About the Execution of LoLA for TokenRing-COL-030
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5467.460 | 3594250.00 | 3697306.00 | 74.90 | TFTTFFFT?FTTFTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r170-oct2-155297750400256.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is TokenRing-COL-030, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r170-oct2-155297750400256
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 184K
-rw-r--r-- 1 mcc users 3.8K Feb 12 20:07 CTLCardinality.txt
-rw-r--r-- 1 mcc users 22K Feb 12 20:07 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.6K Feb 9 03:19 CTLFireability.txt
-rw-r--r-- 1 mcc users 15K Feb 9 03:19 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.2K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 104 Feb 24 15:06 GlobalProperties.txt
-rw-r--r-- 1 mcc users 342 Feb 24 15:06 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.1K Feb 5 01:48 LTLCardinality.txt
-rw-r--r-- 1 mcc users 8.9K Feb 5 01:48 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Feb 4 22:49 LTLFireability.txt
-rw-r--r-- 1 mcc users 9.1K Feb 4 22:49 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.6K Feb 4 21:36 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K Feb 4 21:36 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.5K Feb 1 21:56 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 11K Feb 1 21:55 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Feb 4 22:31 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.7K Feb 4 22:31 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:35 equiv_pt
-rw-r--r-- 1 mcc users 4 Jan 29 09:35 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:35 iscolored
-rw-r--r-- 1 mcc users 23K Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME TokenRing-COL-030-CTLCardinality-00
FORMULA_NAME TokenRing-COL-030-CTLCardinality-01
FORMULA_NAME TokenRing-COL-030-CTLCardinality-02
FORMULA_NAME TokenRing-COL-030-CTLCardinality-03
FORMULA_NAME TokenRing-COL-030-CTLCardinality-04
FORMULA_NAME TokenRing-COL-030-CTLCardinality-05
FORMULA_NAME TokenRing-COL-030-CTLCardinality-06
FORMULA_NAME TokenRing-COL-030-CTLCardinality-07
FORMULA_NAME TokenRing-COL-030-CTLCardinality-08
FORMULA_NAME TokenRing-COL-030-CTLCardinality-09
FORMULA_NAME TokenRing-COL-030-CTLCardinality-10
FORMULA_NAME TokenRing-COL-030-CTLCardinality-11
FORMULA_NAME TokenRing-COL-030-CTLCardinality-12
FORMULA_NAME TokenRing-COL-030-CTLCardinality-13
FORMULA_NAME TokenRing-COL-030-CTLCardinality-14
FORMULA_NAME TokenRing-COL-030-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1553113095390
info: Time: 3600 - MCC
vrfy: Checking CTLCardinality @ TokenRing-COL-030 @ 3570 seconds
FORMULA TokenRing-COL-030-CTLCardinality-00 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-03 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA TokenRing-COL-030-CTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: -24
rslt: Output for CTLCardinality @ TokenRing-COL-030
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=CTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=tarjan",
"--stateequation=par",
"--quickchecks",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ctl",
"--json=CTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Wed Mar 20 20:18:15 2019
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 237
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 273
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 296
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 323
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 355
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 395
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 444
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 508
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "NOT DEADLOCK",
"processed_size": 12,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 9,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 592
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 10,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 711
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 11,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 889
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 12,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1185
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 13,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1777
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 121
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 14,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
}
],
"exit":
{
"error": null,
"memory": 1246640,
"runtime": 3574.000000,
"signal": "User defined signal 2",
"timelimitreached": true
},
"files":
{
"JSON": "CTLCardinality.json",
"formula": "CTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "TRUE : FALSE : TRUE : TRUE : FALSE : FALSE : FALSE : TRUE : A(G(NODEADLOCK)) : FALSE : NODEADLOCK : TRUE : FALSE : TRUE : TRUE : TRUE"
},
"net":
{
"arcs": 111724,
"conflict_clusters": 1,
"places": 961,
"places_significant": 930,
"singleton_clusters": 0,
"transitions": 27931
},
"result":
{
"interim_value": "yes no yes yes no no no yes unknown no yes yes no yes yes yes ",
"preliminary_value": "yes no yes yes no no no yes unknown no yes yes no yes yes yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 961, Transitions: 27931
lola: @ trans mainprocess
lola: @ trans otherprocess
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 28892/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 30752
lola: finding significant places
lola: 961 places, 27931 transitions, 930 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from CTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 30)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 30)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 30)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 30)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 30)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 30)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 29)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p98 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p97 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p96 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p95 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p94 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p93 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p91 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p90 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p89 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p88 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p87 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p86 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p85 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p84 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p83 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p82 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p81 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p80 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p79 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p78 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p77 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p76 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p75 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p74 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p73 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p72 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p71 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p70 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p69 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p61 + p30 + p960 + p929 + p898 + p867 + p836 + p805 + p774 + p743 + p712 + p681 + p650 + p619 + p588 + p557 + p526 + p495 + p464 + p433 + p402 + p371 + p340 + p92 + p309 + p278 + p247 + p216 + p185 + p154 + p99)
