About the Execution of LoLA for QuasiCertifProtocol-COL-32
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15918.910 | 3194492.00 | 3218841.00 | 725.70 | FFTFFFFTFFFTT?FF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r126-oct2-155274853300249.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is QuasiCertifProtocol-COL-32, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r126-oct2-155274853300249
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 280K
-rw-r--r-- 1 mcc users 3.2K Feb 12 10:40 CTLCardinality.txt
-rw-r--r-- 1 mcc users 17K Feb 12 10:39 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K Feb 8 12:43 CTLFireability.txt
-rw-r--r-- 1 mcc users 12K Feb 8 12:43 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 113 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 351 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.4K Feb 5 00:45 LTLCardinality.txt
-rw-r--r-- 1 mcc users 9.4K Feb 5 00:45 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Feb 4 22:41 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.9K Feb 4 22:41 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.4K Feb 4 14:00 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 16K Feb 4 14:00 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.8K Feb 1 10:21 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 15K Feb 1 10:20 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 4 22:26 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 4 22:26 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 3 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 131K Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-00
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-01
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-02
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-03
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-04
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-05
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-06
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-07
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-08
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-09
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1553896905953
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ QuasiCertifProtocol-COL-32 @ 3570 seconds
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-08 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-13 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 375
rslt: Output for LTLCardinality @ QuasiCertifProtocol-COL-32
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Fri Mar 29 22:01:46 2019
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)",
"processed_size": 268,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 236
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 34,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 34,
"visible_transitions": 0
},
"processed": "(p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)",
"processed_size": 272,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 253
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)",
"processed_size": 268,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 273
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "(1 <= p2347)",
"processed_size": 12,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 296
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "(1 <= p2551)",
"processed_size": 12,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 322
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)",
"processed_size": 268,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 355
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 394
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 1,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 35,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 35,
"visible_transitions": 0
},
"processed": "A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447))))",
"processed_size": 297,
"rewrites": 18
},
"result":
{
"edges": 34,
"markings": 35,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 444
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 444
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))",
"processed_size": 204,
"rewrites": 18
},
"result":
{
"edges": 71,
"markings": 71,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "boolean"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 507
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 1,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 67,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 67,
"visible_transitions": 0
},
"processed": "A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191))))",
"processed_size": 481,
"rewrites": 18
},
"result":
{
"edges": 34,
"markings": 35,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 587
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 1,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 34,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 34,
"visible_transitions": 0
},
"processed": "A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))))",
"processed_size": 301,
"rewrites": 18
},
"result":
{
"edges": 55,
"markings": 55,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 734
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (X (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))",
"processed_size": 280,
"rewrites": 18
},
"result":
{
"edges": 55,
"markings": 55,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 978
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482 <= 1)",
"processed_size": 268,
"rewrites": 20
},
"result":
{
"edges": 70,
"markings": 71,
"produced_by": "state space / EG",
"value": false
},
"task":
{
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 99
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1468
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))",
"processed_size": 280,
"rewrites": 18
},
"result":
{
"edges": 55,
"markings": 55,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 2936
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380))))",
"processed_size": 280,
"rewrites": 18
},
"result":
{
"edges": 71,
"markings": 71,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 104892,
"runtime": 3170.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "** : A(G(F(**))) : ** : A(F(**)) : A(G(F(**))) : ** : (A(G(F(**))) AND A(G((X(**) OR **)))) : A(X((** U **))) : ** : A(X(G(**))) : ** : ** : A(X((F(**) U **))) : A(X(X(G(**)))) : A(X((F(**) U X(**)))) : FALSE"
},
"net":
{
"arcs": 8173,
"conflict_clusters": 110,
"places": 3806,
"places_significant": 505,
"singleton_clusters": 0,
"transitions": 506
},
"result":
{
"preliminary_value": "no no yes no no no no yes no no no yes yes unknown no no ",
"value": "no no yes no no no no yes no no no yes yes unknown no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 3806, Transitions: 506
lola: @ trans malA4
lola: @ trans SgetTS
lola: @ trans malA5
lola: @ trans malS3
lola: @ trans AreqCS
lola: @ trans AendCS
lola: @ trans ScertCS
lola: @ trans malA2
lola: @ trans SreqTS
lola: @ trans AackCS
lola: @ trans malS2
lola: @ trans AgetTS
lola: @ trans malA3
lola: @ trans malC1
lola: @ trans AstartCS
lola: @ trans Sperform
lola: @ trans malS1
lola: @ trans SsendTS
lola: @ trans malS4
lola: @ trans AreqTS
lola: @ trans CsendTS1
lola: @ trans malA1
lola: @ trans malS6
lola: @ trans malS5
lola: @ trans SackCS
lola: @ trans CgenCertif
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 4312/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 121792
lola: finding significant places
lola: 3806 places, 506 transitions, 505 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (3 <= p2550)
