_3 + pol_d3_n1_1_2_1_3_3 = 1
invariant :pb_d1_n1_2_2_1_2_2 + pb_d1_n2_2_2_1_2_2 + pb_d2_n1_2_2_1_2_2 + pb_d2_n2_2_2_1_2_2 + pb_d3_n1_2_2_1_2_2 + pb_d3_n2_2_2_1_2_2 + pb_d4_n1_2_2_1_2_2 + pb_d4_n2_2_2_1_2_2 + pb_d5_n1_2_2_1_2_2 + pb_d5_n2_2_2_1_2_2 + pbl_2_2_1_2_2 = 30
invariant :po_d4_n1_3_3_1_1_1 + pol_d4_n1_3_3_1_1_1 = 1
invariant :pi_d3_n1_2_1_3_3_1 + pil_d3_n1_2_1_3_3_1 = 1
invariant :pi_d4_n1_2_3_2_3_3 + pil_d4_n1_2_3_2_3_3 = 1
invariant :po_d2_n1_3_3_1_2_2 + pol_d2_n1_3_3_1_2_2 = 1
invariant :pi_d1_n1_3_3_3_2_1 + pil_d1_n1_3_3_3_2_1 = 1
invariant :pb_d1_n1_1_2_2_1_3 + pb_d1_n2_1_2_2_1_3 + pb_d2_n1_1_2_2_1_3 + pb_d2_n2_1_2_2_1_3 + pb_d3_n1_1_2_2_1_3 + pb_d3_n2_1_2_2_1_3 + pb_d4_n1_1_2_2_1_3 + pb_d4_n2_1_2_2_1_3 + pb_d5_n1_1_2_2_1_3 + pb_d5_n2_1_2_2_1_3 + pbl_1_2_2_1_3 = 30
invariant :po_d1_n1_2_2_1_2_3 + pol_d1_n1_2_2_1_2_3 = 1
invariant :po_d2_n1_2_1_2_3_3 + pol_d2_n1_2_1_2_3_3 = 1
invariant :pi_d5_n1_3_3_3_2_2 + pil_d5_n1_3_3_3_2_2 = 1
invariant :po_d4_n1_3_3_3_1_1 + pol_d4_n1_3_3_3_1_1 = 1
invariant :po_d5_n1_2_1_3_1_1 + pol_d5_n1_2_1_3_1_1 = 1
invariant :po_d5_n1_3_2_3_2_2 + pol_d5_n1_3_2_3_2_2 = 1
invariant :pi_d1_n1_2_2_1_1_1 + pil_d1_n1_2_2_1_1_1 = 1
invariant :pi_d2_n1_2_3_2_3_1 + pil_d2_n1_2_3_2_3_1 = 1
invariant :pi_d3_n1_1_3_2_3_3 + pil_d3_n1_1_3_2_3_3 = 1
invariant :po_d1_n1_3_3_3_3_1 + pol_d1_n1_3_3_3_3_1 = 1
invariant :pi_d4_n1_1_1_3_3_2 + pil_d4_n1_1_1_3_3_2 = 1
invariant :pi_d2_n1_3_3_2_3_3 + pil_d2_n1_3_3_2_3_3 = 1
invariant :pi_d5_n1_1_2_1_3_2 + pil_d5_n1_1_2_1_3_2 = 1
invariant :pi_d2_n1_3_2_1_3_2 + pil_d2_n1_3_2_1_3_2 = 1
invariant :po_d1_n1_2_1_2_1_1 + pol_d1_n1_2_1_2_1_1 = 1
invariant :po_d1_n1_2_1_2_2_3 + pol_d1_n1_2_1_2_2_3 = 1
invariant :pi_d4_n1_2_3_1_3_3 + pil_d4_n1_2_3_1_3_3 = 1
invariant :po_d5_n1_2_2_3_2_2 + pol_d5_n1_2_2_3_2_2 = 1
invariant :pi_d2_n1_3_3_3_2_1 + pil_d2_n1_3_3_3_2_1 = 1
invariant :po_d4_n1_3_3_3_1_2 + pol_d4_n1_3_3_3_1_2 = 1
invariant :pi_d5_n1_1_1_3_1_2 + pil_d5_n1_1_1_3_1_2 = 1
invariant :pi_d1_n1_2_3_2_3_1 + pil_d1_n1_2_3_2_3_1 = 1
invariant :po_d5_n1_1_3_3_3_3 + pol_d5_n1_1_3_3_3_3 = 1
invariant :po_d1_n1_3_2_1_3_1 + pol_d1_n1_3_2_1_3_1 = 1
invariant :pi_d5_n1_1_1_1_3_2 + pil_d5_n1_1_1_1_3_2 = 1
invariant :po_d1_n1_3_2_2_3_2 + pol_d1_n1_3_2_2_3_2 = 1
invariant :po_d5_n1_3_3_2_1_2 + pol_d5_n1_3_3_2_1_2 = 1
invariant :pi_d3_n1_2_1_3_1_1 + pil_d3_n1_2_1_3_1_1 = 1
invariant :pi_d5_n1_3_2_2_3_1 + pil_d5_n1_3_2_2_3_1 = 1
invariant :pi_d3_n1_1_2_3_2_2 + pil_d3_n1_1_2_3_2_2 = 1
invariant :pi_d3_n1_2_1_1_1_3 + pil_d3_n1_2_1_1_1_3 = 1
invariant :po_d4_n1_3_2_1_2_2 + pol_d4_n1_3_2_1_2_2 = 1
invariant :pi_d3_n1_1_2_2_2_2 + pil_d3_n1_1_2_2_2_2 = 1
invariant :po_d2_n1_1_2_1_2_1 + pol_d2_n1_1_2_1_2_1 = 1
invariant :pi_d3_n1_3_2_1_3_2 + pil_d3_n1_3_2_1_3_2 = 1
invariant :pi_d5_n1_2_2_3_1_2 + pil_d5_n1_2_2_3_1_2 = 1
invariant :pi_d5_n1_1_3_1_2_1 + pil_d5_n1_1_3_1_2_1 = 1
invariant :po_d1_n1_2_3_2_3_2 + pol_d1_n1_2_3_2_3_2 = 1
invariant :po_d3_n1_1_1_3_3_2 + pol_d3_n1_1_1_3_3_2 = 1
invariant :pb_d1_n1_1_1_2_3_3 + pb_d1_n2_1_1_2_3_3 + pb_d2_n1_1_1_2_3_3 + pb_d2_n2_1_1_2_3_3 + pb_d3_n1_1_1_2_3_3 + pb_d3_n2_1_1_2_3_3 + pb_d4_n1_1_1_2_3_3 + pb_d4_n2_1_1_2_3_3 + pb_d5_n1_1_1_2_3_3 + pb_d5_n2_1_1_2_3_3 + pbl_1_1_2_3_3 = 30
invariant :po_d2_n1_3_2_3_1_2 + pol_d2_n1_3_2_3_1_2 = 1
invariant :pi_d3_n1_1_3_1_1_3 + pil_d3_n1_1_3_1_1_3 = 1
invariant :pb_d1_n1_1_1_3_3_2 + pb_d1_n2_1_1_3_3_2 + pb_d2_n1_1_1_3_3_2 + pb_d2_n2_1_1_3_3_2 + pb_d3_n1_1_1_3_3_2 + pb_d3_n2_1_1_3_3_2 + pb_d4_n1_1_1_3_3_2 + pb_d4_n2_1_1_3_3_2 + pb_d5_n1_1_1_3_3_2 + pb_d5_n2_1_1_3_3_2 + pbl_1_1_3_3_2 = 30
invariant :pi_d1_n1_2_3_3_2_2 + pil_d1_n1_2_3_3_2_2 = 1
invariant :pi_d2_n1_1_1_1_1_3 + pil_d2_n1_1_1_1_1_3 = 1
invariant :pi_d5_n1_1_1_2_1_3 + pil_d5_n1_1_1_2_1_3 = 1
invariant :pi_d1_n1_3_3_3_1_2 + pil_d1_n1_3_3_3_1_2 = 1
invariant :po_d2_n1_2_2_2_3_2 + pol_d2_n1_2_2_2_3_2 = 1
invariant :pi_d3_n1_1_3_1_3_3 + pil_d3_n1_1_3_1_3_3 = 1
invariant :po_d1_n1_1_2_1_2_1 + pol_d1_n1_1_2_1_2_1 = 1
invariant :po_d2_n1_2_2_1_1_2 + pol_d2_n1_2_2_1_1_2 = 1
invariant :po_d3_n1_2_3_2_2_3 + pol_d3_n1_2_3_2_2_3 = 1
invariant :pi_d5_n1_3_2_3_2_2 + pil_d5_n1_3_2_3_2_2 = 1
invariant :pb_d1_n1_2_3_2_1_1 + pb_d1_n2_2_3_2_1_1 + pb_d2_n1_2_3_2_1_1 + pb_d2_n2_2_3_2_1_1 + pb_d3_n1_2_3_2_1_1 + pb_d3_n2_2_3_2_1_1 + pb_d4_n1_2_3_2_1_1 + pb_d4_n2_2_3_2_1_1 + pb_d5_n1_2_3_2_1_1 + pb_d5_n2_2_3_2_1_1 + pbl_2_3_2_1_1 = 30
invariant :po_d3_n1_2_3_3_1_1 + pol_d3_n1_2_3_3_1_1 = 1
invariant :po_d3_n1_2_3_2_1_1 + pol_d3_n1_2_3_2_1_1 = 1
invariant :po_d4_n1_2_3_3_3_2 + pol_d4_n1_2_3_3_3_2 = 1
invariant :pi_d5_n1_2_3_2_2_3 + pil_d5_n1_2_3_2_2_3 = 1
invariant :po_d4_n1_1_1_2_2_2 + pol_d4_n1_1_1_2_2_2 = 1
invariant :pi_d1_n1_2_1_2_1_2 + pil_d1_n1_2_1_2_1_2 = 1
invariant :po_d3_n1_1_3_1_3_1 + pol_d3_n1_1_3_1_3_1 = 1
invariant :po_d2_n1_2_1_1_3_1 + pol_d2_n1_2_1_1_3_1 = 1
invariant :po_d4_n1_2_3_2_1_2 + pol_d4_n1_2_3_2_1_2 = 1
invariant :po_d4_n1_3_1_3_1_3 + pol_d4_n1_3_1_3_1_3 = 1
invariant :po_d1_n1_3_2_1_3_3 + pol_d1_n1_3_2_1_3_3 = 1
invariant :pi_d5_n1_1_2_1_1_3 + pil_d5_n1_1_2_1_1_3 = 1
invariant :pi_d4_n1_1_3_3_1_3 + pil_d4_n1_1_3_3_1_3 = 1
invariant :po_d1_n1_1_3_3_1_1 + pol_d1_n1_1_3_3_1_1 = 1
invariant :pi_d1_n1_1_3_1_3_2 + pil_d1_n1_1_3_1_3_2 = 1
invariant :pi_d4_n1_1_2_1_1_1 + pil_d4_n1_1_2_1_1_1 = 1
invariant :pi_d2_n1_2_3_2_2_2 + pil_d2_n1_2_3_2_2_2 = 1
invariant :pb_d1_n1_1_1_1_1_2 + pb_d1_n2_1_1_1_1_2 + pb_d2_n1_1_1_1_1_2 + pb_d2_n2_1_1_1_1_2 + pb_d3_n1_1_1_1_1_2 + pb_d3_n2_1_1_1_1_2 + pb_d4_n1_1_1_1_1_2 + pb_d4_n2_1_1_1_1_2 + pb_d5_n1_1_1_1_1_2 + pb_d5_n2_1_1_1_1_2 + pbl_1_1_1_1_2 = 30
invariant :po_d4_n1_1_2_3_3_2 + pol_d4_n1_1_2_3_3_2 = 1
invariant :pi_d4_n1_3_3_1_1_3 + pil_d4_n1_3_3_1_1_3 = 1
invariant :pi_d3_n1_3_3_1_1_3 + pil_d3_n1_3_3_1_1_3 = 1
invariant :po_d1_n1_1_2_3_2_1 + pol_d1_n1_1_2_3_2_1 = 1
invariant :pi_d2_n1_1_2_1_2_1 + pil_d2_n1_1_2_1_2_1 = 1
invariant :po_d5_n1_2_2_2_1_1 + pol_d5_n1_2_2_2_1_1 = 1
invariant :pi_d1_n1_1_1_1_2_2 + pil_d1_n1_1_1_1_2_2 = 1
invariant :po_d1_n1_2_2_2_3_2 + pol_d1_n1_2_2_2_3_2 = 1
invariant :po_d2_n1_3_1_1_3_1 + pol_d2_n1_3_1_1_3_1 = 1
invariant :pi_d1_n1_3_3_1_2_3 + pil_d1_n1_3_3_1_2_3 = 1
invariant :pb_d1_n1_3_3_1_3_2 + pb_d1_n2_3_3_1_3_2 + pb_d2_n1_3_3_1_3_2 + pb_d2_n2_3_3_1_3_2 + pb_d3_n1_3_3_1_3_2 + pb_d3_n2_3_3_1_3_2 + pb_d4_n1_3_3_1_3_2 + pb_d4_n2_3_3_1_3_2 + pb_d5_n1_3_3_1_3_2 + pb_d5_n2_3_3_1_3_2 + pbl_3_3_1_3_2 = 30
invariant :pb_d1_n1_3_2_3_1_3 + pb_d1_n2_3_2_3_1_3 + pb_d2_n1_3_2_3_1_3 + pb_d2_n2_3_2_3_1_3 + pb_d3_n1_3_2_3_1_3 + pb_d3_n2_3_2_3_1_3 + pb_d4_n1_3_2_3_1_3 + pb_d4_n2_3_2_3_1_3 + pb_d5_n1_3_2_3_1_3 + pb_d5_n2_3_2_3_1_3 + pbl_3_2_3_1_3 = 30
invariant :pi_d5_n1_1_3_3_3_3 + pil_d5_n1_1_3_3_3_3 = 1
invariant :po_d4_n1_2_1_1_1_3 + pol_d4_n1_2_1_1_1_3 = 1
invariant :pb_d1_n1_3_2_1_1_3 + pb_d1_n2_3_2_1_1_3 + pb_d2_n1_3_2_1_1_3 + pb_d2_n2_3_2_1_1_3 + pb_d3_n1_3_2_1_1_3 + pb_d3_n2_3_2_1_1_3 + pb_d4_n1_3_2_1_1_3 + pb_d4_n2_3_2_1_1_3 + pb_d5_n1_3_2_1_1_3 + pb_d5_n2_3_2_1_1_3 + pbl_3_2_1_1_3 = 30
invariant :po_d1_n1_3_3_1_3_1 + pol_d1_n1_3_3_1_3_1 = 1
invariant :po_d2_n1_1_1_2_3_3 + pol_d2_n1_1_1_2_3_3 = 1
invariant :po_d5_n1_3_3_3_1_2 + pol_d5_n1_3_3_3_1_2 = 1
invariant :po_d2_n1_1_2_2_1_3 + pol_d2_n1_1_2_2_1_3 = 1
invariant :po_d5_n1_2_1_2_1_2 + pol_d5_n1_2_1_2_1_2 = 1
invariant :po_d1_n1_1_3_2_1_2 + pol_d1_n1_1_3_2_1_2 = 1
invariant :pb_d1_n1_1_3_1_2_2 + pb_d1_n2_1_3_1_2_2 + pb_d2_n1_1_3_1_2_2 + pb_d2_n2_1_3_1_2_2 + pb_d3_n1_1_3_1_2_2 + pb_d3_n2_1_3_1_2_2 + pb_d4_n1_1_3_1_2_2 + pb_d4_n2_1_3_1_2_2 + pb_d5_n1_1_3_1_2_2 + pb_d5_n2_1_3_1_2_2 + pbl_1_3_1_2_2 = 30
invariant :pi_d4_n1_3_2_1_3_1 + pil_d4_n1_3_2_1_3_1 = 1
invariant :pi_d3_n1_2_3_3_3_3 + pil_d3_n1_2_3_3_3_3 = 1
invariant :pi_d2_n1_1_1_3_2_1 + pil_d2_n1_1_1_3_2_1 = 1
invariant :pi_d1_n1_3_2_2_3_1 + pil_d1_n1_3_2_2_3_1 = 1
invariant :pi_d1_n1_3_1_2_2_3 + pil_d1_n1_3_1_2_2_3 = 1
invariant :pi_d1_n1_3_3_2_3_3 + pil_d1_n1_3_3_2_3_3 = 1
invariant :pi_d5_n1_3_3_1_2_3 + pil_d5_n1_3_3_1_2_3 = 1
invariant :pi_d2_n1_1_3_1_1_2 + pil_d2_n1_1_3_1_1_2 = 1
invariant :pi_d5_n1_1_1_2_1_2 + pil_d5_n1_1_1_2_1_2 = 1
invariant :po_d5_n1_1_3_2_2_2 + pol_d5_n1_1_3_2_2_2 = 1
invariant :pb_d1_n1_3_2_3_1_1 + pb_d1_n2_3_2_3_1_1 + pb_d2_n1_3_2_3_1_1 + pb_d2_n2_3_2_3_1_1 + pb_d3_n1_3_2_3_1_1 + pb_d3_n2_3_2_3_1_1 + pb_d4_n1_3_2_3_1_1 + pb_d4_n2_3_2_3_1_1 + pb_d5_n1_3_2_3_1_1 + pb_d5_n2_3_2_3_1_1 + pbl_3_2_3_1_1 = 30
invariant :pi_d3_n1_2_3_2_2_1 + pil_d3_n1_2_3_2_2_1 = 1
invariant :po_d4_n1_3_1_3_3_1 + pol_d4_n1_3_1_3_3_1 = 1
invariant :po_d5_n1_2_3_2_1_2 + pol_d5_n1_2_3_2_1_2 = 1
invariant :po_d5_n1_1_1_2_2_3 + pol_d5_n1_1_1_2_2_3 = 1
invariant :po_d1_n1_3_2_2_1_3 + pol_d1_n1_3_2_2_1_3 = 1
invariant :pi_d4_n1_2_3_1_3_2 + pil_d4_n1_2_3_1_3_2 = 1
invariant :po_d4_n1_1_2_2_1_2 + pol_d4_n1_1_2_2_1_2 = 1
invariant :po_d5_n1_3_2_2_2_1 + pol_d5_n1_3_2_2_2_1 = 1
invariant :po_d1_n1_2_2_3_1_2 + pol_d1_n1_2_2_3_1_2 = 1
invariant :po_d5_n1_2_3_2_3_1 + pol_d5_n1_2_3_2_3_1 = 1
invariant :pb_d1_n1_3_1_3_1_1 + pb_d1_n2_3_1_3_1_1 + pb_d2_n1_3_1_3_1_1 + pb_d2_n2_3_1_3_1_1 + pb_d3_n1_3_1_3_1_1 + pb_d3_n2_3_1_3_1_1 + pb_d4_n1_3_1_3_1_1 + pb_d4_n2_3_1_3_1_1 + pb_d5_n1_3_1_3_1_1 + pb_d5_n2_3_1_3_1_1 + pbl_3_1_3_1_1 = 30
invariant :pi_d4_n1_1_3_3_2_2 + pil_d4_n1_1_3_3_2_2 = 1
invariant :po_d2_n1_3_1_2_1_3 + pol_d2_n1_3_1_2_1_3 = 1
invariant :pi_d5_n1_2_3_2_1_1 + pil_d5_n1_2_3_2_1_1 = 1
invariant :po_d3_n1_1_3_3_1_3 + pol_d3_n1_1_3_3_1_3 = 1
invariant :pi_d2_n1_1_1_3_3_1 + pil_d2_n1_1_1_3_3_1 = 1
invariant :pb_d1_n1_3_1_2_2_1 + pb_d1_n2_3_1_2_2_1 + pb_d2_n1_3_1_2_2_1 + pb_d2_n2_3_1_2_2_1 + pb_d3_n1_3_1_2_2_1 + pb_d3_n2_3_1_2_2_1 + pb_d4_n1_3_1_2_2_1 + pb_d4_n2_3_1_2_2_1 + pb_d5_n1_3_1_2_2_1 + pb_d5_n2_3_1_2_2_1 + pbl_3_1_2_2_1 = 30
invariant :pi_d1_n1_3_3_3_3_3 + pil_d1_n1_3_3_3_3_3 = 1
invariant :po_d4_n1_1_2_3_1_3 + pol_d4_n1_1_2_3_1_3 = 1
invariant :po_d2_n1_2_3_1_1_2 + pol_d2_n1_2_3_1_1_2 = 1
invariant :pi_d5_n1_3_3_1_3_3 + pil_d5_n1_3_3_1_3_3 = 1
invariant :pi_d4_n1_3_3_3_2_3 + pil_d4_n1_3_3_3_2_3 = 1
invariant :po_d1_n1_2_1_1_3_3 + pol_d1_n1_2_1_1_3_3 = 1
invariant :po_d1_n1_3_1_1_2_3 + pol_d1_n1_3_1_1_2_3 = 1
invariant :pi_d2_n1_3_3_1_1_1 + pil_d2_n1_3_3_1_1_1 = 1
invariant :po_d5_n1_2_2_1_1_1 + pol_d5_n1_2_2_1_1_1 = 1
invariant :po_d4_n1_2_1_2_1_3 + pol_d4_n1_2_1_2_1_3 = 1
invariant :pb_d1_n1_3_2_1_2_2 + pb_d1_n2_3_2_1_2_2 + pb_d2_n1_3_2_1_2_2 + pb_d2_n2_3_2_1_2_2 + pb_d3_n1_3_2_1_2_2 + pb_d3_n2_3_2_1_2_2 + pb_d4_n1_3_2_1_2_2 + pb_d4_n2_3_2_1_2_2 + pb_d5_n1_3_2_1_2_2 + pb_d5_n2_3_2_1_2_2 + pbl_3_2_1_2_2 = 30
invariant :pi_d4_n1_2_3_1_1_3 + pil_d4_n1_2_3_1_1_3 = 1
invariant :pi_d3_n1_1_2_2_2_3 + pil_d3_n1_1_2_2_2_3 = 1
invariant :pb_d1_n1_2_3_3_2_3 + pb_d1_n2_2_3_3_2_3 + pb_d2_n1_2_3_3_2_3 + pb_d2_n2_2_3_3_2_3 + pb_d3_n1_2_3_3_2_3 + pb_d3_n2_2_3_3_2_3 + pb_d4_n1_2_3_3_2_3 + pb_d4_n2_2_3_3_2_3 + pb_d5_n1_2_3_3_2_3 + pb_d5_n2_2_3_3_2_3 + pbl_2_3_3_2_3 = 30
invariant :pi_d5_n1_2_2_2_2_3 + pil_d5_n1_2_2_2_2_3 = 1
invariant :po_d3_n1_1_1_2_2_2 + pol_d3_n1_1_1_2_2_2 = 1
invariant :po_d5_n1_2_1_2_2_2 + pol_d5_n1_2_1_2_2_2 = 1
invariant :pi_d3_n1_3_2_2_2_2 + pil_d3_n1_3_2_2_2_2 = 1
invariant :po_d2_n1_3_3_3_2_2 + pol_d2_n1_3_3_3_2_2 = 1
invariant :pi_d1_n1_2_2_2_1_1 + pil_d1_n1_2_2_2_1_1 = 1
invariant :pi_d5_n1_1_1_1_2_3 + pil_d5_n1_1_1_1_2_3 = 1
invariant :po_d2_n1_1_2_1_3_2 + pol_d2_n1_1_2_1_3_2 = 1
invariant :pb_d1_n1_3_2_2_3_3 + pb_d1_n2_3_2_2_3_3 + pb_d2_n1_3_2_2_3_3 + pb_d2_n2_3_2_2_3_3 + pb_d3_n1_3_2_2_3_3 + pb_d3_n2_3_2_2_3_3 + pb_d4_n1_3_2_2_3_3 + pb_d4_n2_3_2_2_3_3 + pb_d5_n1_3_2_2_3_3 + pb_d5_n2_3_2_2_3_3 + pbl_3_2_2_3_3 = 30
invariant :po_d2_n1_3_1_1_3_3 + pol_d2_n1_3_1_1_3_3 = 1
invariant :po_d2_n1_1_1_1_1_2 + pol_d2_n1_1_1_1_1_2 = 1
invariant :pb_d1_n1_2_3_2_2_2 + pb_d1_n2_2_3_2_2_2 + pb_d2_n1_2_3_2_2_2 + pb_d2_n2_2_3_2_2_2 + pb_d3_n1_2_3_2_2_2 + pb_d3_n2_2_3_2_2_2 + pb_d4_n1_2_3_2_2_2 + pb_d4_n2_2_3_2_2_2 + pb_d5_n1_2_3_2_2_2 + pb_d5_n2_2_3_2_2_2 + pbl_2_3_2_2_2 = 30
invariant :pi_d5_n1_3_1_3_1_2 + pil_d5_n1_3_1_3_1_2 = 1
invariant :po_d4_n1_3_1_3_1_1 + pol_d4_n1_3_1_3_1_1 = 1
invariant :po_d4_n1_3_3_2_3_1 + pol_d4_n1_3_3_2_3_1 = 1
invariant :pi_d1_n1_2_1_3_2_3 + pil_d1_n1_2_1_3_2_3 = 1
invariant :pi_d1_n1_2_3_3_3_1 + pil_d1_n1_2_3_3_3_1 = 1
invariant :pi_d5_n1_1_1_3_3_1 + pil_d5_n1_1_1_3_3_1 = 1
invariant :pi_d5_n1_3_1_2_1_2 + pil_d5_n1_3_1_2_1_2 = 1
invariant :pi_d1_n1_2_2_3_3_1 + pil_d1_n1_2_2_3_3_1 = 1
invariant :pi_d3_n1_1_2_1_3_3 + pil_d3_n1_1_2_1_3_3 = 1
invariant :po_d2_n1_3_1_3_2_3 + pol_d2_n1_3_1_3_2_3 = 1
invariant :pi_d3_n1_1_1_2_1_2 + pil_d3_n1_1_1_2_1_2 = 1
invariant :po_d1_n1_1_1_2_1_3 + pol_d1_n1_1_1_2_1_3 = 1
invariant :pi_d5_n1_1_3_3_1_1 + pil_d5_n1_1_3_3_1_1 = 1
invariant :po_d5_n1_2_3_1_2_2 + pol_d5_n1_2_3_1_2_2 = 1
invariant :po_d4_n1_3_2_3_1_2 + pol_d4_n1_3_2_3_1_2 = 1
invariant :pi_d1_n1_3_3_2_3_1 + pil_d1_n1_3_3_2_3_1 = 1
invariant :pi_d2_n1_2_3_3_3_1 + pil_d2_n1_2_3_3_3_1 = 1
invariant :pi_d5_n1_3_3_2_2_2 + pil_d5_n1_3_3_2_2_2 = 1
invariant :pi_d5_n1_1_3_3_1_2 + pil_d5_n1_1_3_3_1_2 = 1
invariant :po_d1_n1_1_3_2_1_3 + pol_d1_n1_1_3_2_1_3 = 1
invariant :po_d2_n1_3_1_2_2_1 + pol_d2_n1_3_1_2_2_1 = 1
invariant :po_d5_n1_1_2_2_2_3 + pol_d5_n1_1_2_2_2_3 = 1
invariant :pi_d4_n1_1_3_3_3_1 + pil_d4_n1_1_3_3_3_1 = 1
invariant :pi_d4_n1_3_2_3_2_3 + pil_d4_n1_3_2_3_2_3 = 1
invariant :pi_d5_n1_1_2_2_2_1 + pil_d5_n1_1_2_2_2_1 = 1
invariant :po_d3_n1_3_1_1_1_2 + pol_d3_n1_3_1_1_1_2 = 1
invariant :pb_d1_n1_1_3_1_3_2 + pb_d1_n2_1_3_1_3_2 + pb_d2_n1_1_3_1_3_2 + pb_d2_n2_1_3_1_3_2 + pb_d3_n1_1_3_1_3_2 + pb_d3_n2_1_3_1_3_2 + pb_d4_n1_1_3_1_3_2 + pb_d4_n2_1_3_1_3_2 + pb_d5_n1_1_3_1_3_2 + pb_d5_n2_1_3_1_3_2 + pbl_1_3_1_3_2 = 30
invariant :pb_d1_n1_3_3_1_3_1 + pb_d1_n2_3_3_1_3_1 + pb_d2_n1_3_3_1_3_1 + pb_d2_n2_3_3_1_3_1 + pb_d3_n1_3_3_1_3_1 + pb_d3_n2_3_3_1_3_1 + pb_d4_n1_3_3_1_3_1 + pb_d4_n2_3_3_1_3_1 + pb_d5_n1_3_3_1_3_1 + pb_d5_n2_3_3_1_3_1 + pbl_3_3_1_3_1 = 30
invariant :pi_d3_n1_2_2_3_1_1 + pil_d3_n1_2_2_3_1_1 = 1
invariant :po_d5_n1_1_1_3_1_2 + pol_d5_n1_1_1_3_1_2 = 1
invariant :pi_d3_n1_2_2_1_1_2 + pil_d3_n1_2_2_1_1_2 = 1
invariant :po_d2_n1_1_1_2_2_1 + pol_d2_n1_1_1_2_2_1 = 1
invariant :pi_d4_n1_1_2_2_2_2 + pil_d4_n1_1_2_2_2_2 = 1
invariant :po_d1_n1_3_2_2_2_3 + pol_d1_n1_3_2_2_2_3 = 1
invariant :pi_d1_n1_3_3_1_1_1 + pil_d1_n1_3_3_1_1_1 = 1
invariant :po_d1_n1_3_1_3_3_2 + pol_d1_n1_3_1_3_3_2 = 1
invariant :pi_d4_n1_1_3_2_1_3 + pil_d4_n1_1_3_2_1_3 = 1
invariant :pi_d1_n1_1_3_2_2_1 + pil_d1_n1_1_3_2_2_1 = 1
invariant :po_d3_n1_1_1_1_2_2 + pol_d3_n1_1_1_1_2_2 = 1
invariant :po_d5_n1_3_2_3_3_3 + pol_d5_n1_3_2_3_3_3 = 1
invariant :pi_d2_n1_2_3_1_3_1 + pil_d2_n1_2_3_1_3_1 = 1
invariant :pi_d1_n1_2_3_1_2_1 + pil_d1_n1_2_3_1_2_1 = 1
invariant :pb_d1_n1_2_1_3_1_3 + pb_d1_n2_2_1_3_1_3 + pb_d2_n1_2_1_3_1_3 + pb_d2_n2_2_1_3_1_3 + pb_d3_n1_2_1_3_1_3 + pb_d3_n2_2_1_3_1_3 + pb_d4_n1_2_1_3_1_3 + pb_d4_n2_2_1_3_1_3 + pb_d5_n1_2_1_3_1_3 + pb_d5_n2_2_1_3_1_3 + pbl_2_1_3_1_3 = 30
invariant :po_d2_n1_1_3_3_3_1 + pol_d2_n1_1_3_3_3_1 = 1
invariant :po_d3_n1_2_2_3_3_2 + pol_d3_n1_2_2_3_3_2 = 1
invariant :pi_d3_n1_3_2_3_2_1 + pil_d3_n1_3_2_3_2_1 = 1
invariant :po_d4_n1_3_1_1_1_2 + pol_d4_n1_3_1_1_1_2 = 1
invariant :po_d1_n1_2_1_2_3_3 + pol_d1_n1_2_1_2_3_3 = 1
invariant :pb_d1_n1_2_3_2_3_3 + pb_d1_n2_2_3_2_3_3 + pb_d2_n1_2_3_2_3_3 + pb_d2_n2_2_3_2_3_3 + pb_d3_n1_2_3_2_3_3 + pb_d3_n2_2_3_2_3_3 + pb_d4_n1_2_3_2_3_3 + pb_d4_n2_2_3_2_3_3 + pb_d5_n1_2_3_2_3_3 + pb_d5_n2_2_3_2_3_3 + pbl_2_3_2_3_3 = 30
invariant :po_d4_n1_1_2_1_1_1 + pol_d4_n1_1_2_1_1_1 = 1
invariant :pi_d3_n1_2_3_3_1_3 + pil_d3_n1_2_3_3_1_3 = 1
invariant :pi_d5_n1_1_1_1_1_2 + pil_d5_n1_1_1_1_1_2 = 1
invariant :po_d5_n1_2_1_1_2_1 + pol_d5_n1_2_1_1_2_1 = 1
invariant :po_d3_n1_3_3_1_3_2 + pol_d3_n1_3_3_1_3_2 = 1
invariant :po_d5_n1_2_2_3_2_1 + pol_d5_n1_2_2_3_2_1 = 1
invariant :pb_d1_n1_1_3_1_3_3 + pb_d1_n2_1_3_1_3_3 + pb_d2_n1_1_3_1_3_3 + pb_d2_n2_1_3_1_3_3 + pb_d3_n1_1_3_1_3_3 + pb_d3_n2_1_3_1_3_3 + pb_d4_n1_1_3_1_3_3 + pb_d4_n2_1_3_1_3_3 + pb_d5_n1_1_3_1_3_3 + pb_d5_n2_1_3_1_3_3 + pbl_1_3_1_3_3 = 30
invariant :po_d2_n1_2_2_1_2_3 + pol_d2_n1_2_2_1_2_3 = 1
invariant :pi_d3_n1_2_3_1_1_3 + pil_d3_n1_2_3_1_1_3 = 1
invariant :po_d5_n1_3_1_1_1_2 + pol_d5_n1_3_1_1_1_2 = 1
invariant :pi_d5_n1_1_2_3_3_3 + pil_d5_n1_1_2_3_3_3 = 1
invariant :pi_d3_n1_2_3_2_1_1 + pil_d3_n1_2_3_2_1_1 = 1
invariant :pi_d5_n1_1_3_3_2_2 + pil_d5_n1_1_3_3_2_2 = 1
invariant :po_d4_n1_1_3_2_1_3 + pol_d4_n1_1_3_2_1_3 = 1
invariant :pi_d3_n1_1_1_1_1_3 + pil_d3_n1_1_1_1_1_3 = 1
invariant :pb_d1_n1_3_2_2_2_1 + pb_d1_n2_3_2_2_2_1 + pb_d2_n1_3_2_2_2_1 + pb_d2_n2_3_2_2_2_1 + pb_d3_n1_3_2_2_2_1 + pb_d3_n2_3_2_2_2_1 + pb_d4_n1_3_2_2_2_1 + pb_d4_n2_3_2_2_2_1 + pb_d5_n1_3_2_2_2_1 + pb_d5_n2_3_2_2_2_1 + pbl_3_2_2_2_1 = 30
invariant :po_d4_n1_2_2_3_3_2 + pol_d4_n1_2_2_3_3_2 = 1
invariant :po_d5_n1_1_2_2_1_2 + pol_d5_n1_1_2_2_1_2 = 1
invariant :po_d5_n1_2_3_3_1_2 + pol_d5_n1_2_3_3_1_2 = 1
invariant :pi_d2_n1_2_1_2_1_1 + pil_d2_n1_2_1_2_1_1 = 1
invariant :pi_d4_n1_3_1_3_2_3 + pil_d4_n1_3_1_3_2_3 = 1
invariant :po_d2_n1_1_1_3_1_2 + pol_d2_n1_1_1_3_1_2 = 1
invariant :pi_d4_n1_1_2_1_3_3 + pil_d4_n1_1_2_1_3_3 = 1
invariant :pi_d1_n1_2_2_3_1_1 + pil_d1_n1_2_2_3_1_1 = 1
invariant :po_d4_n1_3_3_3_3_1 + pol_d4_n1_3_3_3_3_1 = 1
invariant :pi_d4_n1_3_1_1_3_1 + pil_d4_n1_3_1_1_3_1 = 1
invariant :po_d2_n1_2_2_1_3_1 + pol_d2_n1_2_2_1_3_1 = 1
invariant :pb_d1_n1_3_2_3_3_1 + pb_d1_n2_3_2_3_3_1 + pb_d2_n1_3_2_3_3_1 + pb_d2_n2_3_2_3_3_1 + pb_d3_n1_3_2_3_3_1 + pb_d3_n2_3_2_3_3_1 + pb_d4_n1_3_2_3_3_1 + pb_d4_n2_3_2_3_3_1 + pb_d5_n1_3_2_3_3_1 + pb_d5_n2_3_2_3_3_1 + pbl_3_2_3_3_1 = 30
invariant :pi_d4_n1_3_1_3_3_1 + pil_d4_n1_3_1_3_3_1 = 1
invariant :po_d2_n1_1_3_2_2_2 + pol_d2_n1_1_3_2_2_2 = 1
invariant :po_d5_n1_1_2_1_2_3 + pol_d5_n1_1_2_1_2_3 = 1
invariant :po_d1_n1_1_1_2_2_3 + pol_d1_n1_1_1_2_2_3 = 1
invariant :pb_d1_n1_1_2_3_2_3 + pb_d1_n2_1_2_3_2_3 + pb_d2_n1_1_2_3_2_3 + pb_d2_n2_1_2_3_2_3 + pb_d3_n1_1_2_3_2_3 + pb_d3_n2_1_2_3_2_3 + pb_d4_n1_1_2_3_2_3 + pb_d4_n2_1_2_3_2_3 + pb_d5_n1_1_2_3_2_3 + pb_d5_n2_1_2_3_2_3 + pbl_1_2_3_2_3 = 30
invariant :pi_d2_n1_1_3_2_1_1 + pil_d2_n1_1_3_2_1_1 = 1
invariant :po_d2_n1_2_2_2_2_2 + pol_d2_n1_2_2_2_2_2 = 1
invariant :po_d4_n1_1_1_2_1_2 + pol_d4_n1_1_1_2_1_2 = 1
invariant :pi_d2_n1_3_2_1_2_2 + pil_d2_n1_3_2_1_2_2 = 1
invariant :pi_d4_n1_2_2_1_1_3 + pil_d4_n1_2_2_1_1_3 = 1
invariant :pi_d2_n1_1_1_2_2_3 + pil_d2_n1_1_1_2_2_3 = 1
invariant :po_d3_n1_1_3_3_3_1 + pol_d3_n1_1_3_3_3_1 = 1
invariant :pi_d2_n1_3_3_3_1_3 + pil_d2_n1_3_3_3_1_3 = 1
invariant :pi_d3_n1_3_1_2_1_2 + pil_d3_n1_3_1_2_1_2 = 1
invariant :pi_d3_n1_3_3_1_1_1 + pil_d3_n1_3_3_1_1_1 = 1
invariant :po_d3_n1_3_2_1_1_1 + pol_d3_n1_3_2_1_1_1 = 1
invariant :pi_d5_n1_3_1_3_2_3 + pil_d5_n1_3_1_3_2_3 = 1
invariant :po_d5_n1_1_3_3_2_3 + pol_d5_n1_1_3_3_2_3 = 1
invariant :pi_d5_n1_3_2_2_1_3 + pil_d5_n1_3_2_2_1_3 = 1
invariant :pi_d3_n1_1_2_1_3_1 + pil_d3_n1_1_2_1_3_1 = 1
invariant :pi_d5_n1_2_3_2_3_2 + pil_d5_n1_2_3_2_3_2 = 1
invariant :pi_d4_n1_1_3_2_3_3 + pil_d4_n1_1_3_2_3_3 = 1
invariant :pi_d1_n1_1_2_2_2_2 + pil_d1_n1_1_2_2_2_2 = 1
invariant :po_d3_n1_1_3_3_1_1 + pol_d3_n1_1_3_3_1_1 = 1
invariant :pi_d5_n1_1_3_2_2_1 + pil_d5_n1_1_3_2_2_1 = 1
invariant :po_d2_n1_1_1_3_3_2 + pol_d2_n1_1_1_3_3_2 = 1
invariant :po_d2_n1_3_3_1_3_1 + pol_d2_n1_3_3_1_3_1 = 1
invariant :po_d2_n1_2_2_3_3_2 + pol_d2_n1_2_2_3_3_2 = 1
invariant :pi_d4_n1_2_3_2_1_2 + pil_d4_n1_2_3_2_1_2 = 1
invariant :pi_d3_n1_1_2_1_1_1 + pil_d3_n1_1_2_1_1_1 = 1
invariant :po_d4_n1_1_2_1_2_3 + pol_d4_n1_1_2_1_2_3 = 1
invariant :pi_d3_n1_2_1_1_2_2 + pil_d3_n1_2_1_1_2_2 = 1
invariant :po_d4_n1_3_1_2_1_1 + pol_d4_n1_3_1_2_1_1 = 1
invariant :pi_d1_n1_3_3_3_1_1 + pil_d1_n1_3_3_3_1_1 = 1
invariant :pi_d1_n1_3_1_2_3_1 + pil_d1_n1_3_1_2_3_1 = 1
invariant :pb_d1_n1_1_3_1_2_3 + pb_d1_n2_1_3_1_2_3 + pb_d2_n1_1_3_1_2_3 + pb_d2_n2_1_3_1_2_3 + pb_d3_n1_1_3_1_2_3 + pb_d3_n2_1_3_1_2_3 + pb_d4_n1_1_3_1_2_3 + pb_d4_n2_1_3_1_2_3 + pb_d5_n1_1_3_1_2_3 + pb_d5_n2_1_3_1_2_3 + pbl_1_3_1_2_3 = 30
invariant :pi_d5_n1_2_3_2_1_2 + pil_d5_n1_2_3_2_1_2 = 1
invariant :po_d2_n1_1_3_3_3_2 + pol_d2_n1_1_3_3_3_2 = 1
invariant :pi_d2_n1_2_3_1_3_2 + pil_d2_n1_2_3_1_3_2 = 1
invariant :pi_d3_n1_2_2_3_1_2 + pil_d3_n1_2_2_3_1_2 = 1
invariant :pi_d2_n1_1_1_2_2_1 + pil_d2_n1_1_1_2_2_1 = 1
invariant :pi_d3_n1_1_3_2_3_2 + pil_d3_n1_1_3_2_3_2 = 1
invariant :po_d5_n1_2_1_3_2_2 + pol_d5_n1_2_1_3_2_2 = 1
invariant :pb_d1_n1_1_1_3_1_3 + pb_d1_n2_1_1_3_1_3 + pb_d2_n1_1_1_3_1_3 + pb_d2_n2_1_1_3_1_3 + pb_d3_n1_1_1_3_1_3 + pb_d3_n2_1_1_3_1_3 + pb_d4_n1_1_1_3_1_3 + pb_d4_n2_1_1_3_1_3 + pb_d5_n1_1_1_3_1_3 + pb_d5_n2_1_1_3_1_3 + pbl_1_1_3_1_3 = 30
invariant :po_d4_n1_3_1_1_2_3 + pol_d4_n1_3_1_1_2_3 = 1
invariant :pi_d1_n1_2_1_3_1_3 + pil_d1_n1_2_1_3_1_3 = 1
invariant :po_d4_n1_2_2_1_3_3 + pol_d4_n1_2_2_1_3_3 = 1
invariant :pi_d4_n1_1_3_1_2_3 + pil_d4_n1_1_3_1_2_3 = 1
invariant :po_d3_n1_1_3_1_2_1 + pol_d3_n1_1_3_1_2_1 = 1
invariant :pi_d1_n1_3_1_3_1_2 + pil_d1_n1_3_1_3_1_2 = 1
invariant :po_d3_n1_1_1_1_2_1 + pol_d3_n1_1_1_1_2_1 = 1
invariant :po_d5_n1_1_2_3_1_1 + pol_d5_n1_1_2_3_1_1 = 1
invariant :po_d2_n1_1_3_3_2_1 + pol_d2_n1_1_3_3_2_1 = 1
invariant :po_d4_n1_3_2_1_3_2 + pol_d4_n1_3_2_1_3_2 = 1
invariant :pi_d4_n1_1_3_1_2_2 + pil_d4_n1_1_3_1_2_2 = 1
invariant :po_d4_n1_3_2_3_1_1 + pol_d4_n1_3_2_3_1_1 = 1
invariant :pi_d5_n1_2_1_3_3_2 + pil_d5_n1_2_1_3_3_2 = 1
invariant :pi_d3_n1_3_2_1_2_3 + pil_d3_n1_3_2_1_2_3 = 1
invariant :pi_d3_n1_2_3_3_3_1 + pil_d3_n1_2_3_3_3_1 = 1
invariant :pi_d1_n1_3_3_2_2_3 + pil_d1_n1_3_3_2_2_3 = 1
invariant :pi_d5_n1_1_2_3_1_1 + pil_d5_n1_1_2_3_1_1 = 1
invariant :pi_d1_n1_3_2_3_3_1 + pil_d1_n1_3_2_3_3_1 = 1
invariant :po_d5_n1_3_3_2_1_1 + pol_d5_n1_3_3_2_1_1 = 1
invariant :po_d2_n1_1_2_1_1_1 + pol_d2_n1_1_2_1_1_1 = 1
invariant :pi_d5_n1_2_3_1_2_3 + pil_d5_n1_2_3_1_2_3 = 1
invariant :po_d2_n1_2_3_2_2_1 + pol_d2_n1_2_3_2_2_1 = 1
invariant :pi_d1_n1_1_3_2_1_3 + pil_d1_n1_1_3_2_1_3 = 1
invariant :po_d5_n1_1_3_1_1_1 + pol_d5_n1_1_3_1_1_1 = 1
invariant :pi_d2_n1_1_2_3_2_1 + pil_d2_n1_1_2_3_2_1 = 1
invariant :pi_d3_n1_1_1_3_1_1 + pil_d3_n1_1_1_3_1_1 = 1
invariant :po_d2_n1_3_2_1_2_3 + pol_d2_n1_3_2_1_2_3 = 1
invariant :po_d4_n1_1_3_2_2_2 + pol_d4_n1_1_3_2_2_2 = 1
invariant :po_d1_n1_1_3_1_3_2 + pol_d1_n1_1_3_1_3_2 = 1
invariant :po_d5_n1_2_3_3_2_2 + pol_d5_n1_2_3_3_2_2 = 1
invariant :po_d2_n1_1_1_3_2_2 + pol_d2_n1_1_1_3_2_2 = 1
invariant :pi_d2_n1_2_2_2_1_2 + pil_d2_n1_2_2_2_1_2 = 1
invariant :po_d2_n1_1_3_3_1_2 + pol_d2_n1_1_3_3_1_2 = 1
invariant :po_d3_n1_3_1_1_2_3 + pol_d3_n1_3_1_1_2_3 = 1
invariant :po_d1_n1_2_3_1_1_2 + pol_d1_n1_2_3_1_1_2 = 1
invariant :po_d2_n1_1_3_1_1_3 + pol_d2_n1_1_3_1_1_3 = 1
invariant :pi_d1_n1_3_2_1_2_3 + pil_d1_n1_3_2_1_2_3 = 1
invariant :po_d5_n1_2_3_1_1_3 + pol_d5_n1_2_3_1_1_3 = 1
invariant :pi_d5_n1_1_2_1_1_1 + pil_d5_n1_1_2_1_1_1 = 1
invariant :po_d2_n1_2_1_1_2_2 + pol_d2_n1_2_1_1_2_2 = 1
invariant :po_d3_n1_1_2_2_1_3 + pol_d3_n1_1_2_2_1_3 = 1
invariant :pi_d4_n1_1_3_2_1_1 + pil_d4_n1_1_3_2_1_1 = 1
invariant :pi_d4_n1_3_2_1_3_3 + pil_d4_n1_3_2_1_3_3 = 1
invariant :pi_d1_n1_2_3_1_1_1 + pil_d1_n1_2_3_1_1_1 = 1
invariant :po_d3_n1_1_2_3_3_2 + pol_d3_n1_1_2_3_3_2 = 1
invariant :pi_d5_n1_1_2_2_1_2 + pil_d5_n1_1_2_2_1_2 = 1
invariant :pi_d1_n1_2_2_2_2_3 + pil_d1_n1_2_2_2_2_3 = 1
invariant :po_d1_n1_3_3_3_3_2 + pol_d1_n1_3_3_3_3_2 = 1
invariant :po_d3_n1_1_1_3_2_3 + pol_d3_n1_1_1_3_2_3 = 1
invariant :pi_d1_n1_2_3_1_1_3 + pil_d1_n1_2_3_1_1_3 = 1
invariant :po_d5_n1_2_1_3_3_1 + pol_d5_n1_2_1_3_3_1 = 1
invariant :po_d1_n1_1_3_3_3_3 + pol_d1_n1_1_3_3_3_3 = 1
invariant :po_d1_n1_2_1_2_1_2 + pol_d1_n1_2_1_2_1_2 = 1
invariant :pi_d2_n1_2_2_1_3_3 + pil_d2_n1_2_2_1_3_3 = 1
invariant :pi_d3_n1_1_1_3_3_2 + pil_d3_n1_1_1_3_3_2 = 1
invariant :pi_d3_n1_3_3_1_3_1 + pil_d3_n1_3_3_1_3_1 = 1
invariant :po_d2_n1_1_3_2_1_1 + pol_d2_n1_1_3_2_1_1 = 1
invariant :pi_d2_n1_3_1_2_3_1 + pil_d2_n1_3_1_2_3_1 = 1
invariant :pb_d1_n1_3_2_1_1_2 + pb_d1_n2_3_2_1_1_2 + pb_d2_n1_3_2_1_1_2 + pb_d2_n2_3_2_1_1_2 + pb_d3_n1_3_2_1_1_2 + pb_d3_n2_3_2_1_1_2 + pb_d4_n1_3_2_1_1_2 + pb_d4_n2_3_2_1_1_2 + pb_d5_n1_3_2_1_1_2 + pb_d5_n2_3_2_1_1_2 + pbl_3_2_1_1_2 = 30
invariant :po_d5_n1_1_2_3_3_1 + pol_d5_n1_1_2_3_3_1 = 1
invariant :po_d5_n1_1_1_3_3_2 + pol_d5_n1_1_1_3_3_2 = 1
invariant :pi_d2_n1_3_3_1_1_2 + pil_d2_n1_3_3_1_1_2 = 1
invariant :po_d1_n1_3_1_1_3_1 + pol_d1_n1_3_1_1_3_1 = 1
invariant :pi_d2_n1_2_2_3_2_2 + pil_d2_n1_2_2_3_2_2 = 1
invariant :pi_d2_n1_2_3_1_2_3 + pil_d2_n1_2_3_1_2_3 = 1
invariant :pi_d3_n1_2_2_1_2_1 + pil_d3_n1_2_2_1_2_1 = 1
invariant :po_d2_n1_3_2_3_2_3 + pol_d2_n1_3_2_3_2_3 = 1
invariant :po_d4_n1_1_2_1_3_1 + pol_d4_n1_1_2_1_3_1 = 1
invariant :pb_d1_n1_1_2_2_2_2 + pb_d1_n2_1_2_2_2_2 + pb_d2_n1_1_2_2_2_2 + pb_d2_n2_1_2_2_2_2 + pb_d3_n1_1_2_2_2_2 + pb_d3_n2_1_2_2_2_2 + pb_d4_n1_1_2_2_2_2 + pb_d4_n2_1_2_2_2_2 + pb_d5_n1_1_2_2_2_2 + pb_d5_n2_1_2_2_2_2 + pbl_1_2_2_2_2 = 30
invariant :po_d1_n1_2_3_2_1_2 + pol_d1_n1_2_3_2_1_2 = 1
invariant :po_d1_n1_2_2_1_3_1 + pol_d1_n1_2_2_1_3_1 = 1
invariant :po_d4_n1_1_3_1_1_1 + pol_d4_n1_1_3_1_1_1 = 1
invariant :po_d5_n1_2_1_3_1_2 + pol_d5_n1_2_1_3_1_2 = 1
invariant :pi_d2_n1_2_3_2_3_2 + pil_d2_n1_2_3_2_3_2 = 1
invariant :po_d4_n1_2_2_2_2_1 + pol_d4_n1_2_2_2_2_1 = 1
invariant :pi_d5_n1_3_2_1_3_3 + pil_d5_n1_3_2_1_3_3 = 1
invariant :pi_d3_n1_3_1_3_2_1 + pil_d3_n1_3_1_3_2_1 = 1
invariant :po_d4_n1_2_2_1_3_1 + pol_d4_n1_2_2_1_3_1 = 1
invariant :pi_d4_n1_2_2_3_1_3 + pil_d4_n1_2_2_3_1_3 = 1
invariant :pi_d2_n1_2_3_2_2_3 + pil_d2_n1_2_3_2_2_3 = 1
invariant :pi_d3_n1_2_1_1_2_1 + pil_d3_n1_2_1_1_2_1 = 1
invariant :pi_d1_n1_3_1_2_2_1 + pil_d1_n1_3_1_2_2_1 = 1
invariant :po_d3_n1_2_2_2_2_2 + pol_d3_n1_2_2_2_2_2 = 1
invariant :po_d4_n1_2_3_2_2_3 + pol_d4_n1_2_3_2_2_3 = 1
invariant :po_d3_n1_1_3_2_2_1 + pol_d3_n1_1_3_2_2_1 = 1
invariant :pi_d2_n1_1_3_1_1_1 + pil_d2_n1_1_3_1_1_1 = 1
invariant :pi_d1_n1_1_2_1_3_2 + pil_d1_n1_1_2_1_3_2 = 1
invariant :po_d4_n1_1_1_3_1_1 + pol_d4_n1_1_1_3_1_1 = 1
invariant :po_d1_n1_1_2_3_3_1 + pol_d1_n1_1_2_3_3_1 = 1
invariant :pi_d5_n1_3_2_2_2_3 + pil_d5_n1_3_2_2_2_3 = 1
invariant :pi_d3_n1_2_3_3_1_1 + pil_d3_n1_2_3_3_1_1 = 1
invariant :pb_d1_n1_3_1_1_1_1 + pb_d1_n2_3_1_1_1_1 + pb_d2_n1_3_1_1_1_1 + pb_d2_n2_3_1_1_1_1 + pb_d3_n1_3_1_1_1_1 + pb_d3_n2_3_1_1_1_1 + pb_d4_n1_3_1_1_1_1 + pb_d4_n2_3_1_1_1_1 + pb_d5_n1_3_1_1_1_1 + pb_d5_n2_3_1_1_1_1 + pbl_3_1_1_1_1 = 30
invariant :po_d1_n1_1_2_3_3_2 + pol_d1_n1_1_2_3_3_2 = 1
invariant :pi_d1_n1_2_3_2_1_3 + pil_d1_n1_2_3_2_1_3 = 1
invariant :pi_d2_n1_2_2_2_2_3 + pil_d2_n1_2_2_2_2_3 = 1
invariant :pi_d5_n1_3_3_2_2_1 + pil_d5_n1_3_3_2_2_1 = 1
invariant :po_d1_n1_2_1_3_2_3 + pol_d1_n1_2_1_3_2_3 = 1
invariant :pi_d2_n1_3_3_2_3_1 + pil_d2_n1_3_3_2_3_1 = 1
