fond
Model Checking Contest 2019
9th edition, Prague, Czech Republic, April 7, 2019 (TOOLympics)
Execution of r126-oct2-155274853300249
Last Updated
Apr 15, 2019

About the Execution of LoLA for QuasiCertifProtocol-COL-32

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15918.910 3194492.00 3218841.00 725.70 FFTFFFFTFFFTT?FF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fko/mcc2019-input.r126-oct2-155274853300249.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is QuasiCertifProtocol-COL-32, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r126-oct2-155274853300249
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 280K
-rw-r--r-- 1 mcc users 3.2K Feb 12 10:40 CTLCardinality.txt
-rw-r--r-- 1 mcc users 17K Feb 12 10:39 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K Feb 8 12:43 CTLFireability.txt
-rw-r--r-- 1 mcc users 12K Feb 8 12:43 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 113 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 351 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.4K Feb 5 00:45 LTLCardinality.txt
-rw-r--r-- 1 mcc users 9.4K Feb 5 00:45 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Feb 4 22:41 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.9K Feb 4 22:41 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.4K Feb 4 14:00 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 16K Feb 4 14:00 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 2.8K Feb 1 10:21 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 15K Feb 1 10:20 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 4 22:26 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 4 22:26 UpperBounds.xml

-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 3 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 131K Mar 10 17:31 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-00
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-01
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-02
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-03
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-04
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-05
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-06
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-07
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-08
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-09
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-32-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1553896905953

info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ QuasiCertifProtocol-COL-32 @ 3570 seconds

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-08 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA QuasiCertifProtocol-COL-32-LTLCardinality-13 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 375
rslt: Output for LTLCardinality @ QuasiCertifProtocol-COL-32

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Fri Mar 29 22:01:46 2019
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)",
"processed_size": 268,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 236
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 34,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 34,
"visible_transitions": 0
},
"processed": "(p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)",
"processed_size": 272,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 253
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)",
"processed_size": 268,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 273
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "(1 <= p2347)",
"processed_size": 12,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 296
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "(1 <= p2551)",
"processed_size": 12,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 322
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)",
"processed_size": 268,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 355
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 18
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 394
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 1,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 35,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 35,
"visible_transitions": 0
},
"processed": "A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447))))",
"processed_size": 297,
"rewrites": 18
},
"result":
{
"edges": 34,
"markings": 35,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 7,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 444
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 444
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))",
"processed_size": 204,
"rewrites": 18
},
"result":
{
"edges": 71,
"markings": 71,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "boolean"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 507
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 1,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 67,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 67,
"visible_transitions": 0
},
"processed": "A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191))))",
"processed_size": 481,
"rewrites": 18
},
"result":
{
"edges": 34,
"markings": 35,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 587
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 1,
"X": 2,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 34,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 34,
"visible_transitions": 0
},
"processed": "A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))))",
"processed_size": 301,
"rewrites": 18
},
"result":
{
"edges": 55,
"markings": 55,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 5
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 734
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (X (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))",
"processed_size": 280,
"rewrites": 18
},
"result":
{
"edges": 55,
"markings": 55,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 978
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "(p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482 <= 1)",
"processed_size": 268,
"rewrites": 20
},
"result":
{
"edges": 70,
"markings": 71,
"produced_by": "state space / EG",
"value": false
},
"task":
{
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 99
},
"threads": 1,
"type": "dfs"
},
"type": "eventual_occurrence"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1468
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))",
"processed_size": 280,
"rewrites": 18
},
"result":
{
"edges": 55,
"markings": 55,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 2936
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 33,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 33,
"visible_transitions": 0
},
"processed": "A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380))))",
"processed_size": 280,
"rewrites": 18
},
"result":
{
"edges": 71,
"markings": 71,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 104892,
"runtime": 3170.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "** : A(G(F(**))) : ** : A(F(**)) : A(G(F(**))) : ** : (A(G(F(**))) AND A(G((X(**) OR **)))) : A(X((** U **))) : ** : A(X(G(**))) : ** : ** : A(X((F(**) U **))) : A(X(X(G(**)))) : A(X((F(**) U X(**)))) : FALSE"
},
"net":
{
"arcs": 8173,
"conflict_clusters": 110,
"places": 3806,
"places_significant": 505,
"singleton_clusters": 0,
"transitions": 506
},
"result":
{
"preliminary_value": "no no yes no no no no yes no no no yes yes unknown no no ",
"value": "no no yes no no no no yes no no no yes yes unknown no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 3806, Transitions: 506
lola: @ trans malA4
lola: @ trans SgetTS
lola: @ trans malA5
lola: @ trans malS3
lola: @ trans AreqCS
lola: @ trans AendCS
lola: @ trans ScertCS
lola: @ trans malA2
lola: @ trans SreqTS