lola: A ((1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)) : A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380)))) : A ((p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)) : A ((F (X ((p1951 + p1918 + p1885 + p1852 + p1819 + p1786 + p1753 + p1720 + p1687 + p1654 + p1621 + p1588 + p1555 + p1522 + p1489 + p1456 + p1423 + p1390 + p1357 + p1324 + p1291 + p1258 + p2314 + p2281 + p2248 + p2215 + p2182 + p2149 + p2116 + p2083 + p2050 + p2017 + p2000 + p2001 + p2002 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p2016 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2067 + p2068 + p2069 + p2070 + p2071 + p2072 + p2073 + p2074 + p2075 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2084 + p2085 + p2086 + p2087 + p2088 + p2089 + p2090 + p2091 + p2092 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2100 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2107 + p2108 + p2109 + p2110 + p2111 + p2112 + p2113 + p2114 + p2115 + p2117 + p2118 + p2119 + p2120 + p2121 + p2122 + p2123 + p2124 + p2125 + p2126 + p2127 + p2128 + p2129 + p2130 + p2131 + p2132 + p2133 + p2134 + p2135 + p2136 + p2137 + p2138 + p2139 + p2140 + p2141 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2156 + p2157 + p2158 + p2159 + p2160 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2183 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1715 + p1716 + p1717 + p1718 + p1719 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1773 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1862 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1886 + p1887 + p1888 + p1889 + p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1939 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1946 + p1947 + p1948 + p1949 + p1950 + p1952 + p1953 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1960 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999 <= p2948 + p2915 + p2882 + p2849 + p2816 + p2783 + p2750 + p2717 + p2684 + p3000 + p3001 + p3002 + p3003 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3010 + p3011 + p3012 + p3013 + p3014 + p3015 + p3016 + p3017 + p3018 + p3019 + p3020 + p3021 + p3022 + p3023 + p3024 + p3025 + p3026 + p3027 + p3028 + p3029 + p3030 + p3031 + p3032 + p3033 + p3047 + p3080 + p3740 + p3707 + p3113 + p3146 + p3674 + p3641 + p3608 + p3575 + p3542 + p3509 + p3476 + p3443 + p3410 + p3179 + p3377 + p3344 + p3311 + p3278 + p3245 + p3212 + p3195 + p3196 + p3197 + p3198 + p3199 + p3194 + p3193 + p3192 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p3207 + p3208 + p3209 + p3210 + p3211 + p3191 + p3213 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3190 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p3261 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3189 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3298 + p3299 + p3188 + p3187 + p3186 + p3185 + p3300 + p3301 + p3302 + p3303 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3184 + p3310 + p3183 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3340 + p3341 + p3342 + p3343 + p3182 + p3345 + p3346 + p3347 + p3348 + p3349 + p3181 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3180 + p3378 + p3379 + p3178 + p3380 + p3381 + p3382 + p3383 + p3384 + p3385 + p3386 + p3387 + p3388 + p3389 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3177 + p3176 + p3175 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3174 + p3173 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3420 + p3421 + p3422 + p3423 + p3424 + p3425 + p3426 + p3427 + p3428 + p3429 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3172 + p3440 + p3441 + p3442 + p3171 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3466 + p3467 + p3468 + p3469 + p3470 + p3471 + p3472 + p3473 + p3474 + p3475 + p3170 + p3477 + p3478 + p3479 + p3169 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3168 + p3167 + p3166 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3508 + p3165 + p3164 + p3510 + p3511 + p3512 + p3513 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p3163 + p3540 + p3541 + p3162 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3550 + p3551 + p3552 + p3553 + p3554 + p3555 + p3556 + p3557 + p3558 + p3559 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p3570 + p3571 + p3572 + p3573 + p3574 + p3161 + p3576 + p3577 + p3578 + p3579 + p3160 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3590 + p3591 + p3592 + p3593 + p3594 + p3595 + p3596 + p3597 + p3598 + p3599 + p3159 + p3158 + p3157 + p3156 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3155 + p3609 + p3154 + p3153 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p3630 + p3631 + p3632 + p3633 + p3634 + p3635 + p3636 + p3637 + p3638 + p3639 + p3152 + p3151 + p3150 + p3640 + p3149 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p3670 + p3671 + p3672 + p3673 + p3148 + p3675 + p3676 + p3677 + p3678 + p3679 + p3147 + p3145 + p3144 + p3143 + p3142 + p3141 + p3140 + p3139 + p3138 + p3137 + p3680 + p3681 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p3136 + p3135 + p3134 + p3133 + p3132 + p3131 + p3130 + p3129 + p3128 + p3127 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3103 + p3102 + p3101 + p3100 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3708 + p3709 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p3718 + p3719 + p3720 + p3721 + p3722 + p3723 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p3099 + p3760 + p3761 + p3762 + p3763 + p3764 + p3765 + p3766 + p3767 + p3768 + p3769 + p3098 + p3097 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3079 + p3078 + p3770 + p3771 + p3772 + p3077 + p3076 + p3075 + p3074 + p3073 + p3072 + p3071 + p3070 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p3051 + p3050 + p3049 + p3048 + p3046 + p3045 + p3044 + p3043 + p3042 + p3041 + p3040 + p3039 + p3038 + p3037 + p3036 + p3035 + p3034 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p2795 + p2796 + p2797 + p2798 + p2799 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2817 + p2818 + p2819 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p2879 + p2880 + p2881 + p2883 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p2910 + p2911 + p2912 + p2913 + p2914 + p2916 + p2917 + p2918 + p2919 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p2968 + p2969 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999))) U F (F ((2 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482))))) : A (F (F (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617)))))) : A ((3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)) : A (G ((X ((p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)) U (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))) : A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447)))) : A ((1 <= p2347)) : A (X (G (G (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617)))))) : A ((1 <= p2551)) : A ((1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)) : A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191)))) : A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124))))) : A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482))))) : A ((3 <= p2550))
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: rewrite Frontend/Parser/formula_rewrite.k:545
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)
lola: processed formula length: 268
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)
lola: processed formula length: 272
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)
lola: processed formula length: 268
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2347)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2347)
lola: processed formula length: 12
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2551)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2551)
lola: processed formula length: 12
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)
lola: processed formula length: 268
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 394 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447))))
lola: processed formula length: 297
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 35 markings, 34 edges
lola: ========================================