invariant :po_d5_n1_3_1_2_3_3 + pol_d5_n1_3_1_2_3_3 = 1
invariant :pi_d1_n1_1_3_3_2_3 + pil_d1_n1_1_3_3_2_3 = 1
invariant :po_d1_n1_2_2_2_1_2 + pol_d1_n1_2_2_2_1_2 = 1
invariant :pi_d3_n1_3_2_3_1_3 + pil_d3_n1_3_2_3_1_3 = 1
invariant :pi_d2_n1_1_3_3_2_3 + pil_d2_n1_1_3_3_2_3 = 1
invariant :pi_d1_n1_2_2_3_3_3 + pil_d1_n1_2_2_3_3_3 = 1
invariant :pi_d1_n1_1_3_3_1_1 + pil_d1_n1_1_3_3_1_1 = 1
invariant :pb_d1_n1_2_1_2_2_3 + pb_d1_n2_2_1_2_2_3 + pb_d2_n1_2_1_2_2_3 + pb_d2_n2_2_1_2_2_3 + pb_d3_n1_2_1_2_2_3 + pb_d3_n2_2_1_2_2_3 + pb_d4_n1_2_1_2_2_3 + pb_d4_n2_2_1_2_2_3 + pb_d5_n1_2_1_2_2_3 + pb_d5_n2_2_1_2_2_3 + pbl_2_1_2_2_3 = 30
invariant :pi_d2_n1_3_2_1_3_1 + pil_d2_n1_3_2_1_3_1 = 1
invariant :po_d1_n1_3_3_1_3_3 + pol_d1_n1_3_3_1_3_3 = 1
invariant :po_d1_n1_1_1_1_1_3 + pol_d1_n1_1_1_1_1_3 = 1
invariant :po_d2_n1_2_1_2_3_1 + pol_d2_n1_2_1_2_3_1 = 1
invariant :pi_d3_n1_2_1_1_3_1 + pil_d3_n1_2_1_1_3_1 = 1
invariant :pi_d1_n1_2_1_3_1_1 + pil_d1_n1_2_1_3_1_1 = 1
invariant :pi_d2_n1_1_1_1_1_2 + pil_d2_n1_1_1_1_1_2 = 1
invariant :po_d2_n1_1_3_2_3_3 + pol_d2_n1_1_3_2_3_3 = 1
invariant :pi_d5_n1_1_2_2_1_1 + pil_d5_n1_1_2_2_1_1 = 1
invariant :pi_d5_n1_2_2_1_2_1 + pil_d5_n1_2_2_1_2_1 = 1
invariant :pi_d4_n1_1_1_1_2_2 + pil_d4_n1_1_1_1_2_2 = 1
invariant :po_d2_n1_3_1_3_1_3 + pol_d2_n1_3_1_3_1_3 = 1
invariant :po_d4_n1_2_2_1_1_2 + pol_d4_n1_2_2_1_1_2 = 1
invariant :po_d1_n1_2_3_1_3_2 + pol_d1_n1_2_3_1_3_2 = 1
invariant :po_d3_n1_1_3_2_1_2 + pol_d3_n1_1_3_2_1_2 = 1
invariant :po_d5_n1_2_2_1_3_1 + pol_d5_n1_2_2_1_3_1 = 1
invariant :po_d4_n1_2_3_1_3_3 + pol_d4_n1_2_3_1_3_3 = 1
invariant :po_d2_n1_3_1_2_3_1 + pol_d2_n1_3_1_2_3_1 = 1
invariant :po_d4_n1_1_1_3_2_3 + pol_d4_n1_1_1_3_2_3 = 1
invariant :po_d5_n1_2_2_2_2_1 + pol_d5_n1_2_2_2_2_1 = 1
invariant :pi_d4_n1_3_2_1_1_3 + pil_d4_n1_3_2_1_1_3 = 1
invariant :pi_d4_n1_2_1_2_3_1 + pil_d4_n1_2_1_2_3_1 = 1
invariant :pb_d1_n1_1_2_3_2_2 + pb_d1_n2_1_2_3_2_2 + pb_d2_n1_1_2_3_2_2 + pb_d2_n2_1_2_3_2_2 + pb_d3_n1_1_2_3_2_2 + pb_d3_n2_1_2_3_2_2 + pb_d4_n1_1_2_3_2_2 + pb_d4_n2_1_2_3_2_2 + pb_d5_n1_1_2_3_2_2 + pb_d5_n2_1_2_3_2_2 + pbl_1_2_3_2_2 = 30
invariant :po_d3_n1_3_1_3_1_1 + pol_d3_n1_3_1_3_1_1 = 1
invariant :pi_d5_n1_1_1_2_1_1 + pil_d5_n1_1_1_2_1_1 = 1
invariant :po_d1_n1_2_1_3_3_2 + pol_d1_n1_2_1_3_3_2 = 1
invariant :pi_d3_n1_3_3_2_3_1 + pil_d3_n1_3_3_2_3_1 = 1
invariant :po_d1_n1_2_1_2_3_2 + pol_d1_n1_2_1_2_3_2 = 1
invariant :po_d3_n1_2_1_3_1_2 + pol_d3_n1_2_1_3_1_2 = 1
invariant :pi_d2_n1_1_2_3_3_2 + pil_d2_n1_1_2_3_3_2 = 1
invariant :pi_d5_n1_1_1_3_3_3 + pil_d5_n1_1_1_3_3_3 = 1
invariant :po_d1_n1_2_3_1_1_3 + pol_d1_n1_2_3_1_1_3 = 1
invariant :pi_d5_n1_3_1_2_1_3 + pil_d5_n1_3_1_2_1_3 = 1
invariant :pb_d1_n1_2_3_1_1_2 + pb_d1_n2_2_3_1_1_2 + pb_d2_n1_2_3_1_1_2 + pb_d2_n2_2_3_1_1_2 + pb_d3_n1_2_3_1_1_2 + pb_d3_n2_2_3_1_1_2 + pb_d4_n1_2_3_1_1_2 + pb_d4_n2_2_3_1_1_2 + pb_d5_n1_2_3_1_1_2 + pb_d5_n2_2_3_1_1_2 + pbl_2_3_1_1_2 = 30
invariant :po_d5_n1_3_3_3_1_1 + pol_d5_n1_3_3_3_1_1 = 1
invariant :pi_d4_n1_2_3_1_1_1 + pil_d4_n1_2_3_1_1_1 = 1
invariant :pi_d4_n1_2_2_2_3_3 + pil_d4_n1_2_2_2_3_3 = 1
invariant :po_d3_n1_2_1_1_3_3 + pol_d3_n1_2_1_1_3_3 = 1
invariant :po_d3_n1_3_3_1_1_1 + pol_d3_n1_3_3_1_1_1 = 1
invariant :po_d2_n1_1_2_2_3_1 + pol_d2_n1_1_2_2_3_1 = 1
invariant :po_d2_n1_1_2_2_1_2 + pol_d2_n1_1_2_2_1_2 = 1
invariant :pb_d1_n1_2_1_3_2_1 + pb_d1_n2_2_1_3_2_1 + pb_d2_n1_2_1_3_2_1 + pb_d2_n2_2_1_3_2_1 + pb_d3_n1_2_1_3_2_1 + pb_d3_n2_2_1_3_2_1 + pb_d4_n1_2_1_3_2_1 + pb_d4_n2_2_1_3_2_1 + pb_d5_n1_2_1_3_2_1 + pb_d5_n2_2_1_3_2_1 + pbl_2_1_3_2_1 = 30
invariant :po_d4_n1_3_2_1_2_1 + pol_d4_n1_3_2_1_2_1 = 1
invariant :pi_d5_n1_2_2_1_1_1 + pil_d5_n1_2_2_1_1_1 = 1
invariant :pi_d3_n1_1_2_1_2_2 + pil_d3_n1_1_2_1_2_2 = 1
invariant :pi_d4_n1_3_3_3_1_3 + pil_d4_n1_3_3_3_1_3 = 1
invariant :po_d4_n1_3_1_1_1_1 + pol_d4_n1_3_1_1_1_1 = 1
invariant :po_d2_n1_3_1_2_2_2 + pol_d2_n1_3_1_2_2_2 = 1
invariant :pi_d4_n1_3_1_3_3_2 + pil_d4_n1_3_1_3_3_2 = 1
invariant :pb_d1_n1_1_3_1_3_1 + pb_d1_n2_1_3_1_3_1 + pb_d2_n1_1_3_1_3_1 + pb_d2_n2_1_3_1_3_1 + pb_d3_n1_1_3_1_3_1 + pb_d3_n2_1_3_1_3_1 + pb_d4_n1_1_3_1_3_1 + pb_d4_n2_1_3_1_3_1 + pb_d5_n1_1_3_1_3_1 + pb_d5_n2_1_3_1_3_1 + pbl_1_3_1_3_1 = 30
invariant :pi_d1_n1_1_1_1_1_3 + pil_d1_n1_1_1_1_1_3 = 1
invariant :pb_d1_n1_2_3_2_2_3 + pb_d1_n2_2_3_2_2_3 + pb_d2_n1_2_3_2_2_3 + pb_d2_n2_2_3_2_2_3 + pb_d3_n1_2_3_2_2_3 + pb_d3_n2_2_3_2_2_3 + pb_d4_n1_2_3_2_2_3 + pb_d4_n2_2_3_2_2_3 + pb_d5_n1_2_3_2_2_3 + pb_d5_n2_2_3_2_2_3 + pbl_2_3_2_2_3 = 30
invariant :pi_d4_n1_1_2_2_1_3 + pil_d4_n1_1_2_2_1_3 = 1
invariant :po_d1_n1_3_2_2_1_1 + pol_d1_n1_3_2_2_1_1 = 1
invariant :pi_d1_n1_3_3_1_3_1 + pil_d1_n1_3_3_1_3_1 = 1
invariant :pi_d2_n1_2_1_1_2_3 + pil_d2_n1_2_1_1_2_3 = 1
invariant :po_d2_n1_3_2_3_3_2 + pol_d2_n1_3_2_3_3_2 = 1
invariant :pi_d1_n1_2_3_2_1_2 + pil_d1_n1_2_3_2_1_2 = 1
invariant :po_d4_n1_3_2_1_1_2 + pol_d4_n1_3_2_1_1_2 = 1
invariant :po_d1_n1_1_1_3_3_1 + pol_d1_n1_1_1_3_3_1 = 1
invariant :pi_d4_n1_2_1_3_1_3 + pil_d4_n1_2_1_3_1_3 = 1
invariant :po_d3_n1_1_2_2_2_2 + pol_d3_n1_1_2_2_2_2 = 1
invariant :po_d1_n1_1_1_2_1_2 + pol_d1_n1_1_1_2_1_2 = 1
invariant :po_d4_n1_1_1_1_2_2 + pol_d4_n1_1_1_1_2_2 = 1
invariant :po_d3_n1_3_3_3_2_2 + pol_d3_n1_3_3_3_2_2 = 1
invariant :po_d3_n1_3_3_2_1_1 + pol_d3_n1_3_3_2_1_1 = 1
invariant :pi_d5_n1_3_3_1_2_1 + pil_d5_n1_3_3_1_2_1 = 1
invariant :pi_d4_n1_2_1_2_3_3 + pil_d4_n1_2_1_2_3_3 = 1
invariant :pi_d4_n1_3_2_1_2_3 + pil_d4_n1_3_2_1_2_3 = 1
invariant :po_d1_n1_2_2_1_1_2 + pol_d1_n1_2_2_1_1_2 = 1
invariant :pi_d2_n1_2_3_3_2_1 + pil_d2_n1_2_3_3_2_1 = 1
invariant :pi_d1_n1_2_3_3_1_1 + pil_d1_n1_2_3_3_1_1 = 1
invariant :po_d3_n1_3_2_3_2_2 + pol_d3_n1_3_2_3_2_2 = 1
invariant :pi_d2_n1_3_1_2_2_2 + pil_d2_n1_3_1_2_2_2 = 1
invariant :pi_d1_n1_3_3_1_2_2 + pil_d1_n1_3_3_1_2_2 = 1
invariant :pb_d1_n1_2_3_1_3_2 + pb_d1_n2_2_3_1_3_2 + pb_d2_n1_2_3_1_3_2 + pb_d2_n2_2_3_1_3_2 + pb_d3_n1_2_3_1_3_2 + pb_d3_n2_2_3_1_3_2 + pb_d4_n1_2_3_1_3_2 + pb_d4_n2_2_3_1_3_2 + pb_d5_n1_2_3_1_3_2 + pb_d5_n2_2_3_1_3_2 + pbl_2_3_1_3_2 = 30
invariant :po_d3_n1_3_3_2_1_3 + pol_d3_n1_3_3_2_1_3 = 1
invariant :pb_d1_n1_2_2_2_3_3 + pb_d1_n2_2_2_2_3_3 + pb_d2_n1_2_2_2_3_3 + pb_d2_n2_2_2_2_3_3 + pb_d3_n1_2_2_2_3_3 + pb_d3_n2_2_2_2_3_3 + pb_d4_n1_2_2_2_3_3 + pb_d4_n2_2_2_2_3_3 + pb_d5_n1_2_2_2_3_3 + pb_d5_n2_2_2_2_3_3 + pbl_2_2_2_3_3 = 30
invariant :pi_d5_n1_2_3_1_1_2 + pil_d5_n1_2_3_1_1_2 = 1
invariant :pi_d5_n1_1_2_1_2_2 + pil_d5_n1_1_2_1_2_2 = 1
invariant :po_d3_n1_3_2_2_2_1 + pol_d3_n1_3_2_2_2_1 = 1
invariant :pi_d3_n1_1_2_3_1_2 + pil_d3_n1_1_2_3_1_2 = 1
invariant :po_d1_n1_1_3_2_1_1 + pol_d1_n1_1_3_2_1_1 = 1
invariant :po_d1_n1_1_2_2_2_3 + pol_d1_n1_1_2_2_2_3 = 1
invariant :pi_d5_n1_2_1_1_2_2 + pil_d5_n1_2_1_1_2_2 = 1
invariant :po_d5_n1_2_1_2_3_3 + pol_d5_n1_2_1_2_3_3 = 1
invariant :po_d2_n1_1_3_1_1_2 + pol_d2_n1_1_3_1_1_2 = 1
invariant :pi_d4_n1_3_1_1_1_2 + pil_d4_n1_3_1_1_1_2 = 1
invariant :pi_d1_n1_3_1_2_1_3 + pil_d1_n1_3_1_2_1_3 = 1
invariant :pi_d3_n1_1_2_3_3_2 + pil_d3_n1_1_2_3_3_2 = 1
invariant :po_d4_n1_3_3_2_3_3 + pol_d4_n1_3_3_2_3_3 = 1
invariant :po_d1_n1_1_3_2_2_3 + pol_d1_n1_1_3_2_2_3 = 1
invariant :pi_d4_n1_2_3_3_3_2 + pil_d4_n1_2_3_3_3_2 = 1
invariant :po_d4_n1_1_1_1_1_2 + pol_d4_n1_1_1_1_1_2 = 1
invariant :pi_d4_n1_3_1_2_1_2 + pil_d4_n1_3_1_2_1_2 = 1
invariant :po_d2_n1_1_1_2_1_2 + pol_d2_n1_1_1_2_1_2 = 1
invariant :pb_d1_n1_1_1_3_1_2 + pb_d1_n2_1_1_3_1_2 + pb_d2_n1_1_1_3_1_2 + pb_d2_n2_1_1_3_1_2 + pb_d3_n1_1_1_3_1_2 + pb_d3_n2_1_1_3_1_2 + pb_d4_n1_1_1_3_1_2 + pb_d4_n2_1_1_3_1_2 + pb_d5_n1_1_1_3_1_2 + pb_d5_n2_1_1_3_1_2 + pbl_1_1_3_1_2 = 30
invariant :pb_d1_n1_2_2_3_2_3 + pb_d1_n2_2_2_3_2_3 + pb_d2_n1_2_2_3_2_3 + pb_d2_n2_2_2_3_2_3 + pb_d3_n1_2_2_3_2_3 + pb_d3_n2_2_2_3_2_3 + pb_d4_n1_2_2_3_2_3 + pb_d4_n2_2_2_3_2_3 + pb_d5_n1_2_2_3_2_3 + pb_d5_n2_2_2_3_2_3 + pbl_2_2_3_2_3 = 30
invariant :po_d2_n1_2_1_2_2_1 + pol_d2_n1_2_1_2_2_1 = 1
invariant :po_d3_n1_2_2_3_2_1 + pol_d3_n1_2_2_3_2_1 = 1
invariant :po_d1_n1_2_2_2_2_3 + pol_d1_n1_2_2_2_2_3 = 1
invariant :pi_d3_n1_3_2_2_1_3 + pil_d3_n1_3_2_2_1_3 = 1
invariant :pi_d5_n1_3_3_3_3_1 + pil_d5_n1_3_3_3_3_1 = 1
invariant :po_d3_n1_1_3_2_1_3 + pol_d3_n1_1_3_2_1_3 = 1
invariant :pi_d2_n1_1_1_3_2_2 + pil_d2_n1_1_1_3_2_2 = 1
invariant :po_d4_n1_1_2_2_1_3 + pol_d4_n1_1_2_2_1_3 = 1
invariant :po_d5_n1_2_3_2_3_3 + pol_d5_n1_2_3_2_3_3 = 1
invariant :pb_d1_n1_1_3_2_1_1 + pb_d1_n2_1_3_2_1_1 + pb_d2_n1_1_3_2_1_1 + pb_d2_n2_1_3_2_1_1 + pb_d3_n1_1_3_2_1_1 + pb_d3_n2_1_3_2_1_1 + pb_d4_n1_1_3_2_1_1 + pb_d4_n2_1_3_2_1_1 + pb_d5_n1_1_3_2_1_1 + pb_d5_n2_1_3_2_1_1 + pbl_1_3_2_1_1 = 30
invariant :pb_d1_n1_1_1_3_3_3 + pb_d1_n2_1_1_3_3_3 + pb_d2_n1_1_1_3_3_3 + pb_d2_n2_1_1_3_3_3 + pb_d3_n1_1_1_3_3_3 + pb_d3_n2_1_1_3_3_3 + pb_d4_n1_1_1_3_3_3 + pb_d4_n2_1_1_3_3_3 + pb_d5_n1_1_1_3_3_3 + pb_d5_n2_1_1_3_3_3 + pbl_1_1_3_3_3 = 30
invariant :po_d4_n1_1_2_1_1_3 + pol_d4_n1_1_2_1_1_3 = 1
invariant :pi_d1_n1_2_1_2_2_2 + pil_d1_n1_2_1_2_2_2 = 1
invariant :pi_d3_n1_3_3_2_2_3 + pil_d3_n1_3_3_2_2_3 = 1
invariant :po_d3_n1_2_2_2_2_1 + pol_d3_n1_2_2_2_2_1 = 1
invariant :pb_d1_n1_2_1_3_2_3 + pb_d1_n2_2_1_3_2_3 + pb_d2_n1_2_1_3_2_3 + pb_d2_n2_2_1_3_2_3 + pb_d3_n1_2_1_3_2_3 + pb_d3_n2_2_1_3_2_3 + pb_d4_n1_2_1_3_2_3 + pb_d4_n2_2_1_3_2_3 + pb_d5_n1_2_1_3_2_3 + pb_d5_n2_2_1_3_2_3 + pbl_2_1_3_2_3 = 30
invariant :pi_d3_n1_3_1_2_3_2 + pil_d3_n1_3_1_2_3_2 = 1
invariant :pi_d4_n1_2_3_3_1_3 + pil_d4_n1_2_3_3_1_3 = 1
invariant :po_d2_n1_3_1_1_2_3 + pol_d2_n1_3_1_1_2_3 = 1
invariant :po_d5_n1_1_3_3_3_2 + pol_d5_n1_1_3_3_3_2 = 1
invariant :po_d3_n1_2_2_1_1_3 + pol_d3_n1_2_2_1_1_3 = 1
invariant :po_d3_n1_1_2_1_2_1 + pol_d3_n1_1_2_1_2_1 = 1
invariant :pi_d3_n1_2_2_2_3_3 + pil_d3_n1_2_2_2_3_3 = 1
invariant :pi_d3_n1_2_2_2_3_1 + pil_d3_n1_2_2_2_3_1 = 1
invariant :po_d5_n1_2_3_1_2_3 + pol_d5_n1_2_3_1_2_3 = 1
invariant :pi_d1_n1_2_2_2_1_2 + pil_d1_n1_2_2_2_1_2 = 1
invariant :po_d2_n1_2_3_2_3_1 + pol_d2_n1_2_3_2_3_1 = 1
invariant :po_d4_n1_1_3_1_2_2 + pol_d4_n1_1_3_1_2_2 = 1
invariant :po_d2_n1_3_3_2_3_2 + pol_d2_n1_3_3_2_3_2 = 1
invariant :pi_d2_n1_1_2_3_2_3 + pil_d2_n1_1_2_3_2_3 = 1
invariant :pi_d3_n1_1_3_1_2_3 + pil_d3_n1_1_3_1_2_3 = 1
invariant :pi_d5_n1_2_3_3_3_3 + pil_d5_n1_2_3_3_3_3 = 1
invariant :pi_d3_n1_1_2_1_3_2 + pil_d3_n1_1_2_1_3_2 = 1
invariant :pi_d1_n1_2_3_2_2_3 + pil_d1_n1_2_3_2_2_3 = 1
invariant :po_d2_n1_3_3_1_2_3 + pol_d2_n1_3_3_1_2_3 = 1
invariant :po_d4_n1_2_3_2_2_2 + pol_d4_n1_2_3_2_2_2 = 1
invariant :po_d3_n1_1_1_3_3_3 + pol_d3_n1_1_1_3_3_3 = 1
invariant :po_d5_n1_3_1_1_3_2 + pol_d5_n1_3_1_1_3_2 = 1
invariant :po_d1_n1_2_1_2_3_1 + pol_d1_n1_2_1_2_3_1 = 1
invariant :pi_d5_n1_3_1_1_2_3 + pil_d5_n1_3_1_1_2_3 = 1
invariant :pi_d5_n1_3_3_1_1_2 + pil_d5_n1_3_3_1_1_2 = 1
invariant :pi_d4_n1_2_1_2_1_3 + pil_d4_n1_2_1_2_1_3 = 1
invariant :pi_d4_n1_2_3_3_3_3 + pil_d4_n1_2_3_3_3_3 = 1
invariant :pi_d3_n1_2_2_1_2_3 + pil_d3_n1_2_2_1_2_3 = 1
invariant :po_d3_n1_3_3_3_2_3 + pol_d3_n1_3_3_3_2_3 = 1
invariant :po_d3_n1_2_3_1_3_1 + pol_d3_n1_2_3_1_3_1 = 1
invariant :pi_d3_n1_2_2_1_2_2 + pil_d3_n1_2_2_1_2_2 = 1
invariant :po_d5_n1_2_3_1_2_1 + pol_d5_n1_2_3_1_2_1 = 1
invariant :pi_d3_n1_1_1_3_3_3 + pil_d3_n1_1_1_3_3_3 = 1
invariant :pi_d4_n1_2_1_3_2_3 + pil_d4_n1_2_1_3_2_3 = 1
invariant :pi_d2_n1_2_2_2_3_1 + pil_d2_n1_2_2_2_3_1 = 1
invariant :pi_d2_n1_1_3_3_1_3 + pil_d2_n1_1_3_3_1_3 = 1
invariant :pi_d4_n1_3_2_3_2_1 + pil_d4_n1_3_2_3_2_1 = 1
invariant :pi_d3_n1_3_1_1_2_3 + pil_d3_n1_3_1_1_2_3 = 1
invariant :pi_d4_n1_1_2_2_3_3 + pil_d4_n1_1_2_2_3_3 = 1
invariant :po_d1_n1_3_2_3_1_2 + pol_d1_n1_3_2_3_1_2 = 1
invariant :pi_d3_n1_3_2_1_2_1 + pil_d3_n1_3_2_1_2_1 = 1
invariant :pb_d1_n1_2_1_1_1_1 + pb_d1_n2_2_1_1_1_1 + pb_d2_n1_2_1_1_1_1 + pb_d2_n2_2_1_1_1_1 + pb_d3_n1_2_1_1_1_1 + pb_d3_n2_2_1_1_1_1 + pb_d4_n1_2_1_1_1_1 + pb_d4_n2_2_1_1_1_1 + pb_d5_n1_2_1_1_1_1 + pb_d5_n2_2_1_1_1_1 + pbl_2_1_1_1_1 = 30
invariant :po_d3_n1_2_1_1_1_1 + pol_d3_n1_2_1_1_1_1 = 1
invariant :pi_d1_n1_1_1_2_1_3 + pil_d1_n1_1_1_2_1_3 = 1
invariant :pi_d3_n1_3_1_2_2_1 + pil_d3_n1_3_1_2_2_1 = 1
invariant :pi_d4_n1_1_3_2_2_2 + pil_d4_n1_1_3_2_2_2 = 1
invariant :po_d2_n1_1_3_1_3_1 + pol_d2_n1_1_3_1_3_1 = 1
invariant :pi_d4_n1_1_1_3_2_2 + pil_d4_n1_1_1_3_2_2 = 1
invariant :po_d2_n1_2_3_3_1_3 + pol_d2_n1_2_3_3_1_3 = 1
invariant :pi_d1_n1_3_2_2_2_3 + pil_d1_n1_3_2_2_2_3 = 1
invariant :pi_d5_n1_2_1_2_1_1 + pil_d5_n1_2_1_2_1_1 = 1
invariant :pi_d5_n1_2_2_2_1_1 + pil_d5_n1_2_2_2_1_1 = 1
invariant :po_d5_n1_2_3_1_1_2 + pol_d5_n1_2_3_1_1_2 = 1
invariant :po_d4_n1_2_1_1_3_3 + pol_d4_n1_2_1_1_3_3 = 1
invariant :pi_d1_n1_2_1_2_3_2 + pil_d1_n1_2_1_2_3_2 = 1
invariant :pi_d4_n1_2_1_1_3_2 + pil_d4_n1_2_1_1_3_2 = 1
invariant :pi_d1_n1_1_3_2_2_3 + pil_d1_n1_1_3_2_2_3 = 1
invariant :pi_d5_n1_1_1_2_3_1 + pil_d5_n1_1_1_2_3_1 = 1
invariant :po_d2_n1_3_2_2_1_3 + pol_d2_n1_3_2_2_1_3 = 1
invariant :po_d5_n1_1_3_3_1_2 + pol_d5_n1_1_3_3_1_2 = 1
invariant :pi_d1_n1_1_2_1_3_1 + pil_d1_n1_1_2_1_3_1 = 1
invariant :pi_d1_n1_3_1_2_1_1 + pil_d1_n1_3_1_2_1_1 = 1
invariant :pi_d3_n1_3_3_3_3_1 + pil_d3_n1_3_3_3_3_1 = 1
invariant :pi_d3_n1_2_1_2_3_2 + pil_d3_n1_2_1_2_3_2 = 1
invariant :pi_d3_n1_2_2_3_3_3 + pil_d3_n1_2_2_3_3_3 = 1
invariant :po_d3_n1_2_3_1_2_3 + pol_d3_n1_2_3_1_2_3 = 1
invariant :pi_d2_n1_1_1_3_1_3 + pil_d2_n1_1_1_3_1_3 = 1
invariant :pi_d3_n1_1_3_2_3_1 + pil_d3_n1_1_3_2_3_1 = 1
invariant :pi_d5_n1_1_2_2_3_1 + pil_d5_n1_1_2_2_3_1 = 1
invariant :po_d4_n1_2_2_2_3_1 + pol_d4_n1_2_2_2_3_1 = 1
invariant :pi_d4_n1_1_3_2_1_2 + pil_d4_n1_1_3_2_1_2 = 1
invariant :pi_d5_n1_3_1_2_3_2 + pil_d5_n1_3_1_2_3_2 = 1
invariant :po_d4_n1_1_2_1_3_2 + pol_d4_n1_1_2_1_3_2 = 1
invariant :pi_d1_n1_3_1_2_2_2 + pil_d1_n1_3_1_2_2_2 = 1
invariant :po_d2_n1_1_3_3_2_2 + pol_d2_n1_1_3_3_2_2 = 1
invariant :pb_d1_n1_3_3_3_3_3 + pb_d1_n2_3_3_3_3_3 + pb_d2_n1_3_3_3_3_3 + pb_d2_n2_3_3_3_3_3 + pb_d3_n1_3_3_3_3_3 + pb_d3_n2_3_3_3_3_3 + pb_d4_n1_3_3_3_3_3 + pb_d4_n2_3_3_3_3_3 + pb_d5_n1_3_3_3_3_3 + pb_d5_n2_3_3_3_3_3 + pbl_3_3_3_3_3 = 30
invariant :pi_d4_n1_3_1_3_3_3 + pil_d4_n1_3_1_3_3_3 = 1
invariant :pi_d2_n1_1_3_3_3_1 + pil_d2_n1_1_3_3_3_1 = 1
invariant :po_d2_n1_3_1_3_3_1 + pol_d2_n1_3_1_3_3_1 = 1
invariant :po_d5_n1_3_2_3_2_1 + pol_d5_n1_3_2_3_2_1 = 1
invariant :po_d3_n1_1_3_3_2_1 + pol_d3_n1_1_3_3_2_1 = 1
invariant :po_d4_n1_1_3_3_2_1 + pol_d4_n1_1_3_3_2_1 = 1
invariant :pi_d1_n1_2_2_3_1_2 + pil_d1_n1_2_2_3_1_2 = 1
invariant :po_d1_n1_1_2_2_3_3 + pol_d1_n1_1_2_2_3_3 = 1
invariant :pi_d2_n1_1_1_2_3_3 + pil_d2_n1_1_1_2_3_3 = 1
invariant :pi_d2_n1_1_2_2_3_2 + pil_d2_n1_1_2_2_3_2 = 1
invariant :po_d4_n1_2_1_1_2_1 + pol_d4_n1_2_1_1_2_1 = 1
invariant :pb_d1_n1_1_1_3_2_3 + pb_d1_n2_1_1_3_2_3 + pb_d2_n1_1_1_3_2_3 + pb_d2_n2_1_1_3_2_3 + pb_d3_n1_1_1_3_2_3 + pb_d3_n2_1_1_3_2_3 + pb_d4_n1_1_1_3_2_3 + pb_d4_n2_1_1_3_2_3 + pb_d5_n1_1_1_3_2_3 + pb_d5_n2_1_1_3_2_3 + pbl_1_1_3_2_3 = 30
invariant :po_d5_n1_3_1_1_2_1 + pol_d5_n1_3_1_1_2_1 = 1
invariant :po_d5_n1_2_2_1_2_2 + pol_d5_n1_2_2_1_2_2 = 1
invariant :pi_d3_n1_1_1_3_1_3 + pil_d3_n1_1_1_3_1_3 = 1
invariant :pi_d2_n1_2_1_3_2_2 + pil_d2_n1_2_1_3_2_2 = 1
invariant :po_d1_n1_2_3_2_2_3 + pol_d1_n1_2_3_2_2_3 = 1
invariant :pi_d2_n1_2_1_2_2_2 + pil_d2_n1_2_1_2_2_2 = 1
invariant :pi_d3_n1_2_1_2_1_2 + pil_d3_n1_2_1_2_1_2 = 1
invariant :pi_d2_n1_1_2_2_2_2 + pil_d2_n1_1_2_2_2_2 = 1
invariant :pi_d5_n1_3_3_1_3_1 + pil_d5_n1_3_3_1_3_1 = 1
invariant :po_d2_n1_2_3_1_2_1 + pol_d2_n1_2_3_1_2_1 = 1
invariant :pi_d1_n1_3_2_3_3_3 + pil_d1_n1_3_2_3_3_3 = 1
invariant :pb_d1_n1_2_3_3_3_1 + pb_d1_n2_2_3_3_3_1 + pb_d2_n1_2_3_3_3_1 + pb_d2_n2_2_3_3_3_1 + pb_d3_n1_2_3_3_3_1 + pb_d3_n2_2_3_3_3_1 + pb_d4_n1_2_3_3_3_1 + pb_d4_n2_2_3_3_3_1 + pb_d5_n1_2_3_3_3_1 + pb_d5_n2_2_3_3_3_1 + pbl_2_3_3_3_1 = 30
invariant :pi_d5_n1_1_3_3_1_3 + pil_d5_n1_1_3_3_1_3 = 1
invariant :po_d2_n1_3_3_3_2_3 + pol_d2_n1_3_3_3_2_3 = 1
invariant :pi_d3_n1_2_3_3_2_1 + pil_d3_n1_2_3_3_2_1 = 1
invariant :po_d1_n1_3_3_2_2_1 + pol_d1_n1_3_3_2_2_1 = 1
invariant :po_d5_n1_1_1_1_3_3 + pol_d5_n1_1_1_1_3_3 = 1
invariant :pi_d3_n1_3_1_3_3_1 + pil_d3_n1_3_1_3_3_1 = 1
invariant :po_d5_n1_3_3_1_1_2 + pol_d5_n1_3_3_1_1_2 = 1
invariant :pb_d1_n1_3_2_3_1_2 + pb_d1_n2_3_2_3_1_2 + pb_d2_n1_3_2_3_1_2 + pb_d2_n2_3_2_3_1_2 + pb_d3_n1_3_2_3_1_2 + pb_d3_n2_3_2_3_1_2 + pb_d4_n1_3_2_3_1_2 + pb_d4_n2_3_2_3_1_2 + pb_d5_n1_3_2_3_1_2 + pb_d5_n2_3_2_3_1_2 + pbl_3_2_3_1_2 = 30
invariant :pi_d5_n1_1_3_1_2_2 + pil_d5_n1_1_3_1_2_2 = 1
invariant :po_d4_n1_3_1_1_2_2 + pol_d4_n1_3_1_1_2_2 = 1
invariant :po_d4_n1_1_2_1_2_1 + pol_d4_n1_1_2_1_2_1 = 1
invariant :po_d3_n1_3_2_3_2_3 + pol_d3_n1_3_2_3_2_3 = 1
invariant :pi_d2_n1_1_2_3_3_1 + pil_d2_n1_1_2_3_3_1 = 1
invariant :po_d1_n1_1_2_3_1_1 + pol_d1_n1_1_2_3_1_1 = 1
invariant :po_d5_n1_3_1_1_2_2 + pol_d5_n1_3_1_1_2_2 = 1
invariant :po_d4_n1_1_2_1_2_2 + pol_d4_n1_1_2_1_2_2 = 1
invariant :po_d4_n1_1_3_3_3_3 + pol_d4_n1_1_3_3_3_3 = 1
invariant :po_d4_n1_2_2_2_1_3 + pol_d4_n1_2_2_2_1_3 = 1
invariant :pi_d3_n1_2_2_2_2_2 + pil_d3_n1_2_2_2_2_2 = 1
invariant :po_d2_n1_3_1_3_3_3 + pol_d2_n1_3_1_3_3_3 = 1
invariant :po_d1_n1_1_1_2_3_3 + pol_d1_n1_1_1_2_3_3 = 1
invariant :pi_d4_n1_1_3_1_3_2 + pil_d4_n1_1_3_1_3_2 = 1
invariant :po_d4_n1_1_1_2_3_1 + pol_d4_n1_1_1_2_3_1 = 1
invariant :po_d2_n1_1_2_3_2_1 + pol_d2_n1_1_2_3_2_1 = 1
invariant :pi_d5_n1_3_3_2_3_1 + pil_d5_n1_3_3_2_3_1 = 1
invariant :pi_d2_n1_3_1_1_1_1 + pil_d2_n1_3_1_1_1_1 = 1
invariant :po_d3_n1_1_1_3_1_3 + pol_d3_n1_1_1_3_1_3 = 1
invariant :po_d4_n1_2_3_2_2_1 + pol_d4_n1_2_3_2_2_1 = 1
invariant :pi_d5_n1_2_3_1_3_1 + pil_d5_n1_2_3_1_3_1 = 1
invariant :pi_d2_n1_1_3_3_2_2 + pil_d2_n1_1_3_3_2_2 = 1
invariant :po_d1_n1_2_1_1_2_1 + pol_d1_n1_2_1_1_2_1 = 1
invariant :pi_d1_n1_3_2_1_3_2 + pil_d1_n1_3_2_1_3_2 = 1
invariant :po_d1_n1_3_3_3_1_3 + pol_d1_n1_3_3_3_1_3 = 1
invariant :pi_d1_n1_2_1_3_3_1 + pil_d1_n1_2_1_3_3_1 = 1
invariant :po_d1_n1_3_1_2_2_3 + pol_d1_n1_3_1_2_2_3 = 1
invariant :po_d5_n1_3_2_2_2_3 + pol_d5_n1_3_2_2_2_3 = 1
invariant :po_d1_n1_1_3_2_3_3 + pol_d1_n1_1_3_2_3_3 = 1
invariant :po_d5_n1_3_3_3_3_3 + pol_d5_n1_3_3_3_3_3 = 1
invariant :pi_d3_n1_1_3_1_2_1 + pil_d3_n1_1_3_1_2_1 = 1
invariant :po_d4_n1_1_2_3_3_1 + pol_d4_n1_1_2_3_3_1 = 1
invariant :po_d4_n1_3_3_2_2_3 + pol_d4_n1_3_3_2_2_3 = 1
invariant :po_d5_n1_3_1_1_3_1 + pol_d5_n1_3_1_1_3_1 = 1
invariant :pi_d4_n1_1_2_2_1_2 + pil_d4_n1_1_2_2_1_2 = 1
invariant :po_d1_n1_2_2_1_2_1 + pol_d1_n1_2_2_1_2_1 = 1
invariant :po_d3_n1_3_3_3_3_1 + pol_d3_n1_3_3_3_3_1 = 1
invariant :po_d5_n1_3_3_2_3_1 + pol_d5_n1_3_3_2_3_1 = 1
invariant :pi_d4_n1_3_1_2_2_3 + pil_d4_n1_3_1_2_2_3 = 1
invariant :pi_d1_n1_3_3_1_1_3 + pil_d1_n1_3_3_1_1_3 = 1
invariant :po_d2_n1_2_3_2_3_3 + pol_d2_n1_2_3_2_3_3 = 1
invariant :po_d1_n1_2_3_2_3_1 + pol_d1_n1_2_3_2_3_1 = 1
invariant :po_d5_n1_1_1_2_2_1 + pol_d5_n1_1_1_2_2_1 = 1
invariant :po_d1_n1_1_1_3_2_1 + pol_d1_n1_1_1_3_2_1 = 1
invariant :po_d3_n1_1_1_3_3_1 + pol_d3_n1_1_1_3_3_1 = 1
invariant :pi_d2_n1_1_1_1_3_3 + pil_d2_n1_1_1_1_3_3 = 1
invariant :pi_d4_n1_1_1_2_3_3 + pil_d4_n1_1_1_2_3_3 = 1
invariant :po_d2_n1_1_1_1_2_2 + pol_d2_n1_1_1_1_2_2 = 1
invariant :pi_d2_n1_2_1_2_1_3 + pil_d2_n1_2_1_2_1_3 = 1
invariant :po_d4_n1_1_3_2_3_3 + pol_d4_n1_1_3_2_3_3 = 1
invariant :pi_d4_n1_2_2_1_3_2 + pil_d4_n1_2_2_1_3_2 = 1
invariant :pi_d3_n1_1_3_3_3_1 + pil_d3_n1_1_3_3_3_1 = 1
invariant :po_d1_n1_1_1_3_2_2 + pol_d1_n1_1_1_3_2_2 = 1
invariant :pi_d1_n1_2_1_2_2_1 + pil_d1_n1_2_1_2_2_1 = 1
invariant :po_d5_n1_3_1_3_2_3 + pol_d5_n1_3_1_3_2_3 = 1
invariant :pi_d3_n1_2_3_1_2_3 + pil_d3_n1_2_3_1_2_3 = 1
invariant :po_d1_n1_2_3_3_3_2 + pol_d1_n1_2_3_3_3_2 = 1
invariant :pi_d2_n1_1_1_1_3_1 + pil_d2_n1_1_1_1_3_1 = 1
invariant :pi_d4_n1_2_3_2_2_2 + pil_d4_n1_2_3_2_2_2 = 1
invariant :pi_d3_n1_3_3_3_2_2 + pil_d3_n1_3_3_3_2_2 = 1
invariant :pi_d2_n1_3_3_3_3_3 + pil_d2_n1_3_3_3_3_3 = 1
invariant :po_d3_n1_1_3_1_1_1 + pol_d3_n1_1_3_1_1_1 = 1
invariant :pi_d3_n1_2_1_3_2_2 + pil_d3_n1_2_1_3_2_2 = 1
invariant :pi_d3_n1_3_2_1_2_2 + pil_d3_n1_3_2_1_2_2 = 1
invariant :po_d4_n1_2_1_3_1_3 + pol_d4_n1_2_1_3_1_3 = 1
invariant :po_d5_n1_3_1_3_2_2 + pol_d5_n1_3_1_3_2_2 = 1
invariant :pi_d4_n1_2_1_1_1_1 + pil_d4_n1_2_1_1_1_1 = 1
invariant :pi_d5_n1_2_2_2_3_3 + pil_d5_n1_2_2_2_3_3 = 1
invariant :pb_d1_n1_3_2_3_2_1 + pb_d1_n2_3_2_3_2_1 + pb_d2_n1_3_2_3_2_1 + pb_d2_n2_3_2_3_2_1 + pb_d3_n1_3_2_3_2_1 + pb_d3_n2_3_2_3_2_1 + pb_d4_n1_3_2_3_2_1 + pb_d4_n2_3_2_3_2_1 + pb_d5_n1_3_2_3_2_1 + pb_d5_n2_3_2_3_2_1 + pbl_3_2_3_2_1 = 30
invariant :po_d1_n1_2_2_3_1_3 + pol_d1_n1_2_2_3_1_3 = 1
invariant :po_d2_n1_2_1_2_1_2 + pol_d2_n1_2_1_2_1_2 = 1
invariant :po_d5_n1_3_3_1_1_1 + pol_d5_n1_3_3_1_1_1 = 1
invariant :pb_d1_n1_1_2_2_3_3 + pb_d1_n2_1_2_2_3_3 + pb_d2_n1_1_2_2_3_3 + pb_d2_n2_1_2_2_3_3 + pb_d3_n1_1_2_2_3_3 + pb_d3_n2_1_2_2_3_3 + pb_d4_n1_1_2_2_3_3 + pb_d4_n2_1_2_2_3_3 + pb_d5_n1_1_2_2_3_3 + pb_d5_n2_1_2_2_3_3 + pbl_1_2_2_3_3 = 30
invariant :po_d1_n1_2_1_3_1_1 + pol_d1_n1_2_1_3_1_1 = 1
invariant :po_d1_n1_3_3_1_1_2 + pol_d1_n1_3_3_1_1_2 = 1
invariant :po_d3_n1_1_1_2_3_2 + pol_d3_n1_1_1_2_3_2 = 1
invariant :po_d5_n1_3_3_3_1_3 + pol_d5_n1_3_3_3_1_3 = 1
invariant :pi_d2_n1_2_1_2_3_1 + pil_d2_n1_2_1_2_3_1 = 1
invariant :pi_d2_n1_1_3_3_3_2 + pil_d2_n1_1_3_3_3_2 = 1
invariant :pb_d1_n1_2_2_3_2_2 + pb_d1_n2_2_2_3_2_2 + pb_d2_n1_2_2_3_2_2 + pb_d2_n2_2_2_3_2_2 + pb_d3_n1_2_2_3_2_2 + pb_d3_n2_2_2_3_2_2 + pb_d4_n1_2_2_3_2_2 + pb_d4_n2_2_2_3_2_2 + pb_d5_n1_2_2_3_2_2 + pb_d5_n2_2_2_3_2_2 + pbl_2_2_3_2_2 = 30
invariant :pi_d3_n1_2_3_1_3_2 + pil_d3_n1_2_3_1_3_2 = 1
invariant :pi_d5_n1_1_3_1_1_3 + pil_d5_n1_1_3_1_1_3 = 1
invariant :po_d1_n1_3_1_1_2_1 + pol_d1_n1_3_1_1_2_1 = 1
invariant :po_d2_n1_2_1_3_2_3 + pol_d2_n1_2_1_3_2_3 = 1
invariant :po_d4_n1_2_1_2_3_3 + pol_d4_n1_2_1_2_3_3 = 1
invariant :pi_d4_n1_3_2_3_1_1 + pil_d4_n1_3_2_3_1_1 = 1
invariant :po_d5_n1_2_3_2_2_3 + pol_d5_n1_2_3_2_2_3 = 1
invariant :pi_d2_n1_2_3_2_2_1 + pil_d2_n1_2_3_2_2_1 = 1
invariant :pi_d3_n1_2_3_1_2_2 + pil_d3_n1_2_3_1_2_2 = 1
invariant :pb_d1_n1_2_2_3_2_1 + pb_d1_n2_2_2_3_2_1 + pb_d2_n1_2_2_3_2_1 + pb_d2_n2_2_2_3_2_1 + pb_d3_n1_2_2_3_2_1 + pb_d3_n2_2_2_3_2_1 + pb_d4_n1_2_2_3_2_1 + pb_d4_n2_2_2_3_2_1 + pb_d5_n1_2_2_3_2_1 + pb_d5_n2_2_2_3_2_1 + pbl_2_2_3_2_1 = 30
invariant :po_d2_n1_2_2_3_1_1 + pol_d2_n1_2_2_3_1_1 = 1
invariant :pi_d4_n1_2_1_2_2_3 + pil_d4_n1_2_1_2_2_3 = 1
invariant :pi_d2_n1_3_2_2_3_2 + pil_d2_n1_3_2_2_3_2 = 1
invariant :pi_d5_n1_3_1_1_2_2 + pil_d5_n1_3_1_1_2_2 = 1
invariant :pi_d3_n1_1_2_2_3_2 + pil_d3_n1_1_2_2_3_2 = 1
invariant :po_d5_n1_2_2_1_3_3 + pol_d5_n1_2_2_1_3_3 = 1
invariant :pi_d5_n1_3_3_3_3_2 + pil_d5_n1_3_3_3_3_2 = 1
invariant :pb_d1_n1_2_3_1_1_3 + pb_d1_n2_2_3_1_1_3 + pb_d2_n1_2_3_1_1_3 + pb_d2_n2_2_3_1_1_3 + pb_d3_n1_2_3_1_1_3 + pb_d3_n2_2_3_1_1_3 + pb_d4_n1_2_3_1_1_3 + pb_d4_n2_2_3_1_1_3 + pb_d5_n1_2_3_1_1_3 + pb_d5_n2_2_3_1_1_3 + pbl_2_3_1_1_3 = 30
invariant :pi_d4_n1_1_1_2_1_1 + pil_d4_n1_1_1_2_1_1 = 1
invariant :po_d5_n1_1_3_1_3_3 + pol_d5_n1_1_3_1_3_3 = 1
invariant :po_d5_n1_1_3_1_2_1 + pol_d5_n1_1_3_1_2_1 = 1
invariant :po_d5_n1_1_3_1_3_1 + pol_d5_n1_1_3_1_3_1 = 1
invariant :pi_d2_n1_3_1_2_3_2 + pil_d2_n1_3_1_2_3_2 = 1
invariant :pi_d4_n1_2_3_2_2_1 + pil_d4_n1_2_3_2_2_1 = 1
invariant :po_d3_n1_2_1_3_3_2 + pol_d3_n1_2_1_3_3_2 = 1
invariant :po_d2_n1_2_3_3_1_2 + pol_d2_n1_2_3_3_1_2 = 1
invariant :po_d1_n1_3_2_2_2_1 + pol_d1_n1_3_2_2_2_1 = 1
invariant :po_d2_n1_2_2_2_1_3 + pol_d2_n1_2_2_2_1_3 = 1
invariant :po_d1_n1_1_2_2_3_2 + pol_d1_n1_1_2_2_3_2 = 1
invariant :pi_d3_n1_3_1_2_1_3 + pil_d3_n1_3_1_2_1_3 = 1
invariant :pi_d3_n1_2_1_2_2_3 + pil_d3_n1_2_1_2_2_3 = 1
invariant :pi_d4_n1_1_3_2_2_1 + pil_d4_n1_1_3_2_2_1 = 1
invariant :po_d2_n1_1_2_1_3_3 + pol_d2_n1_1_2_1_3_3 = 1
invariant :po_d2_n1_3_1_2_1_1 + pol_d2_n1_3_1_2_1_1 = 1
invariant :po_d4_n1_3_1_1_1_3 + pol_d4_n1_3_1_1_1_3 = 1
invariant :pb_d1_n1_1_2_2_3_1 + pb_d1_n2_1_2_2_3_1 + pb_d2_n1_1_2_2_3_1 + pb_d2_n2_1_2_2_3_1 + pb_d3_n1_1_2_2_3_1 + pb_d3_n2_1_2_2_3_1 + pb_d4_n1_1_2_2_3_1 + pb_d4_n2_1_2_2_3_1 + pb_d5_n1_1_2_2_3_1 + pb_d5_n2_1_2_2_3_1 + pbl_1_2_2_3_1 = 30
invariant :po_d2_n1_3_3_2_1_1 + pol_d2_n1_3_3_2_1_1 = 1
invariant :pi_d5_n1_1_1_1_3_3 + pil_d5_n1_1_1_1_3_3 = 1
invariant :pi_d5_n1_2_2_2_1_3 + pil_d5_n1_2_2_2_1_3 = 1
invariant :po_d1_n1_3_2_3_2_2 + pol_d1_n1_3_2_3_2_2 = 1
invariant :pb_d1_n1_2_1_2_1_2 + pb_d1_n2_2_1_2_1_2 + pb_d2_n1_2_1_2_1_2 + pb_d2_n2_2_1_2_1_2 + pb_d3_n1_2_1_2_1_2 + pb_d3_n2_2_1_2_1_2 + pb_d4_n1_2_1_2_1_2 + pb_d4_n2_2_1_2_1_2 + pb_d5_n1_2_1_2_1_2 + pb_d5_n2_2_1_2_1_2 + pbl_2_1_2_1_2 = 30
invariant :pi_d1_n1_2_1_1_2_2 + pil_d1_n1_2_1_1_2_2 = 1
invariant :pi_d2_n1_1_1_1_2_2 + pil_d2_n1_1_1_1_2_2 = 1
invariant :po_d1_n1_3_2_1_2_1 + pol_d1_n1_3_2_1_2_1 = 1
invariant :pi_d3_n1_2_1_1_3_3 + pil_d3_n1_2_1_1_3_3 = 1
invariant :po_d1_n1_3_1_2_3_3 + pol_d1_n1_3_1_2_3_3 = 1
invariant :pi_d2_n1_2_2_2_1_1 + pil_d2_n1_2_2_2_1_1 = 1
invariant :pi_d4_n1_3_3_1_1_2 + pil_d4_n1_3_3_1_1_2 = 1
invariant :pi_d2_n1_3_3_2_1_2 + pil_d2_n1_3_3_2_1_2 = 1
invariant :po_d3_n1_2_2_1_3_3 + pol_d3_n1_2_2_1_3_3 = 1
invariant :po_d4_n1_1_3_3_1_2 + pol_d4_n1_1_3_3_1_2 = 1
invariant :po_d1_n1_2_2_1_2_2 + pol_d1_n1_2_2_1_2_2 = 1
invariant :po_d5_n1_3_3_2_3_2 + pol_d5_n1_3_3_2_3_2 = 1
invariant :pi_d1_n1_2_1_3_3_2 + pil_d1_n1_2_1_3_3_2 = 1
invariant :pi_d4_n1_2_3_2_2_3 + pil_d4_n1_2_3_2_2_3 = 1
invariant :pi_d2_n1_1_1_1_2_3 + pil_d2_n1_1_1_1_2_3 = 1
invariant :po_d1_n1_3_2_3_2_3 + pol_d1_n1_3_2_3_2_3 = 1
invariant :pb_d1_n1_1_3_1_1_2 + pb_d1_n2_1_3_1_1_2 + pb_d2_n1_1_3_1_1_2 + pb_d2_n2_1_3_1_1_2 + pb_d3_n1_1_3_1_1_2 + pb_d3_n2_1_3_1_1_2 + pb_d4_n1_1_3_1_1_2 + pb_d4_n2_1_3_1_1_2 + pb_d5_n1_1_3_1_1_2 + pb_d5_n2_1_3_1_1_2 + pbl_1_3_1_1_2 = 30
invariant :po_d1_n1_2_1_1_2_2 + pol_d1_n1_2_1_1_2_2 = 1
invariant :pb_d1_n1_1_2_3_1_1 + pb_d1_n2_1_2_3_1_1 + pb_d2_n1_1_2_3_1_1 + pb_d2_n2_1_2_3_1_1 + pb_d3_n1_1_2_3_1_1 + pb_d3_n2_1_2_3_1_1 + pb_d4_n1_1_2_3_1_1 + pb_d4_n2_1_2_3_1_1 + pb_d5_n1_1_2_3_1_1 + pb_d5_n2_1_2_3_1_1 + pbl_1_2_3_1_1 = 30
invariant :pi_d2_n1_3_3_2_1_3 + pil_d2_n1_3_3_2_1_3 = 1
invariant :po_d3_n1_3_3_3_1_1 + pol_d3_n1_3_3_3_1_1 = 1
invariant :pi_d4_n1_1_1_2_1_2 + pil_d4_n1_1_1_2_1_2 = 1
invariant :pi_d4_n1_2_1_3_3_3 + pil_d4_n1_2_1_3_3_3 = 1
invariant :pb_d1_n1_1_1_3_2_1 + pb_d1_n2_1_1_3_2_1 + pb_d2_n1_1_1_3_2_1 + pb_d2_n2_1_1_3_2_1 + pb_d3_n1_1_1_3_2_1 + pb_d3_n2_1_1_3_2_1 + pb_d4_n1_1_1_3_2_1 + pb_d4_n2_1_1_3_2_1 + pb_d5_n1_1_1_3_2_1 + pb_d5_n2_1_1_3_2_1 + pbl_1_1_3_2_1 = 30
invariant :po_d1_n1_1_3_3_3_2 + pol_d1_n1_1_3_3_3_2 = 1
invariant :pi_d4_n1_2_1_3_2_1 + pil_d4_n1_2_1_3_2_1 = 1
invariant :pi_d5_n1_3_2_3_3_1 + pil_d5_n1_3_2_3_3_1 = 1
invariant :pi_d5_n1_1_3_2_1_3 + pil_d5_n1_1_3_2_1_3 = 1
invariant :po_d3_n1_2_3_3_2_1 + pol_d3_n1_2_3_3_2_1 = 1
invariant :pi_d3_n1_3_1_1_1_3 + pil_d3_n1_3_1_1_1_3 = 1