lola: after: (0 <= 28)
lola: NOT(NOT((A (G ((0 <= 29))) AND ()))) : ((E (((0 <= 28) U (0 <= 28))) OR (0 <= 28)) AND (A (F ((1 <= 0))) AND E (((0 <= 0) U (0 <= 0))))) : A (G ((A (X ((0 <= 28))) OR (0 <= 0)))) : E (((31 <= 0) U E (G ((0 <= 29))))) : NOT(A (G (E (F ((0 <= 29)))))) : NOT(((() AND E (G ((0 <= 0)))) AND (E (X ((0 <= 28))) OR (0 <= 28)))) : NOT(((0 <= 0) AND E (G (())))) : A (G (E (G (())))) : (E ((() U (0 <= 29))) AND A (G (E (X ((0 <= 30)))))) : NOT(A (G ((0 <= 0)))) : (E (X (E (F ((0 <= 0))))) AND E (G (()))) : E (G (())) : ((((29 <= 0) OR E (G ((0 <= 0)))) AND (0 <= 0)) AND (() OR NOT(A (G ((0 <= 29)))))) : E (G ((() AND A (G ((0 <= 29)))))) : A (X (((0 <= 28) AND A (G ((0 <= 0)))))) : A (G (A (((0 <= 0) U (0 <= 0)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:123
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 323 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 395 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 508 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: NOT DEADLOCK
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: NOT DEADLOCK
lola: processed formula length: 12
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 592 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 11 will run for 711 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 12 will run for 889 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 13 will run for 1185 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 14 will run for 1777 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 121 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 15 will run for 3555 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (NOT DEADLOCK))
lola: ========================================
lola: SUBTASK
lola: checking absence of deadlocks
lola: Planning: workflow for deadlock check: search (--findpath=off,--siphontrap=off)
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using deadlock preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 1732 markings, 2274 edges, 346 markings/sec, 0 secs
lola: 3304 markings, 6606 edges, 314 markings/sec, 5 secs
lola: 4921 markings, 11162 edges, 323 markings/sec, 10 secs
lola: 6592 markings, 15670 edges, 334 markings/sec, 15 secs
lola: 8154 markings, 21320 edges, 312 markings/sec, 20 secs
lola: 9718 markings, 27192 edges, 313 markings/sec, 25 secs
lola: 11296 markings, 32982 edges, 316 markings/sec, 30 secs
lola: 12842 markings, 38348 edges, 309 markings/sec, 35 secs
lola: 14377 markings, 44249 edges, 307 markings/sec, 40 secs
lola: 15917 markings, 50109 edges, 308 markings/sec, 45 secs
lola: 17464 markings, 55579 edges, 309 markings/sec, 50 secs
lola: 19013 markings, 61509 edges, 310 markings/sec, 55 secs
lola: 20570 markings, 66950 edges, 311 markings/sec, 60 secs
lola: 22131 markings, 72984 edges, 312 markings/sec, 65 secs
lola: 23700 markings, 78914 edges, 314 markings/sec, 70 secs
lola: 25274 markings, 84537 edges, 315 markings/sec, 75 secs
lola: 26851 markings, 90537 edges, 315 markings/sec, 80 secs
lola: 28437 markings, 96211 edges, 317 markings/sec, 85 secs
lola: 30034 markings, 102015 edges, 319 markings/sec, 90 secs
lola: 31637 markings, 108043 edges, 321 markings/sec, 95 secs
lola: 33254 markings, 113814 edges, 323 markings/sec, 100 secs
lola: 34880 markings, 119743 edges, 325 markings/sec, 105 secs
lola: 36517 markings, 125887 edges, 327 markings/sec, 110 secs
lola: 38168 markings, 131861 edges, 330 markings/sec, 115 secs
lola: 39819 markings, 137817 edges, 330 markings/sec, 120 secs
lola: 41497 markings, 143665 edges, 336 markings/sec, 125 secs
lola: 43216 markings, 149939 edges, 344 markings/sec, 130 secs
lola: 44954 markings, 155945 edges, 348 markings/sec, 135 secs
lola: 46802 markings, 162245 edges, 370 markings/sec, 140 secs
lola: 48404 markings, 167650 edges, 320 markings/sec, 145 secs
lola: 49946 markings, 173617 edges, 308 markings/sec, 150 secs
lola: 51464 markings, 179404 edges, 304 markings/sec, 155 secs
lola: 52974 markings, 185664 edges, 302 markings/sec, 160 secs
lola: 54512 markings, 193129 edges, 308 markings/sec, 165 secs
lola: 56055 markings, 200565 edges, 309 markings/sec, 170 secs
lola: 57594 markings, 207530 edges, 308 markings/sec, 175 secs
lola: 59132 markings, 214971 edges, 308 markings/sec, 180 secs
lola: 60672 markings, 222067 edges, 308 markings/sec, 185 secs
lola: 62212 markings, 229348 edges, 308 markings/sec, 190 secs
lola: 63753 markings, 236771 edges, 308 markings/sec, 195 secs
lola: 65293 markings, 243775 edges, 308 markings/sec, 200 secs
lola: 66834 markings, 251183 edges, 308 markings/sec, 205 secs
lola: 68375 markings, 258202 edges, 308 markings/sec, 210 secs
lola: 69916 markings, 265607 edges, 308 markings/sec, 215 secs
lola: 71450 markings, 272633 edges, 307 markings/sec, 220 secs
lola: 72988 markings, 279756 edges, 308 markings/sec, 225 secs
lola: 74529 markings, 287076 edges, 308 markings/sec, 230 secs
lola: 76071 markings, 294144 edges, 308 markings/sec, 235 secs
lola: 77614 markings, 301228 edges, 309 markings/sec, 240 secs
lola: 79156 markings, 308336 edges, 308 markings/sec, 245 secs
lola: 80698 markings, 315470 edges, 308 markings/sec, 250 secs
lola: 82242 markings, 322613 edges, 309 markings/sec, 255 secs
lola: 83787 markings, 329630 edges, 309 markings/sec, 260 secs
lola: 85332 markings, 336570 edges, 309 markings/sec, 265 secs
lola: 86879 markings, 343441 edges, 309 markings/sec, 270 secs
lola: 88425 markings, 348989 edges, 309 markings/sec, 275 secs
lola: 89961 markings, 354913 edges, 307 markings/sec, 280 secs
lola: 91498 markings, 360791 edges, 307 markings/sec, 285 secs
lola: 93034 markings, 367351 edges, 307 markings/sec, 290 secs
lola: 94569 markings, 374774 edges, 307 markings/sec, 295 secs
lola: 96106 markings, 381884 edges, 307 markings/sec, 300 secs
lola: 97639 markings, 389101 edges, 307 markings/sec, 305 secs
lola: 99173 markings, 396492 edges, 307 markings/sec, 310 secs
lola: 100708 markings, 403468 edges, 307 markings/sec, 315 secs
lola: 102244 markings, 410876 edges, 307 markings/sec, 320 secs
lola: 103784 markings, 417865 edges, 308 markings/sec, 325 secs
lola: 105337 markings, 425351 edges, 311 markings/sec, 330 secs
lola: 106882 markings, 432411 edges, 309 markings/sec, 335 secs
lola: 108419 markings, 439561 edges, 307 markings/sec, 340 secs
lola: 109955 markings, 446824 edges, 307 markings/sec, 345 secs
lola: 111492 markings, 453867 edges, 307 markings/sec, 350 secs
lola: 113029 markings, 460925 edges, 307 markings/sec, 355 secs