lola: subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))) AND A (G ((X ((p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p26... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))
lola: processed formula length: 204
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 71 markings, 71 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 9 will run for 507 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + ... (shortened)
lola: processed formula length: 481
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 35 markings, 34 edges
lola: ========================================
lola: subprocess 10 will run for 592 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: processed formula length: 288
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 250346 markings, 1713103 edges, 50069 markings/sec, 0 secs
lola: 472486 markings, 3438486 edges, 44428 markings/sec, 5 secs
lola: 675232 markings, 5179443 edges, 40549 markings/sec, 10 secs
lola: 893128 markings, 6914121 edges, 43579 markings/sec, 15 secs
lola: 1091630 markings, 8655972 edges, 39700 markings/sec, 20 secs
lola: 1285413 markings, 10400284 edges, 38757 markings/sec, 25 secs
lola: 1474969 markings, 12154158 edges, 37911 markings/sec, 30 secs
lola: 1643796 markings, 13919687 edges, 33765 markings/sec, 35 secs
lola: 1841561 markings, 15666549 edges, 39553 markings/sec, 40 secs
lola: 2053511 markings, 17406726 edges, 42390 markings/sec, 45 secs
lola: 2255295 markings, 19145245 edges, 40357 markings/sec, 50 secs
lola: 2448386 markings, 20889376 edges, 38618 markings/sec, 55 secs
lola: 2627262 markings, 22633160 edges, 35775 markings/sec, 60 secs
lola: 2785187 markings, 24399217 edges, 31585 markings/sec, 65 secs
lola: 2990699 markings, 26126520 edges, 41102 markings/sec, 70 secs
lola: 3180300 markings, 27863249 edges, 37920 markings/sec, 75 secs
lola: 3357302 markings, 29624661 edges, 35400 markings/sec, 80 secs
lola: 3519020 markings, 31399196 edges, 32344 markings/sec, 85 secs
lola: 3704635 markings, 33132177 edges, 37123 markings/sec, 90 secs
lola: 3872250 markings, 34896080 edges, 33523 markings/sec, 95 secs
lola: 4039024 markings, 36665013 edges, 33355 markings/sec, 100 secs
lola: 4195811 markings, 38442757 edges, 31357 markings/sec, 105 secs
lola: 4351843 markings, 40219625 edges, 31206 markings/sec, 110 secs
lola: 4493253 markings, 41998810 edges, 28282 markings/sec, 115 secs
lola: 4682852 markings, 43753299 edges, 37920 markings/sec, 120 secs
lola: 4895462 markings, 45495395 edges, 42522 markings/sec, 125 secs
lola: 5097481 markings, 47236153 edges, 40404 markings/sec, 130 secs
lola: 5290927 markings, 48982990 edges, 38689 markings/sec, 135 secs
lola: 5472387 markings, 50756660 edges, 36292 markings/sec, 140 secs
lola: 5630334 markings, 52534915 edges, 31589 markings/sec, 145 secs
lola: 5841881 markings, 54301595 edges, 42309 markings/sec, 150 secs
lola: 6033973 markings, 56072938 edges, 38418 markings/sec, 155 secs
lola: 6214385 markings, 57862826 edges, 36082 markings/sec, 160 secs
lola: 6378558 markings, 59628940 edges, 32835 markings/sec, 165 secs
lola: 6564886 markings, 61381823 edges, 37266 markings/sec, 170 secs
lola: 6729088 markings, 63148361 edges, 32840 markings/sec, 175 secs
lola: 6897826 markings, 64917720 edges, 33748 markings/sec, 180 secs
lola: 7054328 markings, 66695803 edges, 31300 markings/sec, 185 secs
lola: 7209169 markings, 68474556 edges, 30968 markings/sec, 190 secs
lola: 7347627 markings, 70262235 edges, 27692 markings/sec, 195 secs
lola: 7536540 markings, 72014993 edges, 37783 markings/sec, 200 secs
lola: 7729965 markings, 73764635 edges, 38685 markings/sec, 205 secs
lola: 7910232 markings, 75523633 edges, 36053 markings/sec, 210 secs
lola: 8068680 markings, 77296619 edges, 31690 markings/sec, 215 secs
lola: 8254244 markings, 79042926 edges, 37113 markings/sec, 220 secs
lola: 8429255 markings, 80795307 edges, 35002 markings/sec, 225 secs
lola: 8593500 markings, 82559374 edges, 32849 markings/sec, 230 secs
lola: 8753885 markings, 84331591 edges, 32077 markings/sec, 235 secs
lola: 8910292 markings, 86106227 edges, 31281 markings/sec, 240 secs
lola: 9054038 markings, 87888285 edges, 28749 markings/sec, 245 secs
lola: 9213870 markings, 89660388 edges, 31966 markings/sec, 250 secs
lola: 9393735 markings, 91419597 edges, 35973 markings/sec, 255 secs
lola: 9551131 markings, 93192629 edges, 31479 markings/sec, 260 secs
lola: 9726144 markings, 94955770 edges, 35003 markings/sec, 265 secs
lola: 9884187 markings, 96753930 edges, 31609 markings/sec, 270 secs
lola: 10036523 markings, 98547896 edges, 30467 markings/sec, 275 secs
lola: 10168751 markings, 100348761 edges, 26446 markings/sec, 280 secs
lola: 10343019 markings, 102113763 edges, 34854 markings/sec, 285 secs
lola: 10500024 markings, 103897825 edges, 31401 markings/sec, 290 secs
lola: 10651771 markings, 105683168 edges, 30349 markings/sec, 295 secs
lola: 10784606 markings, 107491571 edges, 26567 markings/sec, 300 secs
lola: 10941912 markings, 109293095 edges, 31461 markings/sec, 305 secs
lola: 11086939 markings, 111099678 edges, 29005 markings/sec, 310 secs
lola: 11226298 markings, 112903211 edges, 27872 markings/sec, 315 secs
lola: 11357371 markings, 114693143 edges, 26215 markings/sec, 320 secs
lola: 11484946 markings, 116484755 edges, 25515 markings/sec, 325 secs
lola: 11624859 markings, 118270362 edges, 27983 markings/sec, 330 secs
lola: 11848691 markings, 120002376 edges, 44766 markings/sec, 335 secs
lola: 12046324 markings, 121746053 edges, 39527 markings/sec, 340 secs
lola: 12238364 markings, 123486243 edges, 38408 markings/sec, 345 secs
lola: 12430082 markings, 125238298 edges, 38344 markings/sec, 350 secs
lola: 12603049 markings, 127000759 edges, 34593 markings/sec, 355 secs
lola: 12786568 markings, 128755567 edges, 36704 markings/sec, 360 secs
lola: 12980846 markings, 130503906 edges, 38856 markings/sec, 365 secs
lola: 13167698 markings, 132259821 edges, 37370 markings/sec, 370 secs
lola: 13332347 markings, 134028417 edges, 32930 markings/sec, 375 secs
lola: 13513645 markings, 135784115 edges, 36260 markings/sec, 380 secs
lola: 13689539 markings, 137544191 edges, 35179 markings/sec, 385 secs
lola: 13850644 markings, 139313206 edges, 32221 markings/sec, 390 secs
lola: 14017508 markings, 141082955 edges, 33373 markings/sec, 395 secs
lola: 14174312 markings, 142859881 edges, 31361 markings/sec, 400 secs
lola: 14319056 markings, 144643868 edges, 28949 markings/sec, 405 secs
lola: 14471562 markings, 146421273 edges, 30501 markings/sec, 410 secs
lola: 14669254 markings, 148166239 edges, 39538 markings/sec, 415 secs
lola: 14856611 markings, 149921044 edges, 37471 markings/sec, 420 secs
lola: 15033102 markings, 151683353 edges, 35298 markings/sec, 425 secs
lola: 15206708 markings, 153442274 edges, 34721 markings/sec, 430 secs
lola: 15384350 markings, 155193534 edges, 35528 markings/sec, 435 secs
lola: 15540956 markings, 156957741 edges, 31321 markings/sec, 440 secs
lola: 15716121 markings, 158722523 edges, 35033 markings/sec, 445 secs
lola: 15872394 markings, 160497208 edges, 31255 markings/sec, 450 secs
lola: 16023848 markings, 162277723 edges, 30291 markings/sec, 455 secs
lola: 16155459 markings, 164069903 edges, 26322 markings/sec, 460 secs
lola: 16341507 markings, 165818794 edges, 37210 markings/sec, 465 secs
lola: 16516196 markings, 167575844 edges, 34938 markings/sec, 470 secs
lola: 16680451 markings, 169339824 edges, 32851 markings/sec, 475 secs
lola: 16840426 markings, 171110373 edges, 31995 markings/sec, 480 secs
lola: 16996540 markings, 172883114 edges, 31223 markings/sec, 485 secs
lola: 17140625 markings, 174666222 edges, 28817 markings/sec, 490 secs
lola: 17292651 markings, 176443974 edges, 30405 markings/sec, 495 secs
lola: 17452633 markings, 178208299 edges, 31996 markings/sec, 500 secs
lola: 17608576 markings, 179976284 edges, 31189 markings/sec, 505 secs
lola: 17752199 markings, 181752057 edges, 28725 markings/sec, 510 secs
lola: 17892790 markings, 183527278 edges, 28118 markings/sec, 515 secs