invariant :pb_d1_n1_1_2_2_2_1 + pb_d1_n2_1_2_2_2_1 + pb_d2_n1_1_2_2_2_1 + pb_d2_n2_1_2_2_2_1 + pb_d3_n1_1_2_2_2_1 + pb_d3_n2_1_2_2_2_1 + pb_d4_n1_1_2_2_2_1 + pb_d4_n2_1_2_2_2_1 + pb_d5_n1_1_2_2_2_1 + pb_d5_n2_1_2_2_2_1 + pbl_1_2_2_2_1 = 30
invariant :pi_d5_n1_3_2_2_2_1 + pil_d5_n1_3_2_2_2_1 = 1
invariant :pi_d1_n1_1_2_2_2_3 + pil_d1_n1_1_2_2_2_3 = 1
invariant :po_d3_n1_2_1_3_2_2 + pol_d3_n1_2_1_3_2_2 = 1
invariant :pi_d5_n1_2_1_1_1_3 + pil_d5_n1_2_1_1_1_3 = 1
invariant :po_d3_n1_1_1_1_2_3 + pol_d3_n1_1_1_1_2_3 = 1
invariant :pi_d4_n1_1_1_1_3_2 + pil_d4_n1_1_1_1_3_2 = 1
invariant :pi_d2_n1_2_3_1_1_2 + pil_d2_n1_2_3_1_1_2 = 1
invariant :pi_d4_n1_2_3_1_2_2 + pil_d4_n1_2_3_1_2_2 = 1
invariant :pi_d4_n1_2_1_1_2_3 + pil_d4_n1_2_1_1_2_3 = 1
invariant :pi_d1_n1_1_3_1_1_2 + pil_d1_n1_1_3_1_1_2 = 1
invariant :po_d3_n1_2_1_1_3_1 + pol_d3_n1_2_1_1_3_1 = 1
invariant :po_d3_n1_3_2_1_2_2 + pol_d3_n1_3_2_1_2_2 = 1
invariant :pi_d1_n1_1_3_2_3_3 + pil_d1_n1_1_3_2_3_3 = 1
invariant :po_d3_n1_2_1_1_1_2 + pol_d3_n1_2_1_1_1_2 = 1
invariant :pi_d1_n1_2_3_1_3_3 + pil_d1_n1_2_3_1_3_3 = 1
invariant :pb_d1_n1_3_3_3_1_3 + pb_d1_n2_3_3_3_1_3 + pb_d2_n1_3_3_3_1_3 + pb_d2_n2_3_3_3_1_3 + pb_d3_n1_3_3_3_1_3 + pb_d3_n2_3_3_3_1_3 + pb_d4_n1_3_3_3_1_3 + pb_d4_n2_3_3_3_1_3 + pb_d5_n1_3_3_3_1_3 + pb_d5_n2_3_3_3_1_3 + pbl_3_3_3_1_3 = 30
invariant :po_d1_n1_1_2_3_1_3 + pol_d1_n1_1_2_3_1_3 = 1
invariant :po_d5_n1_3_3_2_2_2 + pol_d5_n1_3_3_2_2_2 = 1
invariant :po_d1_n1_2_3_3_3_1 + pol_d1_n1_2_3_3_3_1 = 1
invariant :po_d2_n1_3_2_3_3_1 + pol_d2_n1_3_2_3_3_1 = 1
invariant :po_d2_n1_2_1_2_3_2 + pol_d2_n1_2_1_2_3_2 = 1
invariant :pb_d1_n1_2_3_1_2_1 + pb_d1_n2_2_3_1_2_1 + pb_d2_n1_2_3_1_2_1 + pb_d2_n2_2_3_1_2_1 + pb_d3_n1_2_3_1_2_1 + pb_d3_n2_2_3_1_2_1 + pb_d4_n1_2_3_1_2_1 + pb_d4_n2_2_3_1_2_1 + pb_d5_n1_2_3_1_2_1 + pb_d5_n2_2_3_1_2_1 + pbl_2_3_1_2_1 = 30
invariant :pi_d5_n1_2_3_2_2_1 + pil_d5_n1_2_3_2_2_1 = 1
invariant :pb_d1_n1_2_3_2_2_1 + pb_d1_n2_2_3_2_2_1 + pb_d2_n1_2_3_2_2_1 + pb_d2_n2_2_3_2_2_1 + pb_d3_n1_2_3_2_2_1 + pb_d3_n2_2_3_2_2_1 + pb_d4_n1_2_3_2_2_1 + pb_d4_n2_2_3_2_2_1 + pb_d5_n1_2_3_2_2_1 + pb_d5_n2_2_3_2_2_1 + pbl_2_3_2_2_1 = 30
invariant :po_d3_n1_3_2_3_1_3 + pol_d3_n1_3_2_3_1_3 = 1
invariant :pi_d1_n1_2_1_2_1_1 + pil_d1_n1_2_1_2_1_1 = 1
invariant :pi_d1_n1_2_2_1_3_1 + pil_d1_n1_2_2_1_3_1 = 1
invariant :pi_d4_n1_2_2_1_3_1 + pil_d4_n1_2_2_1_3_1 = 1
invariant :po_d3_n1_2_3_2_3_2 + pol_d3_n1_2_3_2_3_2 = 1
invariant :po_d4_n1_1_1_1_1_3 + pol_d4_n1_1_1_1_1_3 = 1
invariant :po_d2_n1_1_2_3_1_2 + pol_d2_n1_1_2_3_1_2 = 1
invariant :po_d3_n1_1_3_2_2_3 + pol_d3_n1_1_3_2_2_3 = 1
invariant :po_d3_n1_2_3_1_2_1 + pol_d3_n1_2_3_1_2_1 = 1
invariant :pb_d1_n1_2_2_2_1_2 + pb_d1_n2_2_2_2_1_2 + pb_d2_n1_2_2_2_1_2 + pb_d2_n2_2_2_2_1_2 + pb_d3_n1_2_2_2_1_2 + pb_d3_n2_2_2_2_1_2 + pb_d4_n1_2_2_2_1_2 + pb_d4_n2_2_2_2_1_2 + pb_d5_n1_2_2_2_1_2 + pb_d5_n2_2_2_2_1_2 + pbl_2_2_2_1_2 = 30
invariant :po_d3_n1_3_3_1_1_2 + pol_d3_n1_3_3_1_1_2 = 1
invariant :pb_d1_n1_1_3_3_2_2 + pb_d1_n2_1_3_3_2_2 + pb_d2_n1_1_3_3_2_2 + pb_d2_n2_1_3_3_2_2 + pb_d3_n1_1_3_3_2_2 + pb_d3_n2_1_3_3_2_2 + pb_d4_n1_1_3_3_2_2 + pb_d4_n2_1_3_3_2_2 + pb_d5_n1_1_3_3_2_2 + pb_d5_n2_1_3_3_2_2 + pbl_1_3_3_2_2 = 30
invariant :pi_d2_n1_2_1_1_2_1 + pil_d2_n1_2_1_1_2_1 = 1
invariant :po_d2_n1_2_3_3_2_2 + pol_d2_n1_2_3_3_2_2 = 1
invariant :pi_d4_n1_3_2_1_3_2 + pil_d4_n1_3_2_1_3_2 = 1
invariant :pb_d1_n1_2_2_3_3_2 + pb_d1_n2_2_2_3_3_2 + pb_d2_n1_2_2_3_3_2 + pb_d2_n2_2_2_3_3_2 + pb_d3_n1_2_2_3_3_2 + pb_d3_n2_2_2_3_3_2 + pb_d4_n1_2_2_3_3_2 + pb_d4_n2_2_2_3_3_2 + pb_d5_n1_2_2_3_3_2 + pb_d5_n2_2_2_3_3_2 + pbl_2_2_3_3_2 = 30
invariant :po_d4_n1_3_3_3_3_2 + pol_d4_n1_3_3_3_3_2 = 1
invariant :pi_d5_n1_1_2_3_3_1 + pil_d5_n1_1_2_3_3_1 = 1
invariant :pb_d1_n1_2_2_1_3_2 + pb_d1_n2_2_2_1_3_2 + pb_d2_n1_2_2_1_3_2 + pb_d2_n2_2_2_1_3_2 + pb_d3_n1_2_2_1_3_2 + pb_d3_n2_2_2_1_3_2 + pb_d4_n1_2_2_1_3_2 + pb_d4_n2_2_2_1_3_2 + pb_d5_n1_2_2_1_3_2 + pb_d5_n2_2_2_1_3_2 + pbl_2_2_1_3_2 = 30
invariant :po_d4_n1_2_2_3_3_3 + pol_d4_n1_2_2_3_3_3 = 1
invariant :pi_d2_n1_2_3_1_2_2 + pil_d2_n1_2_3_1_2_2 = 1
invariant :pi_d1_n1_1_1_1_3_2 + pil_d1_n1_1_1_1_3_2 = 1
invariant :pb_d1_n1_3_2_3_3_2 + pb_d1_n2_3_2_3_3_2 + pb_d2_n1_3_2_3_3_2 + pb_d2_n2_3_2_3_3_2 + pb_d3_n1_3_2_3_3_2 + pb_d3_n2_3_2_3_3_2 + pb_d4_n1_3_2_3_3_2 + pb_d4_n2_3_2_3_3_2 + pb_d5_n1_3_2_3_3_2 + pb_d5_n2_3_2_3_3_2 + pbl_3_2_3_3_2 = 30
invariant :pb_d1_n1_1_3_2_2_2 + pb_d1_n2_1_3_2_2_2 + pb_d2_n1_1_3_2_2_2 + pb_d2_n2_1_3_2_2_2 + pb_d3_n1_1_3_2_2_2 + pb_d3_n2_1_3_2_2_2 + pb_d4_n1_1_3_2_2_2 + pb_d4_n2_1_3_2_2_2 + pb_d5_n1_1_3_2_2_2 + pb_d5_n2_1_3_2_2_2 + pbl_1_3_2_2_2 = 30
invariant :pi_d5_n1_2_2_3_1_3 + pil_d5_n1_2_2_3_1_3 = 1
invariant :pi_d5_n1_1_3_1_3_2 + pil_d5_n1_1_3_1_3_2 = 1
invariant :po_d2_n1_2_3_2_2_3 + pol_d2_n1_2_3_2_2_3 = 1
invariant :pi_d5_n1_3_2_2_3_3 + pil_d5_n1_3_2_2_3_3 = 1
invariant :po_d3_n1_1_2_2_1_2 + pol_d3_n1_1_2_2_1_2 = 1
invariant :po_d5_n1_2_2_2_1_2 + pol_d5_n1_2_2_2_1_2 = 1
invariant :po_d4_n1_1_3_2_3_2 + pol_d4_n1_1_3_2_3_2 = 1
invariant :pi_d2_n1_1_2_1_1_2 + pil_d2_n1_1_2_1_1_2 = 1
invariant :pi_d5_n1_1_1_1_2_1 + pil_d5_n1_1_1_1_2_1 = 1
invariant :pi_d3_n1_3_2_3_2_3 + pil_d3_n1_3_2_3_2_3 = 1
invariant :pi_d4_n1_3_1_1_2_2 + pil_d4_n1_3_1_1_2_2 = 1
invariant :po_d3_n1_2_1_2_3_3 + pol_d3_n1_2_1_2_3_3 = 1
invariant :po_d5_n1_2_3_2_1_1 + pol_d5_n1_2_3_2_1_1 = 1
invariant :po_d1_n1_1_3_1_3_3 + pol_d1_n1_1_3_1_3_3 = 1
invariant :po_d2_n1_1_2_2_3_2 + pol_d2_n1_1_2_2_3_2 = 1
invariant :pi_d2_n1_3_1_1_2_2 + pil_d2_n1_3_1_1_2_2 = 1
invariant :po_d5_n1_3_2_2_1_2 + pol_d5_n1_3_2_2_1_2 = 1
invariant :po_d3_n1_3_2_1_1_3 + pol_d3_n1_3_2_1_1_3 = 1
invariant :pi_d5_n1_3_1_3_1_1 + pil_d5_n1_3_1_3_1_1 = 1
invariant :po_d2_n1_2_1_3_3_2 + pol_d2_n1_2_1_3_3_2 = 1
invariant :po_d5_n1_3_2_2_3_1 + pol_d5_n1_3_2_2_3_1 = 1
invariant :po_d1_n1_3_1_2_3_1 + pol_d1_n1_3_1_2_3_1 = 1
invariant :po_d3_n1_2_1_3_2_3 + pol_d3_n1_2_1_3_2_3 = 1
invariant :pi_d4_n1_2_1_1_3_1 + pil_d4_n1_2_1_1_3_1 = 1
invariant :po_d5_n1_1_1_2_2_2 + pol_d5_n1_1_1_2_2_2 = 1
invariant :pi_d4_n1_2_2_1_1_1 + pil_d4_n1_2_2_1_1_1 = 1
invariant :pi_d3_n1_3_2_1_1_2 + pil_d3_n1_3_2_1_1_2 = 1
invariant :pi_d1_n1_2_1_2_2_3 + pil_d1_n1_2_1_2_2_3 = 1
invariant :pi_d5_n1_3_2_1_2_2 + pil_d5_n1_3_2_1_2_2 = 1
invariant :pi_d1_n1_2_2_2_1_3 + pil_d1_n1_2_2_2_1_3 = 1
invariant :pi_d5_n1_3_3_3_1_1 + pil_d5_n1_3_3_3_1_1 = 1
invariant :po_d2_n1_3_1_1_1_3 + pol_d2_n1_3_1_1_1_3 = 1
invariant :po_d3_n1_3_3_2_2_2 + pol_d3_n1_3_3_2_2_2 = 1
invariant :pi_d5_n1_3_1_2_3_3 + pil_d5_n1_3_1_2_3_3 = 1
invariant :po_d5_n1_1_2_1_1_1 + pol_d5_n1_1_2_1_1_1 = 1
invariant :pi_d2_n1_1_2_2_2_1 + pil_d2_n1_1_2_2_2_1 = 1
invariant :po_d1_n1_3_2_3_1_3 + pol_d1_n1_3_2_3_1_3 = 1
invariant :pb_d1_n1_3_1_1_2_2 + pb_d1_n2_3_1_1_2_2 + pb_d2_n1_3_1_1_2_2 + pb_d2_n2_3_1_1_2_2 + pb_d3_n1_3_1_1_2_2 + pb_d3_n2_3_1_1_2_2 + pb_d4_n1_3_1_1_2_2 + pb_d4_n2_3_1_1_2_2 + pb_d5_n1_3_1_1_2_2 + pb_d5_n2_3_1_1_2_2 + pbl_3_1_1_2_2 = 30
invariant :pi_d5_n1_1_1_2_3_3 + pil_d5_n1_1_1_2_3_3 = 1
invariant :pi_d1_n1_2_2_2_3_1 + pil_d1_n1_2_2_2_3_1 = 1
invariant :po_d3_n1_1_2_2_2_1 + pol_d3_n1_1_2_2_2_1 = 1
invariant :pb_d1_n1_3_3_2_1_2 + pb_d1_n2_3_3_2_1_2 + pb_d2_n1_3_3_2_1_2 + pb_d2_n2_3_3_2_1_2 + pb_d3_n1_3_3_2_1_2 + pb_d3_n2_3_3_2_1_2 + pb_d4_n1_3_3_2_1_2 + pb_d4_n2_3_3_2_1_2 + pb_d5_n1_3_3_2_1_2 + pb_d5_n2_3_3_2_1_2 + pbl_3_3_2_1_2 = 30
invariant :po_d2_n1_1_3_3_1_3 + pol_d2_n1_1_3_3_1_3 = 1
invariant :po_d4_n1_2_1_1_2_3 + pol_d4_n1_2_1_1_2_3 = 1
invariant :po_d5_n1_2_3_3_3_1 + pol_d5_n1_2_3_3_3_1 = 1
invariant :po_d3_n1_3_3_3_3_3 + pol_d3_n1_3_3_3_3_3 = 1
invariant :po_d2_n1_2_3_1_1_3 + pol_d2_n1_2_3_1_1_3 = 1
invariant :po_d1_n1_1_1_1_3_1 + pol_d1_n1_1_1_1_3_1 = 1
invariant :po_d3_n1_3_2_2_1_3 + pol_d3_n1_3_2_2_1_3 = 1
invariant :pi_d4_n1_3_3_1_1_1 + pil_d4_n1_3_3_1_1_1 = 1
invariant :pb_d1_n1_3_2_1_3_1 + pb_d1_n2_3_2_1_3_1 + pb_d2_n1_3_2_1_3_1 + pb_d2_n2_3_2_1_3_1 + pb_d3_n1_3_2_1_3_1 + pb_d3_n2_3_2_1_3_1 + pb_d4_n1_3_2_1_3_1 + pb_d4_n2_3_2_1_3_1 + pb_d5_n1_3_2_1_3_1 + pb_d5_n2_3_2_1_3_1 + pbl_3_2_1_3_1 = 30
invariant :pi_d2_n1_1_3_1_2_2 + pil_d2_n1_1_3_1_2_2 = 1
invariant :pi_d1_n1_2_2_2_2_2 + pil_d1_n1_2_2_2_2_2 = 1
invariant :pi_d2_n1_1_1_2_3_1 + pil_d2_n1_1_1_2_3_1 = 1
invariant :pi_d4_n1_1_1_1_2_1 + pil_d4_n1_1_1_1_2_1 = 1
invariant :pi_d3_n1_2_2_2_1_1 + pil_d3_n1_2_2_2_1_1 = 1
invariant :pi_d1_n1_1_3_1_3_3 + pil_d1_n1_1_3_1_3_3 = 1
invariant :po_d3_n1_3_2_2_2_2 + pol_d3_n1_3_2_2_2_2 = 1
invariant :pi_d1_n1_3_2_3_3_2 + pil_d1_n1_3_2_3_3_2 = 1
invariant :pi_d2_n1_3_3_2_1_1 + pil_d2_n1_3_3_2_1_1 = 1
invariant :po_d1_n1_1_3_1_2_1 + pol_d1_n1_1_3_1_2_1 = 1
invariant :pi_d1_n1_1_2_1_2_2 + pil_d1_n1_1_2_1_2_2 = 1
invariant :pb_d1_n1_1_2_3_2_1 + pb_d1_n2_1_2_3_2_1 + pb_d2_n1_1_2_3_2_1 + pb_d2_n2_1_2_3_2_1 + pb_d3_n1_1_2_3_2_1 + pb_d3_n2_1_2_3_2_1 + pb_d4_n1_1_2_3_2_1 + pb_d4_n2_1_2_3_2_1 + pb_d5_n1_1_2_3_2_1 + pb_d5_n2_1_2_3_2_1 + pbl_1_2_3_2_1 = 30
invariant :pi_d2_n1_2_2_2_3_3 + pil_d2_n1_2_2_2_3_3 = 1
invariant :po_d3_n1_3_1_2_2_1 + pol_d3_n1_3_1_2_2_1 = 1
invariant :pi_d3_n1_1_1_2_3_2 + pil_d3_n1_1_1_2_3_2 = 1
invariant :pi_d5_n1_3_3_2_1_3 + pil_d5_n1_3_3_2_1_3 = 1
invariant :po_d5_n1_3_1_2_1_3 + pol_d5_n1_3_1_2_1_3 = 1
invariant :pi_d2_n1_1_3_1_3_2 + pil_d2_n1_1_3_1_3_2 = 1
invariant :po_d2_n1_3_2_2_2_3 + pol_d2_n1_3_2_2_2_3 = 1
invariant :po_d3_n1_3_2_2_3_3 + pol_d3_n1_3_2_2_3_3 = 1
invariant :po_d5_n1_3_2_1_1_2 + pol_d5_n1_3_2_1_1_2 = 1
invariant :po_d4_n1_2_2_3_1_2 + pol_d4_n1_2_2_3_1_2 = 1
invariant :pi_d5_n1_3_3_2_1_2 + pil_d5_n1_3_3_2_1_2 = 1
invariant :po_d1_n1_2_3_3_1_1 + pol_d1_n1_2_3_3_1_1 = 1
invariant :pi_d5_n1_2_3_3_3_1 + pil_d5_n1_2_3_3_3_1 = 1
invariant :po_d5_n1_3_1_2_1_2 + pol_d5_n1_3_1_2_1_2 = 1
invariant :pi_d4_n1_2_3_1_3_1 + pil_d4_n1_2_3_1_3_1 = 1
invariant :po_d4_n1_1_3_3_2_3 + pol_d4_n1_1_3_3_2_3 = 1
invariant :po_d2_n1_3_2_2_1_2 + pol_d2_n1_3_2_2_1_2 = 1
invariant :po_d1_n1_1_1_2_1_1 + pol_d1_n1_1_1_2_1_1 = 1
invariant :po_d5_n1_2_3_2_3_2 + pol_d5_n1_2_3_2_3_2 = 1
invariant :po_d1_n1_1_3_2_2_1 + pol_d1_n1_1_3_2_2_1 = 1
invariant :po_d1_n1_1_1_2_3_1 + pol_d1_n1_1_1_2_3_1 = 1
invariant :pi_d2_n1_2_1_3_1_1 + pil_d2_n1_2_1_3_1_1 = 1
invariant :pi_d3_n1_1_3_3_2_3 + pil_d3_n1_1_3_3_2_3 = 1
invariant :pi_d5_n1_1_3_3_2_3 + pil_d5_n1_1_3_3_2_3 = 1
invariant :pb_d1_n1_2_3_2_3_2 + pb_d1_n2_2_3_2_3_2 + pb_d2_n1_2_3_2_3_2 + pb_d2_n2_2_3_2_3_2 + pb_d3_n1_2_3_2_3_2 + pb_d3_n2_2_3_2_3_2 + pb_d4_n1_2_3_2_3_2 + pb_d4_n2_2_3_2_3_2 + pb_d5_n1_2_3_2_3_2 + pb_d5_n2_2_3_2_3_2 + pbl_2_3_2_3_2 = 30
invariant :pi_d1_n1_2_1_2_1_3 + pil_d1_n1_2_1_2_1_3 = 1
invariant :po_d4_n1_3_2_3_2_2 + pol_d4_n1_3_2_3_2_2 = 1
invariant :pi_d4_n1_1_3_3_1_2 + pil_d4_n1_1_3_3_1_2 = 1
invariant :pb_d1_n1_2_1_2_1_3 + pb_d1_n2_2_1_2_1_3 + pb_d2_n1_2_1_2_1_3 + pb_d2_n2_2_1_2_1_3 + pb_d3_n1_2_1_2_1_3 + pb_d3_n2_2_1_2_1_3 + pb_d4_n1_2_1_2_1_3 + pb_d4_n2_2_1_2_1_3 + pb_d5_n1_2_1_2_1_3 + pb_d5_n2_2_1_2_1_3 + pbl_2_1_2_1_3 = 30
invariant :pi_d4_n1_3_3_1_3_3 + pil_d4_n1_3_3_1_3_3 = 1
invariant :pi_d1_n1_3_1_2_1_2 + pil_d1_n1_3_1_2_1_2 = 1
invariant :po_d2_n1_3_3_3_3_3 + pol_d2_n1_3_3_3_3_3 = 1
invariant :pi_d2_n1_3_1_1_1_3 + pil_d2_n1_3_1_1_1_3 = 1
invariant :po_d2_n1_1_1_1_1_1 + pol_d2_n1_1_1_1_1_1 = 1
invariant :pi_d1_n1_2_2_3_1_3 + pil_d1_n1_2_2_3_1_3 = 1
invariant :po_d5_n1_1_1_1_2_2 + pol_d5_n1_1_1_1_2_2 = 1
invariant :po_d2_n1_3_2_1_3_1 + pol_d2_n1_3_2_1_3_1 = 1
invariant :po_d1_n1_2_3_2_1_1 + pol_d1_n1_2_3_2_1_1 = 1
invariant :po_d4_n1_3_3_1_3_3 + pol_d4_n1_3_3_1_3_3 = 1
invariant :pi_d2_n1_2_2_2_2_1 + pil_d2_n1_2_2_2_2_1 = 1
invariant :pi_d2_n1_1_3_2_2_1 + pil_d2_n1_1_3_2_2_1 = 1
invariant :po_d5_n1_3_2_2_1_3 + pol_d5_n1_3_2_2_1_3 = 1
invariant :pi_d1_n1_1_2_1_2_3 + pil_d1_n1_1_2_1_2_3 = 1
invariant :po_d1_n1_2_3_2_2_1 + pol_d1_n1_2_3_2_2_1 = 1
invariant :po_d3_n1_2_2_2_3_1 + pol_d3_n1_2_2_2_3_1 = 1
invariant :po_d1_n1_2_1_3_1_2 + pol_d1_n1_2_1_3_1_2 = 1
invariant :pb_d1_n1_3_3_1_2_1 + pb_d1_n2_3_3_1_2_1 + pb_d2_n1_3_3_1_2_1 + pb_d2_n2_3_3_1_2_1 + pb_d3_n1_3_3_1_2_1 + pb_d3_n2_3_3_1_2_1 + pb_d4_n1_3_3_1_2_1 + pb_d4_n2_3_3_1_2_1 + pb_d5_n1_3_3_1_2_1 + pb_d5_n2_3_3_1_2_1 + pbl_3_3_1_2_1 = 30
invariant :po_d1_n1_3_3_3_2_1 + pol_d1_n1_3_3_3_2_1 = 1
invariant :pi_d5_n1_2_1_1_2_1 + pil_d5_n1_2_1_1_2_1 = 1
invariant :po_d4_n1_1_3_3_1_1 + pol_d4_n1_1_3_3_1_1 = 1
invariant :pi_d4_n1_2_3_2_3_1 + pil_d4_n1_2_3_2_3_1 = 1
invariant :po_d4_n1_1_3_3_1_3 + pol_d4_n1_1_3_3_1_3 = 1
invariant :po_d2_n1_3_3_2_1_3 + pol_d2_n1_3_3_2_1_3 = 1
invariant :pi_d1_n1_3_2_2_2_1 + pil_d1_n1_3_2_2_2_1 = 1
invariant :pi_d3_n1_1_3_3_3_3 + pil_d3_n1_1_3_3_3_3 = 1
invariant :pi_d3_n1_3_3_3_3_3 + pil_d3_n1_3_3_3_3_3 = 1
invariant :po_d1_n1_1_3_1_1_2 + pol_d1_n1_1_3_1_1_2 = 1
invariant :po_d4_n1_3_1_3_3_2 + pol_d4_n1_3_1_3_3_2 = 1
invariant :pi_d5_n1_3_3_3_1_3 + pil_d5_n1_3_3_3_1_3 = 1
invariant :po_d2_n1_3_3_3_1_2 + pol_d2_n1_3_3_3_1_2 = 1
invariant :po_d5_n1_1_2_1_3_1 + pol_d5_n1_1_2_1_3_1 = 1
invariant :po_d3_n1_2_2_2_3_3 + pol_d3_n1_2_2_2_3_3 = 1
invariant :po_d5_n1_2_2_3_3_1 + pol_d5_n1_2_2_3_3_1 = 1
invariant :po_d1_n1_3_2_1_3_2 + pol_d1_n1_3_2_1_3_2 = 1
invariant :po_d3_n1_2_3_1_3_2 + pol_d3_n1_2_3_1_3_2 = 1
invariant :po_d2_n1_3_2_2_2_1 + pol_d2_n1_3_2_2_2_1 = 1
invariant :po_d5_n1_3_2_1_3_3 + pol_d5_n1_3_2_1_3_3 = 1
invariant :pb_d1_n1_1_1_2_1_2 + pb_d1_n2_1_1_2_1_2 + pb_d2_n1_1_1_2_1_2 + pb_d2_n2_1_1_2_1_2 + pb_d3_n1_1_1_2_1_2 + pb_d3_n2_1_1_2_1_2 + pb_d4_n1_1_1_2_1_2 + pb_d4_n2_1_1_2_1_2 + pb_d5_n1_1_1_2_1_2 + pb_d5_n2_1_1_2_1_2 + pbl_1_1_2_1_2 = 30
invariant :pi_d1_n1_2_1_3_2_1 + pil_d1_n1_2_1_3_2_1 = 1
invariant :pi_d4_n1_3_3_2_2_1 + pil_d4_n1_3_3_2_2_1 = 1
invariant :pi_d2_n1_3_2_3_3_1 + pil_d2_n1_3_2_3_3_1 = 1
invariant :po_d3_n1_2_2_1_3_2 + pol_d3_n1_2_2_1_3_2 = 1
invariant :pi_d5_n1_3_2_3_3_3 + pil_d5_n1_3_2_3_3_3 = 1
invariant :po_d4_n1_1_2_2_1_1 + pol_d4_n1_1_2_2_1_1 = 1
invariant :pi_d1_n1_3_2_3_1_3 + pil_d1_n1_3_2_3_1_3 = 1
invariant :po_d1_n1_2_2_2_1_1 + pol_d1_n1_2_2_2_1_1 = 1
invariant :pi_d1_n1_1_3_2_1_1 + pil_d1_n1_1_3_2_1_1 = 1
invariant :po_d2_n1_2_2_1_2_1 + pol_d2_n1_2_2_1_2_1 = 1
invariant :pi_d1_n1_2_2_1_3_2 + pil_d1_n1_2_2_1_3_2 = 1
invariant :pi_d2_n1_3_2_1_1_3 + pil_d2_n1_3_2_1_1_3 = 1
invariant :po_d4_n1_3_1_3_3_3 + pol_d4_n1_3_1_3_3_3 = 1
invariant :pi_d3_n1_2_2_2_1_3 + pil_d3_n1_2_2_2_1_3 = 1
invariant :po_d5_n1_2_1_1_3_3 + pol_d5_n1_2_1_1_3_3 = 1
invariant :pi_d2_n1_1_2_2_1_3 + pil_d2_n1_1_2_2_1_3 = 1
invariant :po_d2_n1_1_1_1_3_3 + pol_d2_n1_1_1_1_3_3 = 1
invariant :pi_d1_n1_3_2_3_2_3 + pil_d1_n1_3_2_3_2_3 = 1
invariant :pi_d3_n1_2_3_2_2_3 + pil_d3_n1_2_3_2_2_3 = 1
invariant :po_d3_n1_2_3_3_1_3 + pol_d3_n1_2_3_3_1_3 = 1
invariant :po_d4_n1_2_1_3_1_2 + pol_d4_n1_2_1_3_1_2 = 1
invariant :po_d4_n1_1_3_1_3_1 + pol_d4_n1_1_3_1_3_1 = 1
invariant :pi_d1_n1_3_3_2_1_3 + pil_d1_n1_3_3_2_1_3 = 1
invariant :pi_d3_n1_3_1_1_1_2 + pil_d3_n1_3_1_1_1_2 = 1
invariant :po_d1_n1_2_3_1_2_2 + pol_d1_n1_2_3_1_2_2 = 1
invariant :po_d3_n1_1_3_2_3_2 + pol_d3_n1_1_3_2_3_2 = 1
invariant :po_d5_n1_3_1_3_2_1 + pol_d5_n1_3_1_3_2_1 = 1
invariant :pb_d1_n1_2_2_2_2_1 + pb_d1_n2_2_2_2_2_1 + pb_d2_n1_2_2_2_2_1 + pb_d2_n2_2_2_2_2_1 + pb_d3_n1_2_2_2_2_1 + pb_d3_n2_2_2_2_2_1 + pb_d4_n1_2_2_2_2_1 + pb_d4_n2_2_2_2_2_1 + pb_d5_n1_2_2_2_2_1 + pb_d5_n2_2_2_2_2_1 + pbl_2_2_2_2_1 = 30
invariant :po_d5_n1_2_2_1_2_1 + pol_d5_n1_2_2_1_2_1 = 1
invariant :pi_d5_n1_2_3_1_3_3 + pil_d5_n1_2_3_1_3_3 = 1
invariant :pb_d1_n1_2_1_1_1_3 + pb_d1_n2_2_1_1_1_3 + pb_d2_n1_2_1_1_1_3 + pb_d2_n2_2_1_1_1_3 + pb_d3_n1_2_1_1_1_3 + pb_d3_n2_2_1_1_1_3 + pb_d4_n1_2_1_1_1_3 + pb_d4_n2_2_1_1_1_3 + pb_d5_n1_2_1_1_1_3 + pb_d5_n2_2_1_1_1_3 + pbl_2_1_1_1_3 = 30
invariant :po_d5_n1_3_1_1_3_3 + pol_d5_n1_3_1_1_3_3 = 1
invariant :pi_d5_n1_2_1_2_1_2 + pil_d5_n1_2_1_2_1_2 = 1
invariant :po_d3_n1_2_2_1_3_1 + pol_d3_n1_2_2_1_3_1 = 1
invariant :pb_d1_n1_3_1_2_1_1 + pb_d1_n2_3_1_2_1_1 + pb_d2_n1_3_1_2_1_1 + pb_d2_n2_3_1_2_1_1 + pb_d3_n1_3_1_2_1_1 + pb_d3_n2_3_1_2_1_1 + pb_d4_n1_3_1_2_1_1 + pb_d4_n2_3_1_2_1_1 + pb_d5_n1_3_1_2_1_1 + pb_d5_n2_3_1_2_1_1 + pbl_3_1_2_1_1 = 30
invariant :pi_d2_n1_3_2_3_1_1 + pil_d2_n1_3_2_3_1_1 = 1
invariant :pb_d1_n1_1_2_1_1_1 + pb_d1_n2_1_2_1_1_1 + pb_d2_n1_1_2_1_1_1 + pb_d2_n2_1_2_1_1_1 + pb_d3_n1_1_2_1_1_1 + pb_d3_n2_1_2_1_1_1 + pb_d4_n1_1_2_1_1_1 + pb_d4_n2_1_2_1_1_1 + pb_d5_n1_1_2_1_1_1 + pb_d5_n2_1_2_1_1_1 + pbl_1_2_1_1_1 = 30
invariant :pi_d5_n1_1_1_1_2_2 + pil_d5_n1_1_1_1_2_2 = 1
invariant :po_d2_n1_1_1_3_3_3 + pol_d2_n1_1_1_3_3_3 = 1
invariant :pi_d5_n1_2_3_1_2_2 + pil_d5_n1_2_3_1_2_2 = 1
invariant :po_d1_n1_2_3_2_2_2 + pol_d1_n1_2_3_2_2_2 = 1
invariant :pi_d1_n1_2_2_1_3_3 + pil_d1_n1_2_2_1_3_3 = 1
invariant :pi_d5_n1_1_2_1_3_3 + pil_d5_n1_1_2_1_3_3 = 1
invariant :po_d1_n1_2_3_3_2_2 + pol_d1_n1_2_3_3_2_2 = 1
invariant :pi_d1_n1_2_1_1_2_3 + pil_d1_n1_2_1_1_2_3 = 1
invariant :po_d4_n1_2_1_1_1_2 + pol_d4_n1_2_1_1_1_2 = 1
invariant :pi_d5_n1_2_3_2_2_2 + pil_d5_n1_2_3_2_2_2 = 1
invariant :pi_d5_n1_3_2_3_3_2 + pil_d5_n1_3_2_3_3_2 = 1
invariant :pi_d2_n1_1_2_2_1_1 + pil_d2_n1_1_2_2_1_1 = 1
invariant :po_d3_n1_2_2_1_1_2 + pol_d3_n1_2_2_1_1_2 = 1
invariant :po_d1_n1_2_3_3_2_3 + pol_d1_n1_2_3_3_2_3 = 1
invariant :po_d5_n1_3_2_3_1_2 + pol_d5_n1_3_2_3_1_2 = 1
invariant :pi_d5_n1_2_3_1_1_1 + pil_d5_n1_2_3_1_1_1 = 1
invariant :po_d3_n1_1_1_2_2_1 + pol_d3_n1_1_1_2_2_1 = 1
invariant :po_d4_n1_1_2_2_3_1 + pol_d4_n1_1_2_2_3_1 = 1
invariant :po_d5_n1_3_2_3_1_1 + pol_d5_n1_3_2_3_1_1 = 1
invariant :pi_d5_n1_1_1_1_3_1 + pil_d5_n1_1_1_1_3_1 = 1
invariant :po_d5_n1_3_1_1_1_3 + pol_d5_n1_3_1_1_1_3 = 1
invariant :pi_d4_n1_3_1_1_3_2 + pil_d4_n1_3_1_1_3_2 = 1
invariant :po_d1_n1_3_2_2_3_1 + pol_d1_n1_3_2_2_3_1 = 1
invariant :po_d2_n1_3_2_1_1_3 + pol_d2_n1_3_2_1_1_3 = 1
invariant :po_d3_n1_2_1_2_3_1 + pol_d3_n1_2_1_2_3_1 = 1
invariant :pi_d1_n1_3_3_3_2_2 + pil_d1_n1_3_3_3_2_2 = 1
invariant :pi_d3_n1_1_3_3_3_2 + pil_d3_n1_1_3_3_3_2 = 1
invariant :pi_d2_n1_1_3_3_3_3 + pil_d2_n1_1_3_3_3_3 = 1
invariant :po_d4_n1_3_1_3_2_1 + pol_d4_n1_3_1_3_2_1 = 1
invariant :po_d3_n1_2_3_3_2_2 + pol_d3_n1_2_3_3_2_2 = 1
invariant :po_d4_n1_3_2_1_1_3 + pol_d4_n1_3_2_1_1_3 = 1
invariant :po_d3_n1_3_3_2_1_2 + pol_d3_n1_3_3_2_1_2 = 1
invariant :po_d1_n1_3_3_3_2_3 + pol_d1_n1_3_3_3_2_3 = 1
invariant :pi_d2_n1_3_1_3_3_3 + pil_d2_n1_3_1_3_3_3 = 1
invariant :pb_d1_n1_1_1_2_2_2 + pb_d1_n2_1_1_2_2_2 + pb_d2_n1_1_1_2_2_2 + pb_d2_n2_1_1_2_2_2 + pb_d3_n1_1_1_2_2_2 + pb_d3_n2_1_1_2_2_2 + pb_d4_n1_1_1_2_2_2 + pb_d4_n2_1_1_2_2_2 + pb_d5_n1_1_1_2_2_2 + pb_d5_n2_1_1_2_2_2 + pbl_1_1_2_2_2 = 30
invariant :pi_d4_n1_3_3_2_1_3 + pil_d4_n1_3_3_2_1_3 = 1
invariant :po_d4_n1_2_1_2_1_1 + pol_d4_n1_2_1_2_1_1 = 1
invariant :pi_d3_n1_1_1_1_2_3 + pil_d3_n1_1_1_1_2_3 = 1
invariant :pb_d1_n1_3_3_1_1_3 + pb_d1_n2_3_3_1_1_3 + pb_d2_n1_3_3_1_1_3 + pb_d2_n2_3_3_1_1_3 + pb_d3_n1_3_3_1_1_3 + pb_d3_n2_3_3_1_1_3 + pb_d4_n1_3_3_1_1_3 + pb_d4_n2_3_3_1_1_3 + pb_d5_n1_3_3_1_1_3 + pb_d5_n2_3_3_1_1_3 + pbl_3_3_1_1_3 = 30
invariant :pi_d3_n1_1_1_3_1_2 + pil_d3_n1_1_1_3_1_2 = 1
invariant :po_d5_n1_1_3_1_1_2 + pol_d5_n1_1_3_1_1_2 = 1
invariant :pi_d5_n1_3_2_3_1_2 + pil_d5_n1_3_2_3_1_2 = 1
invariant :po_d4_n1_2_1_1_3_2 + pol_d4_n1_2_1_1_3_2 = 1
invariant :po_d2_n1_2_3_2_1_3 + pol_d2_n1_2_3_2_1_3 = 1
invariant :pi_d5_n1_3_2_1_3_1 + pil_d5_n1_3_2_1_3_1 = 1
invariant :pi_d5_n1_1_2_2_3_3 + pil_d5_n1_1_2_2_3_3 = 1
invariant :pi_d1_n1_1_2_1_2_1 + pil_d1_n1_1_2_1_2_1 = 1
invariant :po_d4_n1_3_1_1_3_3 + pol_d4_n1_3_1_1_3_3 = 1
invariant :pb_d1_n1_1_1_1_3_2 + pb_d1_n2_1_1_1_3_2 + pb_d2_n1_1_1_1_3_2 + pb_d2_n2_1_1_1_3_2 + pb_d3_n1_1_1_1_3_2 + pb_d3_n2_1_1_1_3_2 + pb_d4_n1_1_1_1_3_2 + pb_d4_n2_1_1_1_3_2 + pb_d5_n1_1_1_1_3_2 + pb_d5_n2_1_1_1_3_2 + pbl_1_1_1_3_2 = 30
invariant :po_d4_n1_1_2_2_2_2 + pol_d4_n1_1_2_2_2_2 = 1
invariant :po_d5_n1_3_1_2_2_3 + pol_d5_n1_3_1_2_2_3 = 1
invariant :pi_d1_n1_1_2_3_3_2 + pil_d1_n1_1_2_3_3_2 = 1
invariant :pi_d1_n1_1_3_3_1_3 + pil_d1_n1_1_3_3_1_3 = 1
invariant :po_d5_n1_1_1_2_3_2 + pol_d5_n1_1_1_2_3_2 = 1
invariant :pi_d1_n1_3_1_1_1_2 + pil_d1_n1_3_1_1_1_2 = 1
invariant :pi_d5_n1_2_2_3_3_3 + pil_d5_n1_2_2_3_3_3 = 1
invariant :pi_d4_n1_1_3_3_3_3 + pil_d4_n1_1_3_3_3_3 = 1
invariant :po_d5_n1_3_2_2_3_3 + pol_d5_n1_3_2_2_3_3 = 1
invariant :pb_d1_n1_1_3_1_1_1 + pb_d1_n2_1_3_1_1_1 + pb_d2_n1_1_3_1_1_1 + pb_d2_n2_1_3_1_1_1 + pb_d3_n1_1_3_1_1_1 + pb_d3_n2_1_3_1_1_1 + pb_d4_n1_1_3_1_1_1 + pb_d4_n2_1_3_1_1_1 + pb_d5_n1_1_3_1_1_1 + pb_d5_n2_1_3_1_1_1 + pbl_1_3_1_1_1 = 30
invariant :po_d1_n1_1_3_3_1_3 + pol_d1_n1_1_3_3_1_3 = 1
invariant :pb_d1_n1_1_3_3_3_1 + pb_d1_n2_1_3_3_3_1 + pb_d2_n1_1_3_3_3_1 + pb_d2_n2_1_3_3_3_1 + pb_d3_n1_1_3_3_3_1 + pb_d3_n2_1_3_3_3_1 + pb_d4_n1_1_3_3_3_1 + pb_d4_n2_1_3_3_3_1 + pb_d5_n1_1_3_3_3_1 + pb_d5_n2_1_3_3_3_1 + pbl_1_3_3_3_1 = 30
invariant :pb_d1_n1_3_3_2_3_2 + pb_d1_n2_3_3_2_3_2 + pb_d2_n1_3_3_2_3_2 + pb_d2_n2_3_3_2_3_2 + pb_d3_n1_3_3_2_3_2 + pb_d3_n2_3_3_2_3_2 + pb_d4_n1_3_3_2_3_2 + pb_d4_n2_3_3_2_3_2 + pb_d5_n1_3_3_2_3_2 + pb_d5_n2_3_3_2_3_2 + pbl_3_3_2_3_2 = 30
invariant :pi_d1_n1_3_2_3_1_2 + pil_d1_n1_3_2_3_1_2 = 1
invariant :pi_d1_n1_1_1_2_3_1 + pil_d1_n1_1_1_2_3_1 = 1
invariant :pi_d3_n1_3_3_2_3_3 + pil_d3_n1_3_3_2_3_3 = 1
invariant :po_d5_n1_2_3_3_3_3 + pol_d5_n1_2_3_3_3_3 = 1
invariant :po_d2_n1_1_1_2_3_2 + pol_d2_n1_1_1_2_3_2 = 1
invariant :po_d4_n1_1_1_3_2_1 + pol_d4_n1_1_1_3_2_1 = 1
invariant :po_d5_n1_1_3_2_1_2 + pol_d5_n1_1_3_2_1_2 = 1
invariant :po_d2_n1_2_1_3_1_2 + pol_d2_n1_2_1_3_1_2 = 1
invariant :po_d5_n1_3_3_3_3_1 + pol_d5_n1_3_3_3_3_1 = 1
invariant :pi_d1_n1_3_1_2_3_3 + pil_d1_n1_3_1_2_3_3 = 1
invariant :po_d5_n1_2_3_2_1_3 + pol_d5_n1_2_3_2_1_3 = 1
invariant :po_d2_n1_2_3_3_3_3 + pol_d2_n1_2_3_3_3_3 = 1
invariant :pbl_1_1_1_1_1 + pbl_1_1_1_1_2 + pbl_1_1_1_1_3 + pbl_1_1_1_2_1 + pbl_1_1_1_2_2 + pbl_1_1_1_2_3 + pbl_1_1_1_3_1 + pbl_1_1_1_3_2 + pbl_1_1_1_3_3 + pbl_1_1_2_1_1 + pbl_1_1_2_1_2 + pbl_1_1_2_1_3 + pbl_1_1_2_2_1 + pbl_1_1_2_2_2 + pbl_1_1_2_2_3 + pbl_1_1_2_3_1 + pbl_1_1_2_3_2 + pbl_1_1_2_3_3 + pbl_1_1_3_1_1 + pbl_1_1_3_1_2 + pbl_1_1_3_1_3 + pbl_1_1_3_2_1 + pbl_1_1_3_2_2 + pbl_1_1_3_2_3 + pbl_1_1_3_3_1 + pbl_1_1_3_3_2 + pbl_1_1_3_3_3 + pbl_1_2_1_1_1 + pbl_1_2_1_1_2 + pbl_1_2_1_1_3 + pbl_1_2_1_2_1 + pbl_1_2_1_2_2 + pbl_1_2_1_2_3 + pbl_1_2_1_3_1 + pbl_1_2_1_3_2 + pbl_1_2_1_3_3 + pbl_1_2_2_1_1 + pbl_1_2_2_1_2 + pbl_1_2_2_1_3 + pbl_1_2_2_2_1 + pbl_1_2_2_2_2 + pbl_1_2_2_2_3 + pbl_1_2_2_3_1 + pbl_1_2_2_3_2 + pbl_1_2_2_3_3 + pbl_1_2_3_1_1 + pbl_1_2_3_1_2 + pbl_1_2_3_1_3 + pbl_1_2_3_2_1 + pbl_1_2_3_2_2 + pbl_1_2_3_2_3 + pbl_1_2_3_3_1 + pbl_1_2_3_3_2 + pbl_1_2_3_3_3 + pbl_1_3_1_1_1 + pbl_1_3_1_1_2 + pbl_1_3_1_1_3 + pbl_1_3_1_2_1 + pbl_1_3_1_2_2 + pbl_1_3_1_2_3 + pbl_1_3_1_3_1 + pbl_1_3_1_3_2 + pbl_1_3_1_3_3 + pbl_1_3_2_1_1 + pbl_1_3_2_1_2 + pbl_1_3_2_1_3 + pbl_1_3_2_2_1 + pbl_1_3_2_2_2 + pbl_1_3_2_2_3 + pbl_1_3_2_3_1 + pbl_1_3_2_3_2 + pbl_1_3_2_3_3 + pbl_1_3_3_1_1 + pbl_1_3_3_1_2 + pbl_1_3_3_1_3 + pbl_1_3_3_2_1 + pbl_1_3_3_2_2 + pbl_1_3_3_2_3 + pbl_1_3_3_3_1 + pbl_1_3_3_3_2 + pbl_1_3_3_3_3 + pbl_2_1_1_1_1 + pbl_2_1_1_1_2 + pbl_2_1_1_1_3 + pbl_2_1_1_2_1 + pbl_2_1_1_2_2 + pbl_2_1_1_2_3 + pbl_2_1_1_3_1 + pbl_2_1_1_3_2 + pbl_2_1_1_3_3 + pbl_2_1_2_1_1 + pbl_2_1_2_1_2 + pbl_2_1_2_1_3 + pbl_2_1_2_2_1 + pbl_2_1_2_2_2 + pbl_2_1_2_2_3 + pbl_2_1_2_3_1 + pbl_2_1_2_3_2 + pbl_2_1_2_3_3 + pbl_2_1_3_1_1 + pbl_2_1_3_1_2 + pbl_2_1_3_1_3 + pbl_2_1_3_2_1 + pbl_2_1_3_2_2 + pbl_2_1_3_2_3 + pbl_2_1_3_3_1 + pbl_2_1_3_3_2 + pbl_2_1_3_3_3 + pbl_2_2_1_1_1 + pbl_2_2_1_1_2 + pbl_2_2_1_1_3 + pbl_2_2_1_2_1 + pbl_2_2_1_2_2 + pbl_2_2_1_2_3 + pbl_2_2_1_3_1 + pbl_2_2_1_3_2 + pbl_2_2_1_3_3 + pbl_2_2_2_1_1 + pbl_2_2_2_1_2 + pbl_2_2_2_1_3 + pbl_2_2_2_2_1 + pbl_2_2_2_2_2 + pbl_2_2_2_2_3 + pbl_2_2_2_3_1 + pbl_2_2_2_3_2 + pbl_2_2_2_3_3 + pbl_2_2_3_1_1 + pbl_2_2_3_1_2 + pbl_2_2_3_1_3 + pbl_2_2_3_2_1 + pbl_2_2_3_2_2 + pbl_2_2_3_2_3 + pbl_2_2_3_3_1 + pbl_2_2_3_3_2 + pbl_2_2_3_3_3 + pbl_2_3_1_1_1 + pbl_2_3_1_1_2 + pbl_2_3_1_1_3 + pbl_2_3_1_2_1 + pbl_2_3_1_2_2 + pbl_2_3_1_2_3 + pbl_2_3_1_3_1 + pbl_2_3_1_3_2 + pbl_2_3_1_3_3 + pbl_2_3_2_1_1 + pbl_2_3_2_1_2 + pbl_2_3_2_1_3 + pbl_2_3_2_2_1 + pbl_2_3_2_2_2 + pbl_2_3_2_2_3 + pbl_2_3_2_3_1 + pbl_2_3_2_3_2 + pbl_2_3_2_3_3 + pbl_2_3_3_1_1 + pbl_2_3_3_1_2 + pbl_2_3_3_1_3 + pbl_2_3_3_2_1 + pbl_2_3_3_2_2 + pbl_2_3_3_2_3 + pbl_2_3_3_3_1 + pbl_2_3_3_3_2 + pbl_2_3_3_3_3 + pbl_3_1_1_1_1 + pbl_3_1_1_1_2 + pbl_3_1_1_1_3 + pbl_3_1_1_2_1 + pbl_3_1_1_2_2 + pbl_3_1_1_2_3 + pbl_3_1_1_3_1 + pbl_3_1_1_3_2 + pbl_3_1_1_3_3 + pbl_3_1_2_1_1 + pbl_3_1_2_1_2 + pbl_3_1_2_1_3 + pbl_3_1_2_2_1 + pbl_3_1_2_2_2 + pbl_3_1_2_2_3 + pbl_3_1_2_3_1 + pbl_3_1_2_3_2 + pbl_3_1_2_3_3 + pbl_3_1_3_1_1 + pbl_3_1_3_1_2 + pbl_3_1_3_1_3 + pbl_3_1_3_2_1 + pbl_3_1_3_2_2 + pbl_3_1_3_2_3 + pbl_3_1_3_3_1 + pbl_3_1_3_3_2 + pbl_3_1_3_3_3 + pbl_3_2_1_1_1 + pbl_3_2_1_1_2 + pbl_3_2_1_1_3 + pbl_3_2_1_2_1 + pbl_3_2_1_2_2 + pbl_3_2_1_2_3 + pbl_3_2_1_3_1 + pbl_3_2_1_3_2 + pbl_3_2_1_3_3 + pbl_3_2_2_1_1 + pbl_3_2_2_1_2 + pbl_3_2_2_1_3 + pbl_3_2_2_2_1 + pbl_3_2_2_2_2 + pbl_3_2_2_2_3 + pbl_3_2_2_3_1 + pbl_3_2_2_3_2 + pbl_3_2_2_3_3 + pbl_3_2_3_1_1 + pbl_3_2_3_1_2 + pbl_3_2_3_1_3 + pbl_3_2_3_2_1 + pbl_3_2_3_2_2 + pbl_3_2_3_2_3 + pbl_3_2_3_3_1 + pbl_3_2_3_3_2 + pbl_3_2_3_3_3 + pbl_3_3_1_1_1 + pbl_3_3_1_1_2 + pbl_3_3_1_1_3 + pbl_3_3_1_2_1 + pbl_3_3_1_2_2 + pbl_3_3_1_2_3 + pbl_3_3_1_3_1 + pbl_3_3_1_3_2 + pbl_3_3_1_3_3 + pbl_3_3_2_1_1 + pbl_3_3_2_1_2 + pbl_3_3_2_1_3 + pbl_3_3_2_2_1 + pbl_3_3_2_2_2 + pbl_3_3_2_2_3 + pbl_3_3_2_3_1 + pbl_3_3_2_3_2 + pbl_3_3_2_3_3 + pbl_3_3_3_1_1 + pbl_3_3_3_1_2 + pbl_3_3_3_1_3 + pbl_3_3_3_2_1 + pbl_3_3_3_2_2 + pbl_3_3_3_2_3 + pbl_3_3_3_3_1 + pbl_3_3_3_3_2 + pbl_3_3_3_3_3 + pil_d1_n1_1_1_1_1_1 + pil_d1_n1_1_1_1_1_2 + pil_d1_n1_1_1_1_1_3 + pil_d1_n1_1_1_1_2_1 + pil_d1_n1_1_1_1_2_2 + pil_d1_n1_1_1_1_2_3 + pil_d1_n1_1_1_1_3_1 + pil_d1_n1_1_1_1_3_2 + pil_d1_n1_1_1_1_3_3 + pil_d1_n1_1_1_2_1_1 + pil_d1_n1_1_1_2_1_2 + pil_d1_n1_1_1_2_1_3 + pil_d1_n1_1_1_2_2_1 + pil_d1_n1_1_1_2_2_2 + pil_d1_n1_1_1_2_2_3 + pil_d1_n1_1_1_2_3_1 + pil_d1_n1_1_1_2_3_2 + pil_d1_n1_1_1_2_3_3 + pil_d1_n1_1_1_3_1_1 + pil_d1_n1_1_1_3_1_2 + pil_d1_n1_1_1_3_1_3 + pil_d1_n1_1_1_3_2_1 + pil_d1_n1_1_1_3_2_2 + pil_d1_n1_1_1_3_2_3 + pil_d1_n1_1_1_3_3_1 + pil_d1_n1_1_1_3_3_2 + pil_d1_n1_1_1_3_3_3 + pil_d1_n1_1_2_1_1_1 + pil_d1_n1_1_2_1_1_2 + pil_d1_n1_1_2_1_1_3 + pil_d1_n1_1_2_1_2_1 + pil_d1_n1_1_2_1_2_2 + pil_d1_n1_1_2_1_2_3 + pil_d1_n1_1_2_1_3_1 + pil_d1_n1_1_2_1_3_2 + pil_d1_n1_1_2_1_3_3 + pil_d1_n1_1_2_2_1_1 + pil_d1_n1_1_2_2_1_2 + pil_d1_n1_1_2_2_1_3 + pil_d1_n1_1_2_2_2_1 + pil_d1_n1_1_2_2_2_2 + pil_d1_n1_1_2_2_2_3 + pil_d1_n1_1_2_2_3_1 + pil_d1_n1_1_2_2_3_2 + pil_d1_n1_1_2_2_3_3 + pil_d1_n1_1_2_3_1_1 + pil_d1_n1_1_2_3_1_2 + pil_d1_n1_1_2_3_1_3 + pil_d1_n1_1_2_3_2_1 + pil_d1_n1_1_2_3_2_2 + pil_d1_n1_1_2_3_2_3 + pil_d1_n1_1_2_3_3_1 + pil_d1_n1_1_2_3_3_2 + pil_d1_n1_1_2_3_3_3 + pil_d1_n1_1_3_1_1_1 + pil_d1_n1_1_3_1_1_2 + pil_d1_n1_1_3_1_1_3 + pil_d1_n1_1_3_1_2_1 + pil_d1_n1_1_3_1_2_2 + pil_d1_n1_1_3_1_2_3 + pil_d1_n1_1_3_1_3_1 + pil_d1_n1_1_3_1_3_2 + pil_d1_n1_1_3_1_3_3 + pil_d1_n1_1_3_2_1_1 + pil_d1_n1_1_3_2_1_2 + pil_d1_n1_1_3_2_1_3 + pil_d1_n1_1_3_2_2_1 + pil_d1_n1_1_3_2_2_2 + pil_d1_n1_1_3_2_2_3 + pil_d1_n1_1_3_2_3_1 + pil_d1_n1_1_3_2_3_2 + pil_d1_n1_1_3_2_3_3 + pil_d1_n1_1_3_3_1_1 + pil_d1_n1_1_3_3_1_2 + pil_d1_n1_1_3_3_1_3 + pil_d1_n1_1_3_3_2_1 + pil_d1_n1_1_3_3_2_2 + pil_d1_n1_1_3_3_2_3 + pil_d1_n1_1_3_3_3_1 + pil_d1_n1_1_3_3_3_2 + pil_d1_n1_1_3_3_3_3 + pil_d1_n1_2_1_1_1_1 + pil_d1_n1_2_1_1_1_2 + pil_d1_n1_2_1_1_1_3 + pil_d1_n1_2_1_1_2_1 + pil_d1_n1_2_1_1_2_2 + pil_d1_n1_2_1_1_2_3 + pil_d1_n1_2_1_1_3_1 + pil_d1_n1_2_1_1_3_2 + pil_d1_n1_2_1_1_3_3 + pil_d1_n1_2_1_2_1_1 + pil_d1_n1_2_1_2_1_2 + pil_d1_n1_2_1_2_1_3 + pil_d1_n1_2_1_2_2_1 + pil_d1_n1_2_1_2_2_2 + pil_d1_n1_2_1_2_2_3 + pil_d1_n1_2_1_2_3_1 + pil_d1_n1_2_1_2_3_2 + pil_d1_n1_2_1_2_3_3 + pil_d1_n1_2_1_3_1_1 + pil_d1_n1_2_1_3_1_2 + pil_d1_n1_2_1_3_1_3 + pil_d1_n1_2_1_3_2_1 + pil_d1_n1_2_1_3_2_2 + pil_d1_n1_2_1_3_2_3 + pil_d1_n1_2_1_3_3_1 + pil_d1_n1_2_1_3_3_2 + pil_d1_n1_2_1_3_3_3 + pil_d1_n1_2_2_1_1_1 + pil_d1_n1_2_2_1_1_2 + pil_d1_n1_2_2_1_1_3 + pil_d1_n1_2_2_1_2_1 + pil_d1_n1_2_2_1_2_2 + pil_d1_n1_2_2_1_2_3 + pil_d1_n1_2_2_1_3_1 + pil_d1_n1_2_2_1_3_2 + pil_d1_n1_2_2_1_3_3 + pil_d1_n1_2_2_2_1_1 + pil_d1_n1_2_2_2_1_2 + pil_d1_n1_2_2_2_1_3 + pil_d1_n1_2_2_2_2_1 + pil_d1_n1_2_2_2_2_2 + pil_d1_n1_2_2_2_2_3 + pil_d1_n1_2_2_2_3_1 + pil_d1_n1_2_2_2_3_2 + pil_d1_n1_2_2_2_3_3 + pil_d1_n1_2_2_3_1_1 + pil_d1_n1_2_2_3_1_2 + pil_d1_n1_2_2_3_1_3 + pil_d1_n1_2_2_3_2_1 + pil_d1_n1_2_2_3_2_2 + pil_d1_n1_2_2_3_2_3 + pil_d1_n1_2_2_3_3_1 + pil_d1_n1_2_2_3_3_2 + pil_d1_n1_2_2_3_3_3 + pil_d1_n1_2_3_1_1_1 + pil_d1_n1_2_3_1_1_2 + pil_d1_n1_2_3_1_1_3 + pil_d1_n1_2_3_1_2_1 + pil_d1_n1_2_3_1_2_2 + pil_d1_n1_2_3_1_2_3 + pil_d1_n1_2_3_1_3_1 + pil_d1_n1_2_3_1_3_2 + pil_d1_n1_2_3_1_3_3 + pil_d1_n1_2_3_2_1_1 + pil_d1_n1_2_3_2_1_2 + pil_d1_n1_2_3_2_1_3 + pil_d1_n1_2_3_2_2_1 + pil_d1_n1_2_3_2_2_2 + pil_d1_n1_2_3_2_2_3 + pil_d1_n1_2_3_2_3_1 + pil_d1_n1_2_3_2_3_2 + pil_d1_n1_2_3_2_3_3 + pil_d1_n1_2_3_3_1_1 + pil_d1_n1_2_3_3_1_2 + pil_d1_n1_2_3_3_1_3 + pil_d1_n1_2_3_3_2_1 + pil_d1_n1_2_3_3_2_2 + pil_d1_n1_2_3_3_2_3 + pil_d1_n1_2_3_3_3_1 + pil_d1_n1_2_3_3_3_2 + pil_d1_n1_2_3_3_3_3 + pil_d1_n1_3_1_1_1_1 + pil_d1_n1_3_1_1_1_2 + pil_d1_n1_3_1_1_1_3 + pil_d1_n1_3_1_1_2_1 + pil_d1_n1_3_1_1_2_2 + pil_d1_n1_3_1_1_2_3 + pil_d1_n1_3_1_1_3_1 + pil_d1_n1_3_1_1_3_2 + pil_d1_n1_3_1_1_3_3 + pil_d1_n1_3_1_2_1_1 + pil_d1_n1_3_1_2_1_2 + pil_d1_n1_3_1_2_1_3 + pil_d1_n1_3_1_2_2_1 + pil_d1_n1_3_1_2_2_2 + pil_d1_n1_3_1_2_2_3 + pil_d1_n1_3_1_2_3_1 + pil_d1_n1_3_1_2_3_2 + pil_d1_n1_3_1_2_3_3 + pil_d1_n1_3_1_3_1_1 + pil_d1_n1_3_1_3_1_2 + pil_d1_n1_3_1_3_1_3 + pil_d1_n1_3_1_3_2_1 + pil_d1_n1_3_1_3_2_2 + pil_d1_n1_3_1_3_2_3 + pil_d1_n1_3_1_3_3_1 + pil_d1_n1_3_1_3_3_2 + pil_d1_n1_3_1_3_3_3 + pil_d1_n1_3_2_1_1_1 + pil_d1_n1_3_2_1_1_2 + pil_d1_n1_3_2_1_1_3 + pil_d1_n1_3_2_1_2_1 + pil_d1_n1_3_2_1_2_2 + pil_d1_n1_3_2_1_2_3 + pil_d1_n1_3_2_1_3_1 + pil_d1_n1_3_2_1_3_2 + pil_d1_n1_3_2_1_3_3 + pil_d1_n1_3_2_2_1_1 + pil_d1_n1_3_2_2_1_2 + pil_d1_n1_3_2_2_1_3 + pil_d1_n1_3_2_2_2_1 + pil_d1_n1_3_2_2_2_2 + pil_d1_n1_3_2_2_2_3 + pil_d1_n1_3_2_2_3_1 + pil_d1_n1_3_2_2_3_2 + pil_d1_n1_3_2_2_3_3 + pil_d1_n1_3_2_3_1_1 + pil_d1_n1_3_2_3_1_2 + pil_d1_n1_3_2_3_1_3 + pil_d1_n1_3_2_3_2_1 + pil_d1_n1_3_2_3_2_2 + pil_d1_n1_3_2_3_2_3 + pil_d1_n1_3_2_3_3_1 + pil_d1_n1_3_2_3_3_2 + pil_d1_n1_3_2_3_3_3 + pil_d1_n1_3_3_1_1_1 + pil_d1_n1_3_3_1_1_2 + pil_d1_n1_3_3_1_1_3 + pil_d1_n1_3_3_1_2_1 + pil_d1_n1_3_3_1_2_2 + pil_d1_n1_3_3_1_2_3 + pil_d1_n1_3_3_1_3_1 + pil_d1_n1_3_3_1_3_2 + pil_d1_n1_3_3_1_3_3 + pil_d1_n1_3_3_2_1_1 + pil_d1_n1_3_3_2_1_2 + pil_d1_n1_3_3_2_1_3 + pil_d1_n1_3_3_2_2_1 + pil_d1_n1_3_3_2_2_2 + pil_d1_n1_3_3_2_2_3 + pil_d1_n1_3_3_2_3_1 + pil_d1_n1_3_3_2_3_2 + pil_d1_n1_3_3_2_3_3 + pil_d1_n1_3_3_3_1_1 + pil_d1_n1_3_3_3_1_2 + pil_d1_n1_3_3_3_1_3 + pil_d1_n1_3_3_3_2_1 + pil_d1_n1_3_3_3_2_2 + pil_d1_n1_3_3_3_2_3 + pil_d1_n1_3_3_3_3_1 + pil_d1_n1_3_3_3_3_2 + pil_d1_n1_3_3_3_3_3 + pil_d2_n1_1_1_1_1_1 + pil_d2_n1_1_1_1_1_2 + pil_d2_n1_1_1_1_1_3 + pil_d2_n1_1_1_1_2_1 + pil_d2_n1_1_1_1_2_2 + pil_d2_n1_1_1_1_2_3 + pil_d2_n1_1_1_1_3_1 + pil_d2_n1_1_1_1_3_2 + pil_d2_n1_1_1_1_3_3 + pil_d2_n1_1_1_2_1_1 + pil_d2_n1_1_1_2_1_2 + pil_d2_n1_1_1_2_1_3 + pil_d2_n1_1_1_2_2_1 + pil_d2_n1_1_1_2_2_2 + pil_d2_n1_1_1_2_2_3 + pil_d2_n1_1_1_2_3_1 + pil_d2_n1_1_1_2_3_2 + pil_d2_n1_1_1_2_3_3 + pil_d2_n1_1_1_3_1_1 + pil_d2_n1_1_1_3_1_2 + pil_d2_n1_1_1_3_1_3 + pil_d2_n1_1_1_3_2_1 + pil_d2_n1_1_1_3_2_2 + pil_d2_n1_1_1_3_2_3 + pil_d2_n1_1_1_3_3_1 + pil_d2_n1_1_1_3_3_2 + pil_d2_n1_1_1_3_3_3 + pil_d2_n1_1_2_1_1_1 + pil_d2_n1_1_2_1_1_2 + pil_d2_n1_1_2_1_1_3 + pil_d2_n1_1_2_1_2_1 + pil_d2_n1_1_2_1_2_2 + pil_d2_n1_1_2_1_2_3 + pil_d2_n1_1_2_1_3_1 + pil_d2_n1_1_2_1_3_2 + pil_d2_n1_1_2_1_3_3 + pil_d2_n1_1_2_2_1_1 + pil_d2_n1_1_2_2_1_2 + pil_d2_n1_1_2_2_1_3 + pil_d2_n1_1_2_2_2_1 + pil_d2_n1_1_2_2_2_2 + pil_d2_n1_1_2_2_2_3 + pil_d2_n1_1_2_2_3_1 + pil_d2_n1_1_2_2_3_2 + pil_d2_n1_1_2_2_3_3 + pil_d2_n1_1_2_3_1_1 + pil_d2_n1_1_2_3_1_2 + pil_d2_n1_1_2_3_1_3 + pil_d2_n1_1_2_3_2_1 + pil_d2_n1_1_2_3_2_2 + pil_d2_n1_1_2_3_2_3 + pil_d2_n1_1_2_3_3_1 + pil_d2_n1_1_2_3_3_2 + pil_d2_n1_1_2_3_3_3 + pil_d2_n1_1_3_1_1_1 + pil_d2_n1_1_3_1_1_2 + pil_d2_n1_1_3_1_1_3 + pil_d2_n1_1_3_1_2_1 + pil_d2_n1_1_3_1_2_2 + pil_d2_n1_1_3_1_2_3 + pil_d2_n1_1_3_1_3_1 + pil_d2_n1_1_3_1_3_2 + pil_d2_n1_1_3_1_3_3 + pil_d2_n1_1_3_2_1_1 + pil_d2_n1_1_3_2_1_2 + pil_d2_n1_1_3_2_1_3 + pil_d2_n1_1_3_2_2_1 + pil_d2_n1_1_3_2_2_2 + pil_d2_n1_1_3_2_2_3 + pil_d2_n1_1_3_2_3_1 + pil_d2_n1_1_3_2_3_2 + pil_d2_n1_1_3_2_3_3 + pil_d2_n1_1_3_3_1_1 + pil_d2_n1_1_3_3_1_2 + pil_d2_n1_1_3_3_1_3 + pil_d2_n1_1_3_3_2_1 + pil_d2_n1_1_3_3_2_2 + pil_d2_n1_1_3_3_2_3 + pil_d2_n1_1_3_3_3_1 + pil_d2_n1_1_3_3_3_2 + pil_d2_n1_1_3_3_3_3 + pil_d2_n1_2_1_1_1_1 + pil_d2_n1_2_1_1_1_2 + pil_d2_n1_2_1_1_1_3 + pil_d2_n1_2_1_1_2_1 + pil_d2_n1_2_1_1_2_2 + pil_d2_n1_2_1_1_2_3 + pil_d2_n1_2_1_1_3_1 + pil_d2_n1_2_1_1_3_2 + pil_d2_n1_2_1_1_3_3 + pil_d2_n1_2_1_2_1_1 + pil_d2_n1_2_1_2_1_2 + pil_d2_n1_2_1_2_1_3 + pil_d2_n1_2_1_2_2_1 + pil_d2_n1_2_1_2_2_2 + pil_d2_n1_2_1_2_2_3 + pil_d2_n1_2_1_2_3_1 + pil_d2_n1_2_1_2_3_2 + pil_d2_n1_2_1_2_3_3 + pil_d2_n1_2_1_3_1_1 + pil_d2_n1_2_1_3_1_2 + pil_d2_n1_2_1_3_1_3 + pil_d2_n1_2_1_3_2_1 + pil_d2_n1_2_1_3_2_2 + pil_d2_n1_2_1_3_2_3 + pil_d2_n1_2_1_3_3_1 + pil_d2_n1_2_1_3_3_2 + pil_d2_n1_2_1_3_3_3 + pil_d2_n1_2_2_1_1_1 + pil_d2_n1_2_2_1_1_2 + pil_d2_n1_2_2_1_1_3 + pil_d2_n1_2_2_1_2_1 + pil_d2_n1_2_2_1_2_2 + pil_d2_n1_2_2_1_2_3 + pil_d2_n1_2_2_1_3_1 + pil_d2_n1_2_2_1_3_2 + pil_d2_n1_2_2_1_3_3 + pil_d2_n1_2_2_2_1_1 + pil_d2_n1_2_2_2_1_2 + pil_d2_n1_2_2_2_1_3 + pil_d2_n1_2_2_2_2_1 + pil_d2_n1_2_2_2_2_2 + pil_d2_n1_2_2_2_2_3 + pil_d2_n1_2_2_2_3_1 + pil_d2_n1_2_2_2_3_2 + pil_d2_n1_2_2_2_3_3 + pil_d2_n1_2_2_3_1_1 + pil_d2_n1_2_2_3_1_2 + pil_d2_n1_2_2_3_1_3 + pil_d2_n1_2_2_3_2_1 + pil_d2_n1_2_2_3_2_2 + pil_d2_n1_2_2_3_2_3 + pil_d2_n1_2_2_3_3_1 + pil_d2_n1_2_2_3_3_2 + pil_d2_n1_2_2_3_3_3 + pil_d2_n1_2_3_1_1_1 + pil_d2_n1_2_3_1_1_2 + pil_d2_n1_2_3_1_1_3 + pil_d2_n1_2_3_1_2_1 + pil_d2_n1_2_3_1_2_2 + pil_d2_n1_2_3_1_2_3 + pil_d2_n1_2_3_1_3_1 + pil_d2_n1_2_3_1_3_2 + pil_d2_n1_2_3_1_3_3 + pil_d2_n1_2_3_2_1_1 + pil_d2_n1_2_3_2_1_2 + pil_d2_n1_2_3_2_1_3 + pil_d2_n1_2_3_2_2_1 + pil_d2_n1_2_3_2_2_2 + pil_d2_n1_2_3_2_2_3 + pil_d2_n1_2_3_2_3_1 + pil_d2_n1_2_3_2_3_2 + pil_d2_n1_2_3_2_3_3 + pil_d2_n1_2_3_3_1_1 + pil_d2_n1_2_3_3_1_2 + pil_d2_n1_2_3_3_1_3 + pil_d2_n1_2_3_3_2_1 + pil_d2_n1_2_3_3_2_2 + pil_d2_n1_2_3_3_2_3 + pil_d2_n1_2_3_3_3_1 + pil_d2_n1_2_3_3_3_2 + pil_d2_n1_2_3_3_3_3 + pil_d2_n1_3_1_1_1_1 + pil_d2_n1_3_1_1_1_2 + pil_d2_n1_3_1_1_1_3 + pil_d2_n1_3_1_1_2_1 + pil_d2_n1_3_1_1_2_2 + pil_d2_n1_3_1_1_2_3 + pil_d2_n1_3_1_1_3_1 + pil_d2_n1_3_1_1_3_2 + pil_d2_n1_3_1_1_3_3 + pil_d2_n1_3_1_2_1_1 + pil_d2_n1_3_1_2_1_2 + pil_d2_n1_3_1_2_1_3 + pil_d2_n1_3_1_2_2_1 + pil_d2_n1_3_1_2_2_2 + pil_d2_n1_3_1_2_2_3 + pil_d2_n1_3_1_2_3_1 + pil_d2_n1_3_1_2_3_2 + pil_d2_n1_3_1_2_3_3 + pil_d2_n1_3_1_3_1_1 + pil_d2_n1_3_1_3_1_2 + pil_d2_n1_3_1_3_1_3 + pil_d2_n1_3_1_3_2_1 + pil_d2_n1_3_1_3_2_2 + pil_d2_n1_3_1_3_2_3 + pil_d2_n1_3_1_3_3_1 + pil_d2_n1_3_1_3_3_2 + pil_d2_n1_3_1_3_3_3 + pil_d2_n1_3_2_1_1_1 + pil_d2_n1_3_2_1_1_2 + pil_d2_n1_3_2_1_1_3 + pil_d2_n1_3_2_1_2_1 + pil_d2_n1_3_2_1_2_2 + pil_d2_n1_3_2_1_2_3 + pil_d2_n1_3_2_1_3_1 + pil_d2_n1_3_2_1_3_2 + pil_d2_n1_3_2_1_3_3 + pil_d2_n1_3_2_2_1_1 + pil_d2_n1_3_2_2_1_2 + pil_d2_n1_3_2_2_1_3 + pil_d2_n1_3_2_2_2_1 + pil_d2_n1_3_2_2_2_2 + pil_d2_n1_3_2_2_2_3 + pil_d2_n1_3_2_2_3_1 + pil_d2_n1_3_2_2_3_2 + pil_d2_n1_3_2_2_3_3 + pil_d2_n1_3_2_3_1_1 + pil_d2_n1_3_2_3_1_2 + pil_d2_n1_3_2_3_1_3 + pil_d2_n1_3_2_3_2_1 + pil_d2_n1_3_2_3_2_2 + pil_d2_n1_3_2_3_2_3 + pil_d2_n1_3_2_3_3_1 + pil_d2_n1_3_2_3_3_2 + pil_d2_n1_3_2_3_3_3 + pil_d2_n1_3_3_1_1_1 + pil_d2_n1_3_3_1_1_2 + pil_d2_n1_3_3_1_1_3 + pil_d2_n1_3_3_1_2_1 + pil_d2_n1_3_3_1_2_2 + pil_d2_n1_3_3_1_2_3 + pil_d2_n1_3_3_1_3_1 + pil_d2_n1_3_3_1_3_2 + pil_d2_n1_3_3_1_3_3 + pil_d2_n1_3_3_2_1_1 + pil_d2_n1_3_3_2_1_2 + pil_d2_n1_3_3_2_1_3 + pil_d2_n1_3_3_2_2_1 + pil_d2_n1_3_3_2_2_2 + pil_d2_n1_3_3_2_2_3 + pil_d2_n1_3_3_2_3_1 + pil_d2_n1_3_3_2_3_2 + pil_d2_n1_3_3_2_3_3 + pil_d2_n1_3_3_3_1_1 + pil_d2_n1_3_3_3_1_2 + pil_d2_n1_3_3_3_1_3 + pil_d2_n1_3_3_3_2_1 + pil_d2_n1_3_3_3_2_2 + pil_d2_n1_3_3_3_2_3 + pil_d2_n1_3_3_3_3_1 + pil_d2_n1_3_3_3_3_2 + pil_d2_n1_3_3_3_3_3 + pil_d3_n1_1_1_1_1_1 + pil_d3_n1_1_1_1_1_2 + pil_d3_n1_1_1_1_1_3 + pil_d3_n1_1_1_1_2_1 + pil_d3_n1_1_1_1_2_2 + pil_d3_n1_1_1_1_2_3 + pil_d3_n1_1_1_1_3_1 + pil_d3_n1_1_1_1_3_2 + pil_d3_n1_1_1_1_3_3 + pil_d3_n1_1_1_2_1_1 + pil_d3_n1_1_1_2_1_2 + pil_d3_n1_1_1_2_1_3 + pil_d3_n1_1_1_2_2_1 + pil_d3_n1_1_1_2_2_2 + pil_d3_n1_1_1_2_2_3 + pil_d3_n1_1_1_2_3_1 + pil_d3_n1_1_1_2_3_2 + pil_d3_n1_1_1_2_3_3 + pil_d3_n1_1_1_3_1_1 + pil_d3_n1_1_1_3_1_2 + pil_d3_n1_1_1_3_1_3 + pil_d3_n1_1_1_3_2_1 + pil_d3_n1_1_1_3_2_2 + pil_d3_n1_1_1_3_2_3 + pil_d3_n1_1_1_3_3_1 + pil_d3_n1_1_1_3_3_2 + pil_d3_n1_1_1_3_3_3 + pil_d3_n1_1_2_1_1_1 + pil_d3_n1_1_2_1_1_2 + pil_d3_n1_1_2_1_1_3 + pil_d3_n1_1_2_1_2_1 + pil_d3_n1_1_2_1_2_2 + pil_d3_n1_1_2_1_2_3 + pil_d3_n1_1_2_1_3_1 + pil_d3_n1_1_2_1_3_2 + pil_d3_n1_1_2_1_3_3 + pil_d3_n1_1_2_2_1_1 + pil_d3_n1_1_2_2_1_2 + pil_d3_n1_1_2_2_1_3 + pil_d3_n1_1_2_2_2_1 + pil_d3_n1_1_2_2_2_2 + pil_d3_n1_1_2_2_2_3 + pil_d3_n1_1_2_2_3_1 + pil_d3_n1_1_2_2_3_2 + pil_d3_n1_1_2_2_3_3 + pil_d3_n1_1_2_3_1_1 + pil_d3_n1_1_2_3_1_2 + pil_d3_n1_1_2_3_1_3 + pil_d3_n1_1_2_3_2_1 + pil_d3_n1_1_2_3_2_2 + pil_d3_n1_1_2_3_2_3 + pil_d3_n1_1_2_3_3_1 + pil_d3_n1_1_2_3_3_2 + pil_d3_n1_1_2_3_3_3 + pil_d3_n1_1_3_1_1_1 + pil_d3_n1_1_3_1_1_2 + pil_d3_n1_1_3_1_1_3 + pil_d3_n1_1_3_1_2_1 + pil_d3_n1_1_3_1_2_2 + pil_d3_n1_1_3_1_2_3 + pil_d3_n1_1_3_1_3_1 + pil_d3_n1_1_3_1_3_2 + pil_d3_n1_1_3_1_3_3 + pil_d3_n1_1_3_2_1_1 + pil_d3_n1_1_3_2_1_2 + pil_d3_n1_1_3_2_1_3 + pil_d3_n1_1_3_2_2_1 + pil_d3_n1_1_3_2_2_2 + pil_d3_n1_1_3_2_2_3 + pil_d3_n1_1_3_2_3_1 + pil_d3_n1_1_3_2_3_2 + pil_d3_n1_1_3_2_3_3 + pil_d3_n1_1_3_3_1_1 + pil_d3_n1_1_3_3_1_2 + pil_d3_n1_1_3_3_1_3 + pil_d3_n1_1_3_3_2_1 + pil_d3_n1_1_3_3_2_2 + pil_d3_n1_1_3_3_2_3 + pil_d3_n1_1_3_3_3_1 + pil_d3_n1_1_3_3_3_2 + pil_d3_n1_1_3_3_3_3 + pil_d3_n1_2_1_1_1_1 + pil_d3_n1_2_1_1_1_2 + pil_d3_n1_2_1_1_1_3 + pil_d3_n1_2_1_1_2_1 + pil_d3_n1_2_1_1_2_2 + pil_d3_n1_2_1_1_2_3 + pil_d3_n1_2_1_1_3_1 + pil_d3_n1_2_1_1_3_2 + pil_d3_n1_2_1_1_3_3 + pil_d3_n1_2_1_2_1_1 + pil_d3_n1_2_1_2_1_2 + pil_d3_n1_2_1_2_1_3 + pil_d3_n1_2_1_2_2_1 + pil_d3_n1_2_1_2_2_2 + pil_d3_n1_2_1_2_2_3 + pil_d3_n1_2_1_2_3_1 + pil_d3_n1_2_1_2_3_2 + pil_d3_n1_2_1_2_3_3 + pil_d3_n1_2_1_3_1_1 + pil_d3_n1_2_1_3_1_2 + pil_d3_n1_2_1_3_1_3 + pil_d3_n1_2_1_3_2_1 + pil_d3_n1_2_1_3_2_2 + pil_d3_n1_2_1_3_2_3 + pil_d3_n1_2_1_3_3_1 + pil_d3_n1_2_1_3_3_2 + pil_d3_n1_2_1_3_3_3 + pil_d3_n1_2_2_1_1_1 + pil_d3_n1_2_2_1_1_2 + pil_d3_n1_2_2_1_1_3 + pil_d3_n1_2_2_1_2_1 + pil_d3_n1_2_2_1_2_2 + pil_d3_n1_2_2_1_2_3 + pil_d3_n1_2_2_1_3_1 + pil_d3_n1_2_2_1_3_2 + pil_d3_n1_2_2_1_3_3 + pil_d3_n1_2_2_2_1_1 + pil_d3_n1_2_2_2_1_2 + pil_d3_n1_2_2_2_1_3 + pil_d3_n1_2_2_2_2_1 + pil_d3_n1_2_2_2_2_2 + pil_d3_n1_2_2_2_2_3 + pil_d3_n1_2_2_2_3_1 + pil_d3_n1_2_2_2_3_2 + pil_d3_n1_2_2_2_3_3 + pil_d3_n1_2_2_3_1_1 + pil_d3_n1_2_2_3_1_2 + pil_d3_n1_2_2_3_1_3 + pil_d3_n1_2_2_3_2_1 + pil_d3_n1_2_2_3_2_2 + pil_d3_n1_2_2_3_2_3 + pil_d3_n1_2_2_3_3_1 + pil_d3_n1_2_2_3_3_2 + pil_d3_n1_2_2_3_3_3 + pil_d3_n1_2_3_1_1_1 + pil_d3_n1_2_3_1_1_2 + pil_d3_n1_2_3_1_1_3 + pil_d3_n1_2_3_1_2_1 + pil_d3_n1_2_3_1_2_2 + pil_d3_n1_2_3_1_2_3 + pil_d3_n1_2_3_1_3_1 + pil_d3_n1_2_3_1_3_2 + pil_d3_n1_2_3_1_3_3 + pil_d3_n1_2_3_2_1_1 + pil_d3_n1_2_3_2_1_2 + pil_d3_n1_2_3_2_1_3 + pil_d3_n1_2_3_2_2_1 + pil_d3_n1_2_3_2_2_2 + pil_d3_n1_2_3_2_2_3 + pil_d3_n1_2_3_2_3_1 + pil_d3_n1_2_3_2_3_2 + pil_d3_n1_2_3_2_3_3 + pil_d3_n1_2_3_3_1_1 + pil_d3_n1_2_3_3_1_2 + pil_d3_n1_2_3_3_1_3 + pil_d3_n1_2_3_3_2_1 + pil_d3_n1_2_3_3_2_2 + pil_d3_n1_2_3_3_2_3 + pil_d3_n1_2_3_3_3_1 + pil_d3_n1_2_3_3_3_2 + pil_d3_n1_2_3_3_3_3 + pil_d3_n1_3_1_1_1_1 + pil_d3_n1_3_1_1_1_2 + pil_d3_n1_3_1_1_1_3 + pil_d3_n1_3_1_1_2_1 + pil_d3_n1_3_1_1_2_2 + pil_d3_n1_3_1_1_2_3 + pil_d3_n1_3_1_1_3_1 + pil_d3_n1_3_1_1_3_2 + pil_d3_n1_3_1_1_3_3 + pil_d3_n1_3_1_2_1_1 + pil_d3_n1_3_1_2_1_2 + pil_d3_n1_3_1_2_1_3 + pil_d3_n1_3_1_2_2_1 + pil_d3_n1_3_1_2_2_2 + pil_d3_n1_3_1_2_2_3 + pil_d3_n1_3_1_2_3_1 + pil_d3_n1_3_1_2_3_2 + pil_d3_n1_3_1_2_3_3 + pil_d3_n1_3_1_3_1_1 + pil_d3_n1_3_1_3_1_2 + pil_d3_n1_3_1_3_1_3 + pil_d3_n1_3_1_3_2_1 + pil_d3_n1_3_1_3_2_2 + pil_d3_n1_3_1_3_2_3 + pil_d3_n1_3_1_3_3_1 + pil_d3_n1_3_1_3_3_2 + pil_d3_n1_3_1_3_3_3 + pil_d3_n1_3_2_1_1_1 + pil_d3_n1_3_2_1_1_2 + pil_d3_n1_3_2_1_1_3 + pil_d3_n1_3_2_1_2_1 + pil_d3_n1_3_2_1_2_2 + pil_d3_n1_3_2_1_2_3 + pil_d3_n1_3_2_1_3_1 + pil_d3_n1_3_2_1_3_2 + pil_d3_n1_3_2_1_3_3 + pil_d3_n1_3_2_2_1_1 + pil_d3_n1_3_2_2_1_2 + pil_d3_n1_3_2_2_1_3 + pil_d3_n1_3_2_2_2_1 + pil_d3_n1_3_2_2_2_2 + pil_d3_n1_3_2_2_2_3 + pil_d3_n1_3_2_2_3_1 + pil_d3_n1_3_2_2_3_2 + pil_d3_n1_3_2_2_3_3 + pil_d3_n1_3_2_3_1_1 + pil_d3_n1_3_2_3_1_2 + pil_d3_n1_3_2_3_1_3 + pil_d3_n1_3_2_3_2_1 + pil_d3_n1_3_2_3_2_2 + pil_d3_n1_3_2_3_2_3 + pil_d3_n1_3_2_3_3_1 + pil_d3_n1_3_2_3_3_2 + pil_d3_n1_3_2_3_3_3 + pil_d3_n1_3_3_1_1_1 + pil_d3_n1_3_3_1_1_2 + pil_d3_n1_3_3_1_1_3 + pil_d3_n1_3_3_1_2_1 + pil_d3_n1_3_3_1_2_2 + pil_d3_n1_3_3_1_2_3 + pil_d3_n1_3_3_1_3_1 + pil_d3_n1_3_3_1_3_2 + pil_d3_n1_3_3_1_3_3 + pil_d3_n1_3_3_2_1_1 + pil_d3_n1_3_3_2_1_2 + pil_d3_n1_3_3_2_1_3 + pil_d3_n1_3_3_2_2_1 + pil_d3_n1_3_3_2_2_2 + pil_d3_n1_3_3_2_2_3 + pil_d3_n1_3_3_2_3_1 + pil_d3_n1_3_3_2_3_2 + pil_d3_n1_3_3_2_3_3 + pil_d3_n1_3_3_3_1_1 + pil_d3_n1_3_3_3_1_2 + pil_d3_n1_3_3_3_1_3 + pil_d3_n1_3_3_3_2_1 + pil_d3_n1_3_3_3_2_2 + pil_d3_n1_3_3_3_2_3 + pil_d3_n1_3_3_3_3_1 + pil_d3_n1_3_3_3_3_2 + pil_d3_n1_3_3_3_3_3 + pil_d4_n1_1_1_1_1_1 + pil_d4_n1_1_1_1_1_2 + pil_d4_n1_1_1_1_1_3 + pil_d4_n1_1_1_1_2_1 + pil_d4_n1_1_1_1_2_2 + pil_d4_n1_1_1_1_2_3 + pil_d4_n1_1_1_1_3_1 + pil_d4_n1_1_1_1_3_2 + pil_d4_n1_1_1_1_3_3 + pil_d4_n1_1_1_2_1_1 + pil_d4_n1_1_1_2_1_2 + pil_d4_n1_1_1_2_1_3 + pil_d4_n1_1_1_2_2_1 + pil_d4_n1_1_1_2_2_2 + pil_d4_n1_1_1_2_2_3 + pil_d4_n1_1_1_2_3_1 + pil_d4_n1_1_1_2_3_2 + pil_d4_n1_1_1_2_3_3 + pil_d4_n1_1_1_3_1_1 + pil_d4_n1_1_1_3_1_2 + pil_d4_n1_1_1_3_1_3 + pil_d4_n1_1_1_3_2_1 + pil_d4_n1_1_1_3_2_2 + pil_d4_n1_1_1_3_2_3 + pil_d4_n1_1_1_3_3_1 + pil_d4_n1_1_1_3_3_2 + pil_d4_n1_1_1_3_3_3 + pil_d4_n1_1_2_1_1_1 + pil_d4_n1_1_2_1_1_2 + pil_d4_n1_1_2_1_1_3 + pil_d4_n1_1_2_1_2_1 + pil_d4_n1_1_2_1_2_2 + pil_d4_n1_1_2_1_2_3 + pil_d4_n1_1_2_1_3_1 + pil_d4_n1_1_2_1_3_2 + pil_d4_n1_1_2_1_3_3 + pil_d4_n1_1_2_2_1_1 + pil_d4_n1_1_2_2_1_2 + pil_d4_n1_1_2_2_1_3 + pil_d4_n1_1_2_2_2_1 + pil_d4_n1_1_2_2_2_2 + pil_d4_n1_1_2_2_2_3 + pil_d4_n1_1_2_2_3_1 + pil_d4_n1_1_2_2_3_2 + pil_d4_n1_1_2_2_3_3 + pil_d4_n1_1_2_3_1_1 + pil_d4_n1_1_2_3_1_2 + pil_d4_n1_1_2_3_1_3 + pil_d4_n1_1_2_3_2_1 + pil_d4_n1_1_2_3_2_2 + pil_d4_n1_1_2_3_2_3 + pil_d4_n1_1_2_3_3_1 + pil_d4_n1_1_2_3_3_2 + pil_d4_n1_1_2_3_3_3 + pil_d4_n1_1_3_1_1_1 + pil_d4_n1_1_3_1_1_2 + pil_d4_n1_1_3_1_1_3 + pil_d4_n1_1_3_1_2_1 + pil_d4_n1_1_3_1_2_2 + pil_d4_n1_1_3_1_2_3 + pil_d4_n1_1_3_1_3_1 + pil_d4_n1_1_3_1_3_2 + pil_d4_n1_1_3_1_3_3 + pil_d4_n1_1_3_2_1_1 + pil_d4_n1_1_3_2_1_2 + pil_d4_n1_1_3_2_1_3 + pil_d4_n1_1_3_2_2_1 + pil_d4_n1_1_3_2_2_2 + pil_d4_n1_1_3_2_2_3 + pil_d4_n1_1_3_2_3_1 + pil_d4_n1_1_3_2_3_2 + pil_d4_n1_1_3_2_3_3 + pil_d4_n1_1_3_3_1_1 + pil_d4_n1_1_3_3_1_2 + pil_d4_n1_1_3_3_1_3 + pil_d4_n1_1_3_3_2_1 + pil_d4_n1_1_3_3_2_2 + pil_d4_n1_1_3_3_2_3 + pil_d4_n1_1_3_3_3_1 + pil_d4_n1_1_3_3_3_2 + pil_d4_n1_1_3_3_3_3 + pil_d4_n1_2_1_1_1_1 + pil_d4_n1_2_1_1_1_2 + pil_d4_n1_2_1_1_1_3 + pil_d4_n1_2_1_1_2_1 + pil_d4_n1_2_1_1_2_2 + pil_d4_n1_2_1_1_2_3 + pil_d4_n1_2_1_1_3_1 + pil_d4_n1_2_1_1_3_2 + pil_d4_n1_2_1_1_3_3 + pil_d4_n1_2_1_2_1_1 + pil_d4_n1_2_1_2_1_2 + pil_d4_n1_2_1_2_1_3 + pil_d4_n1_2_1_2_2_1 + pil_d4_n1_2_1_2_2_2 + pil_d4_n1_2_1_2_2_3 + pil_d4_n1_2_1_2_3_1 + pil_d4_n1_2_1_2_3_2 + pil_d4_n1_2_1_2_3_3 + pil_d4_n1_2_1_3_1_1 + pil_d4_n1_2_1_3_1_2 + pil_d4_n1_2_1_3_1_3 + pil_d4_n1_2_1_3_2_1 + pil_d4_n1_2_1_3_2_2 + pil_d4_n1_2_1_3_2_3 + pil_d4_n1_2_1_3_3_1 + pil_d4_n1_2_1_3_3_2 + pil_d4_n1_2_1_3_3_3 + pil_d4_n1_2_2_1_1_1 + pil_d4_n1_2_2_1_1_2 + pil_d4_n1_2_2_1_1_3 + pil_d4_n1_2_2_1_2_1 + pil_d4_n1_2_2_1_2_2 + pil_d4_n1_2_2_1_2_3 + pil_d4_n1_2_2_1_3_1 + pil_d4_n1_2_2_1_3_2 + pil_d4_n1_2_2_1_3_3 + pil_d4_n1_2_2_2_1_1 + pil_d4_n1_2_2_2_1_2 + pil_d4_n1_2_2_2_1_3 + pil_d4_n1_2_2_2_2_1 + pil_d4_n1_2_2_2_2_2 + pil_d4_n1_2_2_2_2_3 + pil_d4_n1_2_2_2_3_1 + pil_d4_n1_2_2_2_3_2 + pil_d4_n1_2_2_2_3_3 + pil_d4_n1_2_2_3_1_1 + pil_d4_n1_2_2_3_1_2 + pil_d4_n1_2_2_3_1_3 + pil_d4_n1_2_2_3_2_1 + pil_d4_n1_2_2_3_2_2 + pil_d4_n1_2_2_3_2_3 + pil_d4_n1_2_2_3_3_1 + pil_d4_n1_2_2_3_3_2 + pil_d4_n1_2_2_3_3_3 + pil_d4_n1_2_3_1_1_1 + pil_d4_n1_2_3_1_1_2 + pil_d4_n1_2_3_1_1_3 + pil_d4_n1_2_3_1_2_1 + pil_d4_n1_2_3_1_2_2 + pil_d4_n1_2_3_1_2_3 + pil_d4_n1_2_3_1_3_1 + pil_d4_n1_2_3_1_3_2 + pil_d4_n1_2_3_1_3_3 + pil_d4_n1_2_3_2_1_1 + pil_d4_n1_2_3_2_1_2 + pil_d4_n1_2_3_2_1_3 + pil_d4_n1_2_3_2_2_1 + pil_d4_n1_2_3_2_2_2 + pil_d4_n1_2_3_2_2_3 + pil_d4_n1_2_3_2_3_1 + pil_d4_n1_2_3_2_3_2 + pil_d4_n1_2_3_2_3_3 + pil_d4_n1_2_3_3_1_1 + pil_d4_n1_2_3_3_1_2 + pil_d4_n1_2_3_3_1_3 + pil_d4_n1_2_3_3_2_1 + pil_d4_n1_2_3_3_2_2 + pil_d4_n1_2_3_3_2_3 + pil_d4_n1_2_3_3_3_1 + pil_d4_n1_2_3_3_3_2 + pil_d4_n1_2_3_3_3_3 + pil_d4_n1_3_1_1_1_1 + pil_d4_n1_3_1_1_1_2 + pil_d4_n1_3_1_1_1_3 + pil_d4_n1_3_1_1_2_1 + pil_d4_n1_3_1_1_2_2 + pil_d4_n1_3_1_1_2_3 + pil_d4_n1_3_1_1_3_1 + pil_d4_n1_3_1_1_3_2 + pil_d4_n1_3_1_1_3_3 + pil_d4_n1_3_1_2_1_1 + pil_d4_n1_3_1_2_1_2 + pil_d4_n1_3_1_2_1_3 + pil_d4_n1_3_1_2_2_1 + pil_d4_n1_3_1_2_2_2 + pil_d4_n1_3_1_2_2_3 + pil_d4_n1_3_1_2_3_1 + pil_d4_n1_3_1_2_3_2 + pil_d4_n1_3_1_2_3_3 + pil_d4_n1_3_1_3_1_1 + pil_d4_n1_3_1_3_1_2 + pil_d4_n1_3_1_3_1_3 + pil_d4_n1_3_1_3_2_1 + pil_d4_n1_3_1_3_2_2 + pil_d4_n1_3_1_3_2_3 + pil_d4_n1_3_1_3_3_1 + pil_d4_n1_3_1_3_3_2 + pil_d4_n1_3_1_3_3_3 + pil_d4_n1_3_2_1_1_1 + pil_d4_n1_3_2_1_1_2 + pil_d4_n1_3_2_1_1_3 + pil_d4_n1_3_2_1_2_1 + pil_d4_n1_3_2_1_2_2 + pil_d4_n1_3_2_1_2_3 + pil_d4_n1_3_2_1_3_1 + pil_d4_n1_3_2_1_3_2 + pil_d4_n1_3_2_1_3_3 + pil_d4_n1_3_2_2_1_1 + pil_d4_n1_3_2_2_1_2 + pil_d4_n1_3_2_2_1_3 + pil_d4_n1_3_2_2_2_1 + pil_d4_n1_3_2_2_2_2 + pil_d4_n1_3_2_2_2_3 + pil_d4_n1_3_2_2_3_1 + pil_d4_n1_3_2_2_3_2 + pil_d4_n1_3_2_2_3_3 + pil_d4_n1_3_2_3_1_1 + pil_d4_n1_3_2_3_1_2 + pil_d4_n1_3_2_3_1_3 + pil_d4_n1_3_2_3_2_1 + pil_d4_n1_3_2_3_2_2 + pil_d4_n1_3_2_3_2_3 + pil_d4_n1_3_2_3_3_1 + pil_d4_n1_3_2_3_3_2 + pil_d4_n1_3_2_3_3_3 + pil_d4_n1_3_3_1_1_1 + pil_d4_n1_3_3_1_1_2 + pil_d4_n1_3_3_1_1_3 + pil_d4_n1_3_3_1_2_1 + pil_d4_n1_3_3_1_2_2 + pil_d4_n1_3_3_1_2_3 + pil_d4_n1_3_3_1_3_1 + pil_d4_n1_3_3_1_3_2 + pil_d4_n1_3_3_1_3_3 + pil_d4_n1_3_3_2_1_1 + pil_d4_n1_3_3_2_1_2 + pil_d4_n1_3_3_2_1_3 + pil_d4_n1_3_3_2_2_1 + pil_d4_n1_3_3_2_2_2 + pil_d4_n1_3_3_2_2_3 + pil_d4_n1_3_3_2_3_1 + pil_d4_n1_3_3_2_3_2 + pil_d4_n1_3_3_2_3_3 + pil_d4_n1_3_3_3_1_1 + pil_d4_n1_3_3_3_1_2 + pil_d4_n1_3_3_3_1_3 + pil_d4_n1_3_3_3_2_1 + pil_d4_n1_3_3_3_2_2 + pil_d4_n1_3_3_3_2_3 + pil_d4_n1_3_3_3_3_1 + pil_d4_n1_3_3_3_3_2 + pil_d4_n1_3_3_3_3_3 + pil_d5_n1_1_1_1_1_1 + pil_d5_n1_1_1_1_1_2 + pil_d5_n1_1_1_1_1_3 + pil_d5_n1_1_1_1_2_1 + pil_d5_n1_1_1_1_2_2 + pil_d5_n1_1_1_1_2_3 + pil_d5_n1_1_1_1_3_1 + pil_d5_n1_1_1_1_3_2 + pil_d5_n1_1_1_1_3_3 + pil_d5_n1_1_1_2_1_1 + pil_d5_n1_1_1_2_1_2 + pil_d5_n1_1_1_2_1_3 + pil_d5_n1_1_1_2_2_1 + pil_d5_n1_1_1_2_2_2 + pil_d5_n1_1_1_2_2_3 + pil_d5_n1_1_1_2_3_1 + pil_d5_n1_1_1_2_3_2 + pil_d5_n1_1_1_2_3_3 + pil_d5_n1_1_1_3_1_1 + pil_d5_n1_1_1_3_1_2 + pil_d5_n1_1_1_3_1_3 + pil_d5_n1_1_1_3_2_1 + pil_d5_n1_1_1_3_2_2 + pil_d5_n1_1_1_3_2_3 + pil_d5_n1_1_1_3_3_1 + pil_d5_n1_1_1_3_3_2 + pil_d5_n1_1_1_3_3_3 + pil_d5_n1_1_2_1_1_1 + pil_d5_n1_1_2_1_1_2 + pil_d5_n1_1_2_1_1_3 + pil_d5_n1_1_2_1_2_1 + pil_d5_n1_1_2_1_2_2 + pil_d5_n1_1_2_1_2_3 + pil_d5_n1_1_2_1_3_1 + pil_d5_n1_1_2_1_3_2 + pil_d5_n1_1_2_1_3_3 + pil_d5_n1_1_2_2_1_1 + pil_d5_n1_1_2_2_1_2 + pil_d5_n1_1_2_2_1_3 + pil_d5_n1_1_2_2_2_1 + pil_d5_n1_1_2_2_2_2 + pil_d5_n1_1_2_2_2_3 + pil_d5_n1_1_2_2_3_1 + pil_d5_n1_1_2_2_3_2 + pil_d5_n1_1_2_2_3_3 + pil_d5_n1_1_2_3_1_1 + pil_d5_n1_1_2_3_1_2 + pil_d5_n1_1_2_3_1_3 + pil_d5_n1_1_2_3_2_1 + pil_d5_n1_1_2_3_2_2 + pil_d5_n1_1_2_3_2_3 + pil_d5_n1_1_2_3_3_1 + pil_d5_n1_1_2_3_3_2 + pil_d5_n1_1_2_3_3_3 + pil_d5_n1_1_3_1_1_1 + pil_d5_n1_1_3_1_1_2 + pil_d5_n1_1_3_1_1_3 + pil_d5_n1_1_3_1_2_1 + pil_d5_n1_1_3_1_2_2 + pil_d5_n1_1_3_1_2_3 + pil_d5_n1_1_3_1_3_1 + pil_d5_n1_1_3_1_3_2 + pil_d5_n1_1_3_1_3_3 + pil_d5_n1_1_3_2_1_1 + pil_d5_n1_1_3_2_1_2 + pil_d5_n1_1_3_2_1_3 + pil_d5_n1_1_3_2_2_1 + pil_d5_n1_1_3_2_2_2 + pil_d5_n1_1_3_2_2_3 + pil_d5_n1_1_3_2_3_1 + pil_d5_n1_1_3_2_3_2 + pil_d5_n1_1_3_2_3_3 + pil_d5_n1_1_3_3_1_1 + pil_d5_n1_1_3_3_1_2 + pil_d5_n1_1_3_3_1_3 + pil_d5_n1_1_3_3_2_1 + pil_d5_n1_1_3_3_2_2 + pil_d5_n1_1_3_3_2_3 + pil_d5_n1_1_3_3_3_1 + pil_d5_n1_1_3_3_3_2 + pil_d5_n1_1_3_3_3_3 + pil_d5_n1_2_1_1_1_1 + pil_d5_n1_2_1_1_1_2 + pil_d5_n1_2_1_1_1_3 + pil_d5_n1_2_1_1_2_1 + pil_d5_n1_2_1_1_2_2 + pil_d5_n1_2_1_1_2_3 + pil_d5_n1_2_1_1_3_1 + pil_d5_n1_2_1_1_3_2 + pil_d5_n1_2_1_1_3_3 + pil_d5_n1_2_1_2_1_1 + pil_d5_n1_2_1_2_1_2 + pil_d5_n1_2_1_2_1_3 + pil_d5_n1_2_1_2_2_1 + pil_d5_n1_2_1_2_2_2 + pil_d5_n1_2_1_2_2_3 + pil_d5_n1_2_1_2_3_1 + pil_d5_n1_2_1_2_3_2 + pil_d5_n1_2_1_2_3_3 + pil_d5_n1_2_1_3_1_1 + pil_d5_n1_2_1_3_1_2 + pil_d5_n1_2_1_3_1_3 + pil_d5_n1_2_1_3_2_1 + pil_d5_n1_2_1_3_2_2 + pil_d5_n1_2_1_3_2_3 + pil_d5_n1_2_1_3_3_1 + pil_d5_n1_2_1_3_3_2 + pil_d5_n1_2_1_3_3_3 + pil_d5_n1_2_2_1_1_1 + pil_d5_n1_2_2_1_1_2 + pil_d5_n1_2_2_1_1_3 + pil_d5_n1_2_2_1_2_1 + pil_d5_n1_2_2_1_2_2 + pil_d5_n1_2_2_1_2_3 + pil_d5_n1_2_2_1_3_1 + pil_d5_n1_2_2_1_3_2 + pil_d5_n1_2_2_1_3_3 + pil_d5_n1_2_2_2_1_1 + pil_d5_n1_2_2_2_1_2 + pil_d5_n1_2_2_2_1_3 + pil_d5_n1_2_2_2_2_1 + pil_d5_n1_2_2_2_2_2 + pil_d5_n1_2_2_2_2_3 + pil_d5_n1_2_2_2_3_1 + pil_d5_n1_2_2_2_3_2 + pil_d5_n1_2_2_2_3_3 + pil_d5_n1_2_2_3_1_1 + pil_d5_n1_2_2_3_1_2 + pil_d5_n1_2_2_3_1_3 + pil_d5_n1_2_2_3_2_1 + pil_d5_n1_2_2_3_2_2 + pil_d5_n1_2_2_3_2_3 + pil_d5_n1_2_2_3_3_1 + pil_d5_n1_2_2_3_3_2 + pil_d5_n1_2_2_3_3_3 + pil_d5_n1_2_3_1_1_1 + pil_d5_n1_2_3_1_1_2 + pil_d5_n1_2_3_1_1_3 + pil_d5_n1_2_3_1_2_1 + pil_d5_n1_2_3_1_2_2 + pil_d5_n1_2_3_1_2_3 + pil_d5_n1_2_3_1_3_1 + pil_d5_n1_2_3_1_3_2 + pil_d5_n1_2_3_1_3_3 + pil_d5_n1_2_3_2_1_1 + pil_d5_n1_2_3_2_1_2 + pil_d5_n1_2_3_2_1_3 + pil_d5_n1_2_3_2_2_1 + pil_d5_n1_2_3_2_2_2 + pil_d5_n1_2_3_2_2_3 + pil_d5_n1_2_3_2_3_1 + pil_d5_n1_2_3_2_3_2 + pil_d5_n1_2_3_2_3_3 + pil_d5_n1_2_3_3_1_1 + pil_d5_n1_2_3_3_1_2 + pil_d5_n1_2_3_3_1_3 + pil_d5_n1_2_3_3_2_1 + pil_d5_n1_2_3_3_2_2 + pil_d5_n1_2_3_3_2_3 + pil_d5_n1_2_3_3_3_1 + pil_d5_n1_2_3_3_3_2 + pil_d5_n1_2_3_3_3_3 + pil_d5_n1_3_1_1_1_1 + pil_d5_n1_3_1_1_1_2 + pil_d5_n1_3_1_1_1_3 + pil_d5_n1_3_1_1_2_1 + pil_d5_n1_3_1_1_2_2 + pil_d5_n1_3_1_1_2_3 + pil_d5_n1_3_1_1_3_1 + pil_d5_n1_3_1_1_3_2 + pil_d5_n1_3_1_1_3_3 + pil_d5_n1_3_1_2_1_1 + pil_d5_n1_3_1_2_1_2 + pil_d5_n1_3_1_2_1_3 + pil_d5_n1_3_1_2_2_1 + pil_d5_n1_3_1_2_2_2 + pil_d5_n1_3_1_2_2_3 + pil_d5_n1_3_1_2_3_1 + pil_d5_n1_3_1_2_3_2 + pil_d5_n1_3_1_2_3_3 + pil_d5_n1_3_1_3_1_1 + pil_d5_n1_3_1_3_1_2 + pil_d5_n1_3_1_3_1_3 + pil_d5_n1_3_1_3_2_1 + pil_d5_n1_3_1_3_2_2 + pil_d5_n1_3_1_3_2_3 + pil_d5_n1_3_1_3_3_1 + pil_d5_n1_3_1_3_3_2 + pil_d5_n1_3_1_3_3_3 + pil_d5_n1_3_2_1_1_1 + pil_d5_n1_3_2_1_1_2 + pil_d5_n1_3_2_1_1_3 + pil_d5_n1_3_2_1_2_1 + pil_d5_n1_3_2_1_2_2 + pil_d5_n1_3_2_1_2_3 + pil_d5_n1_3_2_1_3_1 + pil_d5_n1_3_2_1_3_2 + pil_d5_n1_3_2_1_3_3 + pil_d5_n1_3_2_2_1_1 + pil_d5_n1_3_2_2_1_2 + pil_d5_n1_3_2_2_1_3 + pil_d5_n1_3_2_2_2_1 + pil_d5_n1_3_2_2_2_2 + pil_d5_n1_3_2_2_2_3 + pil_d5_n1_3_2_2_3_1 + pil_d5_n1_3_2_2_3_2 + pil_d5_n1_3_2_2_3_3 + pil_d5_n1_3_2_3_1_1 + pil_d5_n1_3_2_3_1_2 + pil_d5_n1_3_2_3_1_3 + pil_d5_n1_3_2_3_2_1 + pil_d5_n1_3_2_3_2_2 + pil_d5_n1_3_2_3_2_3 + pil_d5_n1_3_2_3_3_1 + pil_d5_n1_3_2_3_3_2 + pil_d5_n1_3_2_3_3_3 + pil_d5_n1_3_3_1_1_1 + pil_d5_n1_3_3_1_1_2 + pil_d5_n1_3_3_1_1_3 + pil_d5_n1_3_3_1_2_1 + pil_d5_n1_3_3_1_2_2 + pil_d5_n1_3_3_1_2_3 + pil_d5_n1_3_3_1_3_1 + pil_d5_n1_3_3_1_3_2 + pil_d5_n1_3_3_1_3_3 + pil_d5_n1_3_3_2_1_1 + pil_d5_n1_3_3_2_1_2 + pil_d5_n1_3_3_2_1_3 + pil_d5_n1_3_3_2_2_1 + pil_d5_n1_3_3_2_2_2 + pil_d5_n1_3_3_2_2_3 + pil_d5_n1_3_3_2_3_1 + pil_d5_n1_3_3_2_3_2 + pil_d5_n1_3_3_2_3_3 + pil_d5_n1_3_3_3_1_1 + pil_d5_n1_3_3_3_1_2 + pil_d5_n1_3_3_3_1_3 + pil_d5_n1_3_3_3_2_1 + pil_d5_n1_3_3_3_2_2 + pil_d5_n1_3_3_3_2_3 + pil_d5_n1_3_3_3_3_1 + pil_d5_n1_3_3_3_3_2 + pil_d5_n1_3_3_3_3_3 + pol_d1_n1_1_1_1_1_1 + pol_d1_n1_1_1_1_1_2 + pol_d1_n1_1_1_1_1_3 + pol_d1_n1_1_1_1_2_1 + pol_d1_n1_1_1_1_2_2 + pol_d1_n1_1_1_1_2_3 + pol_d1_n1_1_1_1_3_1 + pol_d1_n1_1_1_1_3_2 + pol_d1_n1_1_1_1_3_3 + pol_d1_n1_1_1_2_1_1 + pol_d1_n1_1_1_2_1_2 + pol_d1_n1_1_1_2_1_3 + pol_d1_n1_1_1_2_2_1 + pol_d1_n1_1_1_2_2_2 + pol_d1_n1_1_1_2_2_3 + pol_d1_n1_1_1_2_3_1 + pol_d1_n1_1_1_2_3_2 + pol_d1_n1_1_1_2_3_3 + pol_d1_n1_1_1_3_1_1 + pol_d1_n1_1_1_3_1_2 + pol_d1_n1_1_1_3_1_3 + pol_d1_n1_1_1_3_2_1 + pol_d1_n1_1_1_3_2_2 + pol_d1_n1_1_1_3_2_3 + pol_d1_n1_1_1_3_3_1 + pol_d1_n1_1_1_3_3_2 + pol_d1_n1_1_1_3_3_3 + pol_d1_n1_1_2_1_1_1 + pol_d1_n1_1_2_1_1_2 + pol_d1_n1_1_2_1_1_3 + pol_d1_n1_1_2_1_2_1 + pol_d1_n1_1_2_1_2_2 + pol_d1_n1_1_2_1_2_3 + pol_d1_n1_1_2_1_3_1 + pol_d1_n1_1_2_1_3_2 + pol_d1_n1_1_2_1_3_3 + pol_d1_n1_1_2_2_1_1 + pol_d1_n1_1_2_2_1_2 + pol_d1_n1_1_2_2_1_3 + pol_d1_n1_1_2_2_2_1 + pol_d1_n1_1_2_2_2_2 + pol_d1_n1_1_2_2_2_3 + pol_d1_n1_1_2_2_3_1 + pol_d1_n1_1_2_2_3_2 + pol_d1_n1_1_2_2_3_3 + pol_d1_n1_1_2_3_1_1 + pol_d1_n1_1_2_3_1_2 + pol_d1_n1_1_2_3_1_3 + pol_d1_n1_1_2_3_2_1 + pol_d1_n1_1_2_3_2_2 + pol_d1_n1_1_2_3_2_3 + pol_d1_n1_1_2_3_3_1 + pol_d1_n1_1_2_3_3_2 + pol_d1_n1_1_2_3_3_3 + pol_d1_n1_1_3_1_1_1 + pol_d1_n1_1_3_1_1_2 + pol_d1_n1_1_3_1_1_3 + pol_d1_n1_1_3_1_2_1 + pol_d1_n1_1_3_1_2_2 + pol_d1_n1_1_3_1_2_3 + pol_d1_n1_1_3_1_3_1 + pol_d1_n1_1_3_1_3_2 + pol_d1_n1_1_3_1_3_3 + pol_d1_n1_1_3_2_1_1 + pol_d1_n1_1_3_2_1_2 + pol_d1_n1_1_3_2_1_3 + pol_d1_n1_1_3_2_2_1 + pol_d1_n1_1_3_2_2_2 + pol_d1_n1_1_3_2_2_3 + pol_d1_n1_1_3_2_3_1 + pol_d1_n1_1_3_2_3_2 + pol_d1_n1_1_3_2_3_3 + pol_d1_n1_1_3_3_1_1 + pol_d1_n1_1_3_3_1_2 + pol_d1_n1_1_3_3_1_3 + pol_d1_n1_1_3_3_2_1 + pol_d1_n1_1_3_3_2_2 + pol_d1_n1_1_3_3_2_3 + pol_d1_n1_1_3_3_3_1 + pol_d1_n1_1_3_3_3_2 + pol_d1_n1_1_3_3_3_3 + pol_d1_n1_2_1_1_1_1 + pol_d1_n1_2_1_1_1_2 + pol_d1_n1_2_1_1_1_3 + pol_d1_n1_2_1_1_2_1 + pol_d1_n1_2_1_1_2_2 + pol_d1_n1_2_1_1_2_3 + pol_d1_n1_2_1_1_3_1 + pol_d1_n1_2_1_1_3_2 + pol_d1_n1_2_1_1_3_3 + pol_d1_n1_2_1_2_1_1 + pol_d1_n1_2_1_2_1_2 + pol_d1_n1_2_1_2_1_3 + pol_d1_n1_2_1_2_2_1 + pol_d1_n1_2_1_2_2_2 + pol_d1_n1_2_1_2_2_3 + pol_d1_n1_2_1_2_3_1 + pol_d1_n1_2_1_2_3_2 + pol_d1_n1_2_1_2_3_3 + pol_d1_n1_2_1_3_1_1 + pol_d1_n1_2_1_3_1_2 + pol_d1_n1_2_1_3_1_3 + pol_d1_n1_2_1_3_2_1 + pol_d1_n1_2_1_3_2_2 + pol_d1_n1_2_1_3_2_3 + pol_d1_n1_2_1_3_3_1 + pol_d1_n1_2_1_3_3_2 + pol_d1_n1_2_1_3_3_3 + pol_d1_n1_2_2_1_1_1 + pol_d1_n1_2_2_1_1_2 + pol_d1_n1_2_2_1_1_3 + pol_d1_n1_2_2_1_2_1 + pol_d1_n1_2_2_1_2_2 + pol_d1_n1_2_2_1_2_3 + pol_d1_n1_2_2_1_3_1 + pol_d1_n1_2_2_1_3_2 + pol_d1_n1_2_2_1_3_3 + pol_d1_n1_2_2_2_1_1 + pol_d1_n1_2_2_2_1_2 + pol_d1_n1_2_2_2_1_3 + pol_d1_n1_2_2_2_2_1 + pol_d1_n1_2_2_2_2_2 + pol_d1_n1_2_2_2_2_3 + pol_d1_n1_2_2_2_3_1 + pol_d1_n1_2_2_2_3_2 + pol_d1_n1_2_2_2_3_3 + pol_d1_n1_2_2_3_1_1 + pol_d1_n1_2_2_3_1_2 + pol_d1_n1_2_2_3_1_3 + pol_d1_n1_2_2_3_2_1 + pol_d1_n1_2_2_3_2_2 + pol_d1_n1_2_2_3_2_3 + pol_d1_n1_2_2_3_3_1 + pol_d1_n1_2_2_3_3_2 + pol_d1_n1_2_2_3_3_3 + pol_d1_n1_2_3_1_1_1 + pol_d1_n1_2_3_1_1_2 + pol_d1_n1_2_3_1_1_3 + pol_d1_n1_2_3_1_2_1 + pol_d1_n1_2_3_1_2_2 + pol_d1_n1_2_3_1_2_3 + pol_d1_n1_2_3_1_3_1 + pol_d1_n1_2_3_1_3_2 + pol_d1_n1_2_3_1_3_3 + pol_d1_n1_2_3_2_1_1 + pol_d1_n1_2_3_2_1_2 + pol_d1_n1_2_3_2_1_3 + pol_d1_n1_2_3_2_2_1 + pol_d1_n1_2_3_2_2_2 + pol_d1_n1_2_3_2_2_3 + pol_d1_n1_2_3_2_3_1 + pol_d1_n1_2_3_2_3_2 + pol_d1_n1_2_3_2_3_3 + pol_d1_n1_2_3_3_1_1 + pol_d1_n1_2_3_3_1_2 + pol_d1_n1_2_3_3_1_3 + pol_d1_n1_2_3_3_2_1 + pol_d1_n1_2_3_3_2_2 + pol_d1_n1_2_3_3_2_3 + pol_d1_n1_2_3_3_3_1 + pol_d1_n1_2_3_3_3_2 + pol_d1_n1_2_3_3_3_3 + pol_d1_n1_3_1_1_1_1 + pol_d1_n1_3_1_1_1_2 + pol_d1_n1_3_1_1_1_3 + pol_d1_n1_3_1_1_2_1 + pol_d1_n1_3_1_1_2_2 + pol_d1_n1_3_1_1_2_3 + pol_d1_n1_3_1_1_3_1 + pol_d1_n1_3_1_1_3_2 + pol_d1_n1_3_1_1_3_3 + pol_d1_n1_3_1_2_1_1 + pol_d1_n1_3_1_2_1_2 + pol_d1_n1_3_1_2_1_3 + pol_d1_n1_3_1_2_2_1 + pol_d1_n1_3_1_2_2_2 + pol_d1_n1_3_1_2_2_3 + pol_d1_n1_3_1_2_3_1 + pol_d1_n1_3_1_2_3_2 + pol_d1_n1_3_1_2_3_3 + pol_d1_n1_3_1_3_1_1 + pol_d1_n1_3_1_3_1_2 + pol_d1_n1_3_1_3_1_3 + pol_d1_n1_3_1_3_2_1 + pol_d1_n1_3_1_3_2_2 + pol_d1_n1_3_1_3_2_3 + pol_d1_n1_3_1_3_3_1 + pol_d1_n1_3_1_3_3_2 + pol_d1_n1_3_1_3_3_3 + pol_d1_n1_3_2_1_1_1 + pol_d1_n1_3_2_1_1_2 + pol_d1_n1_3_2_1_1_3 + pol_d1_n1_3_2_1_2_1 + pol_d1_n1_3_2_1_2_2 + pol_d1_n1_3_2_1_2_3 + pol_d1_n1_3_2_1_3_1 + pol_d1_n1_3_2_1_3_2 + pol_d1_n1_3_2_1_3_3 + pol_d1_n1_3_2_2_1_1 + pol_d1_n1_3_2_2_1_2 + pol_d1_n1_3_2_2_1_3 + pol_d1_n1_3_2_2_2_1 + pol_d1_n1_3_2_2_2_2 + pol_d1_n1_3_2_2_2_3 + pol_d1_n1_3_2_2_3_1 + pol_d1_n1_3_2_2_3_2 + pol_d1_n1_3_2_2_3_3 + pol_d1_n1_3_2_3_1_1 + pol_d1_n1_3_2_3_1_2 + pol_d1_n1_3_2_3_1_3 + pol_d1_n1_3_2_3_2_1 + pol_d1_n1_3_2_3_2_2 + pol_d1_n1_3_2_3_2_3 + pol_d1_n1_3_2_3_3_1 + pol_d1_n1_3_2_3_3_2 + pol_d1_n1_3_2_3_3_3 + pol_d1_n1_3_3_1_1_1 + pol_d1_n1_3_3_1_1_2 + pol_d1_n1_3_3_1_1_3 + pol_d1_n1_3_3_1_2_1 + pol_d1_n1_3_3_1_2_2 + pol_d1_n1_3_3_1_2_3 + pol_d1_n1_3_3_1_3_1 + pol_d1_n1_3_3_1_3_2 + pol_d1_n1_3_3_1_3_3 + pol_d1_n1_3_3_2_1_1 + pol_d1_n1_3_3_2_1_2 + pol_d1_n1_3_3_2_1_3 + pol_d1_n1_3_3_2_2_1 + pol_d1_n1_3_3_2_2_2 + pol_d1_n1_3_3_2_2_3 + pol_d1_n1_3_3_2_3_1 + pol_d1_n1_3_3_2_3_2 + pol_d1_n1_3_3_2_3_3 + pol_d1_n1_3_3_3_1_1 + pol_d1_n1_3_3_3_1_2 + pol_d1_n1_3_3_3_1_3 + pol_d1_n1_3_3_3_2_1 + pol_d1_n1_3_3_3_2_2 + pol_d1_n1_3_3_3_2_3 + pol_d1_n1_3_3_3_3_1 + pol_d1_n1_3_3_3_3_2 + pol_d1_n1_3_3_3_3_3 + pol_d2_n1_1_1_1_1_1 + pol_d2_n1_1_1_1_1_2 + pol_d2_n1_1_1_1_1_3 + pol_d2_n1_1_1_1_2_1 + pol_d2_n1_1_1_1_2_2 + pol_d2_n1_1_1_1_2_3 + pol_d2_n1_1_1_1_3_1 + pol_d2_n1_1_1_1_3_2 + pol_d2_n1_1_1_1_3_3 + pol_d2_n1_1_1_2_1_1 + pol_d2_n1_1_1_2_1_2 + pol_d2_n1_1_1_2_1_3 + pol_d2_n1_1_1_2_2_1 + pol_d2_n1_1_1_2_2_2 + pol_d2_n1_1_1_2_2_3 + pol_d2_n1_1_1_2_3_1 + pol_d2_n1_1_1_2_3_2 + pol_d2_n1_1_1_2_3_3 + pol_d2_n1_1_1_3_1_1 + pol_d2_n1_1_1_3_1_2 + pol_d2_n1_1_1_3_1_3 + pol_d2_n1_1_1_3_2_1 + pol_d2_n1_1_1_3_2_2 + pol_d2_n1_1_1_3_2_3 + pol_d2_n1_1_1_3_3_1 + pol_d2_n1_1_1_3_3_2 + pol_d2_n1_1_1_3_3_3 + pol_d2_n1_1_2_1_1_1 + pol_d2_n1_1_2_1_1_2 + pol_d2_n1_1_2_1_1_3 + pol_d2_n1_1_2_1_2_1 + pol_d2_n1_1_2_1_2_2 + pol_d2_n1_1_2_1_2_3 + pol_d2_n1_1_2_1_3_1 + pol_d2_n1_1_2_1_3_2 + pol_d2_n1_1_2_1_3_3 + pol_d2_n1_1_2_2_1_1 + pol_d2_n1_1_2_2_1_2 + pol_d2_n1_1_2_2_1_3 + pol_d2_n1_1_2_2_2_1 + pol_d2_n1_1_2_2_2_2 + pol_d2_n1_1_2_2_2_3 + pol_d2_n1_1_2_2_3_1 + pol_d2_n1_1_2_2_3_2 + pol_d2_n1_1_2_2_3_3 + pol_d2_n1_1_2_3_1_1 + pol_d2_n1_1_2_3_1_2 + pol_d2_n1_1_2_3_1_3 + pol_d2_n1_1_2_3_2_1 + pol_d2_n1_1_2_3_2_2 + pol_d2_n1_1_2_3_2_3 + pol_d2_n1_1_2_3_3_1 + pol_d2_n1_1_2_3_3_2 + pol_d2_n1_1_2_3_3_3 + pol_d2_n1_1_3_1_1_1 + pol_d2_n1_1_3_1_1_2 + pol_d2_n1_1_3_1_1_3 + pol_d2_n1_1_3_1_2_1 + pol_d2_n1_1_3_1_2_2 + pol_d2_n1_1_3_1_2_3 + pol_d2_n1_1_3_1_3_1 + pol_d2_n1_1_3_1_3_2 + pol_d2_n1_1_3_1_3_3 + pol_d2_n1_1_3_2_1_1 + pol_d2_n1_1_3_2_1_2 + pol_d2_n1_1_3_2_1_3 + pol_d2_n1_1_3_2_2_1 + pol_d2_n1_1_3_2_2_2 + pol_d2_n1_1_3_2_2_3 + pol_d2_n1_1_3_2_3_1 + pol_d2_n1_1_3_2_3_2 + pol_d2_n1_1_3_2_3_3 + pol_d2_n1_1_3_3_1_1 + pol_d2_n1_1_3_3_1_2 + pol_d2_n1_1_3_3_1_3 + pol_d2_n1_1_3_3_2_1 + pol_d2_n1_1_3_3_2_2 + pol_d2_n1_1_3_3_2_3 + pol_d2_n1_1_3_3_3_1 + pol_d2_n1_1_3_3_3_2 + pol_d2_n1_1_3_3_3_3 + pol_d2_n1_2_1_1_1_1 + pol_d2_n1_2_1_1_1_2 + pol_d2_n1_2_1_1_1_3 + pol_d2_n1_2_1_1_2_1 + pol_d2_n1_2_1_1_2_2 + pol_d2_n1_2_1_1_2_3 + pol_d2_n1_2_1_1_3_1 + pol_d2_n1_2_1_1_3_2 + pol_d2_n1_2_1_1_3_3 + pol_d2_n1_2_1_2_1_1 + pol_d2_n1_2_1_2_1_2 + pol_d2_n1_2_1_2_1_3 + pol_d2_n1_2_1_2_2_1 + pol_d2_n1_2_1_2_2_2 + pol_d2_n1_2_1_2_2_3 + pol_d2_n1_2_1_2_3_1 + pol_d2_n1_2_1_2_3_2 + pol_d2_n1_2_1_2_3_3 + pol_d2_n1_2_1_3_1_1 + pol_d2_n1_2_1_3_1_2 + pol_d2_n1_2_1_3_1_3 + pol_d2_n1_2_1_3_2_1 + pol_d2_n1_2_1_3_2_2 + pol_d2_n1_2_1_3_2_3 + pol_d2_n1_2_1_3_3_1 + pol_d2_n1_2_1_3_3_2 + pol_d2_n1_2_1_3_3_3 + pol_d2_n1_2_2_1_1_1 + pol_d2_n1_2_2_1_1_2 + pol_d2_n1_2_2_1_1_3 + pol_d2_n1_2_2_1_2_1 + pol_d2_n1_2_2_1_2_2 + pol_d2_n1_2_2_1_2_3 + pol_d2_n1_2_2_1_3_1 + pol_d2_n1_2_2_1_3_2 + pol_d2_n1_2_2_1_3_3 + pol_d2_n1_2_2_2_1_1 + pol_d2_n1_2_2_2_1_2 + pol_d2_n1_2_2_2_1_3 + pol_d2_n1_2_2_2_2_1 + pol_d2_n1_2_2_2_2_2 + pol_d2_n1_2_2_2_2_3 + pol_d2_n1_2_2_2_3_1 + pol_d2_n1_2_2_2_3_2 + pol_d2_n1_2_2_2_3_3 + pol_d2_n1_2_2_3_1_1 + pol_d2_n1_2_2_3_1_2 + pol_d2_n1_2_2_3_1_3 + pol_d2_n1_2_2_3_2_1 + pol_d2_n1_2_2_3_2_2 + pol_d2_n1_2_2_3_2_3 + pol_d2_n1_2_2_3_3_1 + pol_d2_n1_2_2_3_3_2 + pol_d2_n1_2_2_3_3_3 + pol_d2_n1_2_3_1_1_1 + pol_d2_n1_2_3_1_1_2 + pol_d2_n1_2_3_1_1_3 + pol_d2_n1_2_3_1_2_1 + pol_d2_n1_2_3_1_2_2 + pol_d2_n1_2_3_1_2_3 + pol_d2_n1_2_3_1_3_1 + pol_d2_n1_2_3_1_3_2 + pol_d2_n1_2_3_1_3_3 + pol_d2_n1_2_3_2_1_1 + pol_d2_n1_2_3_2_1_2 + pol_d2_n1_2_3_2_1_3 + pol_d2_n1_2_3_2_2_1 + pol_d2_n1_2_3_2_2_2 + pol_d2_n1_2_3_2_2_3 + pol_d2_n1_2_3_2_3_1 + pol_d2_n1_2_3_2_3_2 + pol_d2_n1_2_3_2_3_3 + pol_d2_n1_2_3_3_1_1 + pol_d2_n1_2_3_3_1_2 + pol_d2_n1_2_3_3_1_3 + pol_d2_n1_2_3_3_2_1 + pol_d2_n1_2_3_3_2_2 + pol_d2_n1_2_3_3_2_3 + pol_d2_n1_2_3_3_3_1 + pol_d2_n1_2_3_3_3_2 + pol_d2_n1_2_3_3_3_3 + pol_d2_n1_3_1_1_1_1 + pol_d2_n1_3_1_1_1_2 + pol_d2_n1_3_1_1_1_3 + pol_d2_n1_3_1_1_2_1 + pol_d2_n1_3_1_1_2_2 + pol_d2_n1_3_1_1_2_3 + pol_d2_n1_3_1_1_3_1 + pol_d2_n1_3_1_1_3_2 + pol_d2_n1_3_1_1_3_3 + pol_d2_n1_3_1_2_1_1 + pol_d2_n1_3_1_2_1_2 + pol_d2_n1_3_1_2_1_3 + pol_d2_n1_3_1_2_2_1 + pol_d2_n1_3_1_2_2_2 + pol_d2_n1_3_1_2_2_3 + pol_d2_n1_3_1_2_3_1 + pol_d2_n1_3_1_2_3_2 + pol_d2_n1_3_1_2_3_3 + pol_d2_n1_3_1_3_1_1 + pol_d2_n1_3_1_3_1_2 + pol_d2_n1_3_1_3_1_3 + pol_d2_n1_3_1_3_2_1 + pol_d2_n1_3_1_3_2_2 + pol_d2_n1_3_1_3_2_3 + pol_d2_n1_3_1_3_3_1 + pol_d2_n1_3_1_3_3_2 + pol_d2_n1_3_1_3_3_3 + pol_d2_n1_3_2_1_1_1 + pol_d2_n1_3_2_1_1_2 + pol_d2_n1_3_2_1_1_3 + pol_d2_n1_3_2_1_2_1 + pol_d2_n1_3_2_1_2_2 + pol_d2_n1_3_2_1_2_3 + pol_d2_n1_3_2_1_3_1 + pol_d2_n1_3_2_1_3_2 + pol_d2_n1_3_2_1_3_3 + pol_d2_n1_3_2_2_1_1 + pol_d2_n1_3_2_2_1_2 + pol_d2_n1_3_2_2_1_3 + pol_d2_n1_3_2_2_2_1 + pol_d2_n1_3_2_2_2_2 + pol_d2_n1_3_2_2_2_3 + pol_d2_n1_3_2_2_3_1 + pol_d2_n1_3_2_2_3_2 + pol_d2_n1_3_2_2_3_3 + pol_d2_n1_3_2_3_1_1 + pol_d2_n1_3_2_3_1_2 + pol_d2_n1_3_2_3_1_3 + pol_d2_n1_3_2_3_2_1 + pol_d2_n1_3_2_3_2_2 + pol_d2_n1_3_2_3_2_3 + pol_d2_n1_3_2_3_3_1 + pol_d2_n1_3_2_3_3_2 + pol_d2_n1_3_2_3_3_3 + pol_d2_n1_3_3_1_1_1 + pol_d2_n1_3_3_1_1_2 + pol_d2_n1_3_3_1_1_3 + pol_d2_n1_3_3_1_2_1 + pol_d2_n1_3_3_1_2_2 + pol_d2_n1_3_3_1_2_3 + pol_d2_n1_3_3_1_3_1 + pol_d2_n1_3_3_1_3_2 + pol_d2_n1_3_3_1_3_3 + pol_d2_n1_3_3_2_1_1 + pol_d2_n1_3_3_2_1_2 + pol_d2_n1_3_3_2_1_3 + pol_d2_n1_3_3_2_2_1 + pol_d2_n1_3_3_2_2_2 + pol_d2_n1_3_3_2_2_3 + pol_d2_n1_3_3_2_3_1 + pol_d2_n1_3_3_2_3_2 + pol_d2_n1_3_3_2_3_3 + pol_d2_n1_3_3_3_1_1 + pol_d2_n1_3_3_3_1_2 + pol_d2_n1_3_3_3_1_3 + pol_d2_n1_3_3_3_2_1 + pol_d2_n1_3_3_3_2_2 + pol_d2_n1_3_3_3_2_3 + pol_d2_n1_3_3_3_3_1 + pol_d2_n1_3_3_3_3_2 + pol_d2_n1_3_3_3_3_3 + pol_d3_n1_1_1_1_1_1 + pol_d3_n1_1_1_1_1_2 + pol_d3_n1_1_1_1_1_3 + pol_d3_n1_1_1_1_2_1 + pol_d3_n1_1_1_1_2_2 + pol_d3_n1_1_1_1_2_3 + pol_d3_n1_1_1_1_3_1 + pol_d3_n1_1_1_1_3_2 + pol_d3_n1_1_1_1_3_3 + pol_d3_n1_1_1_2_1_1 + pol_d3_n1_1_1_2_1_2 + pol_d3_n1_1_1_2_1_3 + pol_d3_n1_1_1_2_2_1 + pol_d3_n1_1_1_2_2_2 + pol_d3_n1_1_1_2_2_3 + pol_d3_n1_1_1_2_3_1 + pol_d3_n1_1_1_2_3_2 + pol_d3_n1_1_1_2_3_3 + pol_d3_n1_1_1_3_1_1 + pol_d3_n1_1_1_3_1_2 + pol_d3_n1_1_1_3_1_3 + pol_d3_n1_1_1_3_2_1 + pol_d3_n1_1_1_3_2_2 + pol_d3_n1_1_1_3_2_3 + pol_d3_n1_1_1_3_3_1 + pol_d3_n1_1_1_3_3_2 + pol_d3_n1_1_1_3_3_3 + pol_d3_n1_1_2_1_1_1 + pol_d3_n1_1_2_1_1_2 + pol_d3_n1_1_2_1_1_3 + pol_d3_n1_1_2_1_2_1 + pol_d3_n1_1_2_1_2_2 + pol_d3_n1_1_2_1_2_3 + pol_d3_n1_1_2_1_3_1 + pol_d3_n1_1_2_1_3_2 + pol_d3_n1_1_2_1_3_3 + pol_d3_n1_1_2_2_1_1 + pol_d3_n1_1_2_2_1_2 + pol_d3_n1_1_2_2_1_3 + pol_d3_n1_1_2_2_2_1 + pol_d3_n1_1_2_2_2_2 + pol_d3_n1_1_2_2_2_3 + pol_d3_n1_1_2_2_3_1 + pol_d3_n1_1_2_2_3_2 + pol_d3_n1_1_2_2_3_3 + pol_d3_n1_1_2_3_1_1 + pol_d3_n1_1_2_3_1_2 + pol_d3_n1_1_2_3_1_3 + pol_d3_n1_1_2_3_2_1 + pol_d3_n1_1_2_3_2_2 + pol_d3_n1_1_2_3_2_3 + pol_d3_n1_1_2_3_3_1 + pol_d3_n1_1_2_3_3_2 + pol_d3_n1_1_2_3_3_3 + pol_d3_n1_1_3_1_1_1 + pol_d3_n1_1_3_1_1_2 + pol_d3_n1_1_3_1_1_3 + pol_d3_n1_1_3_1_2_1 + pol_d3_n1_1_3_1_2_2 + pol_d3_n1_1_3_1_2_3 + pol_d3_n1_1_3_1_3_1 + pol_d3_n1_1_3_1_3_2 + pol_d3_n1_1_3_1_3_3 + pol_d3_n1_1_3_2_1_1 + pol_d3_n1_1_3_2_1_2 + pol_d3_n1_1_3_2_1_3 + pol_d3_n1_1_3_2_2_1 + pol_d3_n1_1_3_2_2_2 + pol_d3_n1_1_3_2_2_3 + pol_d3_n1_1_3_2_3_1 + pol_d3_n1_1_3_2_3_2 + pol_d3_n1_1_3_2_3_3 + pol_d3_n1_1_3_3_1_1 + pol_d3_n1_1_3_3_1_2 + pol_d3_n1_1_3_3_1_3 + pol_d3_n1_1_3_3_2_1 + pol_d3_n1_1_3_3_2_2 + pol_d3_n1_1_3_3_2_3 + pol_d3_n1_1_3_3_3_1 + pol_d3_n1_1_3_3_3_2 + pol_d3_n1_1_3_3_3_3 + pol_d3_n1_2_1_1_1_1 + pol_d3_n1_2_1_1_1_2 + pol_d3_n1_2_1_1_1_3 + pol_d3_n1_2_1_1_2_1 + pol_d3_n1_2_1_1_2_2 + pol_d3_n1_2_1_1_2_3 + pol_d3_n1_2_1_1_3_1 + pol_d3_n1_2_1_1_3_2 + pol_d3_n1_2_1_1_3_3 + pol_d3_n1_2_1_2_1_1 + pol_d3_n1_2_1_2_1_2 + pol_d3_n1_2_1_2_1_3 + pol_d3_n1_2_1_2_2_1 + pol_d3_n1_2_1_2_2_2 + pol_d3_n1_2_1_2_2_3 + pol_d3_n1_2_1_2_3_1 + pol_d3_n1_2_1_2_3_2 + pol_d3_n1_2_1_2_3_3 + pol_d3_n1_2_1_3_1_1 + pol_d3_n1_2_1_3_1_2 + pol_d3_n1_2_1_3_1_3 + pol_d3_n1_2_1_3_2_1 + pol_d3_n1_2_1_3_2_2 + pol_d3_n1_2_1_3_2_3 + pol_d3_n1_2_1_3_3_1 + pol_d3_n1_2_1_3_3_2 + pol_d3_n1_2_1_3_3_3 + pol_d3_n1_2_2_1_1_1 + pol_d3_n1_2_2_1_1_2 + pol_d3_n1_2_2_1_1_3 + pol_d3_n1_2_2_1_2_1 + pol_d3_n1_2_2_1_2_2 + pol_d3_n1_2_2_1_2_3 + pol_d3_n1_2_2_1_3_1 + pol_d3_n1_2_2_1_3_2 + pol_d3_n1_2_2_1_3_3 + pol_d3_n1_2_2_2_1_1 + pol_d3_n1_2_2_2_1_2 + pol_d3_n1_2_2_2_1_3 + pol_d3_n1_2_2_2_2_1 + pol_d3_n1_2_2_2_2_2 + pol_d3_n1_2_2_2_2_3 + pol_d3_n1_2_2_2_3_1 + pol_d3_n1_2_2_2_3_2 + pol_d3_n1_2_2_2_3_3 + pol_d3_n1_2_2_3_1_1 + pol_d3_n1_2_2_3_1_2 + pol_d3_n1_2_2_3_1_3 + pol_d3_n1_2_2_3_2_1 + pol_d3_n1_2_2_3_2_2 + pol_d3_n1_2_2_3_2_3 + pol_d3_n1_2_2_3_3_1 + pol_d3_n1_2_2_3_3_2 + pol_d3_n1_2_2_3_3_3 + pol_d3_n1_2_3_1_1_1 + pol_d3_n1_2_3_1_1_2 + pol_d3_n1_2_3_1_1_3 + pol_d3_n1_2_3_1_2_1 + pol_d3_n1_2_3_1_2_2 + pol_d3_n1_2_3_1_2_3 + pol_d3_n1_2_3_1_3_1 + pol_d3_n1_2_3_1_3_2 + pol_d3_n1_2_3_1_3_3 + pol_d3_n1_2_3_2_1_1 + pol_d3_n1_2_3_2_1_2 + pol_d3_n1_2_3_2_1_3 + pol_d3_n1_2_3_2_2_1 + pol_d3_n1_2_3_2_2_2 + pol_d3_n1_2_3_2_2_3 + pol_d3_n1_2_3_2_3_1 + pol_d3_n1_2_3_2_3_2 + pol_d3_n1_2_3_2_3_3 + pol_d3_n1_2_3_3_1_1 + pol_d3_n1_2_3_3_1_2 + pol_d3_n1_2_3_3_1_3 + pol_d3_n1_2_3_3_2_1 + pol_d3_n1_2_3_3_2_2 + pol_d3_n1_2_3_3_2_3 + pol_d3_n1_2_3_3_3_1 + pol_d3_n1_2_3_3_3_2 + pol_d3_n1_2_3_3_3_3 + pol_d3_n1_3_1_1_1_1 + pol_d3_n1_3_1_1_1_2 + pol_d3_n1_3_1_1_1_3 + pol_d3_n1_3_1_1_2_1 + pol_d3_n1_3_1_1_2_2 + pol_d3_n1_3_1_1_2_3 + pol_d3_n1_3_1_1_3_1 + pol_d3_n1_3_1_1_3_2 + pol_d3_n1_3_1_1_3_3 + pol_d3_n1_3_1_2_1_1 + pol_d3_n1_3_1_2_1_2 + pol_d3_n1_3_1_2_1_3 + pol_d3_n1_3_1_2_2_1 + pol_d3_n1_3_1_2_2_2 + pol_d3_n1_3_1_2_2_3 + pol_d3_n1_3_1_2_3_1 + pol_d3_n1_3_1_2_3_2 + pol_d3_n1_3_1_2_3_3 + pol_d3_n1_3_1_3_1_1 + pol_d3_n1_3_1_3_1_2 + pol_d3_n1_3_1_3_1_3 + pol_d3_n1_3_1_3_2_1 + pol_d3_n1_3_1_3_2_2 + pol_d3_n1_3_1_3_2_3 + pol_d3_n1_3_1_3_3_1 + pol_d3_n1_3_1_3_3_2 + pol_d3_n1_3_1_3_3_3 + pol_d3_n1_3_2_1_1_1 + pol_d3_n1_3_2_1_1_2 + pol_d3_n1_3_2_1_1_3 + pol_d3_n1_3_2_1_2_1 + pol_d3_n1_3_2_1_2_2 + pol_d3_n1_3_2_1_2_3 + pol_d3_n1_3_2_1_3_1 + pol_d3_n1_3_2_1_3_2 + pol_d3_n1_3_2_1_3_3 + pol_d3_n1_3_2_2_1_1 + pol_d3_n1_3_2_2_1_2 + pol_d3_n1_3_2_2_1_3 + pol_d3_n1_3_2_2_2_1 + pol_d3_n1_3_2_2_2_2 + pol_d3_n1_3_2_2_2_3 + pol_d3_n1_3_2_2_3_1 + pol_d3_n1_3_2_2_3_2 + pol_d3_n1_3_2_2_3_3 + pol_d3_n1_3_2_3_1_1 + pol_d3_n1_3_2_3_1_2 + pol_d3_n1_3_2_3_1_3 + pol_d3_n1_3_2_3_2_1 + pol_d3_n1_3_2_3_2_2 + pol_d3_n1_3_2_3_2_3 + pol_d3_n1_3_2_3_3_1 + pol_d3_n1_3_2_3_3_2 + pol_d3_n1_3_2_3_3_3 + pol_d3_n1_3_3_1_1_1 + pol_d3_n1_3_3_1_1_2 + pol_d3_n1_3_3_1_1_3 + pol_d3_n1_3_3_1_2_1 + pol_d3_n1_3_3_1_2_2 + pol_d3_n1_3_3_1_2_3 + pol_d3_n1_3_3_1_3_1 + pol_d3_n1_3_3_1_3_2 + pol_d3_n1_3_3_1_3_3 + pol_d3_n1_3_3_2_1_1 + pol_d3_n1_3_3_2_1_2 + pol_d3_n1_3_3_2_1_3 + pol_d3_n1_3_3_2_2_1 + pol_d3_n1_3_3_2_2_2 + pol_d3_n1_3_3_2_2_3 + pol_d3_n1_3_3_2_3_1 + pol_d3_n1_3_3_2_3_2 + pol_d3_n1_3_3_2_3_3 + pol_d3_n1_3_3_3_1_1 + pol_d3_n1_3_3_3_1_2 + pol_d3_n1_3_3_3_1_3 + pol_d3_n1_3_3_3_2_1 + pol_d3_n1_3_3_3_2_2 + pol_d3_n1_3_3_3_2_3 + pol_d3_n1_3_3_3_3_1 + pol_d3_n1_3_3_3_3_2 + pol_d3_n1_3_3_3_3_3 + pol_d4_n1_1_1_1_1_1 + pol_d4_n1_1_1_1_1_2 + pol_d4_n1_1_1_1_1_3 + pol_d4_n1_1_1_1_2_1 + pol_d4_n1_1_1_1_2_2 + pol_d4_n1_1_1_1_2_3 + pol_d4_n1_1_1_1_3_1 + pol_d4_n1_1_1_1_3_2 + pol_d4_n1_1_1_1_3_3 + pol_d4_n1_1_1_2_1_1 + pol_d4_n1_1_1_2_1_2 + pol_d4_n1_1_1_2_1_3 + pol_d4_n1_1_1_2_2_1 + pol_d4_n1_1_1_2_2_2 + pol_d4_n1_1_1_2_2_3 + pol_d4_n1_1_1_2_3_1 + pol_d4_n1_1_1_2_3_2 + pol_d4_n1_1_1_2_3_3 + pol_d4_n1_1_1_3_1_1 + pol_d4_n1_1_1_3_1_2 + pol_d4_n1_1_1_3_1_3 + pol_d4_n1_1_1_3_2_1 + pol_d4_n1_1_1_3_2_2 + pol_d4_n1_1_1_3_2_3 + pol_d4_n1_1_1_3_3_1 + pol_d4_n1_1_1_3_3_2 + pol_d4_n1_1_1_3_3_3 + pol_d4_n1_1_2_1_1_1 + pol_d4_n1_1_2_1_1_2 + pol_d4_n1_1_2_1_1_3 + pol_d4_n1_1_2_1_2_1 + pol_d4_n1_1_2_1_2_2 + pol_d4_n1_1_2_1_2_3 + pol_d4_n1_1_2_1_3_1 + pol_d4_n1_1_2_1_3_2 + pol_d4_n1_1_2_1_3_3 + pol_d4_n1_1_2_2_1_1 + pol_d4_n1_1_2_2_1_2 + pol_d4_n1_1_2_2_1_3 + pol_d4_n1_1_2_2_2_1 + pol_d4_n1_1_2_2_2_2 + pol_d4_n1_1_2_2_2_3 + pol_d4_n1_1_2_2_3_1 + pol_d4_n1_1_2_2_3_2 + pol_d4_n1_1_2_2_3_3 + pol_d4_n1_1_2_3_1_1 + pol_d4_n1_1_2_3_1_2 + pol_d4_n1_1_2_3_1_3 + pol_d4_n1_1_2_3_2_1 + pol_d4_n1_1_2_3_2_2 + pol_d4_n1_1_2_3_2_3 + pol_d4_n1_1_2_3_3_1 + pol_d4_n1_1_2_3_3_2 + pol_d4_n1_1_2_3_3_3 + pol_d4_n1_1_3_1_1_1 + pol_d4_n1_1_3_1_1_2 + pol_d4_n1_1_3_1_1_3 + pol_d4_n1_1_3_1_2_1 + pol_d4_n1_1_3_1_2_2 + pol_d4_n1_1_3_1_2_3 + pol_d4_n1_1_3_1_3_1 + pol_d4_n1_1_3_1_3_2 + pol_d4_n1_1_3_1_3_3 + pol_d4_n1_1_3_2_1_1 + pol_d4_n1_1_3_2_1_2 + pol_d4_n1_1_3_2_1_3 + pol_d4_n1_1_3_2_2_1 + pol_d4_n1_1_3_2_2_2 + pol_d4_n1_1_3_2_2_3 + pol_d4_n1_1_3_2_3_1 + pol_d4_n1_1_3_2_3_2 + pol_d4_n1_1_3_2_3_3 + pol_d4_n1_1_3_3_1_1 + pol_d4_n1_1_3_3_1_2 + pol_d4_n1_1_3_3_1_3 + pol_d4_n1_1_3_3_2_1 + pol_d4_n1_1_3_3_2_2 + pol_d4_n1_1_3_3_2_3 + pol_d4_n1_1_3_3_3_1 + pol_d4_n1_1_3_3_3_2 + pol_d4_n1_1_3_3_3_3 + pol_d4_n1_2_1_1_1_1 + pol_d4_n1_2_1_1_1_2 + pol_d4_n1_2_1_1_1_3 + pol_d4_n1_2_1_1_2_1 + pol_d4_n1_2_1_1_2_2 + pol_d4_n1_2_1_1_2_3 + pol_d4_n1_2_1_1_3_1 + pol_d4_n1_2_1_1_3_2 + pol_d4_n1_2_1_1_3_3 + pol_d4_n1_2_1_2_1_1 + pol_d4_n1_2_1_2_1_2 + pol_d4_n1_2_1_2_1_3 + pol_d4_n1_2_1_2_2_1 + pol_d4_n1_2_1_2_2_2 + pol_d4_n1_2_1_2_2_3 + pol_d4_n1_2_1_2_3_1 + pol_d4_n1_2_1_2_3_2 + pol_d4_n1_2_1_2_3_3 + pol_d4_n1_2_1_3_1_1 + pol_d4_n1_2_1_3_1_2 + pol_d4_n1_2_1_3_1_3 + pol_d4_n1_2_1_3_2_1 + pol_d4_n1_2_1_3_2_2 + pol_d4_n1_2_1_3_2_3 + pol_d4_n1_2_1_3_3_1 + pol_d4_n1_2_1_3_3_2 + pol_d4_n1_2_1_3_3_3 + pol_d4_n1_2_2_1_1_1 + pol_d4_n1_2_2_1_1_2 + pol_d4_n1_2_2_1_1_3 + pol_d4_n1_2_2_1_2_1 + pol_d4_n1_2_2_1_2_2 + pol_d4_n1_2_2_1_2_3 + pol_d4_n1_2_2_1_3_1 + pol_d4_n1_2_2_1_3_2 + pol_d4_n1_2_2_1_3_3 + pol_d4_n1_2_2_2_1_1 + pol_d4_n1_2_2_2_1_2 + pol_d4_n1_2_2_2_1_3 + pol_d4_n1_2_2_2_2_1 + pol_d4_n1_2_2_2_2_2 + pol_d4_n1_2_2_2_2_3 + pol_d4_n1_2_2_2_3_1 + pol_d4_n1_2_2_2_3_2 + pol_d4_n1_2_2_2_3_3 + pol_d4_n1_2_2_3_1_1 + pol_d4_n1_2_2_3_1_2 + pol_d4_n1_2_2_3_1_3 + pol_d4_n1_2_2_3_2_1 + pol_d4_n1_2_2_3_2_2 + pol_d4_n1_2_2_3_2_3 + pol_d4_n1_2_2_3_3_1 + pol_d4_n1_2_2_3_3_2 + pol_d4_n1_2_2_3_3_3 + pol_d4_n1_2_3_1_1_1 + pol_d4_n1_2_3_1_1_2 + pol_d4_n1_2_3_1_1_3 + pol_d4_n1_2_3_1_2_1 + pol_d4_n1_2_3_1_2_2 + pol_d4_n1_2_3_1_2_3 + pol_d4_n1_2_3_1_3_1 + pol_d4_n1_2_3_1_3_2 + pol_d4_n1_2_3_1_3_3 + pol_d4_n1_2_3_2_1_1 + pol_d4_n1_2_3_2_1_2 + pol_d4_n1_2_3_2_1_3 + pol_d4_n1_2_3_2_2_1 + pol_d4_n1_2_3_2_2_2 + pol_d4_n1_2_3_2_2_3 + pol_d4_n1_2_3_2_3_1 + pol_d4_n1_2_3_2_3_2 + pol_d4_n1_2_3_2_3_3 + pol_d4_n1_2_3_3_1_1 + pol_d4_n1_2_3_3_1_2 + pol_d4_n1_2_3_3_1_3 + pol_d4_n1_2_3_3_2_1 + pol_d4_n1_2_3_3_2_2 + pol_d4_n1_2_3_3_2_3 + pol_d4_n1_2_3_3_3_1 + pol_d4_n1_2_3_3_3_2 + pol_d4_n1_2_3_3_3_3 + pol_d4_n1_3_1_1_1_1 + pol_d4_n1_3_1_1_1_2 + pol_d4_n1_3_1_1_1_3 + pol_d4_n1_3_1_1_2_1 + pol_d4_n1_3_1_1_2_2 + pol_d4_n1_3_1_1_2_3 + pol_d4_n1_3_1_1_3_1 + pol_d4_n1_3_1_1_3_2 + pol_d4_n1_3_1_1_3_3 + pol_d4_n1_3_1_2_1_1 + pol_d4_n1_3_1_2_1_2 + pol_d4_n1_3_1_2_1_3 + pol_d4_n1_3_1_2_2_1 + pol_d4_n1_3_1_2_2_2 + pol_d4_n1_3_1_2_2_3 + pol_d4_n1_3_1_2_3_1 + pol_d4_n1_3_1_2_3_2 + pol_d4_n1_3_1_2_3_3 + pol_d4_n1_3_1_3_1_1 + pol_d4_n1_3_1_3_1_2 + pol_d4_n1_3_1_3_1_3 + pol_d4_n1_3_1_3_2_1 + pol_d4_n1_3_1_3_2_2 + pol_d4_n1_3_1_3_2_3 + pol_d4_n1_3_1_3_3_1 + pol_d4_n1_3_1_3_3_2 + pol_d4_n1_3_1_3_3_3 + pol_d4_n1_3_2_1_1_1 + pol_d4_n1_3_2_1_1_2 + pol_d4_n1_3_2_1_1_3 + pol_d4_n1_3_2_1_2_1 + pol_d4_n1_3_2_1_2_2 + pol_d4_n1_3_2_1_2_3 + pol_d4_n1_3_2_1_3_1 + pol_d4_n1_3_2_1_3_2 + pol_d4_n1_3_2_1_3_3 + pol_d4_n1_3_2_2_1_1 + pol_d4_n1_3_2_2_1_2 + pol_d4_n1_3_2_2_1_3 + pol_d4_n1_3_2_2_2_1 + pol_d4_n1_3_2_2_2_2 + pol_d4_n1_3_2_2_2_3 + pol_d4_n1_3_2_2_3_1 + pol_d4_n1_3_2_2_3_2 + pol_d4_n1_3_2_2_3_3 + pol_d4_n1_3_2_3_1_1 + pol_d4_n1_3_2_3_1_2 + pol_d4_n1_3_2_3_1_3 + pol_d4_n1_3_2_3_2_1 + pol_d4_n1_3_2_3_2_2 + pol_d4_n1_3_2_3_2_3 + pol_d4_n1_3_2_3_3_1 + pol_d4_n1_3_2_3_3_2 + pol_d4_n1_3_2_3_3_3 + pol_d4_n1_3_3_1_1_1 + pol_d4_n1_3_3_1_1_2 + pol_d4_n1_3_3_1_1_3 + pol_d4_n1_3_3_1_2_1 + pol_d4_n1_3_3_1_2_2 + pol_d4_n1_3_3_1_2_3 + pol_d4_n1_3_3_1_3_1 + pol_d4_n1_3_3_1_3_2 + pol_d4_n1_3_3_1_3_3 + pol_d4_n1_3_3_2_1_1 + pol_d4_n1_3_3_2_1_2 + pol_d4_n1_3_3_2_1_3 + pol_d4_n1_3_3_2_2_1 + pol_d4_n1_3_3_2_2_2 + pol_d4_n1_3_3_2_2_3 + pol_d4_n1_3_3_2_3_1 + pol_d4_n1_3_3_2_3_2 + pol_d4_n1_3_3_2_3_3 + pol_d4_n1_3_3_3_1_1 + pol_d4_n1_3_3_3_1_2 + pol_d4_n1_3_3_3_1_3 + pol_d4_n1_3_3_3_2_1 + pol_d4_n1_3_3_3_2_2 + pol_d4_n1_3_3_3_2_3 + pol_d4_n1_3_3_3_3_1 + pol_d4_n1_3_3_3_3_2 + pol_d4_n1_3_3_3_3_3 + pol_d5_n1_1_1_1_1_1 + pol_d5_n1_1_1_1_1_2 + pol_d5_n1_1_1_1_1_3 + pol_d5_n1_1_1_1_2_1 + pol_d5_n1_1_1_1_2_2 + pol_d5_n1_1_1_1_2_3 + pol_d5_n1_1_1_1_3_1 + pol_d5_n1_1_1_1_3_2 + pol_d5_n1_1_1_1_3_3 + pol_d5_n1_1_1_2_1_1 + pol_d5_n1_1_1_2_1_2 + pol_d5_n1_1_1_2_1_3 + pol_d5_n1_1_1_2_2_1 + pol_d5_n1_1_1_2_2_2 + pol_d5_n1_1_1_2_2_3 + pol_d5_n1_1_1_2_3_1 + pol_d5_n1_1_1_2_3_2 + pol_d5_n1_1_1_2_3_3 + pol_d5_n1_1_1_3_1_1 + pol_d5_n1_1_1_3_1_2 + pol_d5_n1_1_1_3_1_3 + pol_d5_n1_1_1_3_2_1 + pol_d5_n1_1_1_3_2_2 + pol_d5_n1_1_1_3_2_3 + pol_d5_n1_1_1_3_3_1 + pol_d5_n1_1_1_3_3_2 + pol_d5_n1_1_1_3_3_3 + pol_d5_n1_1_2_1_1_1 + pol_d5_n1_1_2_1_1_2 + pol_d5_n1_1_2_1_1_3 + pol_d5_n1_1_2_1_2_1 + pol_d5_n1_1_2_1_2_2 + pol_d5_n1_1_2_1_2_3 + pol_d5_n1_1_2_1_3_1 + pol_d5_n1_1_2_1_3_2 + pol_d5_n1_1_2_1_3_3 + pol_d5_n1_1_2_2_1_1 + pol_d5_n1_1_2_2_1_2 + pol_d5_n1_1_2_2_1_3 + pol_d5_n1_1_2_2_2_1 + pol_d5_n1_1_2_2_2_2 + pol_d5_n1_1_2_2_2_3 + pol_d5_n1_1_2_2_3_1 + pol_d5_n1_1_2_2_3_2 + pol_d5_n1_1_2_2_3_3 + pol_d5_n1_1_2_3_1_1 + pol_d5_n1_1_2_3_1_2 + pol_d5_n1_1_2_3_1_3 + pol_d5_n1_1_2_3_2_1 + pol_d5_n1_1_2_3_2_2 + pol_d5_n1_1_2_3_2_3 + pol_d5_n1_1_2_3_3_1 + pol_d5_n1_1_2_3_3_2 + pol_d5_n1_1_2_3_3_3 + pol_d5_n1_1_3_1_1_1 + pol_d5_n1_1_3_1_1_2 + pol_d5_n1_1_3_1_1_3 + pol_d5_n1_1_3_1_2_1 + pol_d5_n1_1_3_1_2_2 + pol_d5_n1_1_3_1_2_3 + pol_d5_n1_1_3_1_3_1 + pol_d5_n1_1_3_1_3_2 + pol_d5_n1_1_3_1_3_3 + pol_d5_n1_1_3_2_1_1 + pol_d5_n1_1_3_2_1_2 + pol_d5_n1_1_3_2_1_3 + pol_d5_n1_1_3_2_2_1 + pol_d5_n1_1_3_2_2_2 + pol_d5_n1_1_3_2_2_3 + pol_d5_n1_1_3_2_3_1 + pol_d5_n1_1_3_2_3_2 + pol_d5_n1_1_3_2_3_3 + pol_d5_n1_1_3_3_1_1 + pol_d5_n1_1_3_3_1_2 + pol_d5_n1_1_3_3_1_3 + pol_d5_n1_1_3_3_2_1 + pol_d5_n1_1_3_3_2_2 + pol_d5_n1_1_3_3_2_3 + pol_d5_n1_1_3_3_3_1 + pol_d5_n1_1_3_3_3_2 + pol_d5_n1_1_3_3_3_3 + pol_d5_n1_2_1_1_1_1 + pol_d5_n1_2_1_1_1_2 + pol_d5_n1_2_1_1_1_3 + pol_d5_n1_2_1_1_2_1 + pol_d5_n1_2_1_1_2_2 + pol_d5_n1_2_1_1_2_3 + pol_d5_n1_2_1_1_3_1 + pol_d5_n1_2_1_1_3_2 + pol_d5_n1_2_1_1_3_3 + pol_d5_n1_2_1_2_1_1 + pol_d5_n1_2_1_2_1_2 + pol_d5_n1_2_1_2_1_3 + pol_d5_n1_2_1_2_2_1 + pol_d5_n1_2_1_2_2_2 + pol_d5_n1_2_1_2_2_3 + pol_d5_n1_2_1_2_3_1 + pol_d5_n1_2_1_2_3_2 + pol_d5_n1_2_1_2_3_3 + pol_d5_n1_2_1_3_1_1 + pol_d5_n1_2_1_3_1_2 + pol_d5_n1_2_1_3_1_3 + pol_d5_n1_2_1_3_2_1 + pol_d5_n1_2_1_3_2_2 + pol_d5_n1_2_1_3_2_3 + pol_d5_n1_2_1_3_3_1 + pol_d5_n1_2_1_3_3_2 + pol_d5_n1_2_1_3_3_3 + pol_d5_n1_2_2_1_1_1 + pol_d5_n1_2_2_1_1_2 + pol_d5_n1_2_2_1_1_3 + pol_d5_n1_2_2_1_2_1 + pol_d5_n1_2_2_1_2_2 + pol_d5_n1_2_2_1_2_3 + pol_d5_n1_2_2_1_3_1 + pol_d5_n1_2_2_1_3_2 + pol_d5_n1_2_2_1_3_3 + pol_d5_n1_2_2_2_1_1 + pol_d5_n1_2_2_2_1_2 + pol_d5_n1_2_2_2_1_3 + pol_d5_n1_2_2_2_2_1 + pol_d5_n1_2_2_2_2_2 + pol_d5_n1_2_2_2_2_3 + pol_d5_n1_2_2_2_3_1 + pol_d5_n1_2_2_2_3_2 + pol_d5_n1_2_2_2_3_3 + pol_d5_n1_2_2_3_1_1 + pol_d5_n1_2_2_3_1_2 + pol_d5_n1_2_2_3_1_3 + pol_d5_n1_2_2_3_2_1 + pol_d5_n1_2_2_3_2_2 + pol_d5_n1_2_2_3_2_3 + pol_d5_n1_2_2_3_3_1 + pol_d5_n1_2_2_3_3_2 + pol_d5_n1_2_2_3_3_3 + pol_d5_n1_2_3_1_1_1 + pol_d5_n1_2_3_1_1_2 + pol_d5_n1_2_3_1_1_3 + pol_d5_n1_2_3_1_2_1 + pol_d5_n1_2_3_1_2_2 + pol_d5_n1_2_3_1_2_3 + pol_d5_n1_2_3_1_3_1 + pol_d5_n1_2_3_1_3_2 + pol_d5_n1_2_3_1_3_3 + pol_d5_n1_2_3_2_1_1 + pol_d5_n1_2_3_2_1_2 + pol_d5_n1_2_3_2_1_3 + pol_d5_n1_2_3_2_2_1 + pol_d5_n1_2_3_2_2_2 + pol_d5_n1_2_3_2_2_3 + pol_d5_n1_2_3_2_3_1 + pol_d5_n1_2_3_2_3_2 + pol_d5_n1_2_3_2_3_3 + pol_d5_n1_2_3_3_1_1 + pol_d5_n1_2_3_3_1_2 + pol_d5_n1_2_3_3_1_3 + pol_d5_n1_2_3_3_2_1 + pol_d5_n1_2_3_3_2_2 + pol_d5_n1_2_3_3_2_3 + pol_d5_n1_2_3_3_3_1 + pol_d5_n1_2_3_3_3_2 + pol_d5_n1_2_3_3_3_3 + pol_d5_n1_3_1_1_1_1 + pol_d5_n1_3_1_1_1_2 + pol_d5_n1_3_1_1_1_3 + pol_d5_n1_3_1_1_2_1 + pol_d5_n1_3_1_1_2_2 + pol_d5_n1_3_1_1_2_3 + pol_d5_n1_3_1_1_3_1 + pol_d5_n1_3_1_1_3_2 + pol_d5_n1_3_1_1_3_3 + pol_d5_n1_3_1_2_1_1 + pol_d5_n1_3_1_2_1_2 + pol_d5_n1_3_1_2_1_3 + pol_d5_n1_3_1_2_2_1 + pol_d5_n1_3_1_2_2_2 + pol_d5_n1_3_1_2_2_3 + pol_d5_n1_3_1_2_3_1 + pol_d5_n1_3_1_2_3_2 + pol_d5_n1_3_1_2_3_3 + pol_d5_n1_3_1_3_1_1 + pol_d5_n1_3_1_3_1_2 + pol_d5_n1_3_1_3_1_3 + pol_d5_n1_3_1_3_2_1 + pol_d5_n1_3_1_3_2_2 + pol_d5_n1_3_1_3_2_3 + pol_d5_n1_3_1_3_3_1 + pol_d5_n1_3_1_3_3_2 + pol_d5_n1_3_1_3_3_3 + pol_d5_n1_3_2_1_1_1 + pol_d5_n1_3_2_1_1_2 + pol_d5_n1_3_2_1_1_3 + pol_d5_n1_3_2_1_2_1 + pol_d5_n1_3_2_1_2_2 + pol_d5_n1_3_2_1_2_3 + pol_d5_n1_3_2_1_3_1 + pol_d5_n1_3_2_1_3_2 + pol_d5_n1_3_2_1_3_3 + pol_d5_n1_3_2_2_1_1 + pol_d5_n1_3_2_2_1_2 + pol_d5_n1_3_2_2_1_3 + pol_d5_n1_3_2_2_2_1 + pol_d5_n1_3_2_2_2_2 + pol_d5_n1_3_2_2_2_3 + pol_d5_n1_3_2_2_3_1 + pol_d5_n1_3_2_2_3_2 + pol_d5_n1_3_2_2_3_3 + pol_d5_n1_3_2_3_1_1 + pol_d5_n1_3_2_3_1_2 + pol_d5_n1_3_2_3_1_3 + pol_d5_n1_3_2_3_2_1 + pol_d5_n1_3_2_3_2_2 + pol_d5_n1_3_2_3_2_3 + pol_d5_n1_3_2_3_3_1 + pol_d5_n1_3_2_3_3_2 + pol_d5_n1_3_2_3_3_3 + pol_d5_n1_3_3_1_1_1 + pol_d5_n1_3_3_1_1_2 + pol_d5_n1_3_3_1_1_3 + pol_d5_n1_3_3_1_2_1 + pol_d5_n1_3_3_1_2_2 + pol_d5_n1_3_3_1_2_3 + pol_d5_n1_3_3_1_3_1 + pol_d5_n1_3_3_1_3_2 + pol_d5_n1_3_3_1_3_3 + pol_d5_n1_3_3_2_1_1 + pol_d5_n1_3_3_2_1_2 + pol_d5_n1_3_3_2_1_3 + pol_d5_n1_3_3_2_2_1 + pol_d5_n1_3_3_2_2_2 + pol_d5_n1_3_3_2_2_3 + pol_d5_n1_3_3_2_3_1 + pol_d5_n1_3_3_2_3_2 + pol_d5_n1_3_3_2_3_3 + pol_d5_n1_3_3_3_1_1 + pol_d5_n1_3_3_3_1_2 + pol_d5_n1_3_3_3_1_3 + pol_d5_n1_3_3_3_2_1 + pol_d5_n1_3_3_3_2_2 + pol_d5_n1_3_3_3_2_3 + pol_d5_n1_3_3_3_3_1 + pol_d5_n1_3_3_3_3_2 + pol_d5_n1_3_3_3_3_3 = 4860
invariant :po_d5_n1_1_1_3_3_1 + pol_d5_n1_1_1_3_3_1 = 1
invariant :po_d5_n1_1_2_3_3_3 + pol_d5_n1_1_2_3_3_3 = 1
invariant :pb_d1_n1_2_1_2_3_1 + pb_d1_n2_2_1_2_3_1 + pb_d2_n1_2_1_2_3_1 + pb_d2_n2_2_1_2_3_1 + pb_d3_n1_2_1_2_3_1 + pb_d3_n2_2_1_2_3_1 + pb_d4_n1_2_1_2_3_1 + pb_d4_n2_2_1_2_3_1 + pb_d5_n1_2_1_2_3_1 + pb_d5_n2_2_1_2_3_1 + pbl_2_1_2_3_1 = 30
invariant :pi_d2_n1_1_2_1_3_2 + pil_d2_n1_1_2_1_3_2 = 1
invariant :pb_d1_n1_2_1_1_3_2 + pb_d1_n2_2_1_1_3_2 + pb_d2_n1_2_1_1_3_2 + pb_d2_n2_2_1_1_3_2 + pb_d3_n1_2_1_1_3_2 + pb_d3_n2_2_1_1_3_2 + pb_d4_n1_2_1_1_3_2 + pb_d4_n2_2_1_1_3_2 + pb_d5_n1_2_1_1_3_2 + pb_d5_n2_2_1_1_3_2 + pbl_2_1_1_3_2 = 30
invariant :pi_d2_n1_2_3_3_2_3 + pil_d2_n1_2_3_3_2_3 = 1