lola: 114567 markings, 468009 edges, 308 markings/sec, 360 secs
lola: 116105 markings, 475123 edges, 308 markings/sec, 365 secs
lola: 117643 markings, 482239 edges, 308 markings/sec, 370 secs
lola: 119182 markings, 489332 edges, 308 markings/sec, 375 secs
lola: 120721 markings, 496191 edges, 308 markings/sec, 380 secs
lola: 122262 markings, 503039 edges, 308 markings/sec, 385 secs
lola: 123813 markings, 508663 edges, 310 markings/sec, 390 secs
lola: 125362 markings, 514649 edges, 310 markings/sec, 395 secs
lola: 126912 markings, 520513 edges, 310 markings/sec, 400 secs
lola: 128458 markings, 527561 edges, 309 markings/sec, 405 secs
lola: 130007 markings, 535034 edges, 310 markings/sec, 410 secs
lola: 131555 markings, 542060 edges, 310 markings/sec, 415 secs
lola: 133101 markings, 549512 edges, 309 markings/sec, 420 secs
lola: 134651 markings, 556565 edges, 310 markings/sec, 425 secs
lola: 136202 markings, 564023 edges, 310 markings/sec, 430 secs
lola: 137752 markings, 571122 edges, 310 markings/sec, 435 secs
lola: 139306 markings, 578458 edges, 311 markings/sec, 440 secs
lola: 140860 markings, 585700 edges, 311 markings/sec, 445 secs
lola: 142423 markings, 592879 edges, 313 markings/sec, 450 secs
lola: 143975 markings, 600010 edges, 310 markings/sec, 455 secs
lola: 145526 markings, 607151 edges, 310 markings/sec, 460 secs
lola: 147077 markings, 614307 edges, 310 markings/sec, 465 secs
lola: 148629 markings, 621493 edges, 310 markings/sec, 470 secs
lola: 150173 markings, 628616 edges, 309 markings/sec, 475 secs
lola: 151685 markings, 635370 edges, 302 markings/sec, 480 secs
lola: 153200 markings, 642111 edges, 303 markings/sec, 485 secs
lola: 154723 markings, 647666 edges, 305 markings/sec, 490 secs
lola: 156241 markings, 653527 edges, 304 markings/sec, 495 secs
lola: 157762 markings, 659243 edges, 304 markings/sec, 500 secs
lola: 159279 markings, 666471 edges, 303 markings/sec, 505 secs
lola: 160800 markings, 673663 edges, 304 markings/sec, 510 secs
lola: 162317 markings, 680693 edges, 303 markings/sec, 515 secs
lola: 163838 markings, 687736 edges, 304 markings/sec, 520 secs
lola: 165358 markings, 694931 edges, 304 markings/sec, 525 secs
lola: 166880 markings, 701880 edges, 304 markings/sec, 530 secs
lola: 168402 markings, 709178 edges, 304 markings/sec, 535 secs
lola: 169924 markings, 716179 edges, 304 markings/sec, 540 secs
lola: 171447 markings, 723186 edges, 305 markings/sec, 545 secs
lola: 172970 markings, 730199 edges, 305 markings/sec, 550 secs
lola: 174494 markings, 737220 edges, 305 markings/sec, 555 secs
lola: 176044 markings, 744378 edges, 310 markings/sec, 560 secs
lola: 177606 markings, 751427 edges, 312 markings/sec, 565 secs
lola: 179170 markings, 758463 edges, 313 markings/sec, 570 secs
lola: 180739 markings, 765279 edges, 314 markings/sec, 575 secs
lola: 182310 markings, 770855 edges, 314 markings/sec, 580 secs
lola: 183883 markings, 776839 edges, 315 markings/sec, 585 secs
lola: 185451 markings, 783795 edges, 314 markings/sec, 590 secs
lola: 186984 markings, 791115 edges, 307 markings/sec, 595 secs
lola: 188520 markings, 798167 edges, 307 markings/sec, 600 secs
lola: 190056 markings, 805194 edges, 307 markings/sec, 605 secs
lola: 191627 markings, 812730 edges, 314 markings/sec, 610 secs
lola: 193181 markings, 819886 edges, 311 markings/sec, 615 secs
lola: 194755 markings, 827121 edges, 315 markings/sec, 620 secs
lola: 196329 markings, 834389 edges, 315 markings/sec, 625 secs
lola: 197896 markings, 841624 edges, 313 markings/sec, 630 secs
lola: 199471 markings, 848880 edges, 315 markings/sec, 635 secs
lola: 201041 markings, 855963 edges, 314 markings/sec, 640 secs
lola: 202616 markings, 862970 edges, 315 markings/sec, 645 secs
lola: 204193 markings, 869819 edges, 315 markings/sec, 650 secs
lola: 205776 markings, 875464 edges, 317 markings/sec, 655 secs
lola: 207358 markings, 881419 edges, 316 markings/sec, 660 secs
lola: 208912 markings, 888846 edges, 311 markings/sec, 665 secs
lola: 210498 markings, 896096 edges, 317 markings/sec, 670 secs
lola: 212083 markings, 903507 edges, 317 markings/sec, 675 secs
lola: 213665 markings, 910978 edges, 316 markings/sec, 680 secs
lola: 215252 markings, 918293 edges, 317 markings/sec, 685 secs
lola: 216852 markings, 925668 edges, 320 markings/sec, 690 secs
lola: 218458 markings, 933065 edges, 321 markings/sec, 695 secs
lola: 220059 markings, 940287 edges, 320 markings/sec, 700 secs
lola: 221662 markings, 947533 edges, 321 markings/sec, 705 secs
lola: 223264 markings, 954712 edges, 320 markings/sec, 710 secs
lola: 224871 markings, 960899 edges, 321 markings/sec, 715 secs
lola: 226470 markings, 966985 edges, 320 markings/sec, 720 secs
lola: 228070 markings, 973935 edges, 320 markings/sec, 725 secs
lola: 229673 markings, 981293 edges, 321 markings/sec, 730 secs
lola: 231275 markings, 988784 edges, 320 markings/sec, 735 secs
lola: 232878 markings, 996326 edges, 321 markings/sec, 740 secs
lola: 234481 markings, 1003612 edges, 321 markings/sec, 745 secs
lola: 236084 markings, 1010912 edges, 321 markings/sec, 750 secs
lola: 237691 markings, 1018359 edges, 321 markings/sec, 755 secs
lola: 239303 markings, 1025565 edges, 322 markings/sec, 760 secs
lola: 240919 markings, 1032706 edges, 323 markings/sec, 765 secs
lola: 242535 markings, 1038717 edges, 323 markings/sec, 770 secs
lola: 244153 markings, 1044926 edges, 324 markings/sec, 775 secs
lola: 245762 markings, 1052618 edges, 322 markings/sec, 780 secs
lola: 247376 markings, 1060077 edges, 323 markings/sec, 785 secs
lola: 248997 markings, 1067540 edges, 324 markings/sec, 790 secs
lola: 250617 markings, 1074814 edges, 324 markings/sec, 795 secs
lola: 252240 markings, 1082334 edges, 325 markings/sec, 800 secs
lola: 253868 markings, 1089693 edges, 326 markings/sec, 805 secs
lola: 255501 markings, 1096867 edges, 327 markings/sec, 810 secs
lola: 257138 markings, 1103001 edges, 327 markings/sec, 815 secs
lola: 258771 markings, 1109559 edges, 327 markings/sec, 820 secs
lola: 260405 markings, 1117100 edges, 327 markings/sec, 825 secs
lola: 262037 markings, 1124657 edges, 326 markings/sec, 830 secs
lola: 263677 markings, 1132227 edges, 328 markings/sec, 835 secs
lola: 265318 markings, 1139642 edges, 328 markings/sec, 840 secs
lola: 266956 markings, 1146952 edges, 328 markings/sec, 845 secs
lola: 268570 markings, 1153681 edges, 323 markings/sec, 850 secs
lola: 270184 markings, 1159659 edges, 323 markings/sec, 855 secs
lola: 271812 markings, 1167022 edges, 326 markings/sec, 860 secs
lola: 273428 markings, 1174395 edges, 323 markings/sec, 865 secs
lola: 275064 markings, 1181970 edges, 327 markings/sec, 870 secs
lola: 276723 markings, 1189347 edges, 332 markings/sec, 875 secs
lola: 278379 markings, 1196715 edges, 331 markings/sec, 880 secs
lola: 280051 markings, 1202889 edges, 334 markings/sec, 885 secs
lola: 281725 markings, 1210211 edges, 335 markings/sec, 890 secs
lola: 283358 markings, 1217704 edges, 327 markings/sec, 895 secs
lola: 285015 markings, 1225211 edges, 331 markings/sec, 900 secs
lola: 286704 markings, 1232690 edges, 338 markings/sec, 905 secs
lola: 288319 markings, 1238502 edges, 323 markings/sec, 910 secs
lola: 289853 markings, 1244417 edges, 307 markings/sec, 915 secs
lola: 291388 markings, 1250316 edges, 307 markings/sec, 920 secs