lola: 18044487 markings, 185311654 edges, 30339 markings/sec, 520 secs
lola: 18176189 markings, 187105123 edges, 26340 markings/sec, 525 secs
lola: 18319252 markings, 188889311 edges, 28613 markings/sec, 530 secs
lola: 18449398 markings, 190679902 edges, 26029 markings/sec, 535 secs
lola: 18569957 markings, 192475263 edges, 24112 markings/sec, 540 secs
lola: 18746841 markings, 194235415 edges, 35377 markings/sec, 545 secs
lola: 18937438 markings, 195981185 edges, 38119 markings/sec, 550 secs
lola: 19123251 markings, 197736091 edges, 37163 markings/sec, 555 secs
lola: 19284546 markings, 199506980 edges, 32259 markings/sec, 560 secs
lola: 19467191 markings, 201257913 edges, 36529 markings/sec, 565 secs
lola: 19642723 markings, 203009937 edges, 35106 markings/sec, 570 secs
lola: 19805838 markings, 204779127 edges, 32623 markings/sec, 575 secs
lola: 19970768 markings, 206561338 edges, 32986 markings/sec, 580 secs
lola: 20127229 markings, 208338842 edges, 31292 markings/sec, 585 secs
lola: local time limit reached - aborting
lola:
preliminary result: no unknown yes unknown unknown no no yes no unknown no yes yes unknown unknown no
lola: memory consumption: 4258788 KB
lola: time consumption: 610 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no unknown yes unknown unknown no no yes no unknown no yes yes unknown unknown no
lola: memory consumption: 4276760 KB
lola: time consumption: 613 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 587 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))))
lola: processed formula length: 301
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 55 markings, 55 edges
lola: ========================================
lola: subprocess 12 will run for 734 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: processed formula length: 280
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 55 markings, 55 edges
lola: ========================================
lola: subprocess 13 will run for 978 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((2 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482 <= 1)
lola: processed formula length: 268
lola: 20 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 71 markings, 70 edges
lola: ========================================
lola: subprocess 14 will run for 1468 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: processed formula length: 280
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 55 markings, 55 edges
lola: ========================================
lola: subprocess 15 will run for 2936 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380))))
lola: processed formula length: 280
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 71 markings, 71 edges
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: processed formula length: 288
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 250085 markings, 1711539 edges, 50017 markings/sec, 0 secs
lola: 472631 markings, 3439707 edges, 44509 markings/sec, 5 secs
lola: 675280 markings, 5180165 edges, 40530 markings/sec, 10 secs
lola: 893264 markings, 6915735 edges, 43597 markings/sec, 15 secs
lola: 1092316 markings, 8662800 edges, 39810 markings/sec, 20 secs
lola: 1286596 markings, 10411618 edges, 38856 markings/sec, 25 secs
lola: 1476023 markings, 12167035 edges, 37885 markings/sec, 30 secs
lola: 1645010 markings, 13934941 edges, 33797 markings/sec, 35 secs
lola: 1844111 markings, 15682431 edges, 39820 markings/sec, 40 secs
lola: 2055014 markings, 17423350 edges, 42181 markings/sec, 45 secs
lola: 2256597 markings, 19161746 edges, 40317 markings/sec, 50 secs
lola: 2450489 markings, 20908247 edges, 38778 markings/sec, 55 secs
lola: 2630311 markings, 22666846 edges, 35964 markings/sec, 60 secs
lola: 2787849 markings, 24438933 edges, 31508 markings/sec, 65 secs
lola: 2995160 markings, 26177288 edges, 41462 markings/sec, 70 secs
lola: 3186387 markings, 27922362 edges, 38245 markings/sec, 75 secs
lola: 3362481 markings, 29684297 edges, 35219 markings/sec, 80 secs
lola: 3526231 markings, 31454398 edges, 32750 markings/sec, 85 secs
lola: 3713378 markings, 33206687 edges, 37429 markings/sec, 90 secs
lola: 3879464 markings, 34971848 edges, 33217 markings/sec, 95 secs
lola: 4047202 markings, 36740033 edges, 33548 markings/sec, 100 secs
lola: 4204295 markings, 38516563 edges, 31419 markings/sec, 105 secs
lola: 4358549 markings, 40293094 edges, 30851 markings/sec, 110 secs
lola: 4499197 markings, 42078506 edges, 28130 markings/sec, 115 secs
lola: 4694604 markings, 43828017 edges, 39081 markings/sec, 120 secs
lola: 4902470 markings, 45572871 edges, 41573 markings/sec, 125 secs
lola: 5106991 markings, 47312944 edges, 40904 markings/sec, 130 secs
lola: 5299534 markings, 49059735 edges, 38509 markings/sec, 135 secs
lola: 5477914 markings, 50823324 edges, 35676 markings/sec, 140 secs
lola: 5634666 markings, 52597782 edges, 31350 markings/sec, 145 secs
lola: 5845997 markings, 54338787 edges, 42266 markings/sec, 150 secs
lola: 6036593 markings, 56094954 edges, 38119 markings/sec, 155 secs
lola: 6214093 markings, 57860154 edges, 35500 markings/sec, 160 secs
lola: 6378901 markings, 59631869 edges, 32962 markings/sec, 165 secs
lola: 6565277 markings, 61386371 edges, 37275 markings/sec, 170 secs
lola: 6729512 markings, 63153471 edges, 32847 markings/sec, 175 secs
lola: 6898200 markings, 64922836 edges, 33738 markings/sec, 180 secs
lola: 7054971 markings, 66700902 edges, 31354 markings/sec, 185 secs
lola: 7209521 markings, 68479790 edges, 30910 markings/sec, 190 secs
lola: 7347985 markings, 70267560 edges, 27693 markings/sec, 195 secs
lola: 7537136 markings, 72020626 edges, 37830 markings/sec, 200 secs
lola: 7730536 markings, 73769947 edges, 38680 markings/sec, 205 secs
lola: 7911006 markings, 75529789 edges, 36094 markings/sec, 210 secs
lola: 8068884 markings, 77299199 edges, 31576 markings/sec, 215 secs
lola: 8254664 markings, 79045486 edges, 37156 markings/sec, 220 secs
lola: 8429530 markings, 80798003 edges, 34973 markings/sec, 225 secs
lola: 8593634 markings, 82561154 edges, 32821 markings/sec, 230 secs
lola: 8754065 markings, 84333279 edges, 32086 markings/sec, 235 secs
lola: 8910367 markings, 86107217 edges, 31260 markings/sec, 240 secs
lola: 9054055 markings, 87888532 edges, 28738 markings/sec, 245 secs
lola: 9213833 markings, 89659944 edges, 31956 markings/sec, 250 secs
lola: 9393685 markings, 91419031 edges, 35970 markings/sec, 255 secs
lola: 9551059 markings, 93191317 edges, 31475 markings/sec, 260 secs
lola: 9726111 markings, 94955411 edges, 35010 markings/sec, 265 secs
lola: 9882549 markings, 96731895 edges, 31288 markings/sec, 270 secs
lola: 10033962 markings, 98512095 edges, 30283 markings/sec, 275 secs
lola: 10166115 markings, 100305699 edges, 26431 markings/sec, 280 secs
lola: 10339318 markings, 102067567 edges, 34641 markings/sec, 285 secs
lola: 10495234 markings, 103836630 edges, 31183 markings/sec, 290 secs
lola: 10646102 markings, 105610684 edges, 30174 markings/sec, 295 secs
lola: 10778610 markings, 107395051 edges, 26502 markings/sec, 300 secs
lola: 10933003 markings, 109171300 edges, 30879 markings/sec, 305 secs
lola: 11077348 markings, 110954823 edges, 28869 markings/sec, 310 secs
lola: 11214093 markings, 112741129 edges, 27349 markings/sec, 315 secs
lola: 11343691 markings, 114531348 edges, 25920 markings/sec, 320 secs
lola: 11473804 markings, 116319107 edges, 26023 markings/sec, 325 secs
lola: 11602141 markings, 118109164 edges, 25667 markings/sec, 330 secs
lola: 11828140 markings, 119839994 edges, 45200 markings/sec, 335 secs
lola: 12026606 markings, 121587790 edges, 39693 markings/sec, 340 secs
lola: 12224481 markings, 123324045 edges, 39575 markings/sec, 345 secs
lola: 12410891 markings, 125079753 edges, 37282 markings/sec, 350 secs
lola: 12587503 markings, 126842701 edges, 35322 markings/sec, 355 secs
lola: 12766235 markings, 128602187 edges, 35746 markings/sec, 360 secs
lola: 12960772 markings, 130351689 edges, 38907 markings/sec, 365 secs