lola: @ trans AackCS
lola: @ trans malS2
lola: @ trans AgetTS
lola: @ trans malA3
lola: @ trans malC1
lola: @ trans AstartCS
lola: @ trans Sperform
lola: @ trans malS1
lola: @ trans SsendTS
lola: @ trans malS4
lola: @ trans AreqTS
lola: @ trans CsendTS1
lola: @ trans malA1
lola: @ trans malS6
lola: @ trans malS5
lola: @ trans SackCS
lola: @ trans CgenCertif
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 4312/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 121792
lola: finding significant places
lola: 3806 places, 506 transitions, 505 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: LP says that atomic proposition is always false: (3 <= p2550)
lola: A ((1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)) : A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380)))) : A ((p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)) : A ((F (X ((p1951 + p1918 + p1885 + p1852 + p1819 + p1786 + p1753 + p1720 + p1687 + p1654 + p1621 + p1588 + p1555 + p1522 + p1489 + p1456 + p1423 + p1390 + p1357 + p1324 + p1291 + p1258 + p2314 + p2281 + p2248 + p2215 + p2182 + p2149 + p2116 + p2083 + p2050 + p2017 + p2000 + p2001 + p2002 + p2003 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p2016 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 + p2032 + p2033 + p2034 + p2035 + p2036 + p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2067 + p2068 + p2069 + p2070 + p2071 + p2072 + p2073 + p2074 + p2075 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2084 + p2085 + p2086 + p2087 + p2088 + p2089 + p2090 + p2091 + p2092 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2100 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2107 + p2108 + p2109 + p2110 + p2111 + p2112 + p2113 + p2114 + p2115 + p2117 + p2118 + p2119 + p2120 + p2121 + p2122 + p2123 + p2124 + p2125 + p2126 + p2127 + p2128 + p2129 + p2130 + p2131 + p2132 + p2133 + p2134 + p2135 + p2136 + p2137 + p2138 + p2139 + p2140 + p2141 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2156 + p2157 + p2158 + p2159 + p2160 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2183 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1715 + p1716 + p1717 + p1718 + p1719 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1773 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1862 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1886 + p1887 + p1888 + p1889 + p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1939 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1946 + p1947 + p1948 + p1949 + p1950 + p1952 + p1953 + p1954 + p1955 + p1956 + p1957 + p1958 + p1959 + p1960 + p1961 + p1962 + p1963 + p1964 + p1965 + p1966 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1975 + p1976 + p1977 + p1978 + p1979 + p1980 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1998 + p1999 <= p2948 + p2915 + p2882 + p2849 + p2816 + p2783 + p2750 + p2717 + p2684 + p3000 + p3001 + p3002 + p3003 + p3004 + p3005 + p3006 + p3007 + p3008 + p3009 + p3010 + p3011 + p3012 + p3013 + p3014 + p3015 + p3016 + p3017 + p3018 + p3019 + p3020 + p3021 + p3022 + p3023 + p3024 + p3025 + p3026 + p3027 + p3028 + p3029 + p3030 + p3031 + p3032 + p3033 + p3047 + p3080 + p3740 + p3707 + p3113 + p3146 + p3674 + p3641 + p3608 + p3575 + p3542 + p3509 + p3476 + p3443 + p3410 + p3179 + p3377 + p3344 + p3311 + p3278 + p3245 + p3212 + p3195 + p3196 + p3197 + p3198 + p3199 + p3194 + p3193 + p3192 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p3207 + p3208 + p3209 + p3210 + p3211 + p3191 + p3213 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3190 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p3261 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p3276 + p3277 + p3189 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3294 + p3295 + p3296 + p3297 + p3298 + p3299 + p3188 + p3187 + p3186 + p3185 + p3300 + p3301 + p3302 + p3303 + p3304 + p3305 + p3306 + p3307 + p3308 + p3309 + p3184 + p3310 + p3183 + p3312 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p3330 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p3339 + p3340 + p3341 + p3342 + p3343 + p3182 + p3345 + p3346 + p3347 + p3348 + p3349 + p3181 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p3357 + p3358 + p3359 + p3360 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3367 + p3368 + p3369 + p3370 + p3371 + p3372 + p3373 + p3374 + p3375 + p3376 + p3180 + p3378 + p3379 + p3178 + p3380 + p3381 + p3382 + p3383 + p3384 + p3385 + p3386 + p3387 + p3388 + p3389 + p3390 + p3391 + p3392 + p3393 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p3177 + p3176 + p3175 + p3400 + p3401 + p3402 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p3174 + p3173 + p3411 + p3412 + p3413 + p3414 + p3415 + p3416 + p3417 + p3418 + p3419 + p3420 + p3421 + p3422 + p3423 + p3424 + p3425 + p3426 + p3427 + p3428 + p3429 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3438 + p3439 + p3172 + p3440 + p3441 + p3442 + p3171 + p3444 + p3445 + p3446 + p3447 + p3448 + p3449 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3456 + p3457 + p3458 + p3459 + p3460 + p3461 + p3462 + p3463 + p3464 + p3465 + p3466 + p3467 + p3468 + p3469 + p3470 + p3471 + p3472 + p3473 + p3474 + p3475 + p3170 + p3477 + p3478 + p3479 + p3169 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3168 + p3167 + p3166 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3508 + p3165 + p3164 + p3510 + p3511 + p3512 + p3513 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3537 + p3538 + p3539 + p3163 + p3540 + p3541 + p3162 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3549 + p3550 + p3551 + p3552 + p3553 + p3554 + p3555 + p3556 + p3557 + p3558 + p3559 + p3560 + p3561 + p3562 + p3563 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p3570 + p3571 + p3572 + p3573 + p3574 + p3161 + p3576 + p3577 + p3578 + p3579 + p3160 + p3580 + p3581 + p3582 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p3590 + p3591 + p3592 + p3593 + p3594 + p3595 + p3596 + p3597 + p3598 + p3599 + p3159 + p3158 + p3157 + p3156 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3155 + p3609 + p3154 + p3153 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3619 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p3630 + p3631 + p3632 + p3633 + p3634 + p3635 + p3636 + p3637 + p3638 + p3639 + p3152 + p3151 + p3150 + p3640 + p3149 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p3650 + p3651 + p3652 + p3653 + p3654 + p3655 + p3656 + p3657 + p3658 + p3659 + p3660 + p3661 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p3670 + p3671 + p3672 + p3673 + p3148 + p3675 + p3676 + p3677 + p3678 + p3679 + p3147 + p3145 + p3144 + p3143 + p3142 + p3141 + p3140 + p3139 + p3138 + p3137 + p3680 + p3681 + p3682 + p3683 + p3684 + p3685 + p3686 + p3687 + p3688 + p3689 + p3136 + p3135 + p3134 + p3133 + p3132 + p3131 + p3130 + p3129 + p3128 + p3127 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p3699 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p3120 + p3119 + p3118 + p3117 + p3116 + p3115 + p3114 + p3112 + p3111 + p3110 + p3109 + p3108 + p3107 + p3106 + p3105 + p3104 + p3103 + p3102 + p3101 + p3100 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3708 + p3709 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p3718 + p3719 + p3720 + p3721 + p3722 + p3723 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p3739 + p3741 + p3742 + p3743 + p3744 + p3745 + p3746 + p3747 + p3748 + p3749 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p3099 + p3760 + p3761 + p3762 + p3763 + p3764 + p3765 + p3766 + p3767 + p3768 + p3769 + p3098 + p3097 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3079 + p3078 + p3770 + p3771 + p3772 + p3077 + p3076 + p3075 + p3074 + p3073 + p3072 + p3071 + p3070 + p3069 + p3068 + p3067 + p3066 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3059 + p3058 + p3057 + p3056 + p3055 + p3054 + p3053 + p3052 + p3051 + p3050 + p3049 + p3048 + p3046 + p3045 + p3044 + p3043 + p3042 + p3041 + p3040 + p3039 + p3038 + p3037 + p3036 + p3035 + p3034 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p2700 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p2795 + p2796 + p2797 + p2798 + p2799 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2817 + p2818 + p2819 + p2820 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p2879 + p2880 + p2881 + p2883 + p2884 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p2899 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2907 + p2908 + p2909 + p2910 + p2911 + p2912 + p2913 + p2914 + p2916 + p2917 + p2918 + p2919 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p2933 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p2968 + p2969 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p2979 + p2980 + p2981 + p2982 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p2989 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p2998 + p2999))) U F (F ((2 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482))))) : A (F (F (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617)))))) : A ((3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)) : A (G ((X ((p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)) U (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))) : A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447)))) : A ((1 <= p2347)) : A (X (G (G (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617)))))) : A ((1 <= p2551)) : A ((1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)) : A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p1199 + p1198 + p1197 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191)))) : A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124))))) : A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482))))) : A ((3 <= p2550))
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: rewrite Frontend/Parser/formula_rewrite.k:545
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2559 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584)
lola: processed formula length: 268
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2646 + p2647 + p2648 + p2649 + p2650 <= p2447)
lola: processed formula length: 272
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683)
lola: processed formula length: 268
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2347)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2347)
lola: processed formula length: 12
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2551)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2551)
lola: processed formula length: 12
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446)
lola: processed formula length: 268
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 394 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (((3 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380) U (p1224 <= p2447))))
lola: processed formula length: 297
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 35 markings, 34 edges
lola: ========================================
lola: subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)))) AND A (G ((X ((p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p26... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10))))
lola: processed formula length: 204
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 71 markings, 71 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: subprocess 9 will run for 507 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((F ((2 <= p2448)) U (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p32 + p31 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 <= p1223 + p1222 + p1221 + p1220 + p1219 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1210 + p1209 + p1208 + p1207 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + ... (shortened)
lola: processed formula length: 481
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 35 markings, 34 edges
lola: ========================================
lola: subprocess 10 will run for 592 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: processed formula length: 288
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 250346 markings, 1713103 edges, 50069 markings/sec, 0 secs
lola: 472486 markings, 3438486 edges, 44428 markings/sec, 5 secs
lola: 675232 markings, 5179443 edges, 40549 markings/sec, 10 secs
lola: 893128 markings, 6914121 edges, 43579 markings/sec, 15 secs
lola: 1091630 markings, 8655972 edges, 39700 markings/sec, 20 secs
lola: 1285413 markings, 10400284 edges, 38757 markings/sec, 25 secs
lola: 1474969 markings, 12154158 edges, 37911 markings/sec, 30 secs
lola: 1643796 markings, 13919687 edges, 33765 markings/sec, 35 secs
lola: 1841561 markings, 15666549 edges, 39553 markings/sec, 40 secs
lola: 2053511 markings, 17406726 edges, 42390 markings/sec, 45 secs
lola: 2255295 markings, 19145245 edges, 40357 markings/sec, 50 secs
lola: 2448386 markings, 20889376 edges, 38618 markings/sec, 55 secs
lola: 2627262 markings, 22633160 edges, 35775 markings/sec, 60 secs
lola: 2785187 markings, 24399217 edges, 31585 markings/sec, 65 secs
lola: 2990699 markings, 26126520 edges, 41102 markings/sec, 70 secs
lola: 3180300 markings, 27863249 edges, 37920 markings/sec, 75 secs
lola: 3357302 markings, 29624661 edges, 35400 markings/sec, 80 secs
lola: 3519020 markings, 31399196 edges, 32344 markings/sec, 85 secs
lola: 3704635 markings, 33132177 edges, 37123 markings/sec, 90 secs
lola: 3872250 markings, 34896080 edges, 33523 markings/sec, 95 secs
lola: 4039024 markings, 36665013 edges, 33355 markings/sec, 100 secs
lola: 4195811 markings, 38442757 edges, 31357 markings/sec, 105 secs
lola: 4351843 markings, 40219625 edges, 31206 markings/sec, 110 secs
lola: 4493253 markings, 41998810 edges, 28282 markings/sec, 115 secs
lola: 4682852 markings, 43753299 edges, 37920 markings/sec, 120 secs
lola: 4895462 markings, 45495395 edges, 42522 markings/sec, 125 secs
lola: 5097481 markings, 47236153 edges, 40404 markings/sec, 130 secs
lola: 5290927 markings, 48982990 edges, 38689 markings/sec, 135 secs
lola: 5472387 markings, 50756660 edges, 36292 markings/sec, 140 secs
lola: 5630334 markings, 52534915 edges, 31589 markings/sec, 145 secs
lola: 5841881 markings, 54301595 edges, 42309 markings/sec, 150 secs
lola: 6033973 markings, 56072938 edges, 38418 markings/sec, 155 secs
lola: 6214385 markings, 57862826 edges, 36082 markings/sec, 160 secs
lola: 6378558 markings, 59628940 edges, 32835 markings/sec, 165 secs
lola: 6564886 markings, 61381823 edges, 37266 markings/sec, 170 secs
lola: 6729088 markings, 63148361 edges, 32840 markings/sec, 175 secs
lola: 6897826 markings, 64917720 edges, 33748 markings/sec, 180 secs
lola: 7054328 markings, 66695803 edges, 31300 markings/sec, 185 secs
lola: 7209169 markings, 68474556 edges, 30968 markings/sec, 190 secs
lola: 7347627 markings, 70262235 edges, 27692 markings/sec, 195 secs
lola: 7536540 markings, 72014993 edges, 37783 markings/sec, 200 secs
lola: 7729965 markings, 73764635 edges, 38685 markings/sec, 205 secs
lola: 7910232 markings, 75523633 edges, 36053 markings/sec, 210 secs
lola: 8068680 markings, 77296619 edges, 31690 markings/sec, 215 secs
lola: 8254244 markings, 79042926 edges, 37113 markings/sec, 220 secs
lola: 8429255 markings, 80795307 edges, 35002 markings/sec, 225 secs
lola: 8593500 markings, 82559374 edges, 32849 markings/sec, 230 secs
lola: 8753885 markings, 84331591 edges, 32077 markings/sec, 235 secs
lola: 8910292 markings, 86106227 edges, 31281 markings/sec, 240 secs
lola: 9054038 markings, 87888285 edges, 28749 markings/sec, 245 secs
lola: 9213870 markings, 89660388 edges, 31966 markings/sec, 250 secs
lola: 9393735 markings, 91419597 edges, 35973 markings/sec, 255 secs
lola: 9551131 markings, 93192629 edges, 31479 markings/sec, 260 secs
lola: 9726144 markings, 94955770 edges, 35003 markings/sec, 265 secs