lola: 292925 markings, 1256151 edges, 307 markings/sec, 925 secs
lola: 294457 markings, 1263546 edges, 306 markings/sec, 930 secs
lola: 295994 markings, 1271028 edges, 307 markings/sec, 935 secs
lola: 297531 markings, 1277899 edges, 307 markings/sec, 940 secs
lola: 299059 markings, 1285289 edges, 306 markings/sec, 945 secs
lola: 300593 markings, 1292734 edges, 307 markings/sec, 950 secs
lola: 302126 markings, 1299609 edges, 307 markings/sec, 955 secs
lola: 303658 markings, 1307053 edges, 306 markings/sec, 960 secs
lola: 305194 markings, 1313983 edges, 307 markings/sec, 965 secs
lola: 306722 markings, 1321393 edges, 306 markings/sec, 970 secs
lola: 308258 markings, 1328345 edges, 307 markings/sec, 975 secs
lola: 309788 markings, 1335750 edges, 306 markings/sec, 980 secs
lola: 311324 markings, 1342722 edges, 307 markings/sec, 985 secs
lola: 312856 markings, 1350130 edges, 306 markings/sec, 990 secs
lola: 314390 markings, 1357135 edges, 307 markings/sec, 995 secs
lola: 315925 markings, 1364169 edges, 307 markings/sec, 1000 secs
lola: 317459 markings, 1371542 edges, 307 markings/sec, 1005 secs
lola: 318991 markings, 1378603 edges, 306 markings/sec, 1010 secs
lola: 320526 markings, 1385672 edges, 307 markings/sec, 1015 secs
lola: 322061 markings, 1392724 edges, 307 markings/sec, 1020 secs
lola: 323596 markings, 1399616 edges, 307 markings/sec, 1025 secs
lola: 325133 markings, 1406574 edges, 307 markings/sec, 1030 secs
lola: 326671 markings, 1413464 edges, 308 markings/sec, 1035 secs
lola: 328217 markings, 1419453 edges, 309 markings/sec, 1040 secs
lola: 329751 markings, 1425308 edges, 307 markings/sec, 1045 secs
lola: 331287 markings, 1431175 edges, 307 markings/sec, 1050 secs
lola: 332822 markings, 1437022 edges, 307 markings/sec, 1055 secs
lola: 334350 markings, 1444387 edges, 306 markings/sec, 1060 secs
lola: 335883 markings, 1451843 edges, 307 markings/sec, 1065 secs
lola: 337412 markings, 1458681 edges, 306 markings/sec, 1070 secs
lola: 338939 markings, 1466100 edges, 305 markings/sec, 1075 secs
lola: 340472 markings, 1473038 edges, 307 markings/sec, 1080 secs
lola: 342002 markings, 1480434 edges, 306 markings/sec, 1085 secs
lola: 343537 markings, 1487495 edges, 307 markings/sec, 1090 secs
lola: 345066 markings, 1494780 edges, 306 markings/sec, 1095 secs
lola: 346600 markings, 1501762 edges, 307 markings/sec, 1100 secs
lola: 348130 markings, 1509160 edges, 306 markings/sec, 1105 secs
lola: 349662 markings, 1516137 edges, 306 markings/sec, 1110 secs
lola: 351197 markings, 1523283 edges, 307 markings/sec, 1115 secs
lola: 352728 markings, 1530555 edges, 306 markings/sec, 1120 secs
lola: 354260 markings, 1537602 edges, 306 markings/sec, 1125 secs
lola: 355793 markings, 1544659 edges, 307 markings/sec, 1130 secs
lola: 357326 markings, 1551733 edges, 307 markings/sec, 1135 secs
lola: 358840 markings, 1558516 edges, 303 markings/sec, 1140 secs
lola: 360299 markings, 1565265 edges, 292 markings/sec, 1145 secs
lola: 361678 markings, 1571393 edges, 276 markings/sec, 1150 secs
lola: 362964 markings, 1577042 edges, 257 markings/sec, 1155 secs
lola: 364178 markings, 1582158 edges, 243 markings/sec, 1160 secs
lola: 365354 markings, 1587859 edges, 235 markings/sec, 1165 secs
lola: 366463 markings, 1593248 edges, 222 markings/sec, 1170 secs
lola: 367503 markings, 1598232 edges, 208 markings/sec, 1175 secs
lola: 368529 markings, 1603451 edges, 205 markings/sec, 1180 secs
lola: 369564 markings, 1609503 edges, 207 markings/sec, 1185 secs
lola: 370575 markings, 1615399 edges, 202 markings/sec, 1190 secs
lola: 371585 markings, 1621259 edges, 202 markings/sec, 1195 secs
lola: 373079 markings, 1629514 edges, 299 markings/sec, 1200 secs
lola: 374610 markings, 1638448 edges, 306 markings/sec, 1205 secs
lola: 376140 markings, 1646882 edges, 306 markings/sec, 1210 secs
lola: 377672 markings, 1655831 edges, 306 markings/sec, 1215 secs
lola: 379203 markings, 1664297 edges, 306 markings/sec, 1220 secs
lola: 380734 markings, 1673231 edges, 306 markings/sec, 1225 secs
lola: 382265 markings, 1681719 edges, 306 markings/sec, 1230 secs
lola: 383796 markings, 1690635 edges, 306 markings/sec, 1235 secs
lola: 385328 markings, 1699173 edges, 306 markings/sec, 1240 secs
lola: 386859 markings, 1707719 edges, 306 markings/sec, 1245 secs
lola: 388388 markings, 1716562 edges, 306 markings/sec, 1250 secs
lola: 389883 markings, 1724947 edges, 299 markings/sec, 1255 secs
lola: 391414 markings, 1733529 edges, 306 markings/sec, 1260 secs
lola: 392945 markings, 1742099 edges, 306 markings/sec, 1265 secs
lola: 394477 markings, 1750511 edges, 306 markings/sec, 1270 secs
lola: 396009 markings, 1758958 edges, 306 markings/sec, 1275 secs
lola: 397541 markings, 1767385 edges, 306 markings/sec, 1280 secs
lola: 399083 markings, 1774633 edges, 308 markings/sec, 1285 secs
lola: 400631 markings, 1780463 edges, 310 markings/sec, 1290 secs
lola: 402181 markings, 1786405 edges, 310 markings/sec, 1295 secs
lola: 403729 markings, 1792718 edges, 310 markings/sec, 1300 secs
lola: 405271 markings, 1800212 edges, 308 markings/sec, 1305 secs
lola: 406822 markings, 1807277 edges, 310 markings/sec, 1310 secs
lola: 408361 markings, 1814657 edges, 308 markings/sec, 1315 secs
lola: 409909 markings, 1821868 edges, 310 markings/sec, 1320 secs
lola: 411451 markings, 1829155 edges, 308 markings/sec, 1325 secs
lola: 413000 markings, 1836211 edges, 310 markings/sec, 1330 secs
lola: 414529 markings, 1843590 edges, 306 markings/sec, 1335 secs
lola: 416075 markings, 1850635 edges, 309 markings/sec, 1340 secs
lola: 417624 markings, 1857875 edges, 310 markings/sec, 1345 secs
lola: 419168 markings, 1865199 edges, 309 markings/sec, 1350 secs
lola: 420714 markings, 1872300 edges, 309 markings/sec, 1355 secs
lola: 422261 markings, 1879427 edges, 309 markings/sec, 1360 secs
lola: 423808 markings, 1886565 edges, 309 markings/sec, 1365 secs
lola: 425357 markings, 1893509 edges, 310 markings/sec, 1370 secs
lola: 426907 markings, 1900612 edges, 310 markings/sec, 1375 secs
lola: 428457 markings, 1907585 edges, 310 markings/sec, 1380 secs
lola: 430008 markings, 1914021 edges, 310 markings/sec, 1385 secs
lola: 431544 markings, 1921324 edges, 307 markings/sec, 1390 secs
lola: 433078 markings, 1928715 edges, 307 markings/sec, 1395 secs
lola: 434612 markings, 1936426 edges, 307 markings/sec, 1400 secs
lola: 436141 markings, 1945388 edges, 306 markings/sec, 1405 secs
lola: 437669 markings, 1953918 edges, 306 markings/sec, 1410 secs
lola: 439196 markings, 1962719 edges, 305 markings/sec, 1415 secs
lola: 440722 markings, 1971429 edges, 305 markings/sec, 1420 secs
lola: 442251 markings, 1980099 edges, 306 markings/sec, 1425 secs
lola: 443777 markings, 1988649 edges, 305 markings/sec, 1430 secs
lola: 445306 markings, 1997465 edges, 306 markings/sec, 1435 secs
lola: 446834 markings, 2005968 edges, 306 markings/sec, 1440 secs
lola: 448361 markings, 2014808 edges, 305 markings/sec, 1445 secs
lola: 449888 markings, 2023368 edges, 305 markings/sec, 1450 secs
lola: 451416 markings, 2031907 edges, 306 markings/sec, 1455 secs
lola: 452944 markings, 2040473 edges, 306 markings/sec, 1460 secs
lola: 454472 markings, 2049051 edges, 306 markings/sec, 1465 secs
lola: 456001 markings, 2057642 edges, 306 markings/sec, 1470 secs