invariant :po_d1_n1_2_2_3_2_3 + pol_d1_n1_2_2_3_2_3 = 1
invariant :po_d1_n1_1_3_3_2_2 + pol_d1_n1_1_3_3_2_2 = 1
invariant :po_d1_n1_1_1_3_3_2 + pol_d1_n1_1_1_3_3_2 = 1
invariant :pb_d1_n1_2_3_2_3_1 + pb_d1_n2_2_3_2_3_1 + pb_d2_n1_2_3_2_3_1 + pb_d2_n2_2_3_2_3_1 + pb_d3_n1_2_3_2_3_1 + pb_d3_n2_2_3_2_3_1 + pb_d4_n1_2_3_2_3_1 + pb_d4_n2_2_3_2_3_1 + pb_d5_n1_2_3_2_3_1 + pb_d5_n2_2_3_2_3_1 + pbl_2_3_2_3_1 = 30
invariant :pi_d3_n1_3_3_3_3_2 + pil_d3_n1_3_3_3_3_2 = 1
invariant :pi_d3_n1_1_2_3_2_1 + pil_d3_n1_1_2_3_2_1 = 1
invariant :po_d1_n1_2_2_1_3_3 + pol_d1_n1_2_2_1_3_3 = 1
invariant :pi_d4_n1_3_1_3_1_1 + pil_d4_n1_3_1_3_1_1 = 1
invariant :po_d4_n1_3_1_1_3_1 + pol_d4_n1_3_1_1_3_1 = 1
invariant :po_d3_n1_1_2_1_1_3 + pol_d3_n1_1_2_1_1_3 = 1
invariant :po_d5_n1_2_2_2_2_2 + pol_d5_n1_2_2_2_2_2 = 1
invariant :pi_d4_n1_1_1_3_3_1 + pil_d4_n1_1_1_3_3_1 = 1
invariant :po_d2_n1_2_2_2_2_3 + pol_d2_n1_2_2_2_2_3 = 1
invariant :po_d5_n1_1_3_3_2_1 + pol_d5_n1_1_3_3_2_1 = 1
invariant :pi_d1_n1_2_1_2_3_1 + pil_d1_n1_2_1_2_3_1 = 1
invariant :po_d3_n1_3_1_3_2_3 + pol_d3_n1_3_1_3_2_3 = 1
invariant :pi_d1_n1_1_3_2_1_2 + pil_d1_n1_1_3_2_1_2 = 1
invariant :pi_d4_n1_3_3_2_2_2 + pil_d4_n1_3_3_2_2_2 = 1
invariant :pi_d4_n1_2_3_2_3_2 + pil_d4_n1_2_3_2_3_2 = 1
invariant :pi_d4_n1_3_1_2_3_1 + pil_d4_n1_3_1_2_3_1 = 1
invariant :pi_d4_n1_2_2_1_2_2 + pil_d4_n1_2_2_1_2_2 = 1
invariant :po_d2_n1_1_1_1_2_3 + pol_d2_n1_1_1_1_2_3 = 1
invariant :po_d2_n1_2_3_2_1_1 + pol_d2_n1_2_3_2_1_1 = 1
invariant :pi_d2_n1_2_1_3_2_1 + pil_d2_n1_2_1_3_2_1 = 1
invariant :po_d2_n1_1_1_3_1_1 + pol_d2_n1_1_1_3_1_1 = 1
invariant :po_d1_n1_3_1_3_1_1 + pol_d1_n1_3_1_3_1_1 = 1
invariant :pi_d1_n1_1_2_2_3_2 + pil_d1_n1_1_2_2_3_2 = 1
invariant :pi_d5_n1_2_2_1_3_3 + pil_d5_n1_2_2_1_3_3 = 1
invariant :pi_d2_n1_1_3_2_3_2 + pil_d2_n1_1_3_2_3_2 = 1
invariant :pi_d2_n1_3_1_3_2_1 + pil_d2_n1_3_1_3_2_1 = 1
invariant :po_d5_n1_3_1_3_1_2 + pol_d5_n1_3_1_3_1_2 = 1
invariant :pi_d3_n1_2_3_2_3_1 + pil_d3_n1_2_3_2_3_1 = 1
invariant :pi_d3_n1_1_1_1_3_1 + pil_d3_n1_1_1_1_3_1 = 1
invariant :po_d4_n1_1_2_2_2_3 + pol_d4_n1_1_2_2_2_3 = 1
invariant :po_d5_n1_3_3_1_3_2 + pol_d5_n1_3_3_1_3_2 = 1
invariant :pi_d3_n1_3_3_3_1_1 + pil_d3_n1_3_3_3_1_1 = 1
invariant :po_d1_n1_2_2_3_3_1 + pol_d1_n1_2_2_3_3_1 = 1
invariant :pi_d2_n1_3_1_3_2_2 + pil_d2_n1_3_1_3_2_2 = 1
invariant :po_d1_n1_2_2_3_3_2 + pol_d1_n1_2_2_3_3_2 = 1
invariant :pi_d3_n1_1_1_2_3_3 + pil_d3_n1_1_1_2_3_3 = 1
invariant :pi_d1_n1_3_1_1_3_1 + pil_d1_n1_3_1_1_3_1 = 1
invariant :po_d3_n1_3_1_3_3_3 + pol_d3_n1_3_1_3_3_3 = 1
invariant :pi_d5_n1_2_3_2_1_3 + pil_d5_n1_2_3_2_1_3 = 1
invariant :pi_d2_n1_2_1_3_1_2 + pil_d2_n1_2_1_3_1_2 = 1
invariant :po_d1_n1_3_1_1_1_3 + pol_d1_n1_3_1_1_1_3 = 1
invariant :po_d1_n1_2_3_3_3_3 + pol_d1_n1_2_3_3_3_3 = 1
invariant :pi_d4_n1_2_1_1_1_2 + pil_d4_n1_2_1_1_1_2 = 1
invariant :po_d3_n1_1_1_2_3_3 + pol_d3_n1_1_1_2_3_3 = 1
invariant :po_d3_n1_3_3_3_3_2 + pol_d3_n1_3_3_3_3_2 = 1
invariant :pi_d3_n1_2_2_2_3_2 + pil_d3_n1_2_2_2_3_2 = 1
invariant :po_d2_n1_2_1_3_2_2 + pol_d2_n1_2_1_3_2_2 = 1
invariant :po_d2_n1_1_3_3_2_3 + pol_d2_n1_1_3_3_2_3 = 1
invariant :po_d4_n1_1_2_1_3_3 + pol_d4_n1_1_2_1_3_3 = 1
invariant :pi_d4_n1_1_3_2_2_3 + pil_d4_n1_1_3_2_2_3 = 1
invariant :pi_d1_n1_1_3_2_3_1 + pil_d1_n1_1_3_2_3_1 = 1
invariant :pi_d2_n1_3_3_1_2_3 + pil_d2_n1_3_3_1_2_3 = 1
invariant :pi_d3_n1_3_1_3_2_2 + pil_d3_n1_3_1_3_2_2 = 1
invariant :po_d5_n1_2_2_2_3_3 + pol_d5_n1_2_2_2_3_3 = 1
invariant :pi_d5_n1_3_1_3_2_2 + pil_d5_n1_3_1_3_2_2 = 1
invariant :po_d4_n1_2_1_2_3_2 + pol_d4_n1_2_1_2_3_2 = 1
invariant :pi_d1_n1_2_2_1_2_1 + pil_d1_n1_2_2_1_2_1 = 1
invariant :po_d1_n1_3_2_3_3_2 + pol_d1_n1_3_2_3_3_2 = 1
invariant :po_d1_n1_1_1_1_2_1 + pol_d1_n1_1_1_1_2_1 = 1
invariant :pi_d4_n1_3_2_1_2_1 + pil_d4_n1_3_2_1_2_1 = 1
invariant :pi_d3_n1_1_2_3_1_1 + pil_d3_n1_1_2_3_1_1 = 1
invariant :po_d2_n1_1_3_2_2_3 + pol_d2_n1_1_3_2_2_3 = 1
invariant :po_d3_n1_1_1_2_1_3 + pol_d3_n1_1_1_2_1_3 = 1
invariant :po_d3_n1_3_1_1_3_3 + pol_d3_n1_3_1_1_3_3 = 1
invariant :po_d5_n1_2_3_2_2_2 + pol_d5_n1_2_3_2_2_2 = 1
invariant :po_d5_n1_2_3_3_1_3 + pol_d5_n1_2_3_3_1_3 = 1
invariant :pi_d4_n1_1_2_1_3_2 + pil_d4_n1_1_2_1_3_2 = 1
invariant :pi_d5_n1_1_2_1_3_1 + pil_d5_n1_1_2_1_3_1 = 1
invariant :po_d2_n1_2_1_1_3_3 + pol_d2_n1_2_1_1_3_3 = 1
invariant :po_d3_n1_2_3_2_2_2 + pol_d3_n1_2_3_2_2_2 = 1
invariant :po_d5_n1_2_2_3_3_3 + pol_d5_n1_2_2_3_3_3 = 1
invariant :pi_d4_n1_1_2_3_2_1 + pil_d4_n1_1_2_3_2_1 = 1
invariant :po_d2_n1_1_1_3_3_1 + pol_d2_n1_1_1_3_3_1 = 1
invariant :po_d4_n1_2_1_2_2_1 + pol_d4_n1_2_1_2_2_1 = 1
invariant :po_d5_n1_1_3_2_3_3 + pol_d5_n1_1_3_2_3_3 = 1
invariant :pi_d4_n1_1_3_3_3_2 + pil_d4_n1_1_3_3_3_2 = 1
invariant :pi_d2_n1_3_3_1_3_2 + pil_d2_n1_3_3_1_3_2 = 1
invariant :po_d2_n1_2_2_1_3_2 + pol_d2_n1_2_2_1_3_2 = 1
invariant :pi_d3_n1_2_2_3_3_1 + pil_d3_n1_2_2_3_3_1 = 1
invariant :pi_d4_n1_2_3_3_2_2 + pil_d4_n1_2_3_3_2_2 = 1
invariant :pi_d4_n1_2_2_2_3_2 + pil_d4_n1_2_2_2_3_2 = 1
invariant :pi_d4_n1_3_3_1_2_1 + pil_d4_n1_3_3_1_2_1 = 1
invariant :pi_d4_n1_2_1_3_3_2 + pil_d4_n1_2_1_3_3_2 = 1
invariant :po_d5_n1_1_2_3_2_2 + pol_d5_n1_1_2_3_2_2 = 1
invariant :po_d1_n1_2_2_2_3_1 + pol_d1_n1_2_2_2_3_1 = 1
invariant :pi_d3_n1_3_1_3_3_2 + pil_d3_n1_3_1_3_3_2 = 1
invariant :pi_d5_n1_3_2_1_1_2 + pil_d5_n1_3_2_1_1_2 = 1
invariant :po_d1_n1_1_1_1_1_2 + pol_d1_n1_1_1_1_1_2 = 1
invariant :po_d4_n1_2_2_2_2_2 + pol_d4_n1_2_2_2_2_2 = 1
invariant :po_d1_n1_1_2_3_3_3 + pol_d1_n1_1_2_3_3_3 = 1
invariant :pb_d1_n1_3_1_2_3_1 + pb_d1_n2_3_1_2_3_1 + pb_d2_n1_3_1_2_3_1 + pb_d2_n2_3_1_2_3_1 + pb_d3_n1_3_1_2_3_1 + pb_d3_n2_3_1_2_3_1 + pb_d4_n1_3_1_2_3_1 + pb_d4_n2_3_1_2_3_1 + pb_d5_n1_3_1_2_3_1 + pb_d5_n2_3_1_2_3_1 + pbl_3_1_2_3_1 = 30
invariant :pi_d1_n1_1_3_1_2_1 + pil_d1_n1_1_3_1_2_1 = 1
invariant :po_d3_n1_3_2_1_2_1 + pol_d3_n1_3_2_1_2_1 = 1
invariant :po_d3_n1_3_2_3_2_1 + pol_d3_n1_3_2_3_2_1 = 1
invariant :pi_d1_n1_1_1_1_3_3 + pil_d1_n1_1_1_1_3_3 = 1
invariant :po_d4_n1_3_1_2_1_2 + pol_d4_n1_3_1_2_1_2 = 1
invariant :pi_d2_n1_1_2_2_3_1 + pil_d2_n1_1_2_2_3_1 = 1
invariant :pb_d1_n1_3_2_1_2_3 + pb_d1_n2_3_2_1_2_3 + pb_d2_n1_3_2_1_2_3 + pb_d2_n2_3_2_1_2_3 + pb_d3_n1_3_2_1_2_3 + pb_d3_n2_3_2_1_2_3 + pb_d4_n1_3_2_1_2_3 + pb_d4_n2_3_2_1_2_3 + pb_d5_n1_3_2_1_2_3 + pb_d5_n2_3_2_1_2_3 + pbl_3_2_1_2_3 = 30
invariant :pi_d1_n1_3_2_2_2_2 + pil_d1_n1_3_2_2_2_2 = 1
invariant :pb_d1_n1_2_1_3_3_2 + pb_d1_n2_2_1_3_3_2 + pb_d2_n1_2_1_3_3_2 + pb_d2_n2_2_1_3_3_2 + pb_d3_n1_2_1_3_3_2 + pb_d3_n2_2_1_3_3_2 + pb_d4_n1_2_1_3_3_2 + pb_d4_n2_2_1_3_3_2 + pb_d5_n1_2_1_3_3_2 + pb_d5_n2_2_1_3_3_2 + pbl_2_1_3_3_2 = 30
invariant :pi_d5_n1_1_1_3_2_1 + pil_d5_n1_1_1_3_2_1 = 1
invariant :pi_d5_n1_2_2_2_2_1 + pil_d5_n1_2_2_2_2_1 = 1
invariant :pi_d1_n1_1_3_1_2_2 + pil_d1_n1_1_3_1_2_2 = 1
invariant :pi_d4_n1_3_3_1_3_1 + pil_d4_n1_3_3_1_3_1 = 1
invariant :pi_d3_n1_3_2_1_1_1 + pil_d3_n1_3_2_1_1_1 = 1
invariant :po_d5_n1_1_2_1_3_3 + pol_d5_n1_1_2_1_3_3 = 1
invariant :pi_d1_n1_2_3_3_1_3 + pil_d1_n1_2_3_3_1_3 = 1
invariant :pi_d3_n1_2_2_1_1_1 + pil_d3_n1_2_2_1_1_1 = 1
invariant :po_d5_n1_3_2_1_3_2 + pol_d5_n1_3_2_1_3_2 = 1
invariant :pi_d1_n1_3_1_3_3_3 + pil_d1_n1_3_1_3_3_3 = 1
invariant :pi_d2_n1_2_2_3_3_2 + pil_d2_n1_2_2_3_3_2 = 1
invariant :po_d5_n1_3_3_3_2_2 + pol_d5_n1_3_3_3_2_2 = 1
invariant :po_d3_n1_2_2_1_1_1 + pol_d3_n1_2_2_1_1_1 = 1
invariant :po_d3_n1_3_3_2_3_3 + pol_d3_n1_3_3_2_3_3 = 1
invariant :pi_d4_n1_3_2_1_2_2 + pil_d4_n1_3_2_1_2_2 = 1
invariant :po_d5_n1_2_1_2_1_3 + pol_d5_n1_2_1_2_1_3 = 1
invariant :pi_d2_n1_1_3_2_3_1 + pil_d2_n1_1_3_2_3_1 = 1
invariant :po_d5_n1_1_1_3_1_3 + pol_d5_n1_1_1_3_1_3 = 1
invariant :pi_d4_n1_1_1_1_1_1 + pil_d4_n1_1_1_1_1_1 = 1
invariant :pi_d5_n1_3_3_3_2_1 + pil_d5_n1_3_3_3_2_1 = 1
invariant :po_d4_n1_2_2_3_2_3 + pol_d4_n1_2_2_3_2_3 = 1
invariant :po_d3_n1_3_2_3_1_1 + pol_d3_n1_3_2_3_1_1 = 1
invariant :po_d3_n1_2_3_2_1_3 + pol_d3_n1_2_3_2_1_3 = 1
invariant :po_d1_n1_2_2_3_2_1 + pol_d1_n1_2_2_3_2_1 = 1
invariant :pi_d1_n1_3_3_1_2_1 + pil_d1_n1_3_3_1_2_1 = 1
invariant :pi_d2_n1_2_1_2_2_3 + pil_d2_n1_2_1_2_2_3 = 1
invariant :pi_d3_n1_1_1_3_2_1 + pil_d3_n1_1_1_3_2_1 = 1
invariant :pi_d5_n1_1_3_3_2_1 + pil_d5_n1_1_3_3_2_1 = 1
invariant :po_d3_n1_1_3_1_2_2 + pol_d3_n1_1_3_1_2_2 = 1
invariant :pi_d1_n1_2_3_3_3_3 + pil_d1_n1_2_3_3_3_3 = 1
invariant :po_d2_n1_2_2_3_1_3 + pol_d2_n1_2_2_3_1_3 = 1
invariant :po_d4_n1_1_1_3_1_2 + pol_d4_n1_1_1_3_1_2 = 1
invariant :pi_d4_n1_1_1_2_2_2 + pil_d4_n1_1_1_2_2_2 = 1
invariant :po_d1_n1_2_2_1_1_1 + pol_d1_n1_2_2_1_1_1 = 1
invariant :po_d3_n1_1_3_1_3_3 + pol_d3_n1_1_3_1_3_3 = 1
invariant :po_d2_n1_3_1_3_2_2 + pol_d2_n1_3_1_3_2_2 = 1
invariant :pi_d2_n1_2_3_3_1_3 + pil_d2_n1_2_3_3_1_3 = 1
invariant :pi_d5_n1_2_2_1_3_2 + pil_d5_n1_2_2_1_3_2 = 1
invariant :pb_d1_n1_1_1_1_1_3 + pb_d1_n2_1_1_1_1_3 + pb_d2_n1_1_1_1_1_3 + pb_d2_n2_1_1_1_1_3 + pb_d3_n1_1_1_1_1_3 + pb_d3_n2_1_1_1_1_3 + pb_d4_n1_1_1_1_1_3 + pb_d4_n2_1_1_1_1_3 + pb_d5_n1_1_1_1_1_3 + pb_d5_n2_1_1_1_1_3 + pbl_1_1_1_1_3 = 30
invariant :pi_d2_n1_3_3_3_2_2 + pil_d2_n1_3_3_3_2_2 = 1
invariant :pb_d1_n1_3_3_2_1_1 + pb_d1_n2_3_3_2_1_1 + pb_d2_n1_3_3_2_1_1 + pb_d2_n2_3_3_2_1_1 + pb_d3_n1_3_3_2_1_1 + pb_d3_n2_3_3_2_1_1 + pb_d4_n1_3_3_2_1_1 + pb_d4_n2_3_3_2_1_1 + pb_d5_n1_3_3_2_1_1 + pb_d5_n2_3_3_2_1_1 + pbl_3_3_2_1_1 = 30
invariant :pi_d2_n1_2_2_3_3_3 + pil_d2_n1_2_2_3_3_3 = 1
invariant :po_d4_n1_1_2_2_3_3 + pol_d4_n1_1_2_2_3_3 = 1
invariant :po_d3_n1_2_2_3_2_3 + pol_d3_n1_2_2_3_2_3 = 1
invariant :pi_d3_n1_3_3_3_2_1 + pil_d3_n1_3_3_3_2_1 = 1
invariant :pi_d2_n1_3_2_3_1_3 + pil_d2_n1_3_2_3_1_3 = 1
invariant :pi_d5_n1_3_3_2_3_3 + pil_d5_n1_3_3_2_3_3 = 1
invariant :pb_d1_n1_3_1_1_2_1 + pb_d1_n2_3_1_1_2_1 + pb_d2_n1_3_1_1_2_1 + pb_d2_n2_3_1_1_2_1 + pb_d3_n1_3_1_1_2_1 + pb_d3_n2_3_1_1_2_1 + pb_d4_n1_3_1_1_2_1 + pb_d4_n2_3_1_1_2_1 + pb_d5_n1_3_1_1_2_1 + pb_d5_n2_3_1_1_2_1 + pbl_3_1_1_2_1 = 30
invariant :po_d5_n1_3_2_1_3_1 + pol_d5_n1_3_2_1_3_1 = 1
invariant :pi_d3_n1_2_1_3_3_3 + pil_d3_n1_2_1_3_3_3 = 1
invariant :pi_d2_n1_2_1_1_1_2 + pil_d2_n1_2_1_1_1_2 = 1
invariant :pi_d3_n1_1_3_3_2_1 + pil_d3_n1_1_3_3_2_1 = 1
invariant :pb_d1_n1_1_2_2_1_2 + pb_d1_n2_1_2_2_1_2 + pb_d2_n1_1_2_2_1_2 + pb_d2_n2_1_2_2_1_2 + pb_d3_n1_1_2_2_1_2 + pb_d3_n2_1_2_2_1_2 + pb_d4_n1_1_2_2_1_2 + pb_d4_n2_1_2_2_1_2 + pb_d5_n1_1_2_2_1_2 + pb_d5_n2_1_2_2_1_2 + pbl_1_2_2_1_2 = 30
invariant :po_d2_n1_1_3_2_3_2 + pol_d2_n1_1_3_2_3_2 = 1
invariant :po_d3_n1_2_3_3_3_1 + pol_d3_n1_2_3_3_3_1 = 1
invariant :po_d5_n1_1_2_2_1_3 + pol_d5_n1_1_2_2_1_3 = 1
invariant :po_d5_n1_3_3_1_2_3 + pol_d5_n1_3_3_1_2_3 = 1
invariant :pi_d3_n1_1_1_1_1_2 + pil_d3_n1_1_1_1_1_2 = 1
invariant :po_d1_n1_1_1_3_1_2 + pol_d1_n1_1_1_3_1_2 = 1
invariant :po_d3_n1_1_1_1_1_2 + pol_d3_n1_1_1_1_1_2 = 1
invariant :pi_d3_n1_2_1_1_2_3 + pil_d3_n1_2_1_1_2_3 = 1
invariant :pi_d1_n1_2_3_1_3_2 + pil_d1_n1_2_3_1_3_2 = 1
invariant :po_d5_n1_1_3_3_3_1 + pol_d5_n1_1_3_3_3_1 = 1
invariant :po_d4_n1_3_3_1_1_2 + pol_d4_n1_3_3_1_1_2 = 1
invariant :po_d2_n1_2_1_1_1_1 + pol_d2_n1_2_1_1_1_1 = 1
invariant :pi_d4_n1_2_2_2_2_2 + pil_d4_n1_2_2_2_2_2 = 1
invariant :po_d1_n1_1_2_3_1_2 + pol_d1_n1_1_2_3_1_2 = 1
invariant :po_d4_n1_1_3_2_2_3 + pol_d4_n1_1_3_2_2_3 = 1
invariant :pi_d2_n1_1_1_2_2_2 + pil_d2_n1_1_1_2_2_2 = 1
invariant :po_d4_n1_2_2_2_1_1 + pol_d4_n1_2_2_2_1_1 = 1
invariant :po_d2_n1_1_1_1_1_3 + pol_d2_n1_1_1_1_1_3 = 1
invariant :po_d5_n1_3_3_2_2_1 + pol_d5_n1_3_3_2_2_1 = 1
invariant :pb_d1_n1_2_3_3_1_2 + pb_d1_n2_2_3_3_1_2 + pb_d2_n1_2_3_3_1_2 + pb_d2_n2_2_3_3_1_2 + pb_d3_n1_2_3_3_1_2 + pb_d3_n2_2_3_3_1_2 + pb_d4_n1_2_3_3_1_2 + pb_d4_n2_2_3_3_1_2 + pb_d5_n1_2_3_3_1_2 + pb_d5_n2_2_3_3_1_2 + pbl_2_3_3_1_2 = 30
invariant :pi_d2_n1_1_1_1_1_1 + pil_d2_n1_1_1_1_1_1 = 1
invariant :po_d3_n1_2_3_2_3_3 + pol_d3_n1_2_3_2_3_3 = 1
invariant :po_d2_n1_3_3_1_1_1 + pol_d2_n1_3_3_1_1_1 = 1
invariant :po_d2_n1_2_2_3_3_1 + pol_d2_n1_2_2_3_3_1 = 1
invariant :pi_d2_n1_1_3_1_2_3 + pil_d2_n1_1_3_1_2_3 = 1
invariant :po_d1_n1_1_3_1_1_3 + pol_d1_n1_1_3_1_1_3 = 1
invariant :pi_d2_n1_3_1_3_1_3 + pil_d2_n1_3_1_3_1_3 = 1
invariant :pi_d5_n1_2_3_3_1_3 + pil_d5_n1_2_3_3_1_3 = 1
invariant :po_d4_n1_1_3_2_1_2 + pol_d4_n1_1_3_2_1_2 = 1
invariant :pi_d5_n1_2_3_3_1_1 + pil_d5_n1_2_3_3_1_1 = 1
invariant :po_d2_n1_1_1_2_2_3 + pol_d2_n1_1_1_2_2_3 = 1
invariant :po_d5_n1_1_3_2_3_1 + pol_d5_n1_1_3_2_3_1 = 1
invariant :po_d5_n1_3_3_1_3_1 + pol_d5_n1_3_3_1_3_1 = 1
invariant :po_d4_n1_1_2_2_3_2 + pol_d4_n1_1_2_2_3_2 = 1
invariant :po_d5_n1_3_1_2_3_1 + pol_d5_n1_3_1_2_3_1 = 1
invariant :pi_d2_n1_1_2_1_3_3 + pil_d2_n1_1_2_1_3_3 = 1
invariant :pi_d1_n1_1_3_2_3_2 + pil_d1_n1_1_3_2_3_2 = 1
invariant :po_d1_n1_2_2_3_3_3 + pol_d1_n1_2_2_3_3_3 = 1
invariant :pb_d1_n1_1_1_3_2_2 + pb_d1_n2_1_1_3_2_2 + pb_d2_n1_1_1_3_2_2 + pb_d2_n2_1_1_3_2_2 + pb_d3_n1_1_1_3_2_2 + pb_d3_n2_1_1_3_2_2 + pb_d4_n1_1_1_3_2_2 + pb_d4_n2_1_1_3_2_2 + pb_d5_n1_1_1_3_2_2 + pb_d5_n2_1_1_3_2_2 + pbl_1_1_3_2_2 = 30
invariant :po_d4_n1_1_1_2_1_1 + pol_d4_n1_1_1_2_1_1 = 1
invariant :po_d2_n1_3_3_3_1_3 + pol_d2_n1_3_3_3_1_3 = 1
invariant :po_d3_n1_3_3_1_2_2 + pol_d3_n1_3_3_1_2_2 = 1
invariant :po_d5_n1_3_2_3_2_3 + pol_d5_n1_3_2_3_2_3 = 1
invariant :po_d5_n1_3_3_3_2_1 + pol_d5_n1_3_3_3_2_1 = 1
invariant :pi_d4_n1_3_2_2_1_2 + pil_d4_n1_3_2_2_1_2 = 1
invariant :pi_d3_n1_3_3_2_1_2 + pil_d3_n1_3_3_2_1_2 = 1
invariant :po_d3_n1_2_2_3_2_2 + pol_d3_n1_2_2_3_2_2 = 1
invariant :po_d2_n1_1_2_2_1_1 + pol_d2_n1_1_2_2_1_1 = 1
invariant :po_d3_n1_2_1_3_3_3 + pol_d3_n1_2_1_3_3_3 = 1
invariant :po_d2_n1_3_3_2_1_2 + pol_d2_n1_3_3_2_1_2 = 1
invariant :po_d5_n1_2_3_3_1_1 + pol_d5_n1_2_3_3_1_1 = 1
invariant :po_d3_n1_1_2_1_2_2 + pol_d3_n1_1_2_1_2_2 = 1
invariant :po_d3_n1_1_2_1_1_1 + pol_d3_n1_1_2_1_1_1 = 1
invariant :po_d2_n1_2_1_2_2_3 + pol_d2_n1_2_1_2_2_3 = 1
invariant :po_d4_n1_3_3_1_3_1 + pol_d4_n1_3_3_1_3_1 = 1
invariant :po_d3_n1_1_2_3_3_3 + pol_d3_n1_1_2_3_3_3 = 1
invariant :pb_d1_n1_3_2_2_3_2 + pb_d1_n2_3_2_2_3_2 + pb_d2_n1_3_2_2_3_2 + pb_d2_n2_3_2_2_3_2 + pb_d3_n1_3_2_2_3_2 + pb_d3_n2_3_2_2_3_2 + pb_d4_n1_3_2_2_3_2 + pb_d4_n2_3_2_2_3_2 + pb_d5_n1_3_2_2_3_2 + pb_d5_n2_3_2_2_3_2 + pbl_3_2_2_3_2 = 30
invariant :pi_d3_n1_2_3_3_3_2 + pil_d3_n1_2_3_3_3_2 = 1
invariant :pi_d2_n1_2_2_3_3_1 + pil_d2_n1_2_2_3_3_1 = 1
invariant :po_d5_n1_3_1_3_1_1 + pol_d5_n1_3_1_3_1_1 = 1
invariant :pi_d1_n1_3_1_3_3_2 + pil_d1_n1_3_1_3_3_2 = 1
invariant :pi_d3_n1_2_1_3_1_3 + pil_d3_n1_2_1_3_1_3 = 1
invariant :pi_d3_n1_3_3_3_1_3 + pil_d3_n1_3_3_3_1_3 = 1
invariant :po_d2_n1_2_3_1_3_2 + pol_d2_n1_2_3_1_3_2 = 1
invariant :po_d2_n1_1_2_2_2_3 + pol_d2_n1_1_2_2_2_3 = 1
invariant :po_d2_n1_3_3_2_2_2 + pol_d2_n1_3_3_2_2_2 = 1
invariant :pb_d1_n1_3_3_2_1_3 + pb_d1_n2_3_3_2_1_3 + pb_d2_n1_3_3_2_1_3 + pb_d2_n2_3_3_2_1_3 + pb_d3_n1_3_3_2_1_3 + pb_d3_n2_3_3_2_1_3 + pb_d4_n1_3_3_2_1_3 + pb_d4_n2_3_3_2_1_3 + pb_d5_n1_3_3_2_1_3 + pb_d5_n2_3_3_2_1_3 + pbl_3_3_2_1_3 = 30
invariant :pi_d2_n1_3_3_2_2_2 + pil_d2_n1_3_3_2_2_2 = 1
invariant :pi_d3_n1_3_2_2_1_1 + pil_d3_n1_3_2_2_1_1 = 1
invariant :pi_d1_n1_2_2_1_1_2 + pil_d1_n1_2_2_1_1_2 = 1
invariant :pi_d3_n1_2_1_2_2_1 + pil_d3_n1_2_1_2_2_1 = 1
invariant :pb_d1_n1_1_1_2_1_1 + pb_d1_n2_1_1_2_1_1 + pb_d2_n1_1_1_2_1_1 + pb_d2_n2_1_1_2_1_1 + pb_d3_n1_1_1_2_1_1 + pb_d3_n2_1_1_2_1_1 + pb_d4_n1_1_1_2_1_1 + pb_d4_n2_1_1_2_1_1 + pb_d5_n1_1_1_2_1_1 + pb_d5_n2_1_1_2_1_1 + pbl_1_1_2_1_1 = 30
invariant :pi_d4_n1_2_3_2_1_1 + pil_d4_n1_2_3_2_1_1 = 1
invariant :po_d4_n1_2_2_3_3_1 + pol_d4_n1_2_2_3_3_1 = 1
invariant :po_d1_n1_2_1_1_1_2 + pol_d1_n1_2_1_1_1_2 = 1
invariant :pi_d5_n1_3_2_1_1_3 + pil_d5_n1_3_2_1_1_3 = 1
invariant :pi_d5_n1_1_3_2_2_2 + pil_d5_n1_1_3_2_2_2 = 1
invariant :pi_d3_n1_2_3_2_1_2 + pil_d3_n1_2_3_2_1_2 = 1
invariant :pi_d3_n1_3_2_3_1_2 + pil_d3_n1_3_2_3_1_2 = 1
invariant :pi_d5_n1_2_1_1_3_1 + pil_d5_n1_2_1_1_3_1 = 1
invariant :pb_d1_n1_1_2_3_3_1 + pb_d1_n2_1_2_3_3_1 + pb_d2_n1_1_2_3_3_1 + pb_d2_n2_1_2_3_3_1 + pb_d3_n1_1_2_3_3_1 + pb_d3_n2_1_2_3_3_1 + pb_d4_n1_1_2_3_3_1 + pb_d4_n2_1_2_3_3_1 + pb_d5_n1_1_2_3_3_1 + pb_d5_n2_1_2_3_3_1 + pbl_1_2_3_3_1 = 30
invariant :pi_d3_n1_1_3_2_1_1 + pil_d3_n1_1_3_2_1_1 = 1
invariant :po_d5_n1_2_3_1_3_2 + pol_d5_n1_2_3_1_3_2 = 1
invariant :pi_d5_n1_3_1_2_2_3 + pil_d5_n1_3_1_2_2_3 = 1
invariant :pi_d4_n1_1_1_1_1_3 + pil_d4_n1_1_1_1_1_3 = 1
invariant :po_d1_n1_1_3_2_3_2 + pol_d1_n1_1_3_2_3_2 = 1
invariant :po_d1_n1_3_3_1_1_1 + pol_d1_n1_3_3_1_1_1 = 1
invariant :pi_d4_n1_1_2_1_2_2 + pil_d4_n1_1_2_1_2_2 = 1
invariant :po_d4_n1_3_3_1_1_3 + pol_d4_n1_3_3_1_1_3 = 1
invariant :pb_d1_n1_1_3_2_3_3 + pb_d1_n2_1_3_2_3_3 + pb_d2_n1_1_3_2_3_3 + pb_d2_n2_1_3_2_3_3 + pb_d3_n1_1_3_2_3_3 + pb_d3_n2_1_3_2_3_3 + pb_d4_n1_1_3_2_3_3 + pb_d4_n2_1_3_2_3_3 + pb_d5_n1_1_3_2_3_3 + pb_d5_n2_1_3_2_3_3 + pbl_1_3_2_3_3 = 30
invariant :pi_d5_n1_1_2_3_1_3 + pil_d5_n1_1_2_3_1_3 = 1
invariant :po_d2_n1_3_2_2_3_2 + pol_d2_n1_3_2_2_3_2 = 1
invariant :pi_d1_n1_1_2_2_1_3 + pil_d1_n1_1_2_2_1_3 = 1
invariant :po_d4_n1_1_1_3_2_2 + pol_d4_n1_1_1_3_2_2 = 1
invariant :po_d3_n1_1_3_2_3_1 + pol_d3_n1_1_3_2_3_1 = 1
invariant :po_d5_n1_2_2_2_1_3 + pol_d5_n1_2_2_2_1_3 = 1
invariant :pb_d1_n1_3_2_3_2_2 + pb_d1_n2_3_2_3_2_2 + pb_d2_n1_3_2_3_2_2 + pb_d2_n2_3_2_3_2_2 + pb_d3_n1_3_2_3_2_2 + pb_d3_n2_3_2_3_2_2 + pb_d4_n1_3_2_3_2_2 + pb_d4_n2_3_2_3_2_2 + pb_d5_n1_3_2_3_2_2 + pb_d5_n2_3_2_3_2_2 + pbl_3_2_3_2_2 = 30
invariant :po_d3_n1_1_3_3_3_3 + pol_d3_n1_1_3_3_3_3 = 1
invariant :pi_d3_n1_1_2_3_3_1 + pil_d3_n1_1_2_3_3_1 = 1
invariant :pi_d1_n1_1_1_3_3_1 + pil_d1_n1_1_1_3_3_1 = 1
invariant :po_d5_n1_2_1_1_2_3 + pol_d5_n1_2_1_1_2_3 = 1
invariant :po_d3_n1_2_1_1_1_3 + pol_d3_n1_2_1_1_1_3 = 1
invariant :po_d3_n1_1_2_1_3_1 + pol_d3_n1_1_2_1_3_1 = 1
invariant :pi_d2_n1_3_1_2_3_3 + pil_d2_n1_3_1_2_3_3 = 1
invariant :pi_d4_n1_2_3_3_2_1 + pil_d4_n1_2_3_3_2_1 = 1
invariant :pi_d5_n1_2_3_1_1_3 + pil_d5_n1_2_3_1_1_3 = 1
invariant :pi_d2_n1_3_3_3_2_3 + pil_d2_n1_3_3_3_2_3 = 1
invariant :po_d2_n1_3_3_3_3_1 + pol_d2_n1_3_3_3_3_1 = 1
invariant :pi_d2_n1_2_3_1_1_1 + pil_d2_n1_2_3_1_1_1 = 1
invariant :pi_d3_n1_3_2_2_3_3 + pil_d3_n1_3_2_2_3_3 = 1
invariant :po_d2_n1_3_3_1_1_2 + pol_d2_n1_3_3_1_1_2 = 1
invariant :pi_d2_n1_2_3_3_1_1 + pil_d2_n1_2_3_3_1_1 = 1
invariant :pi_d2_n1_3_1_3_1_2 + pil_d2_n1_3_1_3_1_2 = 1
invariant :po_d1_n1_2_3_1_2_3 + pol_d1_n1_2_3_1_2_3 = 1
invariant :po_d2_n1_3_1_2_2_3 + pol_d2_n1_3_1_2_2_3 = 1
invariant :pi_d4_n1_1_3_3_2_3 + pil_d4_n1_1_3_3_2_3 = 1
invariant :po_d4_n1_2_1_3_3_2 + pol_d4_n1_2_1_3_3_2 = 1
invariant :pi_d4_n1_1_2_1_3_1 + pil_d4_n1_1_2_1_3_1 = 1
invariant :po_d2_n1_3_2_3_1_3 + pol_d2_n1_3_2_3_1_3 = 1
invariant :pi_d1_n1_1_2_1_1_1 + pil_d1_n1_1_2_1_1_1 = 1
invariant :pi_d2_n1_2_1_1_3_2 + pil_d2_n1_2_1_1_3_2 = 1
invariant :pb_d1_n1_3_3_1_2_2 + pb_d1_n2_3_3_1_2_2 + pb_d2_n1_3_3_1_2_2 + pb_d2_n2_3_3_1_2_2 + pb_d3_n1_3_3_1_2_2 + pb_d3_n2_3_3_1_2_2 + pb_d4_n1_3_3_1_2_2 + pb_d4_n2_3_3_1_2_2 + pb_d5_n1_3_3_1_2_2 + pb_d5_n2_3_3_1_2_2 + pbl_3_3_1_2_2 = 30
invariant :po_d3_n1_3_1_2_3_3 + pol_d3_n1_3_1_2_3_3 = 1
invariant :po_d4_n1_2_2_1_2_2 + pol_d4_n1_2_2_1_2_2 = 1
invariant :po_d2_n1_1_3_1_3_2 + pol_d2_n1_1_3_1_3_2 = 1
invariant :pi_d2_n1_1_2_2_2_3 + pil_d2_n1_1_2_2_2_3 = 1
invariant :po_d2_n1_3_3_1_3_3 + pol_d2_n1_3_3_1_3_3 = 1
invariant :po_d5_n1_3_2_3_3_1 + pol_d5_n1_3_2_3_3_1 = 1
invariant :po_d5_n1_1_2_3_1_2 + pol_d5_n1_1_2_3_1_2 = 1
invariant :po_d2_n1_2_1_1_1_2 + pol_d2_n1_2_1_1_1_2 = 1
invariant :pi_d3_n1_2_2_1_3_2 + pil_d3_n1_2_2_1_3_2 = 1
invariant :pi_d4_n1_3_1_2_3_2 + pil_d4_n1_3_1_2_3_2 = 1
invariant :pi_d1_n1_1_1_3_2_2 + pil_d1_n1_1_1_3_2_2 = 1
invariant :po_d3_n1_3_3_1_2_1 + pol_d3_n1_3_3_1_2_1 = 1
invariant :po_d4_n1_1_3_3_3_1 + pol_d4_n1_1_3_3_3_1 = 1
invariant :pi_d5_n1_3_1_1_1_2 + pil_d5_n1_3_1_1_1_2 = 1
invariant :po_d2_n1_3_2_1_3_2 + pol_d2_n1_3_2_1_3_2 = 1
invariant :pb_d1_n1_1_2_1_2_1 + pb_d1_n2_1_2_1_2_1 + pb_d2_n1_1_2_1_2_1 + pb_d2_n2_1_2_1_2_1 + pb_d3_n1_1_2_1_2_1 + pb_d3_n2_1_2_1_2_1 + pb_d4_n1_1_2_1_2_1 + pb_d4_n2_1_2_1_2_1 + pb_d5_n1_1_2_1_2_1 + pb_d5_n2_1_2_1_2_1 + pbl_1_2_1_2_1 = 30
invariant :pb_d1_n1_1_3_3_1_3 + pb_d1_n2_1_3_3_1_3 + pb_d2_n1_1_3_3_1_3 + pb_d2_n2_1_3_3_1_3 + pb_d3_n1_1_3_3_1_3 + pb_d3_n2_1_3_3_1_3 + pb_d4_n1_1_3_3_1_3 + pb_d4_n2_1_3_3_1_3 + pb_d5_n1_1_3_3_1_3 + pb_d5_n2_1_3_3_1_3 + pbl_1_3_3_1_3 = 30
invariant :pi_d5_n1_1_3_2_3_2 + pil_d5_n1_1_3_2_3_2 = 1
invariant :po_d4_n1_3_1_2_1_3 + pol_d4_n1_3_1_2_1_3 = 1
invariant :pi_d1_n1_1_1_1_3_1 + pil_d1_n1_1_1_1_3_1 = 1
invariant :pi_d4_n1_3_2_1_1_2 + pil_d4_n1_3_2_1_1_2 = 1
invariant :pi_d3_n1_1_1_3_2_3 + pil_d3_n1_1_1_3_2_3 = 1
invariant :pi_d4_n1_1_1_1_3_1 + pil_d4_n1_1_1_1_3_1 = 1
invariant :pi_d1_n1_3_2_2_1_1 + pil_d1_n1_3_2_2_1_1 = 1
invariant :po_d5_n1_1_2_2_2_2 + pol_d5_n1_1_2_2_2_2 = 1
invariant :pb_d1_n1_3_1_1_2_3 + pb_d1_n2_3_1_1_2_3 + pb_d2_n1_3_1_1_2_3 + pb_d2_n2_3_1_1_2_3 + pb_d3_n1_3_1_1_2_3 + pb_d3_n2_3_1_1_2_3 + pb_d4_n1_3_1_1_2_3 + pb_d4_n2_3_1_1_2_3 + pb_d5_n1_3_1_1_2_3 + pb_d5_n2_3_1_1_2_3 + pbl_3_1_1_2_3 = 30
invariant :po_d2_n1_1_3_2_2_1 + pol_d2_n1_1_3_2_2_1 = 1
invariant :pi_d2_n1_2_1_3_1_3 + pil_d2_n1_2_1_3_1_3 = 1
invariant :po_d4_n1_3_3_2_3_2 + pol_d4_n1_3_3_2_3_2 = 1
invariant :po_d2_n1_1_3_1_2_3 + pol_d2_n1_1_3_1_2_3 = 1
invariant :pb_d1_n1_3_1_2_2_2 + pb_d1_n2_3_1_2_2_2 + pb_d2_n1_3_1_2_2_2 + pb_d2_n2_3_1_2_2_2 + pb_d3_n1_3_1_2_2_2 + pb_d3_n2_3_1_2_2_2 + pb_d4_n1_3_1_2_2_2 + pb_d4_n2_3_1_2_2_2 + pb_d5_n1_3_1_2_2_2 + pb_d5_n2_3_1_2_2_2 + pbl_3_1_2_2_2 = 30
invariant :po_d1_n1_3_1_2_1_2 + pol_d1_n1_3_1_2_1_2 = 1
invariant :po_d3_n1_3_1_1_1_1 + pol_d3_n1_3_1_1_1_1 = 1
invariant :po_d2_n1_1_3_3_3_3 + pol_d2_n1_1_3_3_3_3 = 1
invariant :pb_d1_n1_2_3_1_2_3 + pb_d1_n2_2_3_1_2_3 + pb_d2_n1_2_3_1_2_3 + pb_d2_n2_2_3_1_2_3 + pb_d3_n1_2_3_1_2_3 + pb_d3_n2_2_3_1_2_3 + pb_d4_n1_2_3_1_2_3 + pb_d4_n2_2_3_1_2_3 + pb_d5_n1_2_3_1_2_3 + pb_d5_n2_2_3_1_2_3 + pbl_2_3_1_2_3 = 30
invariant :po_d3_n1_2_1_1_2_1 + pol_d3_n1_2_1_1_2_1 = 1
invariant :po_d1_n1_1_2_2_1_2 + pol_d1_n1_1_2_2_1_2 = 1
invariant :po_d4_n1_2_2_1_2_1 + pol_d4_n1_2_2_1_2_1 = 1
invariant :pi_d1_n1_1_3_1_1_1 + pil_d1_n1_1_3_1_1_1 = 1
invariant :pi_d5_n1_3_2_2_3_2 + pil_d5_n1_3_2_2_3_2 = 1
invariant :po_d1_n1_1_1_2_2_2 + pol_d1_n1_1_1_2_2_2 = 1
invariant :pi_d1_n1_3_2_1_1_2 + pil_d1_n1_3_2_1_1_2 = 1
invariant :pb_d1_n1_3_3_3_2_3 + pb_d1_n2_3_3_3_2_3 + pb_d2_n1_3_3_3_2_3 + pb_d2_n2_3_3_3_2_3 + pb_d3_n1_3_3_3_2_3 + pb_d3_n2_3_3_3_2_3 + pb_d4_n1_3_3_3_2_3 + pb_d4_n2_3_3_3_2_3 + pb_d5_n1_3_3_3_2_3 + pb_d5_n2_3_3_3_2_3 + pbl_3_3_3_2_3 = 30
invariant :pi_d4_n1_1_1_3_2_1 + pil_d4_n1_1_1_3_2_1 = 1
invariant :pi_d1_n1_1_2_3_3_3 + pil_d1_n1_1_2_3_3_3 = 1
invariant :pi_d3_n1_2_3_2_3_2 + pil_d3_n1_2_3_2_3_2 = 1
invariant :po_d2_n1_1_2_3_3_3 + pol_d2_n1_1_2_3_3_3 = 1
invariant :po_d3_n1_2_1_1_2_3 + pol_d3_n1_2_1_1_2_3 = 1
invariant :po_d1_n1_1_3_3_2_1 + pol_d1_n1_1_3_3_2_1 = 1
invariant :po_d1_n1_3_2_1_1_2 + pol_d1_n1_3_2_1_1_2 = 1
invariant :po_d1_n1_1_2_1_3_2 + pol_d1_n1_1_2_1_3_2 = 1
invariant :po_d3_n1_3_1_2_2_2 + pol_d3_n1_3_1_2_2_2 = 1
invariant :pi_d3_n1_1_3_2_2_2 + pil_d3_n1_1_3_2_2_2 = 1
invariant :pi_d3_n1_3_2_3_3_1 + pil_d3_n1_3_2_3_3_1 = 1
invariant :po_d1_n1_2_1_3_1_3 + pol_d1_n1_2_1_3_1_3 = 1
invariant :po_d3_n1_2_1_2_2_1 + pol_d3_n1_2_1_2_2_1 = 1
invariant :po_d5_n1_1_2_1_2_2 + pol_d5_n1_1_2_1_2_2 = 1
invariant :pi_d5_n1_1_1_3_1_1 + pil_d5_n1_1_1_3_1_1 = 1
invariant :po_d5_n1_1_1_1_2_3 + pol_d5_n1_1_1_1_2_3 = 1
invariant :pi_d3_n1_2_3_3_2_3 + pil_d3_n1_2_3_3_2_3 = 1
invariant :pi_d1_n1_3_2_3_2_1 + pil_d1_n1_3_2_3_2_1 = 1
invariant :po_d4_n1_1_1_2_3_2 + pol_d4_n1_1_1_2_3_2 = 1
invariant :pi_d1_n1_3_2_1_2_1 + pil_d1_n1_3_2_1_2_1 = 1
invariant :pi_d4_n1_1_3_1_1_3 + pil_d4_n1_1_3_1_1_3 = 1
invariant :pi_d5_n1_1_3_1_3_1 + pil_d5_n1_1_3_1_3_1 = 1
invariant :pi_d1_n1_1_2_2_3_1 + pil_d1_n1_1_2_2_3_1 = 1
invariant :po_d5_n1_2_3_1_3_1 + pol_d5_n1_2_3_1_3_1 = 1
invariant :po_d3_n1_3_2_1_2_3 + pol_d3_n1_3_2_1_2_3 = 1
invariant :pb_d1_n1_2_1_3_2_2 + pb_d1_n2_2_1_3_2_2 + pb_d2_n1_2_1_3_2_2 + pb_d2_n2_2_1_3_2_2 + pb_d3_n1_2_1_3_2_2 + pb_d3_n2_2_1_3_2_2 + pb_d4_n1_2_1_3_2_2 + pb_d4_n2_2_1_3_2_2 + pb_d5_n1_2_1_3_2_2 + pb_d5_n2_2_1_3_2_2 + pbl_2_1_3_2_2 = 30
invariant :pb_d1_n1_3_2_2_2_2 + pb_d1_n2_3_2_2_2_2 + pb_d2_n1_3_2_2_2_2 + pb_d2_n2_3_2_2_2_2 + pb_d3_n1_3_2_2_2_2 + pb_d3_n2_3_2_2_2_2 + pb_d4_n1_3_2_2_2_2 + pb_d4_n2_3_2_2_2_2 + pb_d5_n1_3_2_2_2_2 + pb_d5_n2_3_2_2_2_2 + pbl_3_2_2_2_2 = 30
invariant :pi_d1_n1_3_1_1_1_1 + pil_d1_n1_3_1_1_1_1 = 1
invariant :pi_d4_n1_3_2_2_1_1 + pil_d4_n1_3_2_2_1_1 = 1
invariant :po_d2_n1_1_2_1_1_2 + pol_d2_n1_1_2_1_1_2 = 1
invariant :po_d2_n1_2_3_2_2_2 + pol_d2_n1_2_3_2_2_2 = 1
invariant :pb_d1_n1_3_1_1_3_2 + pb_d1_n2_3_1_1_3_2 + pb_d2_n1_3_1_1_3_2 + pb_d2_n2_3_1_1_3_2 + pb_d3_n1_3_1_1_3_2 + pb_d3_n2_3_1_1_3_2 + pb_d4_n1_3_1_1_3_2 + pb_d4_n2_3_1_1_3_2 + pb_d5_n1_3_1_1_3_2 + pb_d5_n2_3_1_1_3_2 + pbl_3_1_1_3_2 = 30
invariant :po_d1_n1_2_1_3_3_1 + pol_d1_n1_2_1_3_3_1 = 1
invariant :po_d2_n1_1_3_3_1_1 + pol_d2_n1_1_3_3_1_1 = 1
invariant :pb_d1_n1_3_3_1_3_3 + pb_d1_n2_3_3_1_3_3 + pb_d2_n1_3_3_1_3_3 + pb_d2_n2_3_3_1_3_3 + pb_d3_n1_3_3_1_3_3 + pb_d3_n2_3_3_1_3_3 + pb_d4_n1_3_3_1_3_3 + pb_d4_n2_3_3_1_3_3 + pb_d5_n1_3_3_1_3_3 + pb_d5_n2_3_3_1_3_3 + pbl_3_3_1_3_3 = 30
invariant :po_d4_n1_2_2_1_1_3 + pol_d4_n1_2_2_1_1_3 = 1
invariant :pi_d4_n1_2_3_1_2_1 + pil_d4_n1_2_3_1_2_1 = 1
invariant :po_d2_n1_2_1_3_1_3 + pol_d2_n1_2_1_3_1_3 = 1
invariant :po_d4_n1_1_2_3_2_3 + pol_d4_n1_1_2_3_2_3 = 1
invariant :po_d3_n1_3_3_1_3_3 + pol_d3_n1_3_3_1_3_3 = 1
invariant :po_d3_n1_1_1_2_3_1 + pol_d3_n1_1_1_2_3_1 = 1
invariant :pi_d4_n1_2_2_1_2_1 + pil_d4_n1_2_2_1_2_1 = 1
invariant :pi_d5_n1_3_1_2_2_2 + pil_d5_n1_3_1_2_2_2 = 1
invariant :pi_d3_n1_1_1_2_2_2 + pil_d3_n1_1_1_2_2_2 = 1
invariant :pb_d1_n1_2_2_1_1_3 + pb_d1_n2_2_2_1_1_3 + pb_d2_n1_2_2_1_1_3 + pb_d2_n2_2_2_1_1_3 + pb_d3_n1_2_2_1_1_3 + pb_d3_n2_2_2_1_1_3 + pb_d4_n1_2_2_1_1_3 + pb_d4_n2_2_2_1_1_3 + pb_d5_n1_2_2_1_1_3 + pb_d5_n2_2_2_1_1_3 + pbl_2_2_1_1_3 = 30
invariant :pi_d5_n1_1_1_3_1_3 + pil_d5_n1_1_1_3_1_3 = 1
invariant :pi_d1_n1_2_1_1_1_3 + pil_d1_n1_2_1_1_1_3 = 1
invariant :pi_d5_n1_3_3_1_1_3 + pil_d5_n1_3_3_1_1_3 = 1
invariant :po_d3_n1_3_2_1_3_1 + pol_d3_n1_3_2_1_3_1 = 1
invariant :po_d4_n1_1_2_2_2_1 + pol_d4_n1_1_2_2_2_1 = 1
invariant :pi_d3_n1_2_2_3_3_2 + pil_d3_n1_2_2_3_3_2 = 1
invariant :pi_d3_n1_3_1_1_3_1 + pil_d3_n1_3_1_1_3_1 = 1
invariant :pi_d4_n1_3_2_3_2_2 + pil_d4_n1_3_2_3_2_2 = 1
invariant :pi_d3_n1_2_1_2_1_3 + pil_d3_n1_2_1_2_1_3 = 1
invariant :pi_d1_n1_3_3_3_2_3 + pil_d1_n1_3_3_3_2_3 = 1
invariant :pi_d5_n1_1_2_2_1_3 + pil_d5_n1_1_2_2_1_3 = 1
invariant :pi_d4_n1_2_1_2_3_2 + pil_d4_n1_2_1_2_3_2 = 1
invariant :pi_d2_n1_2_1_1_3_1 + pil_d2_n1_2_1_1_3_1 = 1
invariant :pi_d3_n1_3_3_2_1_1 + pil_d3_n1_3_3_2_1_1 = 1
invariant :pi_d2_n1_2_2_3_1_1 + pil_d2_n1_2_2_3_1_1 = 1