lola: 9884187 markings, 96753930 edges, 31609 markings/sec, 270 secs
lola: 10036523 markings, 98547896 edges, 30467 markings/sec, 275 secs
lola: 10168751 markings, 100348761 edges, 26446 markings/sec, 280 secs
lola: 10343019 markings, 102113763 edges, 34854 markings/sec, 285 secs
lola: 10500024 markings, 103897825 edges, 31401 markings/sec, 290 secs
lola: 10651771 markings, 105683168 edges, 30349 markings/sec, 295 secs
lola: 10784606 markings, 107491571 edges, 26567 markings/sec, 300 secs
lola: 10941912 markings, 109293095 edges, 31461 markings/sec, 305 secs
lola: 11086939 markings, 111099678 edges, 29005 markings/sec, 310 secs
lola: 11226298 markings, 112903211 edges, 27872 markings/sec, 315 secs
lola: 11357371 markings, 114693143 edges, 26215 markings/sec, 320 secs
lola: 11484946 markings, 116484755 edges, 25515 markings/sec, 325 secs
lola: 11624859 markings, 118270362 edges, 27983 markings/sec, 330 secs
lola: 11848691 markings, 120002376 edges, 44766 markings/sec, 335 secs
lola: 12046324 markings, 121746053 edges, 39527 markings/sec, 340 secs
lola: 12238364 markings, 123486243 edges, 38408 markings/sec, 345 secs
lola: 12430082 markings, 125238298 edges, 38344 markings/sec, 350 secs
lola: 12603049 markings, 127000759 edges, 34593 markings/sec, 355 secs
lola: 12786568 markings, 128755567 edges, 36704 markings/sec, 360 secs
lola: 12980846 markings, 130503906 edges, 38856 markings/sec, 365 secs
lola: 13167698 markings, 132259821 edges, 37370 markings/sec, 370 secs
lola: 13332347 markings, 134028417 edges, 32930 markings/sec, 375 secs
lola: 13513645 markings, 135784115 edges, 36260 markings/sec, 380 secs
lola: 13689539 markings, 137544191 edges, 35179 markings/sec, 385 secs
lola: 13850644 markings, 139313206 edges, 32221 markings/sec, 390 secs
lola: 14017508 markings, 141082955 edges, 33373 markings/sec, 395 secs
lola: 14174312 markings, 142859881 edges, 31361 markings/sec, 400 secs
lola: 14319056 markings, 144643868 edges, 28949 markings/sec, 405 secs
lola: 14471562 markings, 146421273 edges, 30501 markings/sec, 410 secs
lola: 14669254 markings, 148166239 edges, 39538 markings/sec, 415 secs
lola: 14856611 markings, 149921044 edges, 37471 markings/sec, 420 secs
lola: 15033102 markings, 151683353 edges, 35298 markings/sec, 425 secs
lola: 15206708 markings, 153442274 edges, 34721 markings/sec, 430 secs
lola: 15384350 markings, 155193534 edges, 35528 markings/sec, 435 secs
lola: 15540956 markings, 156957741 edges, 31321 markings/sec, 440 secs
lola: 15716121 markings, 158722523 edges, 35033 markings/sec, 445 secs
lola: 15872394 markings, 160497208 edges, 31255 markings/sec, 450 secs
lola: 16023848 markings, 162277723 edges, 30291 markings/sec, 455 secs
lola: 16155459 markings, 164069903 edges, 26322 markings/sec, 460 secs
lola: 16341507 markings, 165818794 edges, 37210 markings/sec, 465 secs
lola: 16516196 markings, 167575844 edges, 34938 markings/sec, 470 secs
lola: 16680451 markings, 169339824 edges, 32851 markings/sec, 475 secs
lola: 16840426 markings, 171110373 edges, 31995 markings/sec, 480 secs
lola: 16996540 markings, 172883114 edges, 31223 markings/sec, 485 secs
lola: 17140625 markings, 174666222 edges, 28817 markings/sec, 490 secs
lola: 17292651 markings, 176443974 edges, 30405 markings/sec, 495 secs
lola: 17452633 markings, 178208299 edges, 31996 markings/sec, 500 secs
lola: 17608576 markings, 179976284 edges, 31189 markings/sec, 505 secs
lola: 17752199 markings, 181752057 edges, 28725 markings/sec, 510 secs
lola: 17892790 markings, 183527278 edges, 28118 markings/sec, 515 secs
lola: 18044487 markings, 185311654 edges, 30339 markings/sec, 520 secs
lola: 18176189 markings, 187105123 edges, 26340 markings/sec, 525 secs
lola: 18319252 markings, 188889311 edges, 28613 markings/sec, 530 secs
lola: 18449398 markings, 190679902 edges, 26029 markings/sec, 535 secs
lola: 18569957 markings, 192475263 edges, 24112 markings/sec, 540 secs
lola: 18746841 markings, 194235415 edges, 35377 markings/sec, 545 secs
lola: 18937438 markings, 195981185 edges, 38119 markings/sec, 550 secs
lola: 19123251 markings, 197736091 edges, 37163 markings/sec, 555 secs
lola: 19284546 markings, 199506980 edges, 32259 markings/sec, 560 secs
lola: 19467191 markings, 201257913 edges, 36529 markings/sec, 565 secs
lola: 19642723 markings, 203009937 edges, 35106 markings/sec, 570 secs
lola: 19805838 markings, 204779127 edges, 32623 markings/sec, 575 secs
lola: 19970768 markings, 206561338 edges, 32986 markings/sec, 580 secs
lola: 20127229 markings, 208338842 edges, 31292 markings/sec, 585 secs
lola: local time limit reached - aborting
lola:
preliminary result: no unknown yes unknown unknown no no yes no unknown no yes yes unknown unknown no
lola: memory consumption: 4258788 KB
lola: time consumption: 610 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no unknown yes unknown unknown no no yes no unknown no yes yes unknown unknown no
lola: memory consumption: 4276760 KB
lola: time consumption: 613 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 587 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((F ((3 <= p2447)) U X ((3 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))))
lola: processed formula length: 301
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 55 markings, 55 edges
lola: ========================================
lola: subprocess 12 will run for 734 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: processed formula length: 280
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 55 markings, 55 edges
lola: ========================================
lola: subprocess 13 will run for 978 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((2 <= p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (p2514 + p2513 + p2512 + p2511 + p2510 + p2509 + p2508 + p2507 + p2506 + p2505 + p2504 + p2503 + p2502 + p2501 + p2500 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p2492 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2484 + p2483 + p2482 <= 1)
lola: processed formula length: 268
lola: 20 rewrites
lola: closed formula file LTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 71 markings, 70 edges
lola: ========================================
lola: subprocess 14 will run for 1468 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p2600 + p2599 + p2598 + p2597 + p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2617))))
lola: processed formula length: 280
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 55 markings, 55 edges
lola: ========================================
lola: subprocess 15 will run for 2936 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((2 <= p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380))))
lola: processed formula length: 280
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 71 markings, 71 edges
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G ((p2549 <= p1156 + p1155 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1141 + p1140 + p1139 + p1138 + p1137 + p1136 + p1135 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1126 + p1125 + p1124)))))
lola: processed formula length: 288
lola: 18 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 250085 markings, 1711539 edges, 50017 markings/sec, 0 secs
lola: 472631 markings, 3439707 edges, 44509 markings/sec, 5 secs
lola: 675280 markings, 5180165 edges, 40530 markings/sec, 10 secs
lola: 893264 markings, 6915735 edges, 43597 markings/sec, 15 secs
lola: 1092316 markings, 8662800 edges, 39810 markings/sec, 20 secs
lola: 1286596 markings, 10411618 edges, 38856 markings/sec, 25 secs
lola: 1476023 markings, 12167035 edges, 37885 markings/sec, 30 secs
lola: 1645010 markings, 13934941 edges, 33797 markings/sec, 35 secs
lola: 1844111 markings, 15682431 edges, 39820 markings/sec, 40 secs
lola: 2055014 markings, 17423350 edges, 42181 markings/sec, 45 secs