lola: 13149691 markings, 132107827 edges, 37784 markings/sec, 370 secs
lola: 13318641 markings, 133875184 edges, 33790 markings/sec, 375 secs
lola: 13498420 markings, 135634026 edges, 35956 markings/sec, 380 secs
lola: 13674896 markings, 137395509 edges, 35295 markings/sec, 385 secs
lola: 13835250 markings, 139167651 edges, 32071 markings/sec, 390 secs
lola: 14005410 markings, 140934086 edges, 34032 markings/sec, 395 secs
lola: 14162057 markings, 142713580 edges, 31329 markings/sec, 400 secs
lola: 14306956 markings, 144498987 edges, 28980 markings/sec, 405 secs
lola: 14452691 markings, 146283359 edges, 29147 markings/sec, 410 secs
lola: 14656662 markings, 148028033 edges, 40794 markings/sec, 415 secs
lola: 14844559 markings, 149784552 edges, 37579 markings/sec, 420 secs
lola: 15020575 markings, 151547279 edges, 35203 markings/sec, 425 secs
lola: 15191323 markings, 153312687 edges, 34150 markings/sec, 430 secs
lola: 15373144 markings, 155063455 edges, 36364 markings/sec, 435 secs
lola: 15531509 markings, 156827467 edges, 31673 markings/sec, 440 secs
lola: 15705477 markings, 158593589 edges, 34794 markings/sec, 445 secs
lola: 15861955 markings, 160370205 edges, 31296 markings/sec, 450 secs
lola: 16013310 markings, 162150705 edges, 30271 markings/sec, 455 secs
lola: 16147275 markings, 163941953 edges, 26793 markings/sec, 460 secs
lola: 16328833 markings, 165697874 edges, 36312 markings/sec, 465 secs
lola: 16504236 markings, 167457017 edges, 35081 markings/sec, 470 secs
lola: 16669365 markings, 169223578 edges, 33026 markings/sec, 475 secs
lola: 16831096 markings, 170994307 edges, 32346 markings/sec, 480 secs
lola: 16987450 markings, 172767050 edges, 31271 markings/sec, 485 secs
lola: 17131722 markings, 174548926 edges, 28854 markings/sec, 490 secs
lola: 17279894 markings, 176325423 edges, 29634 markings/sec, 495 secs
lola: 17443411 markings, 178091291 edges, 32703 markings/sec, 500 secs
lola: 17599392 markings, 179861696 edges, 31196 markings/sec, 505 secs
lola: 17742995 markings, 181640324 edges, 28721 markings/sec, 510 secs
lola: 17884707 markings, 183422503 edges, 28342 markings/sec, 515 secs
lola: 18036120 markings, 185204456 edges, 30283 markings/sec, 520 secs
lola: 18169587 markings, 186999263 edges, 26693 markings/sec, 525 secs
lola: 18312143 markings, 188787111 edges, 28511 markings/sec, 530 secs
lola: 18442993 markings, 190591431 edges, 26170 markings/sec, 535 secs
lola: 18565608 markings, 192411226 edges, 24523 markings/sec, 540 secs
lola: 18742533 markings, 194199229 edges, 35385 markings/sec, 545 secs
lola: 18936841 markings, 195974347 edges, 38862 markings/sec, 550 secs
lola: 19124823 markings, 197751794 edges, 37596 markings/sec, 555 secs
lola: 19285950 markings, 199523695 edges, 32225 markings/sec, 560 secs
lola: 19468665 markings, 201274351 edges, 36543 markings/sec, 565 secs
lola: 19644037 markings, 203027726 edges, 35074 markings/sec, 570 secs
lola: 19806862 markings, 204790930 edges, 32565 markings/sec, 575 secs
lola: 19970781 markings, 206561556 edges, 32784 markings/sec, 580 secs
lola: 20127136 markings, 208337813 edges, 31271 markings/sec, 585 secs
lola: 20270995 markings, 210120576 edges, 28772 markings/sec, 590 secs
lola: 20422532 markings, 211894229 edges, 30307 markings/sec, 595 secs
lola: 20608053 markings, 213646084 edges, 37104 markings/sec, 600 secs
lola: 20768347 markings, 215413930 edges, 32059 markings/sec, 605 secs
lola: 20940440 markings, 217177572 edges, 34419 markings/sec, 610 secs
lola: 21097055 markings, 218950786 edges, 31323 markings/sec, 615 secs
lola: 21247797 markings, 220727450 edges, 30148 markings/sec, 620 secs
lola: 21384217 markings, 222516399 edges, 27284 markings/sec, 625 secs
lola: 21552487 markings, 224280565 edges, 33654 markings/sec, 630 secs
lola: 21708614 markings, 226050693 edges, 31225 markings/sec, 635 secs
lola: 21860011 markings, 227824675 edges, 30279 markings/sec, 640 secs
lola: 21996493 markings, 229608392 edges, 27296 markings/sec, 645 secs
lola: 22148937 markings, 231386110 edges, 30489 markings/sec, 650 secs
lola: 22293318 markings, 233169822 edges, 28876 markings/sec, 655 secs
lola: 22429890 markings, 234959627 edges, 27314 markings/sec, 660 secs
lola: 22563088 markings, 236751954 edges, 26640 markings/sec, 665 secs
lola: 22691055 markings, 238545644 edges, 25593 markings/sec, 670 secs
lola: 22806379 markings, 240347363 edges, 23065 markings/sec, 675 secs
lola: 22999035 markings, 242093174 edges, 38531 markings/sec, 680 secs
lola: 23170784 markings, 243852289 edges, 34350 markings/sec, 685 secs
lola: 23334890 markings, 245616641 edges, 32821 markings/sec, 690 secs
lola: 23492611 markings, 247386183 edges, 31544 markings/sec, 695 secs
lola: 23648657 markings, 249158687 edges, 31209 markings/sec, 700 secs
lola: 23792337 markings, 250939371 edges, 28736 markings/sec, 705 secs
lola: 23946274 markings, 252710420 edges, 30787 markings/sec, 710 secs
lola: 24103968 markings, 254471350 edges, 31539 markings/sec, 715 secs
lola: 24259386 markings, 256233796 edges, 31084 markings/sec, 720 secs
lola: 24402630 markings, 258004027 edges, 28649 markings/sec, 725 secs
lola: 24545580 markings, 259780000 edges, 28590 markings/sec, 730 secs
lola: 24695210 markings, 261557842 edges, 29926 markings/sec, 735 secs
lola: 24824839 markings, 263346470 edges, 25926 markings/sec, 740 secs
lola: 24967868 markings, 265128089 edges, 28606 markings/sec, 745 secs
lola: 25098650 markings, 266917419 edges, 26156 markings/sec, 750 secs
lola: 25218571 markings, 268713656 edges, 23984 markings/sec, 755 secs
lola: 25372924 markings, 270486185 edges, 30871 markings/sec, 760 secs
lola: 25529114 markings, 272256212 edges, 31238 markings/sec, 765 secs
lola: 25684216 markings, 274023569 edges, 31020 markings/sec, 770 secs
lola: 25825848 markings, 275801131 edges, 28326 markings/sec, 775 secs
lola: 25974180 markings, 277578029 edges, 29666 markings/sec, 780 secs
lola: 26118228 markings, 279360545 edges, 28810 markings/sec, 785 secs
lola: 26254065 markings, 281147105 edges, 27167 markings/sec, 790 secs
lola: 26392179 markings, 282927867 edges, 27623 markings/sec, 795 secs
lola: 26520516 markings, 284721081 edges, 25667 markings/sec, 800 secs
lola: 26638594 markings, 286518527 edges, 23616 markings/sec, 805 secs
lola: 26789209 markings, 288288115 edges, 30123 markings/sec, 810 secs
lola: 26932680 markings, 290060581 edges, 28694 markings/sec, 815 secs
lola: 27068147 markings, 291837403 edges, 27093 markings/sec, 820 secs
lola: 27200092 markings, 293617182 edges, 26389 markings/sec, 825 secs
lola: 27327458 markings, 295400646 edges, 25473 markings/sec, 830 secs
lola: 27442136 markings, 297192963 edges, 22936 markings/sec, 835 secs
lola: 27585786 markings, 298972565 edges, 28730 markings/sec, 840 secs
lola: 27715946 markings, 300761138 edges, 26032 markings/sec, 845 secs
lola: 27835697 markings, 302556854 edges, 23950 markings/sec, 850 secs
lola: 27960246 markings, 304348823 edges, 24910 markings/sec, 855 secs
lola: 28078611 markings, 306144646 edges, 23673 markings/sec, 860 secs
lola: 28194674 markings, 307942669 edges, 23213 markings/sec, 865 secs
lola: 28305294 markings, 309770383 edges, 22124 markings/sec, 870 secs
lola: 28481941 markings, 311560783 edges, 35329 markings/sec, 875 secs
lola: 28694747 markings, 313307728 edges, 42561 markings/sec, 880 secs
lola: 28897647 markings, 315045916 edges, 40580 markings/sec, 885 secs
lola: 29087767 markings, 316789930 edges, 38024 markings/sec, 890 secs
lola: 29272328 markings, 318545516 edges, 36912 markings/sec, 895 secs
lola: 29432580 markings, 320314292 edges, 32050 markings/sec, 900 secs
lola: 29636000 markings, 322056101 edges, 40684 markings/sec, 905 secs
lola: 29826579 markings, 323807335 edges, 38116 markings/sec, 910 secs
lola: 30004027 markings, 325569006 edges, 35490 markings/sec, 915 secs
lola: 30163783 markings, 327342703 edges, 31951 markings/sec, 920 secs
lola: 30352890 markings, 329084490 edges, 37821 markings/sec, 925 secs
lola: 30521819 markings, 330843106 edges, 33786 markings/sec, 930 secs