lola: 457529 markings, 2066043 edges, 306 markings/sec, 1475 secs
lola: 459058 markings, 2074478 edges, 306 markings/sec, 1480 secs
lola: 460587 markings, 2082653 edges, 306 markings/sec, 1485 secs
lola: 462123 markings, 2089583 edges, 307 markings/sec, 1490 secs
lola: 463661 markings, 2097069 edges, 308 markings/sec, 1495 secs
lola: 465202 markings, 2104105 edges, 308 markings/sec, 1500 secs
lola: 466737 markings, 2111680 edges, 307 markings/sec, 1505 secs
lola: 468272 markings, 2119212 edges, 307 markings/sec, 1510 secs
lola: 469805 markings, 2127593 edges, 307 markings/sec, 1515 secs
lola: 471337 markings, 2136380 edges, 306 markings/sec, 1520 secs
lola: 472867 markings, 2145187 edges, 306 markings/sec, 1525 secs
lola: 474397 markings, 2154033 edges, 306 markings/sec, 1530 secs
lola: 475927 markings, 2162923 edges, 306 markings/sec, 1535 secs
lola: 477457 markings, 2171798 edges, 306 markings/sec, 1540 secs
lola: 478989 markings, 2180624 edges, 306 markings/sec, 1545 secs
lola: 480522 markings, 2189505 edges, 307 markings/sec, 1550 secs
lola: 482055 markings, 2198378 edges, 307 markings/sec, 1555 secs
lola: 483585 markings, 2207231 edges, 306 markings/sec, 1560 secs
lola: 485118 markings, 2216093 edges, 307 markings/sec, 1565 secs
lola: 486652 markings, 2224930 edges, 307 markings/sec, 1570 secs
lola: 488187 markings, 2233751 edges, 307 markings/sec, 1575 secs
lola: 489723 markings, 2242523 edges, 307 markings/sec, 1580 secs
lola: 491262 markings, 2251133 edges, 308 markings/sec, 1585 secs
lola: 492821 markings, 2257421 edges, 312 markings/sec, 1590 secs
lola: 494362 markings, 2263311 edges, 308 markings/sec, 1595 secs
lola: 495918 markings, 2269300 edges, 311 markings/sec, 1600 secs
lola: 497479 markings, 2276845 edges, 312 markings/sec, 1605 secs
lola: 499017 markings, 2283862 edges, 308 markings/sec, 1610 secs
lola: 500557 markings, 2291268 edges, 308 markings/sec, 1615 secs
lola: 502126 markings, 2298404 edges, 314 markings/sec, 1620 secs
lola: 503675 markings, 2305897 edges, 310 markings/sec, 1625 secs
lola: 505238 markings, 2313030 edges, 313 markings/sec, 1630 secs
lola: 506808 markings, 2320235 edges, 314 markings/sec, 1635 secs
lola: 508370 markings, 2327741 edges, 312 markings/sec, 1640 secs
lola: 509929 markings, 2334926 edges, 312 markings/sec, 1645 secs
lola: 511495 markings, 2342151 edges, 313 markings/sec, 1650 secs
lola: 513062 markings, 2349240 edges, 313 markings/sec, 1655 secs
lola: 514629 markings, 2356404 edges, 313 markings/sec, 1660 secs
lola: 516201 markings, 2363517 edges, 314 markings/sec, 1665 secs
lola: 517775 markings, 2370566 edges, 315 markings/sec, 1670 secs
lola: 519341 markings, 2377090 edges, 313 markings/sec, 1675 secs
lola: 520883 markings, 2384567 edges, 308 markings/sec, 1680 secs
lola: 522418 markings, 2391841 edges, 307 markings/sec, 1685 secs
lola: 523954 markings, 2400521 edges, 307 markings/sec, 1690 secs
lola: 525481 markings, 2409383 edges, 305 markings/sec, 1695 secs
lola: 526956 markings, 2417591 edges, 295 markings/sec, 1700 secs
lola: 528394 markings, 2425919 edges, 288 markings/sec, 1705 secs
lola: 529812 markings, 2433796 edges, 284 markings/sec, 1710 secs
lola: 531206 markings, 2441668 edges, 279 markings/sec, 1715 secs
lola: 532593 markings, 2449590 edges, 277 markings/sec, 1720 secs
lola: 533965 markings, 2457215 edges, 274 markings/sec, 1725 secs
lola: 535317 markings, 2465033 edges, 270 markings/sec, 1730 secs
lola: 536649 markings, 2472481 edges, 266 markings/sec, 1735 secs
lola: 537988 markings, 2479939 edges, 268 markings/sec, 1740 secs
lola: 539313 markings, 2487344 edges, 265 markings/sec, 1745 secs
lola: 540624 markings, 2494687 edges, 262 markings/sec, 1750 secs
lola: 541888 markings, 2501757 edges, 253 markings/sec, 1755 secs
lola: 543163 markings, 2508736 edges, 255 markings/sec, 1760 secs
lola: 544539 markings, 2516215 edges, 275 markings/sec, 1765 secs
lola: 545809 markings, 2522751 edges, 254 markings/sec, 1770 secs
lola: 547091 markings, 2528606 edges, 256 markings/sec, 1775 secs
lola: 548392 markings, 2534943 edges, 260 markings/sec, 1780 secs
lola: 549718 markings, 2540963 edges, 265 markings/sec, 1785 secs
lola: 551078 markings, 2547668 edges, 272 markings/sec, 1790 secs
lola: 552470 markings, 2554495 edges, 278 markings/sec, 1795 secs
lola: 553838 markings, 2561983 edges, 274 markings/sec, 1800 secs
lola: 555247 markings, 2570051 edges, 282 markings/sec, 1805 secs
lola: 556678 markings, 2578277 edges, 286 markings/sec, 1810 secs
lola: 558126 markings, 2586651 edges, 290 markings/sec, 1815 secs
lola: 559594 markings, 2595162 edges, 294 markings/sec, 1820 secs
lola: 561067 markings, 2603710 edges, 295 markings/sec, 1825 secs
lola: 562547 markings, 2612219 edges, 296 markings/sec, 1830 secs
lola: 564030 markings, 2620790 edges, 297 markings/sec, 1835 secs
lola: 565517 markings, 2629388 edges, 297 markings/sec, 1840 secs
lola: 567006 markings, 2637989 edges, 298 markings/sec, 1845 secs
lola: 568499 markings, 2646588 edges, 299 markings/sec, 1850 secs
lola: 569993 markings, 2655162 edges, 299 markings/sec, 1855 secs
lola: 571490 markings, 2663614 edges, 299 markings/sec, 1860 secs
lola: 573000 markings, 2671392 edges, 302 markings/sec, 1865 secs
lola: 574516 markings, 2678577 edges, 303 markings/sec, 1870 secs
lola: 576040 markings, 2685971 edges, 305 markings/sec, 1875 secs
lola: 577558 markings, 2693011 edges, 304 markings/sec, 1880 secs
lola: 579076 markings, 2700475 edges, 304 markings/sec, 1885 secs
lola: 580593 markings, 2708544 edges, 303 markings/sec, 1890 secs
lola: 582102 markings, 2717140 edges, 302 markings/sec, 1895 secs
lola: 583596 markings, 2725745 edges, 299 markings/sec, 1900 secs
lola: 585097 markings, 2734416 edges, 300 markings/sec, 1905 secs
lola: 586609 markings, 2743191 edges, 302 markings/sec, 1910 secs
lola: 588124 markings, 2751922 edges, 303 markings/sec, 1915 secs
lola: 589639 markings, 2760683 edges, 303 markings/sec, 1920 secs
lola: 591156 markings, 2769454 edges, 303 markings/sec, 1925 secs
lola: 592675 markings, 2778242 edges, 304 markings/sec, 1930 secs
lola: 594205 markings, 2787076 edges, 306 markings/sec, 1935 secs
lola: 595742 markings, 2795925 edges, 307 markings/sec, 1940 secs
lola: 597282 markings, 2804707 edges, 308 markings/sec, 1945 secs
lola: 598823 markings, 2813428 edges, 308 markings/sec, 1950 secs
lola: 600370 markings, 2820162 edges, 309 markings/sec, 1955 secs
lola: 601932 markings, 2826190 edges, 312 markings/sec, 1960 secs
lola: 603499 markings, 2832286 edges, 313 markings/sec, 1965 secs
lola: 605054 markings, 2839819 edges, 311 markings/sec, 1970 secs
lola: 606594 markings, 2846812 edges, 308 markings/sec, 1975 secs
lola: 608159 markings, 2854385 edges, 313 markings/sec, 1980 secs
lola: 609717 markings, 2861495 edges, 312 markings/sec, 1985 secs
lola: 611278 markings, 2868662 edges, 312 markings/sec, 1990 secs
lola: 612776 markings, 2875693 edges, 300 markings/sec, 1995 secs
lola: 614315 markings, 2882930 edges, 308 markings/sec, 2000 secs
lola: 615895 markings, 2890210 edges, 316 markings/sec, 2005 secs
lola: 617471 markings, 2897255 edges, 315 markings/sec, 2010 secs
lola: 619050 markings, 2904577 edges, 316 markings/sec, 2015 secs
lola: 620628 markings, 2911726 edges, 316 markings/sec, 2020 secs