invariant :pi_d1_n1_1_1_2_1_2 + pil_d1_n1_1_1_2_1_2 = 1
invariant :pb_d1_n1_2_1_2_2_2 + pb_d1_n2_2_1_2_2_2 + pb_d2_n1_2_1_2_2_2 + pb_d2_n2_2_1_2_2_2 + pb_d3_n1_2_1_2_2_2 + pb_d3_n2_2_1_2_2_2 + pb_d4_n1_2_1_2_2_2 + pb_d4_n2_2_1_2_2_2 + pb_d5_n1_2_1_2_2_2 + pb_d5_n2_2_1_2_2_2 + pbl_2_1_2_2_2 = 30
invariant :po_d4_n1_2_3_1_2_2 + pol_d4_n1_2_3_1_2_2 = 1
invariant :po_d1_n1_1_3_2_2_2 + pol_d1_n1_1_3_2_2_2 = 1
invariant :pi_d1_n1_1_1_3_3_3 + pil_d1_n1_1_1_3_3_3 = 1
invariant :pi_d5_n1_2_2_1_3_1 + pil_d5_n1_2_2_1_3_1 = 1
invariant :po_d4_n1_3_3_1_2_2 + pol_d4_n1_3_3_1_2_2 = 1
invariant :pi_d4_n1_2_1_1_2_2 + pil_d4_n1_2_1_1_2_2 = 1
invariant :po_d3_n1_3_1_3_2_1 + pol_d3_n1_3_1_3_2_1 = 1
invariant :po_d5_n1_1_1_1_1_2 + pol_d5_n1_1_1_1_1_2 = 1
invariant :pi_d5_n1_2_1_3_2_1 + pil_d5_n1_2_1_3_2_1 = 1
invariant :pb_d1_n1_3_2_1_1_1 + pb_d1_n2_3_2_1_1_1 + pb_d2_n1_3_2_1_1_1 + pb_d2_n2_3_2_1_1_1 + pb_d3_n1_3_2_1_1_1 + pb_d3_n2_3_2_1_1_1 + pb_d4_n1_3_2_1_1_1 + pb_d4_n2_3_2_1_1_1 + pb_d5_n1_3_2_1_1_1 + pb_d5_n2_3_2_1_1_1 + pbl_3_2_1_1_1 = 30
invariant :po_d2_n1_2_3_1_3_3 + pol_d2_n1_2_3_1_3_3 = 1
invariant :pi_d1_n1_2_1_1_1_2 + pil_d1_n1_2_1_1_1_2 = 1
invariant :po_d3_n1_1_2_3_2_2 + pol_d3_n1_1_2_3_2_2 = 1
invariant :po_d5_n1_2_1_2_1_1 + pol_d5_n1_2_1_2_1_1 = 1
invariant :po_d3_n1_3_1_2_3_2 + pol_d3_n1_3_1_2_3_2 = 1
invariant :pi_d3_n1_2_2_3_2_1 + pil_d3_n1_2_2_3_2_1 = 1
invariant :pi_d3_n1_3_2_3_3_2 + pil_d3_n1_3_2_3_3_2 = 1
invariant :pb_d1_n1_2_3_1_3_1 + pb_d1_n2_2_3_1_3_1 + pb_d2_n1_2_3_1_3_1 + pb_d2_n2_2_3_1_3_1 + pb_d3_n1_2_3_1_3_1 + pb_d3_n2_2_3_1_3_1 + pb_d4_n1_2_3_1_3_1 + pb_d4_n2_2_3_1_3_1 + pb_d5_n1_2_3_1_3_1 + pb_d5_n2_2_3_1_3_1 + pbl_2_3_1_3_1 = 30
invariant :pi_d2_n1_3_2_2_1_3 + pil_d2_n1_3_2_2_1_3 = 1
invariant :pi_d1_n1_3_3_3_3_1 + pil_d1_n1_3_3_3_3_1 = 1
invariant :pb_d1_n1_1_1_2_3_2 + pb_d1_n2_1_1_2_3_2 + pb_d2_n1_1_1_2_3_2 + pb_d2_n2_1_1_2_3_2 + pb_d3_n1_1_1_2_3_2 + pb_d3_n2_1_1_2_3_2 + pb_d4_n1_1_1_2_3_2 + pb_d4_n2_1_1_2_3_2 + pb_d5_n1_1_1_2_3_2 + pb_d5_n2_1_1_2_3_2 + pbl_1_1_2_3_2 = 30
invariant :pi_d4_n1_3_2_3_1_3 + pil_d4_n1_3_2_3_1_3 = 1
invariant :po_d5_n1_3_3_3_2_3 + pol_d5_n1_3_3_3_2_3 = 1
invariant :pi_d2_n1_3_1_2_1_1 + pil_d2_n1_3_1_2_1_1 = 1
invariant :po_d5_n1_1_2_2_2_1 + pol_d5_n1_1_2_2_2_1 = 1
invariant :po_d1_n1_2_1_2_2_2 + pol_d1_n1_2_1_2_2_2 = 1
invariant :po_d1_n1_1_2_1_1_2 + pol_d1_n1_1_2_1_1_2 = 1
invariant :pi_d2_n1_1_3_2_2_3 + pil_d2_n1_1_3_2_2_3 = 1
invariant :pi_d5_n1_1_3_2_1_1 + pil_d5_n1_1_3_2_1_1 = 1
invariant :po_d1_n1_1_1_1_3_3 + pol_d1_n1_1_1_1_3_3 = 1
invariant :po_d4_n1_2_2_1_1_1 + pol_d4_n1_2_2_1_1_1 = 1
invariant :pi_d3_n1_3_1_1_2_2 + pil_d3_n1_3_1_1_2_2 = 1
invariant :po_d2_n1_2_2_3_2_2 + pol_d2_n1_2_2_3_2_2 = 1
invariant :po_d4_n1_2_3_1_1_1 + pol_d4_n1_2_3_1_1_1 = 1
invariant :pi_d4_n1_1_2_2_3_2 + pil_d4_n1_1_2_2_3_2 = 1
invariant :pi_d5_n1_3_2_1_2_3 + pil_d5_n1_3_2_1_2_3 = 1
invariant :po_d2_n1_3_1_1_2_1 + pol_d2_n1_3_1_1_2_1 = 1
invariant :pi_d2_n1_2_2_3_1_3 + pil_d2_n1_2_2_3_1_3 = 1
invariant :po_d2_n1_1_3_1_2_2 + pol_d2_n1_1_3_1_2_2 = 1
invariant :po_d3_n1_2_3_1_1_2 + pol_d3_n1_2_3_1_1_2 = 1
invariant :po_d3_n1_2_2_3_1_2 + pol_d3_n1_2_2_3_1_2 = 1
invariant :pi_d2_n1_1_3_1_2_1 + pil_d2_n1_1_3_1_2_1 = 1
invariant :po_d1_n1_1_1_1_2_3 + pol_d1_n1_1_1_1_2_3 = 1
invariant :po_d2_n1_2_3_1_1_1 + pol_d2_n1_2_3_1_1_1 = 1
invariant :pi_d1_n1_2_2_2_3_3 + pil_d1_n1_2_2_2_3_3 = 1
invariant :pi_d3_n1_1_2_2_3_3 + pil_d3_n1_1_2_2_3_3 = 1
invariant :pb_d1_n1_1_2_2_3_2 + pb_d1_n2_1_2_2_3_2 + pb_d2_n1_1_2_2_3_2 + pb_d2_n2_1_2_2_3_2 + pb_d3_n1_1_2_2_3_2 + pb_d3_n2_1_2_2_3_2 + pb_d4_n1_1_2_2_3_2 + pb_d4_n2_1_2_2_3_2 + pb_d5_n1_1_2_2_3_2 + pb_d5_n2_1_2_2_3_2 + pbl_1_2_2_3_2 = 30
invariant :po_d4_n1_2_2_2_3_2 + pol_d4_n1_2_2_2_3_2 = 1
invariant :pi_d5_n1_3_3_1_3_2 + pil_d5_n1_3_3_1_3_2 = 1
invariant :pi_d3_n1_3_1_2_2_2 + pil_d3_n1_3_1_2_2_2 = 1
invariant :po_d2_n1_2_3_3_2_1 + pol_d2_n1_2_3_3_2_1 = 1
invariant :po_d1_n1_3_3_2_1_1 + pol_d1_n1_3_3_2_1_1 = 1
invariant :pi_d1_n1_1_3_2_2_2 + pil_d1_n1_1_3_2_2_2 = 1
invariant :po_d3_n1_1_1_2_2_3 + pol_d3_n1_1_1_2_2_3 = 1
invariant :pi_d3_n1_1_2_1_1_2 + pil_d3_n1_1_2_1_1_2 = 1
invariant :pi_d4_n1_2_1_2_1_1 + pil_d4_n1_2_1_2_1_1 = 1
invariant :pi_d4_n1_3_3_3_2_2 + pil_d4_n1_3_3_3_2_2 = 1
invariant :po_d4_n1_3_3_3_2_3 + pol_d4_n1_3_3_3_2_3 = 1
invariant :po_d2_n1_2_3_1_3_1 + pol_d2_n1_2_3_1_3_1 = 1
invariant :pi_d3_n1_2_1_3_1_2 + pil_d3_n1_2_1_3_1_2 = 1
invariant :pi_d2_n1_1_2_1_2_2 + pil_d2_n1_1_2_1_2_2 = 1
invariant :po_d1_n1_2_3_1_3_1 + pol_d1_n1_2_3_1_3_1 = 1
invariant :pi_d4_n1_3_1_2_1_3 + pil_d4_n1_3_1_2_1_3 = 1
invariant :po_d2_n1_1_3_1_1_1 + pol_d2_n1_1_3_1_1_1 = 1
invariant :pi_d2_n1_1_1_3_2_3 + pil_d2_n1_1_1_3_2_3 = 1
invariant :po_d3_n1_1_3_2_1_1 + pol_d3_n1_1_3_2_1_1 = 1
invariant :pb_d1_n1_2_3_3_1_1 + pb_d1_n2_2_3_3_1_1 + pb_d2_n1_2_3_3_1_1 + pb_d2_n2_2_3_3_1_1 + pb_d3_n1_2_3_3_1_1 + pb_d3_n2_2_3_3_1_1 + pb_d4_n1_2_3_3_1_1 + pb_d4_n2_2_3_3_1_1 + pb_d5_n1_2_3_3_1_1 + pb_d5_n2_2_3_3_1_1 + pbl_2_3_3_1_1 = 30
invariant :po_d2_n1_2_1_2_1_1 + pol_d2_n1_2_1_2_1_1 = 1
invariant :pi_d4_n1_1_1_3_2_3 + pil_d4_n1_1_1_3_2_3 = 1
invariant :po_d2_n1_2_3_1_2_2 + pol_d2_n1_2_3_1_2_2 = 1
invariant :po_d1_n1_3_3_1_2_1 + pol_d1_n1_3_3_1_2_1 = 1
invariant :po_d4_n1_3_1_3_2_2 + pol_d4_n1_3_1_3_2_2 = 1
invariant :po_d5_n1_2_1_3_3_3 + pol_d5_n1_2_1_3_3_3 = 1
invariant :pi_d2_n1_1_1_2_1_2 + pil_d2_n1_1_1_2_1_2 = 1
invariant :pb_d1_n1_3_1_2_1_2 + pb_d1_n2_3_1_2_1_2 + pb_d2_n1_3_1_2_1_2 + pb_d2_n2_3_1_2_1_2 + pb_d3_n1_3_1_2_1_2 + pb_d3_n2_3_1_2_1_2 + pb_d4_n1_3_1_2_1_2 + pb_d4_n2_3_1_2_1_2 + pb_d5_n1_3_1_2_1_2 + pb_d5_n2_3_1_2_1_2 + pbl_3_1_2_1_2 = 30
invariant :po_d1_n1_3_1_2_1_1 + pol_d1_n1_3_1_2_1_1 = 1
invariant :po_d4_n1_3_2_2_1_1 + pol_d4_n1_3_2_2_1_1 = 1
invariant :pi_d2_n1_2_1_2_3_3 + pil_d2_n1_2_1_2_3_3 = 1
invariant :pb_d1_n1_2_3_2_1_2 + pb_d1_n2_2_3_2_1_2 + pb_d2_n1_2_3_2_1_2 + pb_d2_n2_2_3_2_1_2 + pb_d3_n1_2_3_2_1_2 + pb_d3_n2_2_3_2_1_2 + pb_d4_n1_2_3_2_1_2 + pb_d4_n2_2_3_2_1_2 + pb_d5_n1_2_3_2_1_2 + pb_d5_n2_2_3_2_1_2 + pbl_2_3_2_1_2 = 30
invariant :pi_d5_n1_3_3_3_1_2 + pil_d5_n1_3_3_3_1_2 = 1
invariant :pi_d2_n1_2_2_2_2_2 + pil_d2_n1_2_2_2_2_2 = 1
invariant :po_d3_n1_2_3_3_3_3 + pol_d3_n1_2_3_3_3_3 = 1
invariant :po_d4_n1_3_2_1_1_1 + pol_d4_n1_3_2_1_1_1 = 1
invariant :po_d2_n1_2_3_3_3_2 + pol_d2_n1_2_3_3_3_2 = 1
invariant :po_d5_n1_2_1_2_3_1 + pol_d5_n1_2_1_2_3_1 = 1
invariant :po_d5_n1_2_2_2_3_1 + pol_d5_n1_2_2_2_3_1 = 1
invariant :po_d5_n1_1_2_2_3_3 + pol_d5_n1_1_2_2_3_3 = 1
invariant :pi_d1_n1_1_3_1_1_3 + pil_d1_n1_1_3_1_1_3 = 1
invariant :po_d1_n1_3_1_2_2_2 + pol_d1_n1_3_1_2_2_2 = 1
invariant :pi_d5_n1_1_1_2_2_2 + pil_d5_n1_1_1_2_2_2 = 1
invariant :po_d3_n1_3_2_2_1_2 + pol_d3_n1_3_2_2_1_2 = 1
invariant :pi_d1_n1_1_2_3_2_3 + pil_d1_n1_1_2_3_2_3 = 1
invariant :pi_d5_n1_2_1_2_1_3 + pil_d5_n1_2_1_2_1_3 = 1
invariant :pi_d2_n1_3_2_1_1_1 + pil_d2_n1_3_2_1_1_1 = 1
invariant :po_d2_n1_1_3_2_1_3 + pol_d2_n1_1_3_2_1_3 = 1
invariant :pi_d4_n1_2_2_3_3_2 + pil_d4_n1_2_2_3_3_2 = 1
invariant :pb_d1_n1_3_2_1_3_3 + pb_d1_n2_3_2_1_3_3 + pb_d2_n1_3_2_1_3_3 + pb_d2_n2_3_2_1_3_3 + pb_d3_n1_3_2_1_3_3 + pb_d3_n2_3_2_1_3_3 + pb_d4_n1_3_2_1_3_3 + pb_d4_n2_3_2_1_3_3 + pb_d5_n1_3_2_1_3_3 + pb_d5_n2_3_2_1_3_3 + pbl_3_2_1_3_3 = 30
invariant :po_d5_n1_2_1_2_3_2 + pol_d5_n1_2_1_2_3_2 = 1
invariant :pb_d1_n1_1_1_1_2_3 + pb_d1_n2_1_1_1_2_3 + pb_d2_n1_1_1_1_2_3 + pb_d2_n2_1_1_1_2_3 + pb_d3_n1_1_1_1_2_3 + pb_d3_n2_1_1_1_2_3 + pb_d4_n1_1_1_1_2_3 + pb_d4_n2_1_1_1_2_3 + pb_d5_n1_1_1_1_2_3 + pb_d5_n2_1_1_1_2_3 + pbl_1_1_1_2_3 = 30
invariant :pb_d1_n1_2_2_3_1_2 + pb_d1_n2_2_2_3_1_2 + pb_d2_n1_2_2_3_1_2 + pb_d2_n2_2_2_3_1_2 + pb_d3_n1_2_2_3_1_2 + pb_d3_n2_2_2_3_1_2 + pb_d4_n1_2_2_3_1_2 + pb_d4_n2_2_2_3_1_2 + pb_d5_n1_2_2_3_1_2 + pb_d5_n2_2_2_3_1_2 + pbl_2_2_3_1_2 = 30
invariant :pi_d4_n1_1_3_1_2_1 + pil_d4_n1_1_3_1_2_1 = 1
invariant :pi_d5_n1_2_1_1_1_1 + pil_d5_n1_2_1_1_1_1 = 1
invariant :po_d3_n1_3_1_3_2_2 + pol_d3_n1_3_1_3_2_2 = 1
invariant :pi_d3_n1_1_1_2_2_3 + pil_d3_n1_1_1_2_2_3 = 1
invariant :pi_d3_n1_3_3_2_1_3 + pil_d3_n1_3_3_2_1_3 = 1
invariant :pi_d2_n1_3_2_3_3_3 + pil_d2_n1_3_2_3_3_3 = 1
invariant :pi_d5_n1_1_2_3_2_3 + pil_d5_n1_1_2_3_2_3 = 1
invariant :pi_d1_n1_1_2_3_1_3 + pil_d1_n1_1_2_3_1_3 = 1
invariant :pi_d1_n1_3_1_1_3_2 + pil_d1_n1_3_1_1_3_2 = 1
invariant :pi_d2_n1_3_3_1_3_1 + pil_d2_n1_3_3_1_3_1 = 1
invariant :po_d3_n1_3_1_3_3_2 + pol_d3_n1_3_1_3_3_2 = 1
invariant :pi_d3_n1_1_1_2_2_1 + pil_d3_n1_1_1_2_2_1 = 1
invariant :pi_d1_n1_3_1_1_2_3 + pil_d1_n1_3_1_1_2_3 = 1
invariant :pi_d1_n1_1_3_3_2_2 + pil_d1_n1_1_3_3_2_2 = 1
invariant :po_d4_n1_1_1_1_2_1 + pol_d4_n1_1_1_1_2_1 = 1
invariant :po_d2_n1_3_2_1_1_2 + pol_d2_n1_3_2_1_1_2 = 1
invariant :pi_d2_n1_1_2_3_1_1 + pil_d2_n1_1_2_3_1_1 = 1
invariant :pi_d5_n1_3_1_3_3_3 + pil_d5_n1_3_1_3_3_3 = 1
invariant :pi_d3_n1_1_2_2_1_3 + pil_d3_n1_1_2_2_1_3 = 1
invariant :pi_d4_n1_3_2_2_2_3 + pil_d4_n1_3_2_2_2_3 = 1
invariant :po_d1_n1_3_2_1_2_2 + pol_d1_n1_3_2_1_2_2 = 1
invariant :pi_d4_n1_3_1_1_1_1 + pil_d4_n1_3_1_1_1_1 = 1
invariant :pb_d1_n1_1_2_1_3_2 + pb_d1_n2_1_2_1_3_2 + pb_d2_n1_1_2_1_3_2 + pb_d2_n2_1_2_1_3_2 + pb_d3_n1_1_2_1_3_2 + pb_d3_n2_1_2_1_3_2 + pb_d4_n1_1_2_1_3_2 + pb_d4_n2_1_2_1_3_2 + pb_d5_n1_1_2_1_3_2 + pb_d5_n2_1_2_1_3_2 + pbl_1_2_1_3_2 = 30
invariant :po_d5_n1_2_2_1_2_3 + pol_d5_n1_2_2_1_2_3 = 1
invariant :pi_d3_n1_2_3_1_1_1 + pil_d3_n1_2_3_1_1_1 = 1
invariant :pi_d3_n1_1_3_3_2_2 + pil_d3_n1_1_3_3_2_2 = 1
invariant :pb_d1_n1_3_2_2_1_2 + pb_d1_n2_3_2_2_1_2 + pb_d2_n1_3_2_2_1_2 + pb_d2_n2_3_2_2_1_2 + pb_d3_n1_3_2_2_1_2 + pb_d3_n2_3_2_2_1_2 + pb_d4_n1_3_2_2_1_2 + pb_d4_n2_3_2_2_1_2 + pb_d5_n1_3_2_2_1_2 + pb_d5_n2_3_2_2_1_2 + pbl_3_2_2_1_2 = 30
invariant :po_d4_n1_2_1_2_1_2 + pol_d4_n1_2_1_2_1_2 = 1
invariant :pi_d1_n1_3_3_1_3_2 + pil_d1_n1_3_3_1_3_2 = 1
invariant :pi_d4_n1_3_1_3_1_2 + pil_d4_n1_3_1_3_1_2 = 1
invariant :pi_d3_n1_3_2_2_2_3 + pil_d3_n1_3_2_2_2_3 = 1
invariant :po_d5_n1_3_2_2_2_2 + pol_d5_n1_3_2_2_2_2 = 1
invariant :po_d4_n1_1_3_2_2_1 + pol_d4_n1_1_3_2_2_1 = 1
invariant :po_d3_n1_3_1_1_1_3 + pol_d3_n1_3_1_1_1_3 = 1
invariant :po_d4_n1_2_1_3_3_1 + pol_d4_n1_2_1_3_3_1 = 1
invariant :po_d2_n1_3_2_2_3_3 + pol_d2_n1_3_2_2_3_3 = 1
invariant :pi_d3_n1_3_2_3_1_1 + pil_d3_n1_3_2_3_1_1 = 1
invariant :po_d1_n1_1_2_2_3_1 + pol_d1_n1_1_2_2_3_1 = 1
invariant :pi_d3_n1_1_3_1_3_1 + pil_d3_n1_1_3_1_3_1 = 1
invariant :po_d5_n1_1_3_3_1_3 + pol_d5_n1_1_3_3_1_3 = 1
invariant :pi_d1_n1_2_3_1_3_1 + pil_d1_n1_2_3_1_3_1 = 1
invariant :pi_d5_n1_2_2_1_2_2 + pil_d5_n1_2_2_1_2_2 = 1
invariant :po_d2_n1_3_2_3_3_3 + pol_d2_n1_3_2_3_3_3 = 1
invariant :pi_d5_n1_3_1_2_2_1 + pil_d5_n1_3_1_2_2_1 = 1
invariant :pi_d4_n1_3_1_1_2_3 + pil_d4_n1_3_1_1_2_3 = 1
invariant :pi_d3_n1_2_2_3_2_3 + pil_d3_n1_2_2_3_2_3 = 1
invariant :po_d3_n1_1_1_2_1_2 + pol_d3_n1_1_1_2_1_2 = 1
invariant :pi_d1_n1_2_2_2_2_1 + pil_d1_n1_2_2_2_2_1 = 1
invariant :po_d4_n1_2_3_1_3_2 + pol_d4_n1_2_3_1_3_2 = 1
invariant :po_d4_n1_3_3_2_1_1 + pol_d4_n1_3_3_2_1_1 = 1
invariant :po_d3_n1_2_2_2_3_2 + pol_d3_n1_2_2_2_3_2 = 1
invariant :po_d1_n1_2_1_1_3_2 + pol_d1_n1_2_1_1_3_2 = 1
invariant :pb_d1_n1_2_1_2_2_1 + pb_d1_n2_2_1_2_2_1 + pb_d2_n1_2_1_2_2_1 + pb_d2_n2_2_1_2_2_1 + pb_d3_n1_2_1_2_2_1 + pb_d3_n2_2_1_2_2_1 + pb_d4_n1_2_1_2_2_1 + pb_d4_n2_2_1_2_2_1 + pb_d5_n1_2_1_2_2_1 + pb_d5_n2_2_1_2_2_1 + pbl_2_1_2_2_1 = 30
invariant :pi_d1_n1_1_3_3_3_2 + pil_d1_n1_1_3_3_3_2 = 1
invariant :pi_d3_n1_3_3_3_2_3 + pil_d3_n1_3_3_3_2_3 = 1
invariant :po_d1_n1_3_1_1_2_2 + pol_d1_n1_3_1_1_2_2 = 1
invariant :po_d3_n1_2_1_3_2_1 + pol_d3_n1_2_1_3_2_1 = 1
invariant :po_d4_n1_3_2_1_3_1 + pol_d4_n1_3_2_1_3_1 = 1
invariant :pi_d2_n1_2_3_1_1_3 + pil_d2_n1_2_3_1_1_3 = 1
invariant :pb_d1_n1_1_3_2_2_1 + pb_d1_n2_1_3_2_2_1 + pb_d2_n1_1_3_2_2_1 + pb_d2_n2_1_3_2_2_1 + pb_d3_n1_1_3_2_2_1 + pb_d3_n2_1_3_2_2_1 + pb_d4_n1_1_3_2_2_1 + pb_d4_n2_1_3_2_2_1 + pb_d5_n1_1_3_2_2_1 + pb_d5_n2_1_3_2_2_1 + pbl_1_3_2_2_1 = 30
invariant :po_d2_n1_3_3_3_1_1 + pol_d2_n1_3_3_3_1_1 = 1
invariant :po_d5_n1_1_1_3_2_3 + pol_d5_n1_1_1_3_2_3 = 1
invariant :po_d4_n1_1_1_1_3_3 + pol_d4_n1_1_1_1_3_3 = 1
invariant :pi_d3_n1_2_1_2_2_2 + pil_d3_n1_2_1_2_2_2 = 1
invariant :pb_d1_n1_3_3_2_2_2 + pb_d1_n2_3_3_2_2_2 + pb_d2_n1_3_3_2_2_2 + pb_d2_n2_3_3_2_2_2 + pb_d3_n1_3_3_2_2_2 + pb_d3_n2_3_3_2_2_2 + pb_d4_n1_3_3_2_2_2 + pb_d4_n2_3_3_2_2_2 + pb_d5_n1_3_3_2_2_2 + pb_d5_n2_3_3_2_2_2 + pbl_3_3_2_2_2 = 30
invariant :po_d5_n1_3_1_2_3_2 + pol_d5_n1_3_1_2_3_2 = 1
invariant :po_d4_n1_3_1_2_3_2 + pol_d4_n1_3_1_2_3_2 = 1
invariant :pi_d2_n1_3_2_2_1_1 + pil_d2_n1_3_2_2_1_1 = 1
invariant :po_d3_n1_2_1_2_2_3 + pol_d3_n1_2_1_2_2_3 = 1
invariant :pb_d1_n1_1_3_3_3_2 + pb_d1_n2_1_3_3_3_2 + pb_d2_n1_1_3_3_3_2 + pb_d2_n2_1_3_3_3_2 + pb_d3_n1_1_3_3_3_2 + pb_d3_n2_1_3_3_3_2 + pb_d4_n1_1_3_3_3_2 + pb_d4_n2_1_3_3_3_2 + pb_d5_n1_1_3_3_3_2 + pb_d5_n2_1_3_3_3_2 + pbl_1_3_3_3_2 = 30
invariant :po_d4_n1_3_2_2_2_2 + pol_d4_n1_3_2_2_2_2 = 1
invariant :pb_d1_n1_3_2_3_2_3 + pb_d1_n2_3_2_3_2_3 + pb_d2_n1_3_2_3_2_3 + pb_d2_n2_3_2_3_2_3 + pb_d3_n1_3_2_3_2_3 + pb_d3_n2_3_2_3_2_3 + pb_d4_n1_3_2_3_2_3 + pb_d4_n2_3_2_3_2_3 + pb_d5_n1_3_2_3_2_3 + pb_d5_n2_3_2_3_2_3 + pbl_3_2_3_2_3 = 30
invariant :pi_d3_n1_3_1_3_1_2 + pil_d3_n1_3_1_3_1_2 = 1
invariant :pb_d1_n1_3_1_3_3_3 + pb_d1_n2_3_1_3_3_3 + pb_d2_n1_3_1_3_3_3 + pb_d2_n2_3_1_3_3_3 + pb_d3_n1_3_1_3_3_3 + pb_d3_n2_3_1_3_3_3 + pb_d4_n1_3_1_3_3_3 + pb_d4_n2_3_1_3_3_3 + pb_d5_n1_3_1_3_3_3 + pb_d5_n2_3_1_3_3_3 + pbl_3_1_3_3_3 = 30
invariant :po_d2_n1_2_2_3_2_3 + pol_d2_n1_2_2_3_2_3 = 1
invariant :pi_d2_n1_3_1_2_1_2 + pil_d2_n1_3_1_2_1_2 = 1
invariant :pi_d5_n1_2_1_1_1_2 + pil_d5_n1_2_1_1_1_2 = 1
invariant :pi_d2_n1_2_3_1_2_1 + pil_d2_n1_2_3_1_2_1 = 1
invariant :po_d4_n1_3_2_2_2_3 + pol_d4_n1_3_2_2_2_3 = 1
invariant :pi_d2_n1_2_1_3_2_3 + pil_d2_n1_2_1_3_2_3 = 1
invariant :po_d4_n1_3_2_2_3_2 + pol_d4_n1_3_2_2_3_2 = 1
invariant :po_d1_n1_2_2_2_2_1 + pol_d1_n1_2_2_2_2_1 = 1
invariant :po_d1_n1_2_3_1_3_3 + pol_d1_n1_2_3_1_3_3 = 1
invariant :pi_d5_n1_1_1_3_3_2 + pil_d5_n1_1_1_3_3_2 = 1
invariant :pb_d1_n1_3_1_2_3_3 + pb_d1_n2_3_1_2_3_3 + pb_d2_n1_3_1_2_3_3 + pb_d2_n2_3_1_2_3_3 + pb_d3_n1_3_1_2_3_3 + pb_d3_n2_3_1_2_3_3 + pb_d4_n1_3_1_2_3_3 + pb_d4_n2_3_1_2_3_3 + pb_d5_n1_3_1_2_3_3 + pb_d5_n2_3_1_2_3_3 + pbl_3_1_2_3_3 = 30
invariant :pb_d1_n1_1_2_2_1_1 + pb_d1_n2_1_2_2_1_1 + pb_d2_n1_1_2_2_1_1 + pb_d2_n2_1_2_2_1_1 + pb_d3_n1_1_2_2_1_1 + pb_d3_n2_1_2_2_1_1 + pb_d4_n1_1_2_2_1_1 + pb_d4_n2_1_2_2_1_1 + pb_d5_n1_1_2_2_1_1 + pb_d5_n2_1_2_2_1_1 + pbl_1_2_2_1_1 = 30
invariant :po_d3_n1_1_3_1_1_3 + pol_d3_n1_1_3_1_1_3 = 1
invariant :pi_d5_n1_3_3_3_3_3 + pil_d5_n1_3_3_3_3_3 = 1
invariant :pi_d5_n1_3_2_2_2_2 + pil_d5_n1_3_2_2_2_2 = 1
invariant :po_d5_n1_1_2_2_1_1 + pol_d5_n1_1_2_2_1_1 = 1
invariant :po_d2_n1_2_2_1_3_3 + pol_d2_n1_2_2_1_3_3 = 1
invariant :po_d4_n1_2_2_2_2_3 + pol_d4_n1_2_2_2_2_3 = 1
invariant :pi_d5_n1_2_2_2_2_2 + pil_d5_n1_2_2_2_2_2 = 1
invariant :pb_d1_n1_1_2_2_2_3 + pb_d1_n2_1_2_2_2_3 + pb_d2_n1_1_2_2_2_3 + pb_d2_n2_1_2_2_2_3 + pb_d3_n1_1_2_2_2_3 + pb_d3_n2_1_2_2_2_3 + pb_d4_n1_1_2_2_2_3 + pb_d4_n2_1_2_2_2_3 + pb_d5_n1_1_2_2_2_3 + pb_d5_n2_1_2_2_2_3 + pbl_1_2_2_2_3 = 30
invariant :pb_d1_n1_1_3_2_3_2 + pb_d1_n2_1_3_2_3_2 + pb_d2_n1_1_3_2_3_2 + pb_d2_n2_1_3_2_3_2 + pb_d3_n1_1_3_2_3_2 + pb_d3_n2_1_3_2_3_2 + pb_d4_n1_1_3_2_3_2 + pb_d4_n2_1_3_2_3_2 + pb_d5_n1_1_3_2_3_2 + pb_d5_n2_1_3_2_3_2 + pbl_1_3_2_3_2 = 30
invariant :pi_d1_n1_2_2_1_1_3 + pil_d1_n1_2_2_1_1_3 = 1
invariant :po_d1_n1_1_2_1_1_1 + pol_d1_n1_1_2_1_1_1 = 1
invariant :po_d4_n1_2_2_3_2_1 + pol_d4_n1_2_2_3_2_1 = 1
invariant :pi_d5_n1_2_2_2_3_2 + pil_d5_n1_2_2_2_3_2 = 1
invariant :pi_d5_n1_1_2_3_2_2 + pil_d5_n1_1_2_3_2_2 = 1
invariant :pb_d1_n1_3_2_1_2_1 + pb_d1_n2_3_2_1_2_1 + pb_d2_n1_3_2_1_2_1 + pb_d2_n2_3_2_1_2_1 + pb_d3_n1_3_2_1_2_1 + pb_d3_n2_3_2_1_2_1 + pb_d4_n1_3_2_1_2_1 + pb_d4_n2_3_2_1_2_1 + pb_d5_n1_3_2_1_2_1 + pb_d5_n2_3_2_1_2_1 + pbl_3_2_1_2_1 = 30
invariant :po_d1_n1_1_3_3_2_3 + pol_d1_n1_1_3_3_2_3 = 1
invariant :po_d1_n1_1_1_1_1_1 + pol_d1_n1_1_1_1_1_1 = 1
invariant :po_d3_n1_2_1_3_1_1 + pol_d3_n1_2_1_3_1_1 = 1
invariant :pi_d2_n1_3_2_1_2_1 + pil_d2_n1_3_2_1_2_1 = 1
invariant :pi_d5_n1_3_1_3_1_3 + pil_d5_n1_3_1_3_1_3 = 1
invariant :pi_d5_n1_2_1_2_3_2 + pil_d5_n1_2_1_2_3_2 = 1
invariant :pi_d3_n1_2_2_3_1_3 + pil_d3_n1_2_2_3_1_3 = 1
invariant :po_d4_n1_1_1_2_1_3 + pol_d4_n1_1_1_2_1_3 = 1
invariant :pi_d2_n1_3_2_2_2_2 + pil_d2_n1_3_2_2_2_2 = 1
invariant :po_d4_n1_3_2_2_2_1 + pol_d4_n1_3_2_2_2_1 = 1
invariant :po_d4_n1_1_1_1_2_3 + pol_d4_n1_1_1_1_2_3 = 1
invariant :pi_d1_n1_1_1_1_1_1 + pil_d1_n1_1_1_1_1_1 = 1
invariant :po_d3_n1_1_3_3_2_2 + pol_d3_n1_1_3_3_2_2 = 1
invariant :pi_d2_n1_3_2_3_2_3 + pil_d2_n1_3_2_3_2_3 = 1
invariant :pb_d1_n1_1_2_3_1_2 + pb_d1_n2_1_2_3_1_2 + pb_d2_n1_1_2_3_1_2 + pb_d2_n2_1_2_3_1_2 + pb_d3_n1_1_2_3_1_2 + pb_d3_n2_1_2_3_1_2 + pb_d4_n1_1_2_3_1_2 + pb_d4_n2_1_2_3_1_2 + pb_d5_n1_1_2_3_1_2 + pb_d5_n2_1_2_3_1_2 + pbl_1_2_3_1_2 = 30
invariant :pb_d1_n1_2_1_1_2_3 + pb_d1_n2_2_1_1_2_3 + pb_d2_n1_2_1_1_2_3 + pb_d2_n2_2_1_1_2_3 + pb_d3_n1_2_1_1_2_3 + pb_d3_n2_2_1_1_2_3 + pb_d4_n1_2_1_1_2_3 + pb_d4_n2_2_1_1_2_3 + pb_d5_n1_2_1_1_2_3 + pb_d5_n2_2_1_1_2_3 + pbl_2_1_1_2_3 = 30
invariant :po_d4_n1_2_2_1_3_2 + pol_d4_n1_2_2_1_3_2 = 1
invariant :po_d3_n1_1_3_3_2_3 + pol_d3_n1_1_3_3_2_3 = 1
invariant :po_d4_n1_2_1_2_3_1 + pol_d4_n1_2_1_2_3_1 = 1
invariant :pi_d1_n1_2_1_3_1_2 + pil_d1_n1_2_1_3_1_2 = 1
invariant :po_d3_n1_2_1_2_1_1 + pol_d3_n1_2_1_2_1_1 = 1
invariant :pi_d5_n1_3_1_3_2_1 + pil_d5_n1_3_1_3_2_1 = 1
invariant :pi_d1_n1_1_2_2_1_2 + pil_d1_n1_1_2_2_1_2 = 1
invariant :po_d3_n1_3_2_3_3_2 + pol_d3_n1_3_2_3_3_2 = 1
invariant :pi_d5_n1_2_3_3_2_3 + pil_d5_n1_2_3_3_2_3 = 1
invariant :pb_d1_n1_1_1_2_3_1 + pb_d1_n2_1_1_2_3_1 + pb_d2_n1_1_1_2_3_1 + pb_d2_n2_1_1_2_3_1 + pb_d3_n1_1_1_2_3_1 + pb_d3_n2_1_1_2_3_1 + pb_d4_n1_1_1_2_3_1 + pb_d4_n2_1_1_2_3_1 + pb_d5_n1_1_1_2_3_1 + pb_d5_n2_1_1_2_3_1 + pbl_1_1_2_3_1 = 30
invariant :po_d4_n1_3_2_2_3_1 + pol_d4_n1_3_2_2_3_1 = 1
invariant :pi_d4_n1_3_2_2_3_1 + pil_d4_n1_3_2_2_3_1 = 1
invariant :po_d4_n1_2_1_2_2_3 + pol_d4_n1_2_1_2_2_3 = 1
invariant :pi_d5_n1_3_1_2_3_1 + pil_d5_n1_3_1_2_3_1 = 1
invariant :po_d2_n1_2_2_3_1_2 + pol_d2_n1_2_2_3_1_2 = 1
invariant :pi_d3_n1_1_1_1_2_2 + pil_d3_n1_1_1_1_2_2 = 1
invariant :pi_d4_n1_3_2_2_2_1 + pil_d4_n1_3_2_2_2_1 = 1
invariant :pi_d5_n1_2_1_3_2_2 + pil_d5_n1_2_1_3_2_2 = 1
invariant :po_d3_n1_2_1_1_2_2 + pol_d3_n1_2_1_1_2_2 = 1
invariant :po_d5_n1_2_1_2_2_1 + pol_d5_n1_2_1_2_2_1 = 1
invariant :po_d4_n1_3_1_2_2_2 + pol_d4_n1_3_1_2_2_2 = 1
invariant :pb_d1_n1_1_3_1_2_1 + pb_d1_n2_1_3_1_2_1 + pb_d2_n1_1_3_1_2_1 + pb_d2_n2_1_3_1_2_1 + pb_d3_n1_1_3_1_2_1 + pb_d3_n2_1_3_1_2_1 + pb_d4_n1_1_3_1_2_1 + pb_d4_n2_1_3_1_2_1 + pb_d5_n1_1_3_1_2_1 + pb_d5_n2_1_3_1_2_1 + pbl_1_3_1_2_1 = 30
invariant :pi_d2_n1_3_3_1_2_2 + pil_d2_n1_3_3_1_2_2 = 1
invariant :po_d1_n1_1_1_1_3_2 + pol_d1_n1_1_1_1_3_2 = 1
invariant :po_d3_n1_2_2_3_1_3 + pol_d3_n1_2_2_3_1_3 = 1
invariant :po_d4_n1_3_2_2_1_2 + pol_d4_n1_3_2_2_1_2 = 1
invariant :po_d5_n1_2_2_2_3_2 + pol_d5_n1_2_2_2_3_2 = 1
invariant :pb_d1_n1_1_1_1_2_2 + pb_d1_n2_1_1_1_2_2 + pb_d2_n1_1_1_1_2_2 + pb_d2_n2_1_1_1_2_2 + pb_d3_n1_1_1_1_2_2 + pb_d3_n2_1_1_1_2_2 + pb_d4_n1_1_1_1_2_2 + pb_d4_n2_1_1_1_2_2 + pb_d5_n1_1_1_1_2_2 + pb_d5_n2_1_1_1_2_2 + pbl_1_1_1_2_2 = 30
invariant :pi_d3_n1_3_3_2_2_1 + pil_d3_n1_3_3_2_2_1 = 1
invariant :po_d2_n1_3_2_2_3_1 + pol_d2_n1_3_2_2_3_1 = 1
invariant :pb_d1_n1_2_2_2_3_1 + pb_d1_n2_2_2_2_3_1 + pb_d2_n1_2_2_2_3_1 + pb_d2_n2_2_2_2_3_1 + pb_d3_n1_2_2_2_3_1 + pb_d3_n2_2_2_2_3_1 + pb_d4_n1_2_2_2_3_1 + pb_d4_n2_2_2_2_3_1 + pb_d5_n1_2_2_2_3_1 + pb_d5_n2_2_2_2_3_1 + pbl_2_2_2_3_1 = 30
invariant :pi_d4_n1_3_1_2_3_3 + pil_d4_n1_3_1_2_3_3 = 1
invariant :po_d3_n1_2_1_2_2_2 + pol_d3_n1_2_1_2_2_2 = 1
invariant :po_d3_n1_3_1_2_2_3 + pol_d3_n1_3_1_2_2_3 = 1
invariant :po_d3_n1_3_2_1_3_2 + pol_d3_n1_3_2_1_3_2 = 1
invariant :po_d1_n1_1_2_3_2_3 + pol_d1_n1_1_2_3_2_3 = 1
invariant :pi_d2_n1_2_2_1_2_1 + pil_d2_n1_2_2_1_2_1 = 1
invariant :pi_d3_n1_3_3_1_2_2 + pil_d3_n1_3_3_1_2_2 = 1
invariant :pi_d4_n1_1_2_3_3_1 + pil_d4_n1_1_2_3_3_1 = 1
invariant :po_d5_n1_2_1_3_1_3 + pol_d5_n1_2_1_3_1_3 = 1
invariant :pi_d2_n1_2_1_3_3_1 + pil_d2_n1_2_1_3_3_1 = 1
invariant :po_d4_n1_2_3_2_3_1 + pol_d4_n1_2_3_2_3_1 = 1
invariant :pb_d1_n1_3_3_3_3_1 + pb_d1_n2_3_3_3_3_1 + pb_d2_n1_3_3_3_3_1 + pb_d2_n2_3_3_3_3_1 + pb_d3_n1_3_3_3_3_1 + pb_d3_n2_3_3_3_3_1 + pb_d4_n1_3_3_3_3_1 + pb_d4_n2_3_3_3_3_1 + pb_d5_n1_3_3_3_3_1 + pb_d5_n2_3_3_3_3_1 + pbl_3_3_3_3_1 = 30
invariant :pb_d1_n1_1_1_3_1_1 + pb_d1_n2_1_1_3_1_1 + pb_d2_n1_1_1_3_1_1 + pb_d2_n2_1_1_3_1_1 + pb_d3_n1_1_1_3_1_1 + pb_d3_n2_1_1_3_1_1 + pb_d4_n1_1_1_3_1_1 + pb_d4_n2_1_1_3_1_1 + pb_d5_n1_1_1_3_1_1 + pb_d5_n2_1_1_3_1_1 + pbl_1_1_3_1_1 = 30
invariant :pi_d1_n1_1_2_1_3_3 + pil_d1_n1_1_2_1_3_3 = 1
invariant :pi_d1_n1_1_2_2_1_1 + pil_d1_n1_1_2_2_1_1 = 1
invariant :po_d1_n1_2_2_2_1_3 + pol_d1_n1_2_2_2_1_3 = 1
invariant :po_d3_n1_3_1_3_1_2 + pol_d3_n1_3_1_3_1_2 = 1
invariant :pi_d3_n1_1_1_2_1_3 + pil_d3_n1_1_1_2_1_3 = 1
invariant :po_d3_n1_3_3_2_2_3 + pol_d3_n1_3_3_2_2_3 = 1
invariant :po_d4_n1_2_1_1_3_1 + pol_d4_n1_2_1_1_3_1 = 1
invariant :pi_d2_n1_2_2_1_1_2 + pil_d2_n1_2_2_1_1_2 = 1
invariant :po_d2_n1_2_3_3_1_1 + pol_d2_n1_2_3_3_1_1 = 1
invariant :pi_d5_n1_1_3_1_1_2 + pil_d5_n1_1_3_1_1_2 = 1
invariant :po_d1_n1_3_3_2_2_3 + pol_d1_n1_3_3_2_2_3 = 1
invariant :pi_d1_n1_2_1_1_3_2 + pil_d1_n1_2_1_1_3_2 = 1
invariant :po_d5_n1_3_3_2_1_3 + pol_d5_n1_3_3_2_1_3 = 1
invariant :pi_d4_n1_2_3_3_2_3 + pil_d4_n1_2_3_3_2_3 = 1
invariant :pi_d2_n1_2_1_1_1_3 + pil_d2_n1_2_1_1_1_3 = 1
invariant :po_d3_n1_1_1_1_1_3 + pol_d3_n1_1_1_1_1_3 = 1
invariant :po_d2_n1_1_2_3_3_2 + pol_d2_n1_1_2_3_3_2 = 1
invariant :po_d5_n1_1_1_2_3_3 + pol_d5_n1_1_1_2_3_3 = 1
invariant :pi_d2_n1_1_3_3_1_2 + pil_d2_n1_1_3_3_1_2 = 1
invariant :po_d2_n1_2_3_2_1_2 + pol_d2_n1_2_3_2_1_2 = 1
invariant :po_d4_n1_1_2_3_2_2 + pol_d4_n1_1_2_3_2_2 = 1
invariant :po_d5_n1_3_3_1_2_1 + pol_d5_n1_3_3_1_2_1 = 1
invariant :pi_d4_n1_3_2_3_3_3 + pil_d4_n1_3_2_3_3_3 = 1
invariant :pi_d5_n1_3_2_3_1_1 + pil_d5_n1_3_2_3_1_1 = 1
invariant :po_d3_n1_2_3_1_3_3 + pol_d3_n1_2_3_1_3_3 = 1
invariant :pi_d3_n1_2_3_1_3_1 + pil_d3_n1_2_3_1_3_1 = 1
invariant :pb_d1_n1_2_2_3_3_1 + pb_d1_n2_2_2_3_3_1 + pb_d2_n1_2_2_3_3_1 + pb_d2_n2_2_2_3_3_1 + pb_d3_n1_2_2_3_3_1 + pb_d3_n2_2_2_3_3_1 + pb_d4_n1_2_2_3_3_1 + pb_d4_n2_2_2_3_3_1 + pb_d5_n1_2_2_3_3_1 + pb_d5_n2_2_2_3_3_1 + pbl_2_2_3_3_1 = 30
invariant :pi_d3_n1_3_1_2_1_1 + pil_d3_n1_3_1_2_1_1 = 1
invariant :po_d1_n1_3_2_3_3_1 + pol_d1_n1_3_2_3_3_1 = 1
invariant :pi_d3_n1_3_2_2_2_1 + pil_d3_n1_3_2_2_2_1 = 1
invariant :po_d2_n1_2_1_1_2_1 + pol_d2_n1_2_1_1_2_1 = 1
invariant :pi_d2_n1_1_3_3_2_1 + pil_d2_n1_1_3_3_2_1 = 1
invariant :pb_d1_n1_1_3_2_2_3 + pb_d1_n2_1_3_2_2_3 + pb_d2_n1_1_3_2_2_3 + pb_d2_n2_1_3_2_2_3 + pb_d3_n1_1_3_2_2_3 + pb_d3_n2_1_3_2_2_3 + pb_d4_n1_1_3_2_2_3 + pb_d4_n2_1_3_2_2_3 + pb_d5_n1_1_3_2_2_3 + pb_d5_n2_1_3_2_2_3 + pbl_1_3_2_2_3 = 30
invariant :po_d4_n1_2_1_1_2_2 + pol_d4_n1_2_1_1_2_2 = 1
invariant :po_d5_n1_2_3_3_2_3 + pol_d5_n1_2_3_3_2_3 = 1
invariant :pi_d4_n1_1_1_2_3_2 + pil_d4_n1_1_1_2_3_2 = 1
invariant :pi_d2_n1_2_2_3_2_3 + pil_d2_n1_2_2_3_2_3 = 1
invariant :pi_d5_n1_3_1_1_3_2 + pil_d5_n1_3_1_1_3_2 = 1
invariant :po_d4_n1_1_1_2_2_1 + pol_d4_n1_1_1_2_2_1 = 1
invariant :pi_d3_n1_3_2_3_3_3 + pil_d3_n1_3_2_3_3_3 = 1
invariant :po_d5_n1_1_3_1_2_2 + pol_d5_n1_1_3_1_2_2 = 1
invariant :pb_d1_n1_2_1_1_2_1 + pb_d1_n2_2_1_1_2_1 + pb_d2_n1_2_1_1_2_1 + pb_d2_n2_2_1_1_2_1 + pb_d3_n1_2_1_1_2_1 + pb_d3_n2_2_1_1_2_1 + pb_d4_n1_2_1_1_2_1 + pb_d4_n2_2_1_1_2_1 + pb_d5_n1_2_1_1_2_1 + pb_d5_n2_2_1_1_2_1 + pbl_2_1_1_2_1 = 30
invariant :pi_d1_n1_1_1_3_1_1 + pil_d1_n1_1_1_3_1_1 = 1
invariant :pi_d3_n1_3_1_3_1_1 + pil_d3_n1_3_1_3_1_1 = 1
invariant :pi_d4_n1_2_1_3_2_2 + pil_d4_n1_2_1_3_2_2 = 1
invariant :po_d1_n1_1_3_1_1_1 + pol_d1_n1_1_3_1_1_1 = 1
invariant :pi_d1_n1_2_3_3_2_1 + pil_d1_n1_2_3_3_2_1 = 1
invariant :pb_d1_n1_2_1_1_3_1 + pb_d1_n2_2_1_1_3_1 + pb_d2_n1_2_1_1_3_1 + pb_d2_n2_2_1_1_3_1 + pb_d3_n1_2_1_1_3_1 + pb_d3_n2_2_1_1_3_1 + pb_d4_n1_2_1_1_3_1 + pb_d4_n2_2_1_1_3_1 + pb_d5_n1_2_1_1_3_1 + pb_d5_n2_2_1_1_3_1 + pbl_2_1_1_3_1 = 30
invariant :pi_d4_n1_3_3_1_2_2 + pil_d4_n1_3_3_1_2_2 = 1
invariant :po_d1_n1_3_1_3_2_2 + pol_d1_n1_3_1_3_2_2 = 1
invariant :po_d1_n1_3_2_1_1_1 + pol_d1_n1_3_2_1_1_1 = 1
invariant :pi_d5_n1_2_3_3_2_1 + pil_d5_n1_2_3_3_2_1 = 1
invariant :pi_d3_n1_3_2_2_1_2 + pil_d3_n1_3_2_2_1_2 = 1
invariant :pi_d1_n1_3_1_3_3_1 + pil_d1_n1_3_1_3_3_1 = 1
invariant :po_d3_n1_1_2_1_1_2 + pol_d3_n1_1_2_1_1_2 = 1
invariant :po_d3_n1_2_2_2_1_2 + pol_d3_n1_2_2_2_1_2 = 1
invariant :po_d4_n1_1_3_1_3_2 + pol_d4_n1_1_3_1_3_2 = 1
invariant :po_d1_n1_1_2_1_3_1 + pol_d1_n1_1_2_1_3_1 = 1
invariant :pb_d1_n1_3_1_3_3_2 + pb_d1_n2_3_1_3_3_2 + pb_d2_n1_3_1_3_3_2 + pb_d2_n2_3_1_3_3_2 + pb_d3_n1_3_1_3_3_2 + pb_d3_n2_3_1_3_3_2 + pb_d4_n1_3_1_3_3_2 + pb_d4_n2_3_1_3_3_2 + pb_d5_n1_3_1_3_3_2 + pb_d5_n2_3_1_3_3_2 + pbl_3_1_3_3_2 = 30
invariant :pi_d1_n1_3_1_3_1_1 + pil_d1_n1_3_1_3_1_1 = 1
invariant :po_d3_n1_1_2_3_1_3 + pol_d3_n1_1_2_3_1_3 = 1
invariant :pi_d4_n1_3_2_2_3_3 + pil_d4_n1_3_2_2_3_3 = 1
invariant :pi_d2_n1_2_1_1_3_3 + pil_d2_n1_2_1_1_3_3 = 1
invariant :pi_d3_n1_2_3_2_3_3 + pil_d3_n1_2_3_2_3_3 = 1
invariant :pb_d1_n1_2_1_1_3_3 + pb_d1_n2_2_1_1_3_3 + pb_d2_n1_2_1_1_3_3 + pb_d2_n2_2_1_1_3_3 + pb_d3_n1_2_1_1_3_3 + pb_d3_n2_2_1_1_3_3 + pb_d4_n1_2_1_1_3_3 + pb_d4_n2_2_1_1_3_3 + pb_d5_n1_2_1_1_3_3 + pb_d5_n2_2_1_1_3_3 + pbl_2_1_1_3_3 = 30
invariant :pi_d4_n1_2_3_1_1_2 + pil_d4_n1_2_3_1_1_2 = 1
invariant :pi_d4_n1_2_3_3_3_1 + pil_d4_n1_2_3_3_3_1 = 1
invariant :po_d3_n1_3_1_3_1_3 + pol_d3_n1_3_1_3_1_3 = 1
invariant :pi_d2_n1_2_3_3_3_2 + pil_d2_n1_2_3_3_3_2 = 1
invariant :pi_d1_n1_3_2_2_3_2 + pil_d1_n1_3_2_2_3_2 = 1
invariant :pi_d4_n1_1_3_3_1_1 + pil_d4_n1_1_3_3_1_1 = 1
invariant :pi_d4_n1_1_2_2_1_1 + pil_d4_n1_1_2_2_1_1 = 1
invariant :po_d2_n1_1_1_3_1_3 + pol_d2_n1_1_1_3_1_3 = 1
invariant :pi_d5_n1_2_1_3_1_1 + pil_d5_n1_2_1_3_1_1 = 1
invariant :po_d1_n1_1_2_3_2_2 + pol_d1_n1_1_2_3_2_2 = 1
invariant :po_d1_n1_3_1_2_2_1 + pol_d1_n1_3_1_2_2_1 = 1
invariant :pi_d1_n1_2_3_2_3_2 + pil_d1_n1_2_3_2_3_2 = 1
invariant :po_d5_n1_1_1_2_1_2 + pol_d5_n1_1_1_2_1_2 = 1
invariant :po_d2_n1_3_1_1_1_2 + pol_d2_n1_3_1_1_1_2 = 1
invariant :pi_d1_n1_3_2_1_1_1 + pil_d1_n1_3_2_1_1_1 = 1
invariant :pi_d5_n1_2_2_3_2_3 + pil_d5_n1_2_2_3_2_3 = 1
invariant :pi_d2_n1_3_3_3_3_2 + pil_d2_n1_3_3_3_3_2 = 1
invariant :po_d4_n1_1_3_1_1_3 + pol_d4_n1_1_3_1_1_3 = 1
invariant :pi_d2_n1_2_2_1_3_1 + pil_d2_n1_2_2_1_3_1 = 1
invariant :pi_d4_n1_2_2_1_2_3 + pil_d4_n1_2_2_1_2_3 = 1