lola: 30684926 markings, 332605996 edges, 32621 markings/sec, 935 secs
lola: 30840129 markings, 334362755 edges, 31041 markings/sec, 940 secs
lola: 30996190 markings, 336136410 edges, 31212 markings/sec, 945 secs
lola: 31140524 markings, 337918717 edges, 28867 markings/sec, 950 secs
lola: 31318722 markings, 339677869 edges, 35640 markings/sec, 955 secs
lola: 31511749 markings, 341426527 edges, 38605 markings/sec, 960 secs
lola: 31696851 markings, 343181958 edges, 37020 markings/sec, 965 secs
lola: 31860576 markings, 344951951 edges, 32745 markings/sec, 970 secs
lola: 32042289 markings, 346701542 edges, 36343 markings/sec, 975 secs
lola: 32217940 markings, 348453233 edges, 35130 markings/sec, 980 secs
lola: 32379181 markings, 350215804 edges, 32248 markings/sec, 985 secs
lola: 32544545 markings, 351984598 edges, 33073 markings/sec, 990 secs
lola: 32700716 markings, 353757820 edges, 31234 markings/sec, 995 secs
lola: 32845322 markings, 355537466 edges, 28921 markings/sec, 1000 secs
lola: 32994185 markings, 357312711 edges, 29773 markings/sec, 1005 secs
lola: 33178760 markings, 359063402 edges, 36915 markings/sec, 1010 secs
lola: 33341755 markings, 360825742 edges, 32599 markings/sec, 1015 secs
lola: 33511806 markings, 362588296 edges, 34010 markings/sec, 1020 secs
lola: 33667968 markings, 364358825 edges, 31232 markings/sec, 1025 secs
lola: 33820891 markings, 366132543 edges, 30585 markings/sec, 1030 secs
lola: 33959054 markings, 367937459 edges, 27633 markings/sec, 1035 secs
lola: 34124680 markings, 369709062 edges, 33125 markings/sec, 1040 secs
lola: 34280529 markings, 371475066 edges, 31170 markings/sec, 1045 secs
lola: 34433567 markings, 373244177 edges, 30608 markings/sec, 1050 secs
lola: 34571226 markings, 375022687 edges, 27532 markings/sec, 1055 secs
lola: 34722319 markings, 376797412 edges, 30219 markings/sec, 1060 secs
lola: 34866670 markings, 378579109 edges, 28870 markings/sec, 1065 secs
lola: 35001368 markings, 380366825 edges, 26940 markings/sec, 1070 secs
lola: 35137503 markings, 382152871 edges, 27227 markings/sec, 1075 secs
lola: 35264608 markings, 383944454 edges, 25421 markings/sec, 1080 secs
lola: 35381734 markings, 385741785 edges, 23425 markings/sec, 1085 secs
lola: 35586586 markings, 387481128 edges, 40970 markings/sec, 1090 secs
lola: 35777745 markings, 389229199 edges, 38232 markings/sec, 1095 secs
lola: 35951896 markings, 390965291 edges, 34830 markings/sec, 1100 secs
lola: 36107489 markings, 392695280 edges, 31119 markings/sec, 1105 secs
lola: 36291379 markings, 394390805 edges, 36778 markings/sec, 1110 secs
lola: 36458589 markings, 396126533 edges, 33442 markings/sec, 1115 secs
lola: 36620770 markings, 397875363 edges, 32436 markings/sec, 1120 secs
lola: 36777502 markings, 399650375 edges, 31346 markings/sec, 1125 secs
lola: 36934947 markings, 401446437 edges, 31489 markings/sec, 1130 secs
lola: 37081245 markings, 403251812 edges, 29260 markings/sec, 1135 secs
lola: 37252299 markings, 405039810 edges, 34211 markings/sec, 1140 secs
lola: 37431280 markings, 406818283 edges, 35796 markings/sec, 1145 secs
lola: 37591664 markings, 408606790 edges, 32077 markings/sec, 1150 secs
lola: 37765406 markings, 410395073 edges, 34748 markings/sec, 1155 secs
lola: 37923658 markings, 412187923 edges, 31650 markings/sec, 1160 secs
lola: 38069074 markings, 413971956 edges, 29083 markings/sec, 1165 secs
lola: 38209379 markings, 415770724 edges, 28061 markings/sec, 1170 secs
lola: 38382024 markings, 417549595 edges, 34529 markings/sec, 1175 secs
lola: 38537820 markings, 419317208 edges, 31159 markings/sec, 1180 secs
lola: 38683205 markings, 421092600 edges, 29077 markings/sec, 1185 secs
lola: 38818287 markings, 422874920 edges, 27016 markings/sec, 1190 secs
lola: 38972460 markings, 424651449 edges, 30835 markings/sec, 1195 secs
lola: 39113363 markings, 426437018 edges, 28181 markings/sec, 1200 secs
lola: 39251106 markings, 428224828 edges, 27549 markings/sec, 1205 secs
lola: 39383423 markings, 430016957 edges, 26463 markings/sec, 1210 secs
lola: 39508283 markings, 431810566 edges, 24972 markings/sec, 1215 secs
lola: 39649771 markings, 433592861 edges, 28298 markings/sec, 1220 secs
lola: 39834950 markings, 435341837 edges, 37036 markings/sec, 1225 secs
lola: 39994857 markings, 437106124 edges, 31981 markings/sec, 1230 secs
lola: 40166360 markings, 438866638 edges, 34301 markings/sec, 1235 secs
lola: 40322587 markings, 440634907 edges, 31245 markings/sec, 1240 secs
lola: 40473230 markings, 442408749 edges, 30129 markings/sec, 1245 secs
lola: 40609687 markings, 444192707 edges, 27291 markings/sec, 1250 secs
lola: 40776631 markings, 445947215 edges, 33389 markings/sec, 1255 secs
lola: 40931729 markings, 447706336 edges, 31020 markings/sec, 1260 secs
lola: 41082805 markings, 449468215 edges, 30215 markings/sec, 1265 secs
lola: 41218475 markings, 451237428 edges, 27134 markings/sec, 1270 secs
lola: 41370192 markings, 453007891 edges, 30343 markings/sec, 1275 secs
lola: 41514128 markings, 454786096 edges, 28787 markings/sec, 1280 secs
lola: 41649479 markings, 456571473 edges, 27070 markings/sec, 1285 secs
lola: 41784030 markings, 458355519 edges, 26910 markings/sec, 1290 secs
lola: 41910780 markings, 460144762 edges, 25350 markings/sec, 1295 secs
lola: 42027723 markings, 461939959 edges, 23389 markings/sec, 1300 secs
lola: 42200801 markings, 463699827 edges, 34616 markings/sec, 1305 secs
lola: 42356681 markings, 465467737 edges, 31176 markings/sec, 1310 secs
lola: 42507241 markings, 467240148 edges, 30112 markings/sec, 1315 secs
lola: 42639473 markings, 469024941 edges, 26446 markings/sec, 1320 secs
lola: 42794187 markings, 470797791 edges, 30943 markings/sec, 1325 secs
lola: 42938176 markings, 472581280 edges, 28798 markings/sec, 1330 secs
lola: 43075184 markings, 474367529 edges, 27402 markings/sec, 1335 secs
lola: 43204181 markings, 476157912 edges, 25799 markings/sec, 1340 secs
lola: 43334748 markings, 477949061 edges, 26113 markings/sec, 1345 secs
lola: 43456431 markings, 479744588 edges, 24337 markings/sec, 1350 secs
lola: 43610316 markings, 481515294 edges, 30777 markings/sec, 1355 secs
lola: 43749908 markings, 483294023 edges, 27918 markings/sec, 1360 secs
lola: 43887220 markings, 485075175 edges, 27462 markings/sec, 1365 secs
lola: 44019015 markings, 486861008 edges, 26359 markings/sec, 1370 secs
lola: 44143509 markings, 488648785 edges, 24899 markings/sec, 1375 secs
lola: 44268989 markings, 490437684 edges, 25096 markings/sec, 1380 secs
lola: 44402878 markings, 492225420 edges, 26778 markings/sec, 1385 secs
lola: 44530012 markings, 494021036 edges, 25427 markings/sec, 1390 secs
lola: 44646824 markings, 495821176 edges, 23362 markings/sec, 1395 secs
lola: 44776313 markings, 497611047 edges, 25898 markings/sec, 1400 secs
lola: 44891735 markings, 499408905 edges, 23084 markings/sec, 1405 secs
lola: 45006027 markings, 501204328 edges, 22858 markings/sec, 1410 secs
lola: 45113428 markings, 503006460 edges, 21480 markings/sec, 1415 secs
lola: 45309302 markings, 504752828 edges, 39175 markings/sec, 1420 secs
lola: 45499008 markings, 506501808 edges, 37941 markings/sec, 1425 secs
lola: 45676770 markings, 508260645 edges, 35552 markings/sec, 1430 secs
lola: 45834476 markings, 510033064 edges, 31541 markings/sec, 1435 secs
lola: 46026086 markings, 511773343 edges, 38322 markings/sec, 1440 secs
lola: 46195473 markings, 513526896 edges, 33877 markings/sec, 1445 secs
lola: 46359319 markings, 515289538 edges, 32769 markings/sec, 1450 secs
lola: 46516303 markings, 517061639 edges, 31397 markings/sec, 1455 secs
lola: 46672369 markings, 518834661 edges, 31213 markings/sec, 1460 secs
lola: 46815745 markings, 520615256 edges, 28675 markings/sec, 1465 secs
lola: 46980890 markings, 522380546 edges, 33029 markings/sec, 1470 secs
lola: 47158315 markings, 524135520 edges, 35485 markings/sec, 1475 secs
lola: 47315371 markings, 525904104 edges, 31411 markings/sec, 1480 secs