lola: 2256597 markings, 19161746 edges, 40317 markings/sec, 50 secs
lola: 2450489 markings, 20908247 edges, 38778 markings/sec, 55 secs
lola: 2630311 markings, 22666846 edges, 35964 markings/sec, 60 secs
lola: 2787849 markings, 24438933 edges, 31508 markings/sec, 65 secs
lola: 2995160 markings, 26177288 edges, 41462 markings/sec, 70 secs
lola: 3186387 markings, 27922362 edges, 38245 markings/sec, 75 secs
lola: 3362481 markings, 29684297 edges, 35219 markings/sec, 80 secs
lola: 3526231 markings, 31454398 edges, 32750 markings/sec, 85 secs
lola: 3713378 markings, 33206687 edges, 37429 markings/sec, 90 secs
lola: 3879464 markings, 34971848 edges, 33217 markings/sec, 95 secs
lola: 4047202 markings, 36740033 edges, 33548 markings/sec, 100 secs
lola: 4204295 markings, 38516563 edges, 31419 markings/sec, 105 secs
lola: 4358549 markings, 40293094 edges, 30851 markings/sec, 110 secs
lola: 4499197 markings, 42078506 edges, 28130 markings/sec, 115 secs
lola: 4694604 markings, 43828017 edges, 39081 markings/sec, 120 secs
lola: 4902470 markings, 45572871 edges, 41573 markings/sec, 125 secs
lola: 5106991 markings, 47312944 edges, 40904 markings/sec, 130 secs
lola: 5299534 markings, 49059735 edges, 38509 markings/sec, 135 secs
lola: 5477914 markings, 50823324 edges, 35676 markings/sec, 140 secs
lola: 5634666 markings, 52597782 edges, 31350 markings/sec, 145 secs
lola: 5845997 markings, 54338787 edges, 42266 markings/sec, 150 secs
lola: 6036593 markings, 56094954 edges, 38119 markings/sec, 155 secs
lola: 6214093 markings, 57860154 edges, 35500 markings/sec, 160 secs
lola: 6378901 markings, 59631869 edges, 32962 markings/sec, 165 secs
lola: 6565277 markings, 61386371 edges, 37275 markings/sec, 170 secs
lola: 6729512 markings, 63153471 edges, 32847 markings/sec, 175 secs
lola: 6898200 markings, 64922836 edges, 33738 markings/sec, 180 secs
lola: 7054971 markings, 66700902 edges, 31354 markings/sec, 185 secs
lola: 7209521 markings, 68479790 edges, 30910 markings/sec, 190 secs
lola: 7347985 markings, 70267560 edges, 27693 markings/sec, 195 secs
lola: 7537136 markings, 72020626 edges, 37830 markings/sec, 200 secs
lola: 7730536 markings, 73769947 edges, 38680 markings/sec, 205 secs
lola: 7911006 markings, 75529789 edges, 36094 markings/sec, 210 secs
lola: 8068884 markings, 77299199 edges, 31576 markings/sec, 215 secs
lola: 8254664 markings, 79045486 edges, 37156 markings/sec, 220 secs
lola: 8429530 markings, 80798003 edges, 34973 markings/sec, 225 secs
lola: 8593634 markings, 82561154 edges, 32821 markings/sec, 230 secs
lola: 8754065 markings, 84333279 edges, 32086 markings/sec, 235 secs
lola: 8910367 markings, 86107217 edges, 31260 markings/sec, 240 secs
lola: 9054055 markings, 87888532 edges, 28738 markings/sec, 245 secs
lola: 9213833 markings, 89659944 edges, 31956 markings/sec, 250 secs
lola: 9393685 markings, 91419031 edges, 35970 markings/sec, 255 secs
lola: 9551059 markings, 93191317 edges, 31475 markings/sec, 260 secs
lola: 9726111 markings, 94955411 edges, 35010 markings/sec, 265 secs
lola: 9882549 markings, 96731895 edges, 31288 markings/sec, 270 secs
lola: 10033962 markings, 98512095 edges, 30283 markings/sec, 275 secs
lola: 10166115 markings, 100305699 edges, 26431 markings/sec, 280 secs
lola: 10339318 markings, 102067567 edges, 34641 markings/sec, 285 secs
lola: 10495234 markings, 103836630 edges, 31183 markings/sec, 290 secs
lola: 10646102 markings, 105610684 edges, 30174 markings/sec, 295 secs
lola: 10778610 markings, 107395051 edges, 26502 markings/sec, 300 secs
lola: 10933003 markings, 109171300 edges, 30879 markings/sec, 305 secs
lola: 11077348 markings, 110954823 edges, 28869 markings/sec, 310 secs
lola: 11214093 markings, 112741129 edges, 27349 markings/sec, 315 secs
lola: 11343691 markings, 114531348 edges, 25920 markings/sec, 320 secs
lola: 11473804 markings, 116319107 edges, 26023 markings/sec, 325 secs
lola: 11602141 markings, 118109164 edges, 25667 markings/sec, 330 secs
lola: 11828140 markings, 119839994 edges, 45200 markings/sec, 335 secs
lola: 12026606 markings, 121587790 edges, 39693 markings/sec, 340 secs
lola: 12224481 markings, 123324045 edges, 39575 markings/sec, 345 secs
lola: 12410891 markings, 125079753 edges, 37282 markings/sec, 350 secs
lola: 12587503 markings, 126842701 edges, 35322 markings/sec, 355 secs
lola: 12766235 markings, 128602187 edges, 35746 markings/sec, 360 secs
lola: 12960772 markings, 130351689 edges, 38907 markings/sec, 365 secs
lola: 13149691 markings, 132107827 edges, 37784 markings/sec, 370 secs
lola: 13318641 markings, 133875184 edges, 33790 markings/sec, 375 secs
lola: 13498420 markings, 135634026 edges, 35956 markings/sec, 380 secs
lola: 13674896 markings, 137395509 edges, 35295 markings/sec, 385 secs
lola: 13835250 markings, 139167651 edges, 32071 markings/sec, 390 secs
lola: 14005410 markings, 140934086 edges, 34032 markings/sec, 395 secs
lola: 14162057 markings, 142713580 edges, 31329 markings/sec, 400 secs
lola: 14306956 markings, 144498987 edges, 28980 markings/sec, 405 secs
lola: 14452691 markings, 146283359 edges, 29147 markings/sec, 410 secs
lola: 14656662 markings, 148028033 edges, 40794 markings/sec, 415 secs
lola: 14844559 markings, 149784552 edges, 37579 markings/sec, 420 secs
lola: 15020575 markings, 151547279 edges, 35203 markings/sec, 425 secs
lola: 15191323 markings, 153312687 edges, 34150 markings/sec, 430 secs
lola: 15373144 markings, 155063455 edges, 36364 markings/sec, 435 secs
lola: 15531509 markings, 156827467 edges, 31673 markings/sec, 440 secs
lola: 15705477 markings, 158593589 edges, 34794 markings/sec, 445 secs
lola: 15861955 markings, 160370205 edges, 31296 markings/sec, 450 secs
lola: 16013310 markings, 162150705 edges, 30271 markings/sec, 455 secs
lola: 16147275 markings, 163941953 edges, 26793 markings/sec, 460 secs
lola: 16328833 markings, 165697874 edges, 36312 markings/sec, 465 secs
lola: 16504236 markings, 167457017 edges, 35081 markings/sec, 470 secs
lola: 16669365 markings, 169223578 edges, 33026 markings/sec, 475 secs
lola: 16831096 markings, 170994307 edges, 32346 markings/sec, 480 secs
lola: 16987450 markings, 172767050 edges, 31271 markings/sec, 485 secs
lola: 17131722 markings, 174548926 edges, 28854 markings/sec, 490 secs
lola: 17279894 markings, 176325423 edges, 29634 markings/sec, 495 secs
lola: 17443411 markings, 178091291 edges, 32703 markings/sec, 500 secs
lola: 17599392 markings, 179861696 edges, 31196 markings/sec, 505 secs
lola: 17742995 markings, 181640324 edges, 28721 markings/sec, 510 secs
lola: 17884707 markings, 183422503 edges, 28342 markings/sec, 515 secs
lola: 18036120 markings, 185204456 edges, 30283 markings/sec, 520 secs
lola: 18169587 markings, 186999263 edges, 26693 markings/sec, 525 secs
lola: 18312143 markings, 188787111 edges, 28511 markings/sec, 530 secs
lola: 18442993 markings, 190591431 edges, 26170 markings/sec, 535 secs
lola: 18565608 markings, 192411226 edges, 24523 markings/sec, 540 secs
lola: 18742533 markings, 194199229 edges, 35385 markings/sec, 545 secs
lola: 18936841 markings, 195974347 edges, 38862 markings/sec, 550 secs
lola: 19124823 markings, 197751794 edges, 37596 markings/sec, 555 secs
lola: 19285950 markings, 199523695 edges, 32225 markings/sec, 560 secs
lola: 19468665 markings, 201274351 edges, 36543 markings/sec, 565 secs
lola: 19644037 markings, 203027726 edges, 35074 markings/sec, 570 secs
lola: 19806862 markings, 204790930 edges, 32565 markings/sec, 575 secs
lola: 19970781 markings, 206561556 edges, 32784 markings/sec, 580 secs
lola: 20127136 markings, 208337813 edges, 31271 markings/sec, 585 secs
lola: 20270995 markings, 210120576 edges, 28772 markings/sec, 590 secs
lola: 20422532 markings, 211894229 edges, 30307 markings/sec, 595 secs
lola: 20608053 markings, 213646084 edges, 37104 markings/sec, 600 secs
lola: 20768347 markings, 215413930 edges, 32059 markings/sec, 605 secs