lola: 622203 markings, 2918667 edges, 315 markings/sec, 2025 secs
lola: 623745 markings, 2925212 edges, 308 markings/sec, 2030 secs
lola: 625234 markings, 2932435 edges, 298 markings/sec, 2035 secs
lola: 626690 markings, 2939450 edges, 291 markings/sec, 2040 secs
lola: 628158 markings, 2948036 edges, 294 markings/sec, 2045 secs
lola: 629528 markings, 2955568 edges, 274 markings/sec, 2050 secs
lola: 630847 markings, 2963272 edges, 264 markings/sec, 2055 secs
lola: 632130 markings, 2970343 edges, 257 markings/sec, 2060 secs
lola: 633390 markings, 2977679 edges, 252 markings/sec, 2065 secs
lola: 634635 markings, 2984570 edges, 249 markings/sec, 2070 secs
lola: 635881 markings, 2991776 edges, 249 markings/sec, 2075 secs
lola: 637115 markings, 2998636 edges, 247 markings/sec, 2080 secs
lola: 638342 markings, 3005450 edges, 245 markings/sec, 2085 secs
lola: 639563 markings, 3012263 edges, 244 markings/sec, 2090 secs
lola: 640777 markings, 3019030 edges, 243 markings/sec, 2095 secs
lola: 641984 markings, 3025795 edges, 241 markings/sec, 2100 secs
lola: 643190 markings, 3032552 edges, 241 markings/sec, 2105 secs
lola: 644391 markings, 3039128 edges, 240 markings/sec, 2110 secs
lola: 645600 markings, 3045695 edges, 242 markings/sec, 2115 secs
lola: 646809 markings, 3051363 edges, 242 markings/sec, 2120 secs
lola: 648023 markings, 3057226 edges, 243 markings/sec, 2125 secs
lola: 649246 markings, 3063157 edges, 245 markings/sec, 2130 secs
lola: 650476 markings, 3068787 edges, 246 markings/sec, 2135 secs
lola: 651713 markings, 3074879 edges, 247 markings/sec, 2140 secs
lola: 652964 markings, 3081212 edges, 250 markings/sec, 2145 secs
lola: 654136 markings, 3087860 edges, 234 markings/sec, 2150 secs
lola: 655336 markings, 3094760 edges, 240 markings/sec, 2155 secs
lola: 656570 markings, 3101833 edges, 247 markings/sec, 2160 secs
lola: 657949 markings, 3109819 edges, 276 markings/sec, 2165 secs
lola: 659372 markings, 3118016 edges, 285 markings/sec, 2170 secs
lola: 660816 markings, 3126358 edges, 289 markings/sec, 2175 secs
lola: 662269 markings, 3134767 edges, 291 markings/sec, 2180 secs
lola: 663754 markings, 3143355 edges, 297 markings/sec, 2185 secs
lola: 665248 markings, 3151980 edges, 299 markings/sec, 2190 secs
lola: 666745 markings, 3160513 edges, 299 markings/sec, 2195 secs
lola: 668246 markings, 3169084 edges, 300 markings/sec, 2200 secs
lola: 669756 markings, 3177240 edges, 302 markings/sec, 2205 secs
lola: 671273 markings, 3184238 edges, 303 markings/sec, 2210 secs
lola: 672796 markings, 3191611 edges, 305 markings/sec, 2215 secs
lola: 674315 markings, 3198709 edges, 304 markings/sec, 2220 secs
lola: 675836 markings, 3206110 edges, 304 markings/sec, 2225 secs
lola: 677335 markings, 3214521 edges, 300 markings/sec, 2230 secs
lola: 678854 markings, 3223220 edges, 304 markings/sec, 2235 secs
lola: 680375 markings, 3231999 edges, 304 markings/sec, 2240 secs
lola: 681899 markings, 3240774 edges, 305 markings/sec, 2245 secs
lola: 683425 markings, 3249620 edges, 305 markings/sec, 2250 secs
lola: 684952 markings, 3258476 edges, 305 markings/sec, 2255 secs
lola: 686481 markings, 3267249 edges, 306 markings/sec, 2260 secs
lola: 688008 markings, 3276063 edges, 305 markings/sec, 2265 secs
lola: 689537 markings, 3284861 edges, 306 markings/sec, 2270 secs
lola: 691068 markings, 3293574 edges, 306 markings/sec, 2275 secs
lola: 692606 markings, 3302205 edges, 308 markings/sec, 2280 secs
lola: 694152 markings, 3309464 edges, 309 markings/sec, 2285 secs
lola: 695699 markings, 3316983 edges, 309 markings/sec, 2290 secs
lola: 697245 markings, 3324156 edges, 309 markings/sec, 2295 secs
lola: 698789 markings, 3331741 edges, 309 markings/sec, 2300 secs
lola: 700331 markings, 3340015 edges, 308 markings/sec, 2305 secs
lola: 701871 markings, 3348828 edges, 308 markings/sec, 2310 secs
lola: 703410 markings, 3357690 edges, 308 markings/sec, 2315 secs
lola: 704952 markings, 3366580 edges, 308 markings/sec, 2320 secs
lola: 706496 markings, 3375503 edges, 309 markings/sec, 2325 secs
lola: 707984 markings, 3384128 edges, 298 markings/sec, 2330 secs
lola: 709393 markings, 3392269 edges, 282 markings/sec, 2335 secs
lola: 710723 markings, 3399962 edges, 266 markings/sec, 2340 secs
lola: 712001 markings, 3407269 edges, 256 markings/sec, 2345 secs
lola: 713231 markings, 3414325 edges, 246 markings/sec, 2350 secs
lola: 714424 markings, 3421128 edges, 239 markings/sec, 2355 secs
lola: 715670 markings, 3428170 edges, 249 markings/sec, 2360 secs
lola: 716923 markings, 3433605 edges, 251 markings/sec, 2365 secs
lola: 718125 markings, 3438228 edges, 240 markings/sec, 2370 secs
lola: 719276 markings, 3442543 edges, 230 markings/sec, 2375 secs
lola: 720396 markings, 3447569 edges, 224 markings/sec, 2380 secs
lola: 721490 markings, 3452865 edges, 219 markings/sec, 2385 secs
lola: 722538 markings, 3457517 edges, 210 markings/sec, 2390 secs
lola: 723583 markings, 3462569 edges, 209 markings/sec, 2395 secs
lola: 724661 markings, 3467395 edges, 216 markings/sec, 2400 secs
lola: 725720 markings, 3472500 edges, 212 markings/sec, 2405 secs
lola: 726772 markings, 3477217 edges, 210 markings/sec, 2410 secs
lola: 727791 markings, 3482114 edges, 204 markings/sec, 2415 secs
lola: 728803 markings, 3486681 edges, 202 markings/sec, 2420 secs
lola: 729864 markings, 3491492 edges, 212 markings/sec, 2425 secs
lola: 730908 markings, 3496262 edges, 209 markings/sec, 2430 secs
lola: 731890 markings, 3500830 edges, 196 markings/sec, 2435 secs
lola: 732886 markings, 3505338 edges, 199 markings/sec, 2440 secs
lola: 733880 markings, 3509838 edges, 199 markings/sec, 2445 secs
lola: 734878 markings, 3514292 edges, 200 markings/sec, 2450 secs
lola: 735960 markings, 3519090 edges, 216 markings/sec, 2455 secs
lola: 737416 markings, 3525373 edges, 291 markings/sec, 2460 secs
lola: 738694 markings, 3531560 edges, 256 markings/sec, 2465 secs
lola: 739914 markings, 3537584 edges, 244 markings/sec, 2470 secs
lola: 741032 markings, 3544082 edges, 224 markings/sec, 2475 secs
lola: 742418 markings, 3551771 edges, 277 markings/sec, 2480 secs
lola: 743835 markings, 3560003 edges, 283 markings/sec, 2485 secs
lola: 745126 markings, 3567159 edges, 258 markings/sec, 2490 secs
lola: 746316 markings, 3573865 edges, 238 markings/sec, 2495 secs
lola: 747505 markings, 3580652 edges, 238 markings/sec, 2500 secs
lola: 748887 markings, 3588366 edges, 276 markings/sec, 2505 secs
lola: 750156 markings, 3595437 edges, 254 markings/sec, 2510 secs
lola: 751381 markings, 3602285 edges, 245 markings/sec, 2515 secs
lola: 752499 markings, 3608528 edges, 224 markings/sec, 2520 secs
lola: 753903 markings, 3616231 edges, 281 markings/sec, 2525 secs
lola: 755283 markings, 3623858 edges, 276 markings/sec, 2530 secs
lola: 756545 markings, 3630488 edges, 252 markings/sec, 2535 secs
lola: 757704 markings, 3635668 edges, 232 markings/sec, 2540 secs
lola: 758965 markings, 3641775 edges, 252 markings/sec, 2545 secs
lola: 760424 markings, 3648562 edges, 292 markings/sec, 2550 secs
lola: 761774 markings, 3655180 edges, 270 markings/sec, 2555 secs
lola: 762995 markings, 3661741 edges, 244 markings/sec, 2560 secs
lola: 764113 markings, 3668144 edges, 224 markings/sec, 2565 secs
lola: 765597 markings, 3676650 edges, 297 markings/sec, 2570 secs