lola: 47490683 markings, 527666782 edges, 35062 markings/sec, 1485 secs
lola: 47647302 markings, 529440035 edges, 31324 markings/sec, 1490 secs
lola: 47795886 markings, 531219271 edges, 29717 markings/sec, 1495 secs
lola: 47924540 markings, 533010028 edges, 25731 markings/sec, 1500 secs
lola: 48101706 markings, 534766087 edges, 35433 markings/sec, 1505 secs
lola: 48257811 markings, 536535095 edges, 31221 markings/sec, 1510 secs
lola: 48407458 markings, 538310248 edges, 29929 markings/sec, 1515 secs
lola: 48537331 markings, 540097233 edges, 25975 markings/sec, 1520 secs
lola: 48693241 markings, 541872432 edges, 31182 markings/sec, 1525 secs
lola: 48836680 markings, 543656885 edges, 28688 markings/sec, 1530 secs
lola: 48975199 markings, 545445135 edges, 27704 markings/sec, 1535 secs
lola: 49106653 markings, 547238705 edges, 26291 markings/sec, 1540 secs
lola: 49234054 markings, 549029034 edges, 25480 markings/sec, 1545 secs
lola: 49368029 markings, 550819249 edges, 26795 markings/sec, 1550 secs
lola: 49554540 markings, 552571470 edges, 37302 markings/sec, 1555 secs
lola: 49718838 markings, 554335320 edges, 32860 markings/sec, 1560 secs
lola: 49886858 markings, 556096021 edges, 33604 markings/sec, 1565 secs
lola: 50043275 markings, 557869830 edges, 31283 markings/sec, 1570 secs
lola: 50197657 markings, 559645591 edges, 30876 markings/sec, 1575 secs
lola: 50336627 markings, 561430780 edges, 27794 markings/sec, 1580 secs
lola: 50497162 markings, 563189398 edges, 32107 markings/sec, 1585 secs
lola: 50650271 markings, 564929048 edges, 30622 markings/sec, 1590 secs
lola: 50804314 markings, 566693362 edges, 30809 markings/sec, 1595 secs
lola: 50944564 markings, 568466568 edges, 28050 markings/sec, 1600 secs
lola: 51093001 markings, 570241717 edges, 29687 markings/sec, 1605 secs
lola: 51237092 markings, 572024799 edges, 28818 markings/sec, 1610 secs
lola: 51373390 markings, 573812058 edges, 27260 markings/sec, 1615 secs
lola: 51511106 markings, 575597875 edges, 27543 markings/sec, 1620 secs
lola: 51639379 markings, 577388365 edges, 25655 markings/sec, 1625 secs
lola: 51757031 markings, 579183430 edges, 23530 markings/sec, 1630 secs
lola: 51924072 markings, 580945980 edges, 33408 markings/sec, 1635 secs
lola: 52079886 markings, 582713731 edges, 31163 markings/sec, 1640 secs
lola: 52230840 markings, 584485197 edges, 30191 markings/sec, 1645 secs
lola: 52367179 markings, 586266813 edges, 27268 markings/sec, 1650 secs
lola: 52519288 markings, 588041435 edges, 30422 markings/sec, 1655 secs
lola: 52663801 markings, 589821267 edges, 28903 markings/sec, 1660 secs
lola: 52799800 markings, 591605328 edges, 27200 markings/sec, 1665 secs
lola: 52932568 markings, 593393637 edges, 26554 markings/sec, 1670 secs
lola: 53060557 markings, 595187181 edges, 25598 markings/sec, 1675 secs
lola: 53175741 markings, 596988633 edges, 23037 markings/sec, 1680 secs
lola: 53331447 markings, 598758579 edges, 31141 markings/sec, 1685 secs
lola: 53475361 markings, 600534763 edges, 28783 markings/sec, 1690 secs
lola: 53612554 markings, 602314690 edges, 27439 markings/sec, 1695 secs
lola: 53743488 markings, 604096666 edges, 26187 markings/sec, 1700 secs
lola: 53870515 markings, 605884469 edges, 25405 markings/sec, 1705 secs
lola: 53992863 markings, 607677992 edges, 24470 markings/sec, 1710 secs
lola: 54129649 markings, 609466038 edges, 27357 markings/sec, 1715 secs
lola: 54258422 markings, 611259450 edges, 25755 markings/sec, 1720 secs
lola: 54375834 markings, 613057259 edges, 23482 markings/sec, 1725 secs
lola: 54501785 markings, 614855989 edges, 25190 markings/sec, 1730 secs
lola: 54620024 markings, 616682889 edges, 23648 markings/sec, 1735 secs
lola: 54738198 markings, 618502492 edges, 23635 markings/sec, 1740 secs
lola: 54847788 markings, 620332036 edges, 21918 markings/sec, 1745 secs
lola: 55022863 markings, 622109154 edges, 35015 markings/sec, 1750 secs
lola: 55198353 markings, 623858517 edges, 35098 markings/sec, 1755 secs
lola: 55361452 markings, 625639440 edges, 32620 markings/sec, 1760 secs
lola: 55528165 markings, 627426757 edges, 33343 markings/sec, 1765 secs
lola: 55686014 markings, 629218774 edges, 31570 markings/sec, 1770 secs
lola: 55831660 markings, 631020075 edges, 29129 markings/sec, 1775 secs
lola: 55980347 markings, 632814072 edges, 29737 markings/sec, 1780 secs
lola: 56145547 markings, 634589592 edges, 33040 markings/sec, 1785 secs
lola: 56302234 markings, 636368133 edges, 31337 markings/sec, 1790 secs
lola: 56447277 markings, 638161451 edges, 29009 markings/sec, 1795 secs
lola: 56587387 markings, 639934561 edges, 28022 markings/sec, 1800 secs
lola: 56737924 markings, 641706277 edges, 30107 markings/sec, 1805 secs
lola: 56871815 markings, 643482462 edges, 26778 markings/sec, 1810 secs
lola: 57012451 markings, 645254362 edges, 28127 markings/sec, 1815 secs
lola: 57140645 markings, 647036105 edges, 25639 markings/sec, 1820 secs
lola: 57263077 markings, 648822087 edges, 24486 markings/sec, 1825 secs
lola: 57409174 markings, 650592873 edges, 29219 markings/sec, 1830 secs
lola: 57567501 markings, 652351160 edges, 31665 markings/sec, 1835 secs
lola: 57722852 markings, 654112826 edges, 31070 markings/sec, 1840 secs
lola: 57865310 markings, 655877505 edges, 28492 markings/sec, 1845 secs
lola: 58006918 markings, 657649749 edges, 28322 markings/sec, 1850 secs
lola: 58156702 markings, 659421392 edges, 29957 markings/sec, 1855 secs
lola: 58285972 markings, 661181648 edges, 25854 markings/sec, 1860 secs
lola: 58427424 markings, 662941501 edges, 28290 markings/sec, 1865 secs
lola: 58556920 markings, 664725549 edges, 25899 markings/sec, 1870 secs
lola: 58677080 markings, 666510991 edges, 24032 markings/sec, 1875 secs
lola: 58819006 markings, 668282058 edges, 28385 markings/sec, 1880 secs
lola: 58962996 markings, 670049444 edges, 28798 markings/sec, 1885 secs
lola: 59096470 markings, 671830462 edges, 26695 markings/sec, 1890 secs
lola: 59236005 markings, 673608047 edges, 27907 markings/sec, 1895 secs
lola: 59364283 markings, 675394813 edges, 25656 markings/sec, 1900 secs
lola: 59482454 markings, 677188933 edges, 23634 markings/sec, 1905 secs
lola: 59619518 markings, 678971744 edges, 27413 markings/sec, 1910 secs
lola: 59750196 markings, 680761670 edges, 26136 markings/sec, 1915 secs
lola: 59872877 markings, 682557353 edges, 24536 markings/sec, 1920 secs
lola: 59995804 markings, 684354100 edges, 24585 markings/sec, 1925 secs
lola: 60117292 markings, 686146958 edges, 24298 markings/sec, 1930 secs
lola: 60233168 markings, 687944473 edges, 23175 markings/sec, 1935 secs
lola: 60343944 markings, 689744753 edges, 22155 markings/sec, 1940 secs
lola: 60472691 markings, 691534736 edges, 25749 markings/sec, 1945 secs
lola: 60637825 markings, 693297589 edges, 33027 markings/sec, 1950 secs
lola: 60793685 markings, 695065442 edges, 31172 markings/sec, 1955 secs
lola: 60937782 markings, 696842138 edges, 28819 markings/sec, 1960 secs
lola: 61077031 markings, 698621689 edges, 27850 markings/sec, 1965 secs
lola: 61228402 markings, 700399203 edges, 30274 markings/sec, 1970 secs
lola: 61364938 markings, 702184167 edges, 27307 markings/sec, 1975 secs
lola: 61505634 markings, 703968662 edges, 28139 markings/sec, 1980 secs
lola: 61635545 markings, 705760969 edges, 25982 markings/sec, 1985 secs
lola: 61758339 markings, 707559714 edges, 24559 markings/sec, 1990 secs
lola: 61895996 markings, 709342588 edges, 27531 markings/sec, 1995 secs
lola: 62044147 markings, 711111605 edges, 29630 markings/sec, 2000 secs
lola: 62172670 markings, 712892645 edges, 25705 markings/sec, 2005 secs
lola: 62315578 markings, 714664471 edges, 28582 markings/sec, 2010 secs
lola: 62445495 markings, 716445406 edges, 25983 markings/sec, 2015 secs
lola: 62564758 markings, 718231577 edges, 23853 markings/sec, 2020 secs
lola: 62697227 markings, 720018766 edges, 26494 markings/sec, 2025 secs
lola: 62829864 markings, 721808504 edges, 26527 markings/sec, 2030 secs
lola: 62955223 markings, 723604419 edges, 25072 markings/sec, 2035 secs