lola: 20940440 markings, 217177572 edges, 34419 markings/sec, 610 secs
lola: 21097055 markings, 218950786 edges, 31323 markings/sec, 615 secs
lola: 21247797 markings, 220727450 edges, 30148 markings/sec, 620 secs
lola: 21384217 markings, 222516399 edges, 27284 markings/sec, 625 secs
lola: 21552487 markings, 224280565 edges, 33654 markings/sec, 630 secs
lola: 21708614 markings, 226050693 edges, 31225 markings/sec, 635 secs
lola: 21860011 markings, 227824675 edges, 30279 markings/sec, 640 secs
lola: 21996493 markings, 229608392 edges, 27296 markings/sec, 645 secs
lola: 22148937 markings, 231386110 edges, 30489 markings/sec, 650 secs
lola: 22293318 markings, 233169822 edges, 28876 markings/sec, 655 secs
lola: 22429890 markings, 234959627 edges, 27314 markings/sec, 660 secs
lola: 22563088 markings, 236751954 edges, 26640 markings/sec, 665 secs
lola: 22691055 markings, 238545644 edges, 25593 markings/sec, 670 secs
lola: 22806379 markings, 240347363 edges, 23065 markings/sec, 675 secs
lola: 22999035 markings, 242093174 edges, 38531 markings/sec, 680 secs
lola: 23170784 markings, 243852289 edges, 34350 markings/sec, 685 secs
lola: 23334890 markings, 245616641 edges, 32821 markings/sec, 690 secs
lola: 23492611 markings, 247386183 edges, 31544 markings/sec, 695 secs
lola: 23648657 markings, 249158687 edges, 31209 markings/sec, 700 secs
lola: 23792337 markings, 250939371 edges, 28736 markings/sec, 705 secs
lola: 23946274 markings, 252710420 edges, 30787 markings/sec, 710 secs
lola: 24103968 markings, 254471350 edges, 31539 markings/sec, 715 secs
lola: 24259386 markings, 256233796 edges, 31084 markings/sec, 720 secs
lola: 24402630 markings, 258004027 edges, 28649 markings/sec, 725 secs
lola: 24545580 markings, 259780000 edges, 28590 markings/sec, 730 secs
lola: 24695210 markings, 261557842 edges, 29926 markings/sec, 735 secs
lola: 24824839 markings, 263346470 edges, 25926 markings/sec, 740 secs
lola: 24967868 markings, 265128089 edges, 28606 markings/sec, 745 secs
lola: 25098650 markings, 266917419 edges, 26156 markings/sec, 750 secs
lola: 25218571 markings, 268713656 edges, 23984 markings/sec, 755 secs
lola: 25372924 markings, 270486185 edges, 30871 markings/sec, 760 secs
lola: 25529114 markings, 272256212 edges, 31238 markings/sec, 765 secs
lola: 25684216 markings, 274023569 edges, 31020 markings/sec, 770 secs
lola: 25825848 markings, 275801131 edges, 28326 markings/sec, 775 secs
lola: 25974180 markings, 277578029 edges, 29666 markings/sec, 780 secs
lola: 26118228 markings, 279360545 edges, 28810 markings/sec, 785 secs
lola: 26254065 markings, 281147105 edges, 27167 markings/sec, 790 secs
lola: 26392179 markings, 282927867 edges, 27623 markings/sec, 795 secs
lola: 26520516 markings, 284721081 edges, 25667 markings/sec, 800 secs
lola: 26638594 markings, 286518527 edges, 23616 markings/sec, 805 secs
lola: 26789209 markings, 288288115 edges, 30123 markings/sec, 810 secs
lola: 26932680 markings, 290060581 edges, 28694 markings/sec, 815 secs
lola: 27068147 markings, 291837403 edges, 27093 markings/sec, 820 secs
lola: 27200092 markings, 293617182 edges, 26389 markings/sec, 825 secs
lola: 27327458 markings, 295400646 edges, 25473 markings/sec, 830 secs
lola: 27442136 markings, 297192963 edges, 22936 markings/sec, 835 secs
lola: 27585786 markings, 298972565 edges, 28730 markings/sec, 840 secs
lola: 27715946 markings, 300761138 edges, 26032 markings/sec, 845 secs
lola: 27835697 markings, 302556854 edges, 23950 markings/sec, 850 secs
lola: 27960246 markings, 304348823 edges, 24910 markings/sec, 855 secs
lola: 28078611 markings, 306144646 edges, 23673 markings/sec, 860 secs
lola: 28194674 markings, 307942669 edges, 23213 markings/sec, 865 secs
lola: 28305294 markings, 309770383 edges, 22124 markings/sec, 870 secs
lola: 28481941 markings, 311560783 edges, 35329 markings/sec, 875 secs
lola: 28694747 markings, 313307728 edges, 42561 markings/sec, 880 secs
lola: 28897647 markings, 315045916 edges, 40580 markings/sec, 885 secs
lola: 29087767 markings, 316789930 edges, 38024 markings/sec, 890 secs
lola: 29272328 markings, 318545516 edges, 36912 markings/sec, 895 secs
lola: 29432580 markings, 320314292 edges, 32050 markings/sec, 900 secs
lola: 29636000 markings, 322056101 edges, 40684 markings/sec, 905 secs
lola: 29826579 markings, 323807335 edges, 38116 markings/sec, 910 secs
lola: 30004027 markings, 325569006 edges, 35490 markings/sec, 915 secs
lola: 30163783 markings, 327342703 edges, 31951 markings/sec, 920 secs
lola: 30352890 markings, 329084490 edges, 37821 markings/sec, 925 secs
lola: 30521819 markings, 330843106 edges, 33786 markings/sec, 930 secs
lola: 30684926 markings, 332605996 edges, 32621 markings/sec, 935 secs
lola: 30840129 markings, 334362755 edges, 31041 markings/sec, 940 secs
lola: 30996190 markings, 336136410 edges, 31212 markings/sec, 945 secs
lola: 31140524 markings, 337918717 edges, 28867 markings/sec, 950 secs
lola: 31318722 markings, 339677869 edges, 35640 markings/sec, 955 secs
lola: 31511749 markings, 341426527 edges, 38605 markings/sec, 960 secs
lola: 31696851 markings, 343181958 edges, 37020 markings/sec, 965 secs
lola: 31860576 markings, 344951951 edges, 32745 markings/sec, 970 secs
lola: 32042289 markings, 346701542 edges, 36343 markings/sec, 975 secs
lola: 32217940 markings, 348453233 edges, 35130 markings/sec, 980 secs
lola: 32379181 markings, 350215804 edges, 32248 markings/sec, 985 secs
lola: 32544545 markings, 351984598 edges, 33073 markings/sec, 990 secs
lola: 32700716 markings, 353757820 edges, 31234 markings/sec, 995 secs
lola: 32845322 markings, 355537466 edges, 28921 markings/sec, 1000 secs
lola: 32994185 markings, 357312711 edges, 29773 markings/sec, 1005 secs
lola: 33178760 markings, 359063402 edges, 36915 markings/sec, 1010 secs
lola: 33341755 markings, 360825742 edges, 32599 markings/sec, 1015 secs
lola: 33511806 markings, 362588296 edges, 34010 markings/sec, 1020 secs
lola: 33667968 markings, 364358825 edges, 31232 markings/sec, 1025 secs
lola: 33820891 markings, 366132543 edges, 30585 markings/sec, 1030 secs
lola: 33959054 markings, 367937459 edges, 27633 markings/sec, 1035 secs
lola: 34124680 markings, 369709062 edges, 33125 markings/sec, 1040 secs
lola: 34280529 markings, 371475066 edges, 31170 markings/sec, 1045 secs
lola: 34433567 markings, 373244177 edges, 30608 markings/sec, 1050 secs
lola: 34571226 markings, 375022687 edges, 27532 markings/sec, 1055 secs
lola: 34722319 markings, 376797412 edges, 30219 markings/sec, 1060 secs
lola: 34866670 markings, 378579109 edges, 28870 markings/sec, 1065 secs
lola: 35001368 markings, 380366825 edges, 26940 markings/sec, 1070 secs
lola: 35137503 markings, 382152871 edges, 27227 markings/sec, 1075 secs
lola: 35264608 markings, 383944454 edges, 25421 markings/sec, 1080 secs
lola: 35381734 markings, 385741785 edges, 23425 markings/sec, 1085 secs
lola: 35586586 markings, 387481128 edges, 40970 markings/sec, 1090 secs
lola: 35777745 markings, 389229199 edges, 38232 markings/sec, 1095 secs
lola: 35951896 markings, 390965291 edges, 34830 markings/sec, 1100 secs
lola: 36107489 markings, 392695280 edges, 31119 markings/sec, 1105 secs
lola: 36291379 markings, 394390805 edges, 36778 markings/sec, 1110 secs
lola: 36458589 markings, 396126533 edges, 33442 markings/sec, 1115 secs
lola: 36620770 markings, 397875363 edges, 32436 markings/sec, 1120 secs
lola: 36777502 markings, 399650375 edges, 31346 markings/sec, 1125 secs
lola: 36934947 markings, 401446437 edges, 31489 markings/sec, 1130 secs
lola: 37081245 markings, 403251812 edges, 29260 markings/sec, 1135 secs
lola: 37252299 markings, 405039810 edges, 34211 markings/sec, 1140 secs
lola: 37431280 markings, 406818283 edges, 35796 markings/sec, 1145 secs
lola: 37591664 markings, 408606790 edges, 32077 markings/sec, 1150 secs
lola: 37765406 markings, 410395073 edges, 34748 markings/sec, 1155 secs
lola: 37923658 markings, 412187923 edges, 31650 markings/sec, 1160 secs