lola: 766947 markings, 3684426 edges, 270 markings/sec, 2575 secs
lola: 768169 markings, 3691491 edges, 244 markings/sec, 2580 secs
lola: 769276 markings, 3697884 edges, 221 markings/sec, 2585 secs
lola: 770336 markings, 3704005 edges, 212 markings/sec, 2590 secs
lola: 771408 markings, 3710179 edges, 214 markings/sec, 2595 secs
lola: 772481 markings, 3716351 edges, 215 markings/sec, 2600 secs
lola: 773554 markings, 3722513 edges, 215 markings/sec, 2605 secs
lola: 774626 markings, 3728616 edges, 214 markings/sec, 2610 secs
lola: 775703 markings, 3734678 edges, 215 markings/sec, 2615 secs
lola: 776781 markings, 3740374 edges, 216 markings/sec, 2620 secs
lola: 777864 markings, 3745332 edges, 217 markings/sec, 2625 secs
lola: 778949 markings, 3750603 edges, 217 markings/sec, 2630 secs
lola: 780299 markings, 3756841 edges, 270 markings/sec, 2635 secs
lola: 781705 markings, 3763745 edges, 281 markings/sec, 2640 secs
lola: 782948 markings, 3770284 edges, 249 markings/sec, 2645 secs
lola: 784093 markings, 3776835 edges, 229 markings/sec, 2650 secs
lola: 785140 markings, 3782811 edges, 209 markings/sec, 2655 secs
lola: 786017 markings, 3787870 edges, 175 markings/sec, 2660 secs
lola: 786893 markings, 3792910 edges, 175 markings/sec, 2665 secs
lola: 787772 markings, 3797989 edges, 176 markings/sec, 2670 secs
lola: 788652 markings, 3803059 edges, 176 markings/sec, 2675 secs
lola: 789530 markings, 3808144 edges, 176 markings/sec, 2680 secs
lola: 790409 markings, 3813233 edges, 176 markings/sec, 2685 secs
lola: 791286 markings, 3818276 edges, 175 markings/sec, 2690 secs
lola: 792165 markings, 3823319 edges, 176 markings/sec, 2695 secs
lola: 793043 markings, 3828359 edges, 176 markings/sec, 2700 secs
lola: 793922 markings, 3833392 edges, 176 markings/sec, 2705 secs
lola: 794806 markings, 3838437 edges, 177 markings/sec, 2710 secs
lola: 795692 markings, 3843448 edges, 177 markings/sec, 2715 secs
lola: 796578 markings, 3848361 edges, 177 markings/sec, 2720 secs
lola: 797465 markings, 3852311 edges, 177 markings/sec, 2725 secs
lola: 798355 markings, 3856629 edges, 178 markings/sec, 2730 secs
lola: 799244 markings, 3860921 edges, 178 markings/sec, 2735 secs
lola: 800137 markings, 3864936 edges, 179 markings/sec, 2740 secs
lola: 801024 markings, 3869301 edges, 177 markings/sec, 2745 secs
lola: 801910 markings, 3873639 edges, 177 markings/sec, 2750 secs
lola: 802804 markings, 3878313 edges, 179 markings/sec, 2755 secs
lola: 803690 markings, 3883344 edges, 177 markings/sec, 2760 secs
lola: 804575 markings, 3888382 edges, 177 markings/sec, 2765 secs
lola: 805459 markings, 3893478 edges, 177 markings/sec, 2770 secs
lola: 806341 markings, 3898567 edges, 176 markings/sec, 2775 secs
lola: 807226 markings, 3903661 edges, 177 markings/sec, 2780 secs
lola: 808113 markings, 3908774 edges, 177 markings/sec, 2785 secs
lola: 809000 markings, 3913892 edges, 177 markings/sec, 2790 secs
lola: 809885 markings, 3918984 edges, 177 markings/sec, 2795 secs
lola: 810771 markings, 3924102 edges, 177 markings/sec, 2800 secs
lola: 811657 markings, 3929232 edges, 177 markings/sec, 2805 secs
lola: 812545 markings, 3934335 edges, 178 markings/sec, 2810 secs
lola: 813951 markings, 3942379 edges, 281 markings/sec, 2815 secs
lola: 815376 markings, 3950504 edges, 285 markings/sec, 2820 secs
lola: 816723 markings, 3957990 edges, 269 markings/sec, 2825 secs
lola: 817956 markings, 3963586 edges, 247 markings/sec, 2830 secs
lola: 819286 markings, 3970038 edges, 266 markings/sec, 2835 secs
lola: 820803 markings, 3977098 edges, 303 markings/sec, 2840 secs
lola: 822233 markings, 3984113 edges, 286 markings/sec, 2845 secs
lola: 823565 markings, 3991426 edges, 266 markings/sec, 2850 secs
lola: 824784 markings, 3998407 edges, 244 markings/sec, 2855 secs
lola: 826314 markings, 4007214 edges, 306 markings/sec, 2860 secs
lola: 827750 markings, 4015479 edges, 287 markings/sec, 2865 secs
lola: 829054 markings, 4023006 edges, 261 markings/sec, 2870 secs
lola: 830229 markings, 4029790 edges, 235 markings/sec, 2875 secs
lola: 831616 markings, 4037811 edges, 277 markings/sec, 2880 secs
lola: 833077 markings, 4046181 edges, 292 markings/sec, 2885 secs
lola: 834438 markings, 4053985 edges, 272 markings/sec, 2890 secs
lola: 835716 markings, 4061274 edges, 256 markings/sec, 2895 secs
lola: 837056 markings, 4068200 edges, 268 markings/sec, 2900 secs
lola: 838603 markings, 4073924 edges, 309 markings/sec, 2905 secs
lola: 840052 markings, 4079567 edges, 290 markings/sec, 2910 secs
lola: 841371 markings, 4085942 edges, 264 markings/sec, 2915 secs
lola: 842592 markings, 4091446 edges, 244 markings/sec, 2920 secs
lola: 843779 markings, 4097153 edges, 237 markings/sec, 2925 secs
lola: 844980 markings, 4102620 edges, 240 markings/sec, 2930 secs
lola: 846182 markings, 4108089 edges, 240 markings/sec, 2935 secs
lola: 847335 markings, 4113354 edges, 231 markings/sec, 2940 secs
lola: 848483 markings, 4118705 edges, 230 markings/sec, 2945 secs
lola: 849634 markings, 4123951 edges, 230 markings/sec, 2950 secs
lola: 850776 markings, 4129133 edges, 228 markings/sec, 2955 secs
lola: 851924 markings, 4134360 edges, 230 markings/sec, 2960 secs
lola: 853072 markings, 4139453 edges, 230 markings/sec, 2965 secs
lola: 854436 markings, 4145107 edges, 273 markings/sec, 2970 secs
lola: 855884 markings, 4152067 edges, 290 markings/sec, 2975 secs
lola: 857224 markings, 4158646 edges, 268 markings/sec, 2980 secs
lola: 858403 markings, 4165496 edges, 236 markings/sec, 2985 secs
lola: 859399 markings, 4170929 edges, 199 markings/sec, 2990 secs
lola: 860730 markings, 4178661 edges, 266 markings/sec, 2995 secs
lola: 861843 markings, 4184797 edges, 223 markings/sec, 3000 secs
lola: 862827 markings, 4190331 edges, 197 markings/sec, 3005 secs
lola: 863764 markings, 4195643 edges, 187 markings/sec, 3010 secs
lola: 864883 markings, 4201864 edges, 224 markings/sec, 3015 secs
lola: 865912 markings, 4207566 edges, 206 markings/sec, 3020 secs
lola: 866866 markings, 4212851 edges, 191 markings/sec, 3025 secs
lola: 867789 markings, 4217985 edges, 185 markings/sec, 3030 secs
lola: 868809 markings, 4223686 edges, 204 markings/sec, 3035 secs
lola: 869945 markings, 4229909 edges, 227 markings/sec, 3040 secs
lola: 870972 markings, 4235401 edges, 205 markings/sec, 3045 secs
lola: 871939 markings, 4239790 edges, 193 markings/sec, 3050 secs
lola: 872880 markings, 4244327 edges, 188 markings/sec, 3055 secs
lola: 873992 markings, 4249536 edges, 222 markings/sec, 3060 secs
lola: 875017 markings, 4254438 edges, 205 markings/sec, 3065 secs
lola: 875993 markings, 4259215 edges, 195 markings/sec, 3070 secs
lola: 876953 markings, 4264336 edges, 192 markings/sec, 3075 secs
lola: 877992 markings, 4270260 edges, 208 markings/sec, 3080 secs
lola: 879069 markings, 4276432 edges, 215 markings/sec, 3085 secs
lola: 880096 markings, 4282348 edges, 205 markings/sec, 3090 secs
lola: 881082 markings, 4288040 edges, 197 markings/sec, 3095 secs
lola: 882056 markings, 4293669 edges, 195 markings/sec, 3100 secs
lola: 883172 markings, 4300050 edges, 223 markings/sec, 3105 secs
lola: 884231 markings, 4306146 edges, 212 markings/sec, 3110 secs
lola: 885251 markings, 4312008 edges, 204 markings/sec, 3115 secs
lola: 886250 markings, 4317718 edges, 200 markings/sec, 3120 secs