lola: 63075884 markings, 725402037 edges, 24132 markings/sec, 2040 secs
lola: 63198804 markings, 727197614 edges, 24584 markings/sec, 2045 secs
lola: 63315447 markings, 728998374 edges, 23329 markings/sec, 2050 secs
lola: 63427796 markings, 730802143 edges, 22470 markings/sec, 2055 secs
lola: 63543337 markings, 732604356 edges, 23108 markings/sec, 2060 secs
lola: 63696353 markings, 734371531 edges, 30603 markings/sec, 2065 secs
lola: 63834247 markings, 736150296 edges, 27579 markings/sec, 2070 secs
lola: 63972991 markings, 737929286 edges, 27749 markings/sec, 2075 secs
lola: 64103585 markings, 739713683 edges, 26119 markings/sec, 2080 secs
lola: 64227339 markings, 741502333 edges, 24751 markings/sec, 2085 secs
lola: 64354516 markings, 743292843 edges, 25435 markings/sec, 2090 secs
lola: 64486971 markings, 745080201 edges, 26491 markings/sec, 2095 secs
lola: 64615309 markings, 746872724 edges, 25668 markings/sec, 2100 secs
lola: 64729726 markings, 748673268 edges, 22883 markings/sec, 2105 secs
lola: 64860486 markings, 750461460 edges, 26152 markings/sec, 2110 secs
lola: 64976223 markings, 752260741 edges, 23147 markings/sec, 2115 secs
lola: 65090873 markings, 754064843 edges, 22930 markings/sec, 2120 secs
lola: 65197347 markings, 755874342 edges, 21295 markings/sec, 2125 secs
lola: 65337235 markings, 757656188 edges, 27978 markings/sec, 2130 secs
lola: 65466811 markings, 759444329 edges, 25915 markings/sec, 2135 secs
lola: 65588449 markings, 761238555 edges, 24328 markings/sec, 2140 secs
lola: 65711763 markings, 763029798 edges, 24663 markings/sec, 2145 secs
lola: 65831441 markings, 764821541 edges, 23936 markings/sec, 2150 secs
lola: 65947736 markings, 766618263 edges, 23259 markings/sec, 2155 secs
lola: 66056857 markings, 768422216 edges, 21824 markings/sec, 2160 secs
lola: 66172959 markings, 770222955 edges, 23220 markings/sec, 2165 secs
lola: 66295618 markings, 772018548 edges, 24532 markings/sec, 2170 secs
lola: 66411124 markings, 773816727 edges, 23101 markings/sec, 2175 secs
lola: 66523281 markings, 775621255 edges, 22431 markings/sec, 2180 secs
lola: 66632377 markings, 777429620 edges, 21819 markings/sec, 2185 secs
lola: 66745688 markings, 779230355 edges, 22662 markings/sec, 2190 secs
lola: 66849707 markings, 781040879 edges, 20804 markings/sec, 2195 secs
lola: 66957931 markings, 782843615 edges, 21645 markings/sec, 2200 secs
lola: 67058891 markings, 784654500 edges, 20192 markings/sec, 2205 secs
lola: 67225101 markings, 786419941 edges, 33242 markings/sec, 2210 secs
lola: 67437358 markings, 788151040 edges, 42451 markings/sec, 2215 secs
lola: 67637957 markings, 789885139 edges, 40120 markings/sec, 2220 secs
lola: 67828713 markings, 791621838 edges, 38151 markings/sec, 2225 secs
lola: 68013035 markings, 793370736 edges, 36864 markings/sec, 2230 secs
lola: 68175579 markings, 795129001 edges, 32509 markings/sec, 2235 secs
lola: 68372934 markings, 796868913 edges, 39471 markings/sec, 2240 secs
lola: 68564824 markings, 798614380 edges, 38378 markings/sec, 2245 secs
lola: 68742418 markings, 800369469 edges, 35519 markings/sec, 2250 secs
lola: 68898826 markings, 802138567 edges, 31282 markings/sec, 2255 secs
lola: 69089088 markings, 803882035 edges, 38052 markings/sec, 2260 secs
lola: 69261300 markings, 805636929 edges, 34442 markings/sec, 2265 secs
lola: 69426062 markings, 807399654 edges, 32952 markings/sec, 2270 secs
lola: 69584409 markings, 809170203 edges, 31669 markings/sec, 2275 secs
lola: 69740362 markings, 810941226 edges, 31191 markings/sec, 2280 secs
lola: 69883720 markings, 812715983 edges, 28672 markings/sec, 2285 secs
lola: 70051204 markings, 814475585 edges, 33497 markings/sec, 2290 secs
lola: 70246195 markings, 816217665 edges, 38998 markings/sec, 2295 secs
lola: 70433320 markings, 817965309 edges, 37425 markings/sec, 2300 secs
lola: 70599356 markings, 819726667 edges, 33207 markings/sec, 2305 secs
lola: 70777755 markings, 821475120 edges, 35680 markings/sec, 2310 secs
lola: 70953898 markings, 823221842 edges, 35229 markings/sec, 2315 secs
lola: 71110174 markings, 824959930 edges, 31255 markings/sec, 2320 secs
lola: 71278894 markings, 826704790 edges, 33744 markings/sec, 2325 secs
lola: 71434650 markings, 828470948 edges, 31151 markings/sec, 2330 secs
lola: 71579646 markings, 830246652 edges, 28999 markings/sec, 2335 secs
lola: 71719441 markings, 832031244 edges, 27959 markings/sec, 2340 secs
lola: 71908177 markings, 833786653 edges, 37747 markings/sec, 2345 secs
lola: 72076178 markings, 835555169 edges, 33600 markings/sec, 2350 secs
lola: 72243375 markings, 837327040 edges, 33439 markings/sec, 2355 secs
lola: 72402242 markings, 839119058 edges, 31773 markings/sec, 2360 secs
lola: 72558092 markings, 840901657 edges, 31170 markings/sec, 2365 secs
lola: 72698835 markings, 842681907 edges, 28149 markings/sec, 2370 secs
lola: 72856160 markings, 844447438 edges, 31465 markings/sec, 2375 secs
lola: 73013066 markings, 846222026 edges, 31381 markings/sec, 2380 secs
lola: 73167640 markings, 847985051 edges, 30915 markings/sec, 2385 secs
lola: 73309814 markings, 849757292 edges, 28435 markings/sec, 2390 secs
lola: 73457689 markings, 851530981 edges, 29575 markings/sec, 2395 secs
lola: 73602230 markings, 853310837 edges, 28908 markings/sec, 2400 secs
lola: 73736931 markings, 855095540 edges, 26940 markings/sec, 2405 secs
lola: 73875812 markings, 856878155 edges, 27776 markings/sec, 2410 secs
lola: 74004279 markings, 858666583 edges, 25693 markings/sec, 2415 secs
lola: 74122401 markings, 860462270 edges, 23624 markings/sec, 2420 secs
lola: 74315194 markings, 862207456 edges, 38559 markings/sec, 2425 secs
lola: 74506754 markings, 863952524 edges, 38312 markings/sec, 2430 secs
lola: 74683405 markings, 865709349 edges, 35330 markings/sec, 2435 secs
lola: 74839508 markings, 867479192 edges, 31221 markings/sec, 2440 secs
lola: 75031175 markings, 869216989 edges, 38333 markings/sec, 2445 secs
lola: 75202239 markings, 870965708 edges, 34213 markings/sec, 2450 secs
lola: 75365983 markings, 872724020 edges, 32749 markings/sec, 2455 secs
lola: 75524030 markings, 874492070 edges, 31609 markings/sec, 2460 secs
lola: 75679817 markings, 876259290 edges, 31157 markings/sec, 2465 secs
lola: 75822982 markings, 878034009 edges, 28633 markings/sec, 2470 secs
lola: 75984220 markings, 879792119 edges, 32248 markings/sec, 2475 secs
lola: 76161730 markings, 881545550 edges, 35502 markings/sec, 2480 secs
lola: 76317945 markings, 883312337 edges, 31243 markings/sec, 2485 secs
lola: 76492861 markings, 885071794 edges, 34983 markings/sec, 2490 secs
lola: 76648787 markings, 886842399 edges, 31185 markings/sec, 2495 secs
lola: 76799953 markings, 888618144 edges, 30233 markings/sec, 2500 secs
lola: 76931322 markings, 890407108 edges, 26274 markings/sec, 2505 secs
lola: 77104643 markings, 892160816 edges, 34664 markings/sec, 2510 secs
lola: 77260239 markings, 893925455 edges, 31119 markings/sec, 2515 secs
lola: 77405506 markings, 895635636 edges, 29053 markings/sec, 2520 secs
lola: 77514685 markings, 897060371 edges, 21836 markings/sec, 2525 secs
lola: 77575166 markings, 897858296 edges, 12096 markings/sec, 2530 secs
lola: Child process aborted or communication problem between parent and child process
lola: RESULT
lola:
SUMMARY: no no yes no no no no yes no no no yes yes unknown no no
lola:
preliminary result: no no yes no no no no yes no no no yes yes unknown no no
lola: memory consumption: 104892 KB
lola: time consumption: 3170 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished
BK_STOP 1553900100445
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-32"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is QuasiCertifProtocol-COL-32, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r126-oct2-155274853300249"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-32.tgz
mv QuasiCertifProtocol-COL-32 execution
cd execution
if [ "LTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "LTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;