lola: 38069074 markings, 413971956 edges, 29083 markings/sec, 1165 secs
lola: 38209379 markings, 415770724 edges, 28061 markings/sec, 1170 secs
lola: 38382024 markings, 417549595 edges, 34529 markings/sec, 1175 secs
lola: 38537820 markings, 419317208 edges, 31159 markings/sec, 1180 secs
lola: 38683205 markings, 421092600 edges, 29077 markings/sec, 1185 secs
lola: 38818287 markings, 422874920 edges, 27016 markings/sec, 1190 secs
lola: 38972460 markings, 424651449 edges, 30835 markings/sec, 1195 secs
lola: 39113363 markings, 426437018 edges, 28181 markings/sec, 1200 secs
lola: 39251106 markings, 428224828 edges, 27549 markings/sec, 1205 secs
lola: 39383423 markings, 430016957 edges, 26463 markings/sec, 1210 secs
lola: 39508283 markings, 431810566 edges, 24972 markings/sec, 1215 secs
lola: 39649771 markings, 433592861 edges, 28298 markings/sec, 1220 secs
lola: 39834950 markings, 435341837 edges, 37036 markings/sec, 1225 secs
lola: 39994857 markings, 437106124 edges, 31981 markings/sec, 1230 secs
lola: 40166360 markings, 438866638 edges, 34301 markings/sec, 1235 secs
lola: 40322587 markings, 440634907 edges, 31245 markings/sec, 1240 secs
lola: 40473230 markings, 442408749 edges, 30129 markings/sec, 1245 secs
lola: 40609687 markings, 444192707 edges, 27291 markings/sec, 1250 secs
lola: 40776631 markings, 445947215 edges, 33389 markings/sec, 1255 secs
lola: 40931729 markings, 447706336 edges, 31020 markings/sec, 1260 secs
lola: 41082805 markings, 449468215 edges, 30215 markings/sec, 1265 secs
lola: 41218475 markings, 451237428 edges, 27134 markings/sec, 1270 secs
lola: 41370192 markings, 453007891 edges, 30343 markings/sec, 1275 secs
lola: 41514128 markings, 454786096 edges, 28787 markings/sec, 1280 secs
lola: 41649479 markings, 456571473 edges, 27070 markings/sec, 1285 secs
lola: 41784030 markings, 458355519 edges, 26910 markings/sec, 1290 secs
lola: 41910780 markings, 460144762 edges, 25350 markings/sec, 1295 secs
lola: 42027723 markings, 461939959 edges, 23389 markings/sec, 1300 secs
lola: 42200801 markings, 463699827 edges, 34616 markings/sec, 1305 secs
lola: 42356681 markings, 465467737 edges, 31176 markings/sec, 1310 secs
lola: 42507241 markings, 467240148 edges, 30112 markings/sec, 1315 secs
lola: 42639473 markings, 469024941 edges, 26446 markings/sec, 1320 secs
lola: 42794187 markings, 470797791 edges, 30943 markings/sec, 1325 secs
lola: 42938176 markings, 472581280 edges, 28798 markings/sec, 1330 secs
lola: 43075184 markings, 474367529 edges, 27402 markings/sec, 1335 secs
lola: 43204181 markings, 476157912 edges, 25799 markings/sec, 1340 secs
lola: 43334748 markings, 477949061 edges, 26113 markings/sec, 1345 secs
lola: 43456431 markings, 479744588 edges, 24337 markings/sec, 1350 secs
lola: 43610316 markings, 481515294 edges, 30777 markings/sec, 1355 secs
lola: 43749908 markings, 483294023 edges, 27918 markings/sec, 1360 secs
lola: 43887220 markings, 485075175 edges, 27462 markings/sec, 1365 secs
lola: 44019015 markings, 486861008 edges, 26359 markings/sec, 1370 secs
lola: 44143509 markings, 488648785 edges, 24899 markings/sec, 1375 secs
lola: 44268989 markings, 490437684 edges, 25096 markings/sec, 1380 secs
lola: 44402878 markings, 492225420 edges, 26778 markings/sec, 1385 secs
lola: 44530012 markings, 494021036 edges, 25427 markings/sec, 1390 secs
lola: 44646824 markings, 495821176 edges, 23362 markings/sec, 1395 secs
lola: 44776313 markings, 497611047 edges, 25898 markings/sec, 1400 secs
lola: 44891735 markings, 499408905 edges, 23084 markings/sec, 1405 secs
lola: 45006027 markings, 501204328 edges, 22858 markings/sec, 1410 secs
lola: 45113428 markings, 503006460 edges, 21480 markings/sec, 1415 secs
lola: 45309302 markings, 504752828 edges, 39175 markings/sec, 1420 secs
lola: 45499008 markings, 506501808 edges, 37941 markings/sec, 1425 secs
lola: 45676770 markings, 508260645 edges, 35552 markings/sec, 1430 secs
lola: 45834476 markings, 510033064 edges, 31541 markings/sec, 1435 secs
lola: 46026086 markings, 511773343 edges, 38322 markings/sec, 1440 secs
lola: 46195473 markings, 513526896 edges, 33877 markings/sec, 1445 secs
lola: 46359319 markings, 515289538 edges, 32769 markings/sec, 1450 secs
lola: 46516303 markings, 517061639 edges, 31397 markings/sec, 1455 secs
lola: 46672369 markings, 518834661 edges, 31213 markings/sec, 1460 secs
lola: 46815745 markings, 520615256 edges, 28675 markings/sec, 1465 secs
lola: 46980890 markings, 522380546 edges, 33029 markings/sec, 1470 secs
lola: 47158315 markings, 524135520 edges, 35485 markings/sec, 1475 secs
lola: 47315371 markings, 525904104 edges, 31411 markings/sec, 1480 secs
lola: 47490683 markings, 527666782 edges, 35062 markings/sec, 1485 secs
lola: 47647302 markings, 529440035 edges, 31324 markings/sec, 1490 secs
lola: 47795886 markings, 531219271 edges, 29717 markings/sec, 1495 secs
lola: 47924540 markings, 533010028 edges, 25731 markings/sec, 1500 secs
lola: 48101706 markings, 534766087 edges, 35433 markings/sec, 1505 secs
lola: 48257811 markings, 536535095 edges, 31221 markings/sec, 1510 secs
lola: 48407458 markings, 538310248 edges, 29929 markings/sec, 1515 secs
lola: 48537331 markings, 540097233 edges, 25975 markings/sec, 1520 secs
lola: 48693241 markings, 541872432 edges, 31182 markings/sec, 1525 secs
lola: 48836680 markings, 543656885 edges, 28688 markings/sec, 1530 secs
lola: 48975199 markings, 545445135 edges, 27704 markings/sec, 1535 secs
lola: 49106653 markings, 547238705 edges, 26291 markings/sec, 1540 secs
lola: 49234054 markings, 549029034 edges, 25480 markings/sec, 1545 secs
lola: 49368029 markings, 550819249 edges, 26795 markings/sec, 1550 secs
lola: 49554540 markings, 552571470 edges, 37302 markings/sec, 1555 secs
lola: 49718838 markings, 554335320 edges, 32860 markings/sec, 1560 secs
lola: 49886858 markings, 556096021 edges, 33604 markings/sec, 1565 secs
lola: 50043275 markings, 557869830 edges, 31283 markings/sec, 1570 secs
lola: 50197657 markings, 559645591 edges, 30876 markings/sec, 1575 secs
lola: 50336627 markings, 561430780 edges, 27794 markings/sec, 1580 secs
lola: 50497162 markings, 563189398 edges, 32107 markings/sec, 1585 secs
lola: 50650271 markings, 564929048 edges, 30622 markings/sec, 1590 secs
lola: 50804314 markings, 566693362 edges, 30809 markings/sec, 1595 secs
lola: 50944564 markings, 568466568 edges, 28050 markings/sec, 1600 secs
lola: 51093001 markings, 570241717 edges, 29687 markings/sec, 1605 secs
lola: 51237092 markings, 572024799 edges, 28818 markings/sec, 1610 secs
lola: 51373390 markings, 573812058 edges, 27260 markings/sec, 1615 secs
lola: 51511106 markings, 575597875 edges, 27543 markings/sec, 1620 secs
lola: 51639379 markings, 577388365 edges, 25655 markings/sec, 1625 secs
lola: 51757031 markings, 579183430 edges, 23530 markings/sec, 1630 secs
lola: 51924072 markings, 580945980 edges, 33408 markings/sec, 1635 secs
lola: 52079886 markings, 582713731 edges, 31163 markings/sec, 1640 secs
lola: 52230840 markings, 584485197 edges, 30191 markings/sec, 1645 secs
lola: 52367179 markings, 586266813 edges, 27268 markings/sec, 1650 secs
lola: 52519288 markings, 588041435 edges, 30422 markings/sec, 1655 secs
lola: 52663801 markings, 589821267 edges, 28903 markings/sec, 1660 secs
lola: 52799800 markings, 591605328 edges, 27200 markings/sec, 1665 secs
lola: 52932568 markings, 593393637 edges, 26554 markings/sec, 1670 secs
lola: 53060557 markings, 595187181 edges, 25598 markings/sec, 1675 secs
lola: 53175741 markings, 596988633 edges, 23037 markings/sec, 1680 secs
lola: 53331447 markings, 598758579 edges, 31141 markings/sec, 1685 secs
lola: 53475361 markings, 600534763 edges, 28783 markings/sec, 1690 secs
lola: 53612554 markings, 602314690 edges, 27439 markings/sec, 1695 secs
lola: 53743488 markings, 604096666 edges, 26187 markings/sec, 1700 secs
lola: 53870515 markings, 605884469 edges, 25405 markings/sec, 1705 secs