lola: 887328 markings, 4323856 edges, 216 markings/sec, 3125 secs
lola: 888412 markings, 4329861 edges, 217 markings/sec, 3130 secs
lola: 889456 markings, 4334569 edges, 209 markings/sec, 3135 secs
lola: 890460 markings, 4339442 edges, 201 markings/sec, 3140 secs
lola: 891483 markings, 4344076 edges, 205 markings/sec, 3145 secs
lola: 892671 markings, 4349923 edges, 238 markings/sec, 3150 secs
lola: 893810 markings, 4355665 edges, 228 markings/sec, 3155 secs
lola: 894872 markings, 4361686 edges, 212 markings/sec, 3160 secs
lola: 895878 markings, 4367466 edges, 201 markings/sec, 3165 secs
lola: 897104 markings, 4374492 edges, 245 markings/sec, 3170 secs
lola: 898320 markings, 4381527 edges, 243 markings/sec, 3175 secs
lola: 899433 markings, 4387897 edges, 223 markings/sec, 3180 secs
lola: 900476 markings, 4393908 edges, 209 markings/sec, 3185 secs
lola: 901637 markings, 4400595 edges, 232 markings/sec, 3190 secs
lola: 902996 markings, 4408418 edges, 272 markings/sec, 3195 secs
lola: 904240 markings, 4415472 edges, 249 markings/sec, 3200 secs
lola: 905378 markings, 4421831 edges, 228 markings/sec, 3205 secs
lola: 906427 markings, 4426723 edges, 210 markings/sec, 3210 secs
lola: 907422 markings, 4431530 edges, 199 markings/sec, 3215 secs
lola: 908428 markings, 4436190 edges, 201 markings/sec, 3220 secs
lola: 909428 markings, 4440996 edges, 200 markings/sec, 3225 secs
lola: 910433 markings, 4445922 edges, 201 markings/sec, 3230 secs
lola: 911436 markings, 4451326 edges, 201 markings/sec, 3235 secs
lola: 912439 markings, 4457060 edges, 201 markings/sec, 3240 secs
lola: 913442 markings, 4462788 edges, 201 markings/sec, 3245 secs
lola: 914445 markings, 4468579 edges, 201 markings/sec, 3250 secs
lola: 915449 markings, 4474360 edges, 201 markings/sec, 3255 secs
lola: 916853 markings, 4482434 edges, 281 markings/sec, 3260 secs
lola: 918161 markings, 4489978 edges, 262 markings/sec, 3265 secs
lola: 919311 markings, 4496611 edges, 230 markings/sec, 3270 secs
lola: 920348 markings, 4502508 edges, 207 markings/sec, 3275 secs
lola: 921595 markings, 4509613 edges, 249 markings/sec, 3280 secs
lola: 922944 markings, 4517038 edges, 270 markings/sec, 3285 secs
lola: 924152 markings, 4522521 edges, 242 markings/sec, 3290 secs
lola: 925251 markings, 4527827 edges, 220 markings/sec, 3295 secs
lola: 926316 markings, 4532720 edges, 213 markings/sec, 3300 secs
lola: 927738 markings, 4539675 edges, 284 markings/sec, 3305 secs
lola: 928991 markings, 4546600 edges, 251 markings/sec, 3310 secs
lola: 930168 markings, 4553339 edges, 235 markings/sec, 3315 secs
lola: 931233 markings, 4559446 edges, 213 markings/sec, 3320 secs
lola: 932249 markings, 4565293 edges, 203 markings/sec, 3325 secs
lola: 933267 markings, 4571169 edges, 204 markings/sec, 3330 secs
lola: 934296 markings, 4577100 edges, 206 markings/sec, 3335 secs
lola: 935308 markings, 4582938 edges, 202 markings/sec, 3340 secs
lola: 936299 markings, 4588635 edges, 198 markings/sec, 3345 secs
lola: 937324 markings, 4594520 edges, 205 markings/sec, 3350 secs
lola: 938358 markings, 4600381 edges, 207 markings/sec, 3355 secs
lola: 939398 markings, 4606257 edges, 208 markings/sec, 3360 secs
lola: 940442 markings, 4611451 edges, 209 markings/sec, 3365 secs
lola: 941792 markings, 4617913 edges, 270 markings/sec, 3370 secs
lola: 943177 markings, 4624317 edges, 277 markings/sec, 3375 secs
lola: 944409 markings, 4630362 edges, 246 markings/sec, 3380 secs
lola: 945513 markings, 4636023 edges, 221 markings/sec, 3385 secs
lola: 946667 markings, 4642572 edges, 231 markings/sec, 3390 secs
lola: 948101 markings, 4650806 edges, 287 markings/sec, 3395 secs
lola: 949335 markings, 4657897 edges, 247 markings/sec, 3400 secs
lola: 950451 markings, 4664332 edges, 223 markings/sec, 3405 secs
lola: 951512 markings, 4670455 edges, 212 markings/sec, 3410 secs
lola: 952928 markings, 4678581 edges, 283 markings/sec, 3415 secs
lola: 954287 markings, 4686398 edges, 272 markings/sec, 3420 secs
lola: 955617 markings, 4693972 edges, 266 markings/sec, 3425 secs
lola: 956710 markings, 4700139 edges, 219 markings/sec, 3430 secs
lola: 957867 markings, 4705175 edges, 231 markings/sec, 3435 secs
lola: 959069 markings, 4709760 edges, 240 markings/sec, 3440 secs
lola: 960146 markings, 4714006 edges, 215 markings/sec, 3445 secs
lola: 961141 markings, 4718810 edges, 199 markings/sec, 3450 secs
lola: 962108 markings, 4723119 edges, 193 markings/sec, 3455 secs
lola: 963277 markings, 4728741 edges, 234 markings/sec, 3460 secs
lola: 964311 markings, 4733400 edges, 207 markings/sec, 3465 secs
lola: 965298 markings, 4737864 edges, 197 markings/sec, 3470 secs
lola: 966251 markings, 4742324 edges, 191 markings/sec, 3475 secs
lola: 967297 markings, 4747180 edges, 209 markings/sec, 3480 secs
lola: 968312 markings, 4751721 edges, 203 markings/sec, 3485 secs
lola: 969291 markings, 4756103 edges, 196 markings/sec, 3490 secs
lola: 970252 markings, 4760507 edges, 192 markings/sec, 3495 secs
lola: 971237 markings, 4764811 edges, 197 markings/sec, 3500 secs
lola: 972395 markings, 4769598 edges, 232 markings/sec, 3505 secs
lola: 973449 markings, 4774698 edges, 211 markings/sec, 3510 secs
lola: 974488 markings, 4779604 edges, 208 markings/sec, 3515 secs
lola: 975499 markings, 4785457 edges, 202 markings/sec, 3520 secs
lola: 976482 markings, 4790849 edges, 197 markings/sec, 3525 secs
lola: 977474 markings, 4796591 edges, 198 markings/sec, 3530 secs
lola: 978460 markings, 4802012 edges, 197 markings/sec, 3535 secs
lola: 979428 markings, 4807610 edges, 194 markings/sec, 3540 secs
lola: 980380 markings, 4812880 edges, 190 markings/sec, 3545 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no yes yes no no no yes unknown no yes yes no yes yes yes
lola: memory consumption: 1306924 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: yes no yes yes no no no yes unknown no yes yes no yes yes yes
lola: memory consumption: 1307996 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
lola: time limit reached - aborting
lola:
preliminary result: yes no yes yes no no no yes unknown no yes yes no yes yes yes
lola:
preliminary result: yes no yes yes no no no yes unknown no yes yes no yes yes yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes no yes yes no no no yes unknown no yes yes no yes yes yes
lola: memory consumption: 1308000 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
lola: memory consumption: 1308000 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: yes no yes yes no no no yes unknown no yes yes no yes yes yes
lola:
preliminary result: yes no yes yes no no no yes unknown no yes yes no yes yes yes
lola: memory consumption: 1246640 KB
lola: time consumption: 3574 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
rslt: finished
BK_STOP 1553116689640
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="TokenRing-COL-030"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is TokenRing-COL-030, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r170-oct2-155297750400256"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/TokenRing-COL-030.tgz
mv TokenRing-COL-030 execution
cd execution
if [ "CTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "CTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;