invariant :po_d4_n1_1_1_1_1_1 + pol_d4_n1_1_1_1_1_1 = 1
invariant :po_d4_n1_3_3_3_2_1 + pol_d4_n1_3_3_3_2_1 = 1
invariant :po_d3_n1_2_3_1_2_2 + pol_d3_n1_2_3_1_2_2 = 1
invariant :pi_d3_n1_1_2_2_1_1 + pil_d3_n1_1_2_2_1_1 = 1
invariant :pb_d1_n1_1_3_1_1_3 + pb_d1_n2_1_3_1_1_3 + pb_d2_n1_1_3_1_1_3 + pb_d2_n2_1_3_1_1_3 + pb_d3_n1_1_3_1_1_3 + pb_d3_n2_1_3_1_1_3 + pb_d4_n1_1_3_1_1_3 + pb_d4_n2_1_3_1_1_3 + pb_d5_n1_1_3_1_1_3 + pb_d5_n2_1_3_1_1_3 + pbl_1_3_1_1_3 = 30
invariant :pb_d1_n1_2_3_3_2_1 + pb_d1_n2_2_3_3_2_1 + pb_d2_n1_2_3_3_2_1 + pb_d2_n2_2_3_3_2_1 + pb_d3_n1_2_3_3_2_1 + pb_d3_n2_2_3_3_2_1 + pb_d4_n1_2_3_3_2_1 + pb_d4_n2_2_3_3_2_1 + pb_d5_n1_2_3_3_2_1 + pb_d5_n2_2_3_3_2_1 + pbl_2_3_3_2_1 = 30
invariant :po_d4_n1_3_2_3_2_1 + pol_d4_n1_3_2_3_2_1 = 1
invariant :po_d5_n1_1_1_3_2_2 + pol_d5_n1_1_1_3_2_2 = 1
invariant :pi_d4_n1_1_3_3_2_1 + pil_d4_n1_1_3_3_2_1 = 1
invariant :pb_d1_n1_2_3_1_3_3 + pb_d1_n2_2_3_1_3_3 + pb_d2_n1_2_3_1_3_3 + pb_d2_n2_2_3_1_3_3 + pb_d3_n1_2_3_1_3_3 + pb_d3_n2_2_3_1_3_3 + pb_d4_n1_2_3_1_3_3 + pb_d4_n2_2_3_1_3_3 + pb_d5_n1_2_3_1_3_3 + pb_d5_n2_2_3_1_3_3 + pbl_2_3_1_3_3 = 30
invariant :pi_d5_n1_1_1_2_2_1 + pil_d5_n1_1_1_2_2_1 = 1
invariant :pi_d5_n1_3_2_3_2_3 + pil_d5_n1_3_2_3_2_3 = 1
invariant :po_d3_n1_2_3_2_3_1 + pol_d3_n1_2_3_2_3_1 = 1
invariant :po_d1_n1_1_3_2_3_1 + pol_d1_n1_1_3_2_3_1 = 1
invariant :po_d3_n1_3_3_2_2_1 + pol_d3_n1_3_3_2_2_1 = 1
invariant :po_d2_n1_3_3_2_3_3 + pol_d2_n1_3_3_2_3_3 = 1
invariant :po_d5_n1_3_1_1_2_3 + pol_d5_n1_3_1_1_2_3 = 1
invariant :pi_d1_n1_3_1_3_1_3 + pil_d1_n1_3_1_3_1_3 = 1
invariant :pi_d2_n1_2_2_1_1_3 + pil_d2_n1_2_2_1_1_3 = 1
invariant :po_d1_n1_1_3_1_2_2 + pol_d1_n1_1_3_1_2_2 = 1
invariant :po_d5_n1_3_1_2_2_1 + pol_d5_n1_3_1_2_2_1 = 1
invariant :pb_d1_n1_1_1_1_2_1 + pb_d1_n2_1_1_1_2_1 + pb_d2_n1_1_1_1_2_1 + pb_d2_n2_1_1_1_2_1 + pb_d3_n1_1_1_1_2_1 + pb_d3_n2_1_1_1_2_1 + pb_d4_n1_1_1_1_2_1 + pb_d4_n2_1_1_1_2_1 + pb_d5_n1_1_1_1_2_1 + pb_d5_n2_1_1_1_2_1 + pbl_1_1_1_2_1 = 30
invariant :po_d1_n1_1_2_1_1_3 + pol_d1_n1_1_2_1_1_3 = 1
invariant :po_d5_n1_1_2_3_2_1 + pol_d5_n1_1_2_3_2_1 = 1
invariant :pi_d3_n1_1_3_1_3_2 + pil_d3_n1_1_3_1_3_2 = 1
invariant :po_d1_n1_3_3_3_2_2 + pol_d1_n1_3_3_3_2_2 = 1
invariant :pi_d2_n1_1_2_3_1_2 + pil_d2_n1_1_2_3_1_2 = 1
invariant :po_d5_n1_3_1_3_3_1 + pol_d5_n1_3_1_3_3_1 = 1
invariant :pb_d1_n1_1_3_3_1_2 + pb_d1_n2_1_3_3_1_2 + pb_d2_n1_1_3_3_1_2 + pb_d2_n2_1_3_3_1_2 + pb_d3_n1_1_3_3_1_2 + pb_d3_n2_1_3_3_1_2 + pb_d4_n1_1_3_3_1_2 + pb_d4_n2_1_3_3_1_2 + pb_d5_n1_1_3_3_1_2 + pb_d5_n2_1_3_3_1_2 + pbl_1_3_3_1_2 = 30
invariant :po_d1_n1_3_2_1_1_3 + pol_d1_n1_3_2_1_1_3 = 1
invariant :po_d2_n1_2_1_3_2_1 + pol_d2_n1_2_1_3_2_1 = 1
invariant :pi_d3_n1_1_1_3_2_2 + pil_d3_n1_1_1_3_2_2 = 1
invariant :pi_d5_n1_3_2_1_2_1 + pil_d5_n1_3_2_1_2_1 = 1
invariant :pi_d2_n1_3_1_1_3_3 + pil_d2_n1_3_1_1_3_3 = 1
invariant :pi_d5_n1_1_2_2_2_3 + pil_d5_n1_1_2_2_2_3 = 1
invariant :pb_d1_n1_2_2_1_1_2 + pb_d1_n2_2_2_1_1_2 + pb_d2_n1_2_2_1_1_2 + pb_d2_n2_2_2_1_1_2 + pb_d3_n1_2_2_1_1_2 + pb_d3_n2_2_2_1_1_2 + pb_d4_n1_2_2_1_1_2 + pb_d4_n2_2_2_1_1_2 + pb_d5_n1_2_2_1_1_2 + pb_d5_n2_2_2_1_1_2 + pbl_2_2_1_1_2 = 30
invariant :pi_d1_n1_1_1_2_2_2 + pil_d1_n1_1_1_2_2_2 = 1
invariant :po_d2_n1_2_2_1_1_1 + pol_d2_n1_2_2_1_1_1 = 1
invariant :po_d5_n1_3_1_1_1_1 + pol_d5_n1_3_1_1_1_1 = 1
invariant :po_d1_n1_3_2_3_3_3 + pol_d1_n1_3_2_3_3_3 = 1
invariant :po_d3_n1_1_1_1_3_2 + pol_d3_n1_1_1_1_3_2 = 1
invariant :pi_d4_n1_2_1_1_1_3 + pil_d4_n1_2_1_1_1_3 = 1
invariant :pi_d3_n1_1_3_2_1_3 + pil_d3_n1_1_3_2_1_3 = 1
invariant :po_d4_n1_3_3_3_3_3 + pol_d4_n1_3_3_3_3_3 = 1
invariant :pi_d3_n1_2_3_1_1_2 + pil_d3_n1_2_3_1_1_2 = 1
invariant :po_d2_n1_1_2_2_3_3 + pol_d2_n1_1_2_2_3_3 = 1
invariant :pb_d1_n1_3_3_1_1_2 + pb_d1_n2_3_3_1_1_2 + pb_d2_n1_3_3_1_1_2 + pb_d2_n2_3_3_1_1_2 + pb_d3_n1_3_3_1_1_2 + pb_d3_n2_3_3_1_1_2 + pb_d4_n1_3_3_1_1_2 + pb_d4_n2_3_3_1_1_2 + pb_d5_n1_3_3_1_1_2 + pb_d5_n2_3_3_1_1_2 + pbl_3_3_1_1_2 = 30
invariant :pi_d4_n1_3_2_3_1_2 + pil_d4_n1_3_2_3_1_2 = 1
invariant :pi_d1_n1_1_2_1_1_2 + pil_d1_n1_1_2_1_1_2 = 1
invariant :po_d2_n1_2_1_1_1_3 + pol_d2_n1_2_1_1_1_3 = 1
invariant :pi_d4_n1_2_2_1_3_3 + pil_d4_n1_2_2_1_3_3 = 1
invariant :po_d1_n1_1_2_2_1_3 + pol_d1_n1_1_2_2_1_3 = 1
invariant :pi_d4_n1_1_2_1_2_1 + pil_d4_n1_1_2_1_2_1 = 1
invariant :po_d5_n1_1_1_1_1_1 + pol_d5_n1_1_1_1_1_1 = 1
invariant :po_d3_n1_3_1_1_2_2 + pol_d3_n1_3_1_1_2_2 = 1
invariant :po_d1_n1_1_3_3_3_1 + pol_d1_n1_1_3_3_3_1 = 1
invariant :pb_d1_n1_3_1_1_1_3 + pb_d1_n2_3_1_1_1_3 + pb_d2_n1_3_1_1_1_3 + pb_d2_n2_3_1_1_1_3 + pb_d3_n1_3_1_1_1_3 + pb_d3_n2_3_1_1_1_3 + pb_d4_n1_3_1_1_1_3 + pb_d4_n2_3_1_1_1_3 + pb_d5_n1_3_1_1_1_3 + pb_d5_n2_3_1_1_1_3 + pbl_3_1_1_1_3 = 30
invariant :po_d1_n1_2_2_1_3_2 + pol_d1_n1_2_2_1_3_2 = 1
invariant :pi_d5_n1_2_1_3_2_3 + pil_d5_n1_2_1_3_2_3 = 1
invariant :po_d5_n1_2_1_3_2_1 + pol_d5_n1_2_1_3_2_1 = 1
invariant :po_d3_n1_1_2_3_2_1 + pol_d3_n1_1_2_3_2_1 = 1
invariant :pi_d4_n1_3_1_2_1_1 + pil_d4_n1_3_1_2_1_1 = 1
invariant :pi_d4_n1_3_3_2_1_1 + pil_d4_n1_3_3_2_1_1 = 1
invariant :pi_d1_n1_3_3_1_1_2 + pil_d1_n1_3_3_1_1_2 = 1
invariant :pi_d3_n1_3_2_3_2_2 + pil_d3_n1_3_2_3_2_2 = 1
invariant :pi_d1_n1_3_2_2_1_3 + pil_d1_n1_3_2_2_1_3 = 1
invariant :pi_d4_n1_1_1_2_3_1 + pil_d4_n1_1_1_2_3_1 = 1
invariant :pi_d2_n1_3_3_3_1_1 + pil_d2_n1_3_3_3_1_1 = 1
invariant :pb_d1_n1_2_2_2_2_3 + pb_d1_n2_2_2_2_2_3 + pb_d2_n1_2_2_2_2_3 + pb_d2_n2_2_2_2_2_3 + pb_d3_n1_2_2_2_2_3 + pb_d3_n2_2_2_2_2_3 + pb_d4_n1_2_2_2_2_3 + pb_d4_n2_2_2_2_2_3 + pb_d5_n1_2_2_2_2_3 + pb_d5_n2_2_2_2_2_3 + pbl_2_2_2_2_3 = 30
invariant :pb_d1_n1_3_2_2_2_3 + pb_d1_n2_3_2_2_2_3 + pb_d2_n1_3_2_2_2_3 + pb_d2_n2_3_2_2_2_3 + pb_d3_n1_3_2_2_2_3 + pb_d3_n2_3_2_2_2_3 + pb_d4_n1_3_2_2_2_3 + pb_d4_n2_3_2_2_2_3 + pb_d5_n1_3_2_2_2_3 + pb_d5_n2_3_2_2_2_3 + pbl_3_2_2_2_3 = 30
invariant :pi_d3_n1_3_3_1_2_1 + pil_d3_n1_3_3_1_2_1 = 1
invariant :po_d1_n1_2_3_1_1_1 + pol_d1_n1_2_3_1_1_1 = 1
invariant :po_d4_n1_2_3_3_1_1 + pol_d4_n1_2_3_3_1_1 = 1
invariant :po_d1_n1_2_1_2_2_1 + pol_d1_n1_2_1_2_2_1 = 1
invariant :po_d4_n1_3_1_2_3_1 + pol_d4_n1_3_1_2_3_1 = 1
invariant :pb_d1_n1_3_3_2_2_1 + pb_d1_n2_3_3_2_2_1 + pb_d2_n1_3_3_2_2_1 + pb_d2_n2_3_3_2_2_1 + pb_d3_n1_3_3_2_2_1 + pb_d3_n2_3_3_2_2_1 + pb_d4_n1_3_3_2_2_1 + pb_d4_n2_3_3_2_2_1 + pb_d5_n1_3_3_2_2_1 + pb_d5_n2_3_3_2_2_1 + pbl_3_3_2_2_1 = 30
invariant :pi_d4_n1_2_2_2_2_1 + pil_d4_n1_2_2_2_2_1 = 1
invariant :po_d2_n1_1_1_2_1_1 + pol_d2_n1_1_1_2_1_1 = 1
invariant :po_d5_n1_1_3_1_1_3 + pol_d5_n1_1_3_1_1_3 = 1
invariant :pb_d1_n1_3_1_1_1_2 + pb_d1_n2_3_1_1_1_2 + pb_d2_n1_3_1_1_1_2 + pb_d2_n2_3_1_1_1_2 + pb_d3_n1_3_1_1_1_2 + pb_d3_n2_3_1_1_1_2 + pb_d4_n1_3_1_1_1_2 + pb_d4_n2_3_1_1_1_2 + pb_d5_n1_3_1_1_1_2 + pb_d5_n2_3_1_1_1_2 + pbl_3_1_1_1_2 = 30
invariant :pi_d3_n1_2_1_1_1_1 + pil_d3_n1_2_1_1_1_1 = 1
invariant :po_d2_n1_1_2_1_2_3 + pol_d2_n1_1_2_1_2_3 = 1
invariant :pi_d1_n1_2_3_3_3_2 + pil_d1_n1_2_3_3_3_2 = 1
invariant :po_d3_n1_2_2_1_2_3 + pol_d3_n1_2_2_1_2_3 = 1
invariant :po_d5_n1_1_2_2_3_1 + pol_d5_n1_1_2_2_3_1 = 1
invariant :po_d3_n1_2_2_3_3_3 + pol_d3_n1_2_2_3_3_3 = 1
invariant :pi_d4_n1_3_3_2_3_2 + pil_d4_n1_3_3_2_3_2 = 1
invariant :pi_d2_n1_3_2_1_3_3 + pil_d2_n1_3_2_1_3_3 = 1
invariant :po_d1_n1_2_3_2_3_3 + pol_d1_n1_2_3_2_3_3 = 1
invariant :pi_d3_n1_1_2_3_1_3 + pil_d3_n1_1_2_3_1_3 = 1
invariant :pi_d4_n1_3_1_1_1_3 + pil_d4_n1_3_1_1_1_3 = 1
invariant :po_d2_n1_2_1_2_2_2 + pol_d2_n1_2_1_2_2_2 = 1
invariant :pb_d1_n1_2_1_3_1_1 + pb_d1_n2_2_1_3_1_1 + pb_d2_n1_2_1_3_1_1 + pb_d2_n2_2_1_3_1_1 + pb_d3_n1_2_1_3_1_1 + pb_d3_n2_2_1_3_1_1 + pb_d4_n1_2_1_3_1_1 + pb_d4_n2_2_1_3_1_1 + pb_d5_n1_2_1_3_1_1 + pb_d5_n2_2_1_3_1_1 + pbl_2_1_3_1_1 = 30
invariant :pi_d5_n1_3_1_1_3_1 + pil_d5_n1_3_1_1_3_1 = 1
invariant :pi_d5_n1_1_1_2_3_2 + pil_d5_n1_1_1_2_3_2 = 1
invariant :pb_d1_n1_1_1_3_3_1 + pb_d1_n2_1_1_3_3_1 + pb_d2_n1_1_1_3_3_1 + pb_d2_n2_1_1_3_3_1 + pb_d3_n1_1_1_3_3_1 + pb_d3_n2_1_1_3_3_1 + pb_d4_n1_1_1_3_3_1 + pb_d4_n2_1_1_3_3_1 + pb_d5_n1_1_1_3_3_1 + pb_d5_n2_1_1_3_3_1 + pbl_1_1_3_3_1 = 30
invariant :po_d5_n1_1_1_3_3_3 + pol_d5_n1_1_1_3_3_3 = 1
invariant :pi_d4_n1_1_1_1_2_3 + pil_d4_n1_1_1_1_2_3 = 1
invariant :pi_d2_n1_2_2_1_2_2 + pil_d2_n1_2_2_1_2_2 = 1
invariant :po_d1_n1_2_2_2_2_2 + pol_d1_n1_2_2_2_2_2 = 1
invariant :pi_d2_n1_1_2_3_3_3 + pil_d2_n1_1_2_3_3_3 = 1
invariant :po_d3_n1_3_2_2_1_1 + pol_d3_n1_3_2_2_1_1 = 1
invariant :pi_d5_n1_1_2_3_3_2 + pil_d5_n1_1_2_3_3_2 = 1
invariant :pb_d1_n1_3_2_1_3_2 + pb_d1_n2_3_2_1_3_2 + pb_d2_n1_3_2_1_3_2 + pb_d2_n2_3_2_1_3_2 + pb_d3_n1_3_2_1_3_2 + pb_d3_n2_3_2_1_3_2 + pb_d4_n1_3_2_1_3_2 + pb_d4_n2_3_2_1_3_2 + pb_d5_n1_3_2_1_3_2 + pb_d5_n2_3_2_1_3_2 + pbl_3_2_1_3_2 = 30
invariant :pb_d1_n1_3_3_2_3_3 + pb_d1_n2_3_3_2_3_3 + pb_d2_n1_3_3_2_3_3 + pb_d2_n2_3_3_2_3_3 + pb_d3_n1_3_3_2_3_3 + pb_d3_n2_3_3_2_3_3 + pb_d4_n1_3_3_2_3_3 + pb_d4_n2_3_3_2_3_3 + pb_d5_n1_3_3_2_3_3 + pb_d5_n2_3_3_2_3_3 + pbl_3_3_2_3_3 = 30
invariant :pi_d2_n1_1_1_3_1_2 + pil_d2_n1_1_1_3_1_2 = 1
invariant :pi_d5_n1_3_2_1_1_1 + pil_d5_n1_3_2_1_1_1 = 1
invariant :pi_d4_n1_3_1_3_1_3 + pil_d4_n1_3_1_3_1_3 = 1
invariant :po_d3_n1_3_1_1_2_1 + pol_d3_n1_3_1_1_2_1 = 1
invariant :po_d5_n1_2_3_1_3_3 + pol_d5_n1_2_3_1_3_3 = 1
invariant :pi_d2_n1_3_2_3_2_2 + pil_d2_n1_3_2_3_2_2 = 1
invariant :pi_d1_n1_3_2_1_2_2 + pil_d1_n1_3_2_1_2_2 = 1
invariant :pi_d2_n1_3_3_1_3_3 + pil_d2_n1_3_3_1_3_3 = 1
invariant :po_d5_n1_1_1_1_2_1 + pol_d5_n1_1_1_1_2_1 = 1
invariant :pi_d3_n1_2_1_3_2_1 + pil_d3_n1_2_1_3_2_1 = 1
invariant :pi_d4_n1_1_1_3_1_3 + pil_d4_n1_1_1_3_1_3 = 1
invariant :pi_d2_n1_3_1_3_3_2 + pil_d2_n1_3_1_3_3_2 = 1
invariant :po_d3_n1_2_1_2_3_2 + pol_d3_n1_2_1_2_3_2 = 1
invariant :po_d4_n1_1_1_1_3_2 + pol_d4_n1_1_1_1_3_2 = 1
invariant :pi_d5_n1_1_3_2_1_2 + pil_d5_n1_1_3_2_1_2 = 1
invariant :pi_d2_n1_1_3_1_3_3 + pil_d2_n1_1_3_1_3_3 = 1
invariant :pi_d2_n1_1_1_2_1_3 + pil_d2_n1_1_1_2_1_3 = 1
invariant :pb_d1_n1_3_2_2_1_3 + pb_d1_n2_3_2_2_1_3 + pb_d2_n1_3_2_2_1_3 + pb_d2_n2_3_2_2_1_3 + pb_d3_n1_3_2_2_1_3 + pb_d3_n2_3_2_2_1_3 + pb_d4_n1_3_2_2_1_3 + pb_d4_n2_3_2_2_1_3 + pb_d5_n1_3_2_2_1_3 + pb_d5_n2_3_2_2_1_3 + pbl_3_2_2_1_3 = 30
invariant :pi_d2_n1_3_2_3_3_2 + pil_d2_n1_3_2_3_3_2 = 1
invariant :po_d2_n1_3_2_3_1_1 + pol_d2_n1_3_2_3_1_1 = 1
invariant :pi_d4_n1_1_2_3_2_3 + pil_d4_n1_1_2_3_2_3 = 1
invariant :po_d2_n1_2_1_2_1_3 + pol_d2_n1_2_1_2_1_3 = 1
invariant :pi_d3_n1_1_3_2_2_3 + pil_d3_n1_1_3_2_2_3 = 1
invariant :po_d4_n1_1_1_2_3_3 + pol_d4_n1_1_1_2_3_3 = 1
invariant :pi_d4_n1_3_3_3_3_3 + pil_d4_n1_3_3_3_3_3 = 1
invariant :pb_d1_n1_2_3_1_2_2 + pb_d1_n2_2_3_1_2_2 + pb_d2_n1_2_3_1_2_2 + pb_d2_n2_2_3_1_2_2 + pb_d3_n1_2_3_1_2_2 + pb_d3_n2_2_3_1_2_2 + pb_d4_n1_2_3_1_2_2 + pb_d4_n2_2_3_1_2_2 + pb_d5_n1_2_3_1_2_2 + pb_d5_n2_2_3_1_2_2 + pbl_2_3_1_2_2 = 30
invariant :po_d4_n1_3_3_1_2_3 + pol_d4_n1_3_3_1_2_3 = 1
invariant :pb_d1_n1_2_1_1_2_2 + pb_d1_n2_2_1_1_2_2 + pb_d2_n1_2_1_1_2_2 + pb_d2_n2_2_1_1_2_2 + pb_d3_n1_2_1_1_2_2 + pb_d3_n2_2_1_1_2_2 + pb_d4_n1_2_1_1_2_2 + pb_d4_n2_2_1_1_2_2 + pb_d5_n1_2_1_1_2_2 + pb_d5_n2_2_1_1_2_2 + pbl_2_1_1_2_2 = 30
invariant :pi_d2_n1_3_2_2_3_3 + pil_d2_n1_3_2_2_3_3 = 1
invariant :po_d2_n1_2_2_2_2_1 + pol_d2_n1_2_2_2_2_1 = 1
invariant :po_d2_n1_1_2_3_1_1 + pol_d2_n1_1_2_3_1_1 = 1
invariant :po_d5_n1_1_1_2_1_3 + pol_d5_n1_1_1_2_1_3 = 1
invariant :pi_d4_n1_3_3_2_1_2 + pil_d4_n1_3_3_2_1_2 = 1
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O2, model.c], workingDir=/home/mcc/execution] killed by timeout after 400 SECONDS
Detected timeout of ITS tools.
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201903251645/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201903251645/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Loading property file ReachabilityCardinality.prop.
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-00 with value :(pb_d5_n2_1_3_2_1_2>=1)
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-01 with value :((((pb_d3_n2_3_1_3_2_3<=po_d4_n1_1_2_1_2_1)||(pb_d2_n1_3_2_1_3_3<=po_d4_n1_1_3_1_2_2))||(!(pb_d5_n2_3_1_2_3_1<=pol_d5_n1_2_1_2_1_3)))||(((pil_d3_n1_3_2_2_1_2<=pb_d2_n2_1_1_1_3_2)||(pil_d2_n1_2_3_1_1_2>=3))||(pil_d3_n1_3_1_3_1_1<=pb_d2_n1_2_1_3_2_3)))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-02 with value :(pb_d2_n2_2_2_2_2_1>=1)
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-03 with value :(!(((pi_d2_n1_1_1_1_3_3<=pb_d2_n1_2_2_1_2_2)&&(po_d4_n1_2_2_2_2_3<=pol_d2_n1_3_2_1_2_1))||((pi_d5_n1_3_1_2_1_3<=pol_d5_n1_1_1_1_2_1)&&(pb_d2_n1_1_1_2_1_2<=pil_d4_n1_3_2_3_3_1))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-04 with value :((pol_d2_n1_3_2_2_2_3>=1)&&(((pol_d2_n1_2_2_2_2_2<=pol_d4_n1_3_1_2_1_1)&&(pb_d3_n2_2_1_3_1_1>=3))||((pol_d2_n1_1_1_2_2_2<=pol_d3_n1_3_3_1_1_1)&&(pol_d3_n1_1_1_1_2_1>=2))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-05 with value :(!(pb_d4_n2_1_3_1_3_2>=2))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-06 with value :((pol_d2_n1_3_2_2_3_1<=pil_d1_n1_1_2_1_3_3)||(po_d5_n1_3_3_1_2_2<=pi_d4_n1_3_2_1_1_2))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-07 with value :((((pi_d5_n1_3_1_1_1_2<=pi_d4_n1_2_1_1_3_1)||(po_d3_n1_2_1_3_2_3<=pol_d5_n1_1_1_3_1_3))||(pol_d2_n1_1_3_2_3_3>=3))||(!((pb_d1_n2_1_3_3_2_2<=po_d3_n1_1_2_1_1_2)||(pi_d5_n1_2_3_1_1_2<=pb_d1_n2_2_3_3_2_3))))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-08 with value :(((!(pb_d2_n2_1_3_3_2_3<=pi_d4_n1_3_3_2_2_3))||(!(po_d2_n1_2_1_2_3_2>=1)))||(((pol_d1_n1_1_1_2_3_2<=pb_d1_n1_2_3_1_3_1)||(pbl_1_2_2_2_2<=pi_d2_n1_2_3_2_2_1))||(pol_d1_n1_2_1_2_1_1<=pb_d4_n1_1_2_2_3_2)))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-09 with value :(((pil_d5_n1_1_3_3_1_2>=3)&&((po_d5_n1_2_1_3_1_3>=2)&&(pol_d5_n1_1_2_2_1_3<=pi_d4_n1_1_3_1_1_3)))||((!(pb_d2_n2_2_2_2_2_2<=pb_d1_n2_1_3_3_1_2))&&((pb_d4_n2_3_2_2_1_1<=po_d2_n1_2_3_1_1_1)&&(pol_d3_n1_3_2_1_1_2>=2))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-10 with value :((!((pi_d2_n1_1_2_1_3_2<=pil_d2_n1_3_3_2_1_3)||(pi_d3_n1_2_1_3_1_3<=pil_d4_n1_3_2_3_3_3)))&&(((pb_d4_n1_3_2_3_2_1>=3)&&(pol_d2_n1_1_3_1_2_2<=pil_d4_n1_2_2_3_1_2))&&((po_d1_n1_1_2_3_2_2>=3)||(pi_d2_n1_1_1_1_3_1<=pb_d3_n1_2_2_1_1_1))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-11 with value :(!(((po_d2_n1_1_1_2_2_1>=2)||(pb_d5_n2_1_3_1_3_3>=1))||((pi_d4_n1_2_3_3_2_1>=2)||(po_d2_n1_3_1_3_2_2<=pil_d5_n1_3_3_2_2_2))))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-12 with value :(pb_d5_n2_2_3_2_3_2<=pb_d5_n2_3_1_1_3_1)
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-13 with value :((!((pi_d1_n1_2_2_3_1_3>=2)&&(pol_d1_n1_3_3_1_2_2>=2)))||(((pb_d3_n2_3_2_2_1_2<=pol_d4_n1_3_3_1_2_1)&&(pil_d1_n1_3_1_3_2_3>=2))||(pb_d3_n1_2_3_3_2_2>=1)))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-14 with value :((((pil_d1_n1_2_3_2_2_2>=2)&&(pil_d3_n1_1_1_1_3_3<=pi_d1_n1_3_1_1_3_2))||(!(po_d2_n1_2_1_1_3_2<=pb_d1_n2_2_1_2_2_2)))||((!(pil_d5_n1_1_1_1_2_2<=pb_d3_n1_2_3_2_3_1))&&(!(pi_d3_n1_2_1_2_3_2<=pil_d5_n1_1_1_2_1_3))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-15 with value :((((pil_d1_n1_1_2_3_2_2<=po_d4_n1_1_1_3_3_2)&&(po_d2_n1_3_3_3_2_1>=1))||((pb_d2_n2_2_2_2_1_1<=po_d3_n1_3_3_2_2_2)||(pi_d4_n1_3_3_1_1_3<=pb_d2_n2_2_3_1_3_2)))&&(!(pil_d4_n1_1_1_2_2_3<=pb_d3_n2_1_3_3_3_3)))
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201903251645/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201903251645/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Loading property file ReachabilityCardinality.prop.
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-00 with value :(pb_d5_n2_1_3_2_1_2>=1)
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-01 with value :((((pb_d3_n2_3_1_3_2_3<=po_d4_n1_1_2_1_2_1)||(pb_d2_n1_3_2_1_3_3<=po_d4_n1_1_3_1_2_2))||(!(pb_d5_n2_3_1_2_3_1<=pol_d5_n1_2_1_2_1_3)))||(((pil_d3_n1_3_2_2_1_2<=pb_d2_n2_1_1_1_3_2)||(pil_d2_n1_2_3_1_1_2>=3))||(pil_d3_n1_3_1_3_1_1<=pb_d2_n1_2_1_3_2_3)))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-02 with value :(pb_d2_n2_2_2_2_2_1>=1)
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-03 with value :(!(((pi_d2_n1_1_1_1_3_3<=pb_d2_n1_2_2_1_2_2)&&(po_d4_n1_2_2_2_2_3<=pol_d2_n1_3_2_1_2_1))||((pi_d5_n1_3_1_2_1_3<=pol_d5_n1_1_1_1_2_1)&&(pb_d2_n1_1_1_2_1_2<=pil_d4_n1_3_2_3_3_1))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-04 with value :((pol_d2_n1_3_2_2_2_3>=1)&&(((pol_d2_n1_2_2_2_2_2<=pol_d4_n1_3_1_2_1_1)&&(pb_d3_n2_2_1_3_1_1>=3))||((pol_d2_n1_1_1_2_2_2<=pol_d3_n1_3_3_1_1_1)&&(pol_d3_n1_1_1_1_2_1>=2))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-05 with value :(!(pb_d4_n2_1_3_1_3_2>=2))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-06 with value :((pol_d2_n1_3_2_2_3_1<=pil_d1_n1_1_2_1_3_3)||(po_d5_n1_3_3_1_2_2<=pi_d4_n1_3_2_1_1_2))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-07 with value :((((pi_d5_n1_3_1_1_1_2<=pi_d4_n1_2_1_1_3_1)||(po_d3_n1_2_1_3_2_3<=pol_d5_n1_1_1_3_1_3))||(pol_d2_n1_1_3_2_3_3>=3))||(!((pb_d1_n2_1_3_3_2_2<=po_d3_n1_1_2_1_1_2)||(pi_d5_n1_2_3_1_1_2<=pb_d1_n2_2_3_3_2_3))))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-08 with value :(((!(pb_d2_n2_1_3_3_2_3<=pi_d4_n1_3_3_2_2_3))||(!(po_d2_n1_2_1_2_3_2>=1)))||(((pol_d1_n1_1_1_2_3_2<=pb_d1_n1_2_3_1_3_1)||(pbl_1_2_2_2_2<=pi_d2_n1_2_3_2_2_1))||(pol_d1_n1_2_1_2_1_1<=pb_d4_n1_1_2_2_3_2)))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-09 with value :(((pil_d5_n1_1_3_3_1_2>=3)&&((po_d5_n1_2_1_3_1_3>=2)&&(pol_d5_n1_1_2_2_1_3<=pi_d4_n1_1_3_1_1_3)))||((!(pb_d2_n2_2_2_2_2_2<=pb_d1_n2_1_3_3_1_2))&&((pb_d4_n2_3_2_2_1_1<=po_d2_n1_2_3_1_1_1)&&(pol_d3_n1_3_2_1_1_2>=2))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-10 with value :((!((pi_d2_n1_1_2_1_3_2<=pil_d2_n1_3_3_2_1_3)||(pi_d3_n1_2_1_3_1_3<=pil_d4_n1_3_2_3_3_3)))&&(((pb_d4_n1_3_2_3_2_1>=3)&&(pol_d2_n1_1_3_1_2_2<=pil_d4_n1_2_2_3_1_2))&&((po_d1_n1_1_2_3_2_2>=3)||(pi_d2_n1_1_1_1_3_1<=pb_d3_n1_2_2_1_1_1))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-11 with value :(!(((po_d2_n1_1_1_2_2_1>=2)||(pb_d5_n2_1_3_1_3_3>=1))||((pi_d4_n1_2_3_3_2_1>=2)||(po_d2_n1_3_1_3_2_2<=pil_d5_n1_3_3_2_2_2))))
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-12 with value :(pb_d5_n2_2_3_2_3_2<=pb_d5_n2_3_1_1_3_1)
Read [invariant] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-13 with value :((!((pi_d1_n1_2_2_3_1_3>=2)&&(pol_d1_n1_3_3_1_2_2>=2)))||(((pb_d3_n2_3_2_2_1_2<=pol_d4_n1_3_3_1_2_1)&&(pil_d1_n1_3_1_3_2_3>=2))||(pb_d3_n1_2_3_3_2_2>=1)))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-14 with value :((((pil_d1_n1_2_3_2_2_2>=2)&&(pil_d3_n1_1_1_1_3_3<=pi_d1_n1_3_1_1_3_2))||(!(po_d2_n1_2_1_1_3_2<=pb_d1_n2_2_1_2_2_2)))||((!(pil_d5_n1_1_1_1_2_2<=pb_d3_n1_2_3_2_3_1))&&(!(pi_d3_n1_2_1_2_3_2<=pil_d5_n1_1_1_2_1_3))))
Read [reachable] property : HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-15 with value :((((pil_d1_n1_1_2_3_2_2<=po_d4_n1_1_1_3_3_2)&&(po_d2_n1_3_3_3_2_1>=1))||((pb_d2_n2_2_2_2_1_1<=po_d3_n1_3_3_2_2_2)||(pi_d4_n1_3_3_1_1_3<=pb_d2_n2_2_3_1_3_2)))&&(!(pil_d4_n1_1_1_2_2_3<=pb_d3_n2_1_3_3_3_3)))
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ ReachabilityCardinality = StateSpace ]]
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityCardinality -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -greatspnpath /home/mcc/BenchKit//greatspn/ -order META -manyOrder -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityCardinality -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -greatspnpath /home/mcc/BenchKit//greatspn/ -order META -manyOrder -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
Mar 28, 2019 9:26:30 AM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -greatspnpath, /home/mcc/BenchKit//greatspn/, -order, META, -manyOrder, -smt]
Mar 28, 2019 9:26:30 AM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
Mar 28, 2019 9:26:31 AM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 975 ms
Mar 28, 2019 9:26:31 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 7533 places.
Mar 28, 2019 9:26:31 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 24300 transitions.
Mar 28, 2019 9:26:35 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 4011 ms
Mar 28, 2019 9:26:41 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 24300 transitions.
Mar 28, 2019 9:26:41 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Too many transitions (24300) to apply POR reductions. Disabling POR matrices.
Mar 28, 2019 9:26:41 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 4981 ms
Mar 28, 2019 9:26:42 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 3828 ms
Mar 28, 2019 9:26:43 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 6459ms conformant to PINS in folder :/home/mcc/execution
Mar 28, 2019 9:26:44 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 24300 transitions.
Mar 28, 2019 9:26:45 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 24300 transitions.
Mar 28, 2019 9:26:45 AM fr.lip6.move.gal.application.StructuralToGreatSPN handlePage
INFO: Transformed 7533 places.
Mar 28, 2019 9:26:45 AM fr.lip6.move.gal.application.StructuralToGreatSPN handlePage
INFO: Transformed 24300 transitions.
Mar 28, 2019 9:26:53 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 273 ms
Mar 28, 2019 9:26:53 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 66 ms
Mar 28, 2019 9:27:00 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 16 in 19384 ms.
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-00(UNSAT) depth K=0 took 165 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-01(UNSAT) depth K=0 took 18 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-02(UNSAT) depth K=0 took 14 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-03(UNSAT) depth K=0 took 0 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-04(UNSAT) depth K=0 took 0 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-05(UNSAT) depth K=0 took 1 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-06(UNSAT) depth K=0 took 0 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-07(UNSAT) depth K=0 took 3 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-08(UNSAT) depth K=0 took 2 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-09(UNSAT) depth K=0 took 1 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-10(UNSAT) depth K=0 took 1 ms
Mar 28, 2019 9:27:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-11(UNSAT) depth K=0 took 1 ms
Mar 28, 2019 9:27:03 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-12(UNSAT) depth K=0 took 1492 ms
Mar 28, 2019 9:27:03 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-13(UNSAT) depth K=0 took 88 ms
Mar 28, 2019 9:27:03 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-14(UNSAT) depth K=0 took 43 ms
Mar 28, 2019 9:27:03 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-15(UNSAT) depth K=0 took 75 ms
Mar 28, 2019 9:27:04 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 24300 transitions.
Mar 28, 2019 9:27:31 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-00(UNSAT) depth K=1 took 27879 ms
Mar 28, 2019 9:28:36 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 2674 place invariants in 81328 ms
Mar 28, 2019 9:29:24 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-01(UNSAT) depth K=1 took 113099 ms
Mar 28, 2019 9:29:51 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-02(UNSAT) depth K=1 took 26869 ms
Mar 28, 2019 9:30:17 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 7533 variables to be positive in 182302 ms
Mar 28, 2019 9:31:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-03(UNSAT) depth K=1 took 121109 ms
Mar 28, 2019 9:33:17 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-04(UNSAT) depth K=1 took 84697 ms
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O2, model.c], workingDir=/home/mcc/execution] killed by timeout after 400 SECONDS
at fr.lip6.move.gal.application.LTSminRunner$1.run(LTSminRunner.java:78)
at java.lang.Thread.run(Thread.java:748)
Mar 28, 2019 9:47:01 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 5854 ms
Mar 28, 2019 9:47:01 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 317 ms
Mar 28, 2019 9:47:01 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 3 ms
ITS-tools command line returned an error code 137
Mar 28, 2019 10:05:35 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 3991 ms
Mar 28, 2019 10:05:35 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 327 ms
Mar 28, 2019 10:05:35 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 1 ms
java.lang.RuntimeException: SMT solver raised an exception or timeout :(error "Solver has unexpectedly terminated")
at fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver.checkSat(NextBMCSolver.java:297)
at fr.lip6.move.gal.gal2smt.bmc.KInductionSolver.verify(KInductionSolver.java:573)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.runKInduction(Gal2SMTFrontEnd.java:301)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.access$1(Gal2SMTFrontEnd.java:274)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd$2.run(Gal2SMTFrontEnd.java:166)
at java.lang.Thread.run(Thread.java:748)
Mar 28, 2019 10:14:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
WARNING: Unexpected error occurred while running SMT. Was verifying HypertorusGrid-PT-d5k3p2b10-ReachabilityCardinality-00 K-induction depth 0
Exception in thread "Thread-8" java.lang.RuntimeException: java.lang.RuntimeException: SMT solver raised an exception or timeout :(error "Solver has unexpectedly terminated")
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.runKInduction(Gal2SMTFrontEnd.java:336)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.access$1(Gal2SMTFrontEnd.java:274)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd$2.run(Gal2SMTFrontEnd.java:166)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: SMT solver raised an exception or timeout :(error "Solver has unexpectedly terminated")
at fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver.checkSat(NextBMCSolver.java:297)
at fr.lip6.move.gal.gal2smt.bmc.KInductionSolver.verify(KInductionSolver.java:573)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.runKInduction(Gal2SMTFrontEnd.java:301)
... 3 more
ITS-tools command line returned an error code 137
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="HypertorusGrid-PT-d5k3p2b10"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="itstoolsm"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool itstoolsm"
echo " Input is HypertorusGrid-PT-d5k3p2b10, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r195-csrt-155246555000818"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/HypertorusGrid-PT-d5k3p2b10.tgz
mv HypertorusGrid-PT-d5k3p2b10 execution
cd execution
if [ "ReachabilityCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;