lola: 53992863 markings, 607677992 edges, 24470 markings/sec, 1710 secs
lola: 54129649 markings, 609466038 edges, 27357 markings/sec, 1715 secs
lola: 54258422 markings, 611259450 edges, 25755 markings/sec, 1720 secs
lola: 54375834 markings, 613057259 edges, 23482 markings/sec, 1725 secs
lola: 54501785 markings, 614855989 edges, 25190 markings/sec, 1730 secs
lola: 54620024 markings, 616682889 edges, 23648 markings/sec, 1735 secs
lola: 54738198 markings, 618502492 edges, 23635 markings/sec, 1740 secs
lola: 54847788 markings, 620332036 edges, 21918 markings/sec, 1745 secs
lola: 55022863 markings, 622109154 edges, 35015 markings/sec, 1750 secs
lola: 55198353 markings, 623858517 edges, 35098 markings/sec, 1755 secs
lola: 55361452 markings, 625639440 edges, 32620 markings/sec, 1760 secs
lola: 55528165 markings, 627426757 edges, 33343 markings/sec, 1765 secs
lola: 55686014 markings, 629218774 edges, 31570 markings/sec, 1770 secs
lola: 55831660 markings, 631020075 edges, 29129 markings/sec, 1775 secs
lola: 55980347 markings, 632814072 edges, 29737 markings/sec, 1780 secs
lola: 56145547 markings, 634589592 edges, 33040 markings/sec, 1785 secs
lola: 56302234 markings, 636368133 edges, 31337 markings/sec, 1790 secs
lola: 56447277 markings, 638161451 edges, 29009 markings/sec, 1795 secs
lola: 56587387 markings, 639934561 edges, 28022 markings/sec, 1800 secs
lola: 56737924 markings, 641706277 edges, 30107 markings/sec, 1805 secs
lola: 56871815 markings, 643482462 edges, 26778 markings/sec, 1810 secs
lola: 57012451 markings, 645254362 edges, 28127 markings/sec, 1815 secs
lola: 57140645 markings, 647036105 edges, 25639 markings/sec, 1820 secs
lola: 57263077 markings, 648822087 edges, 24486 markings/sec, 1825 secs
lola: 57409174 markings, 650592873 edges, 29219 markings/sec, 1830 secs
lola: 57567501 markings, 652351160 edges, 31665 markings/sec, 1835 secs
lola: 57722852 markings, 654112826 edges, 31070 markings/sec, 1840 secs
lola: 57865310 markings, 655877505 edges, 28492 markings/sec, 1845 secs
lola: 58006918 markings, 657649749 edges, 28322 markings/sec, 1850 secs
lola: 58156702 markings, 659421392 edges, 29957 markings/sec, 1855 secs
lola: 58285972 markings, 661181648 edges, 25854 markings/sec, 1860 secs
lola: 58427424 markings, 662941501 edges, 28290 markings/sec, 1865 secs
lola: 58556920 markings, 664725549 edges, 25899 markings/sec, 1870 secs
lola: 58677080 markings, 666510991 edges, 24032 markings/sec, 1875 secs
lola: 58819006 markings, 668282058 edges, 28385 markings/sec, 1880 secs
lola: 58962996 markings, 670049444 edges, 28798 markings/sec, 1885 secs
lola: 59096470 markings, 671830462 edges, 26695 markings/sec, 1890 secs
lola: 59236005 markings, 673608047 edges, 27907 markings/sec, 1895 secs
lola: 59364283 markings, 675394813 edges, 25656 markings/sec, 1900 secs
lola: 59482454 markings, 677188933 edges, 23634 markings/sec, 1905 secs
lola: 59619518 markings, 678971744 edges, 27413 markings/sec, 1910 secs
lola: 59750196 markings, 680761670 edges, 26136 markings/sec, 1915 secs
lola: 59872877 markings, 682557353 edges, 24536 markings/sec, 1920 secs
lola: 59995804 markings, 684354100 edges, 24585 markings/sec, 1925 secs
lola: 60117292 markings, 686146958 edges, 24298 markings/sec, 1930 secs
lola: 60233168 markings, 687944473 edges, 23175 markings/sec, 1935 secs
lola: 60343944 markings, 689744753 edges, 22155 markings/sec, 1940 secs
lola: 60472691 markings, 691534736 edges, 25749 markings/sec, 1945 secs
lola: 60637825 markings, 693297589 edges, 33027 markings/sec, 1950 secs
lola: 60793685 markings, 695065442 edges, 31172 markings/sec, 1955 secs
lola: 60937782 markings, 696842138 edges, 28819 markings/sec, 1960 secs
lola: 61077031 markings, 698621689 edges, 27850 markings/sec, 1965 secs
lola: 61228402 markings, 700399203 edges, 30274 markings/sec, 1970 secs
lola: 61364938 markings, 702184167 edges, 27307 markings/sec, 1975 secs
lola: 61505634 markings, 703968662 edges, 28139 markings/sec, 1980 secs
lola: 61635545 markings, 705760969 edges, 25982 markings/sec, 1985 secs
lola: 61758339 markings, 707559714 edges, 24559 markings/sec, 1990 secs
lola: 61895996 markings, 709342588 edges, 27531 markings/sec, 1995 secs
lola: 62044147 markings, 711111605 edges, 29630 markings/sec, 2000 secs
lola: 62172670 markings, 712892645 edges, 25705 markings/sec, 2005 secs
lola: 62315578 markings, 714664471 edges, 28582 markings/sec, 2010 secs
lola: 62445495 markings, 716445406 edges, 25983 markings/sec, 2015 secs
lola: 62564758 markings, 718231577 edges, 23853 markings/sec, 2020 secs
lola: 62697227 markings, 720018766 edges, 26494 markings/sec, 2025 secs
lola: 62829864 markings, 721808504 edges, 26527 markings/sec, 2030 secs
lola: 62955223 markings, 723604419 edges, 25072 markings/sec, 2035 secs
lola: 63075884 markings, 725402037 edges, 24132 markings/sec, 2040 secs
lola: 63198804 markings, 727197614 edges, 24584 markings/sec, 2045 secs
lola: 63315447 markings, 728998374 edges, 23329 markings/sec, 2050 secs
lola: 63427796 markings, 730802143 edges, 22470 markings/sec, 2055 secs
lola: 63543337 markings, 732604356 edges, 23108 markings/sec, 2060 secs
lola: 63696353 markings, 734371531 edges, 30603 markings/sec, 2065 secs
lola: 63834247 markings, 736150296 edges, 27579 markings/sec, 2070 secs
lola: 63972991 markings, 737929286 edges, 27749 markings/sec, 2075 secs
lola: 64103585 markings, 739713683 edges, 26119 markings/sec, 2080 secs
lola: 64227339 markings, 741502333 edges, 24751 markings/sec, 2085 secs
lola: 64354516 markings, 743292843 edges, 25435 markings/sec, 2090 secs
lola: 64486971 markings, 745080201 edges, 26491 markings/sec, 2095 secs
lola: 64615309 markings, 746872724 edges, 25668 markings/sec, 2100 secs
lola: 64729726 markings, 748673268 edges, 22883 markings/sec, 2105 secs
lola: 64860486 markings, 750461460 edges, 26152 markings/sec, 2110 secs
lola: 64976223 markings, 752260741 edges, 23147 markings/sec, 2115 secs
lola: 65090873 markings, 754064843 edges, 22930 markings/sec, 2120 secs
lola: 65197347 markings, 755874342 edges, 21295 markings/sec, 2125 secs
lola: 65337235 markings, 757656188 edges, 27978 markings/sec, 2130 secs
lola: 65466811 markings, 759444329 edges, 25915 markings/sec, 2135 secs
lola: 65588449 markings, 761238555 edges, 24328 markings/sec, 2140 secs
lola: 65711763 markings, 763029798 edges, 24663 markings/sec, 2145 secs
lola: 65831441 markings, 764821541 edges, 23936 markings/sec, 2150 secs
lola: 65947736 markings, 766618263 edges, 23259 markings/sec, 2155 secs
lola: 66056857 markings, 768422216 edges, 21824 markings/sec, 2160 secs
lola: 66172959 markings, 770222955 edges, 23220 markings/sec, 2165 secs
lola: 66295618 markings, 772018548 edges, 24532 markings/sec, 2170 secs
lola: 66411124 markings, 773816727 edges, 23101 markings/sec, 2175 secs
lola: 66523281 markings, 775621255 edges, 22431 markings/sec, 2180 secs
lola: 66632377 markings, 777429620 edges, 21819 markings/sec, 2185 secs
lola: 66745688 markings, 779230355 edges, 22662 markings/sec, 2190 secs
lola: 66849707 markings, 781040879 edges, 20804 markings/sec, 2195 secs
lola: 66957931 markings, 782843615 edges, 21645 markings/sec, 2200 secs
lola: 67058891 markings, 784654500 edges, 20192 markings/sec, 2205 secs
lola: 67225101 markings, 786419941 edges, 33242 markings/sec, 2210 secs
lola: 67437358 markings, 788151040 edges, 42451 markings/sec, 2215 secs
lola: 67637957 markings, 789885139 edges, 40120 markings/sec, 2220 secs
lola: 67828713 markings, 791621838 edges, 38151 markings/sec, 2225 secs
lola: 68013035 markings, 793370736 edges, 36864 markings/sec, 2230 secs
lola: 68175579 markings, 795129001 edges, 32509 markings/sec, 2235 secs
lola: 68372934 markings, 796868913 edges, 39471 markings/sec, 2240 secs
lola: 68564824 markings, 798614380 edges, 38378 markings/sec, 2245 secs
lola: 68742418 markings, 800369469 edges, 35519 markings/sec, 2250 secs
lola: 68898826 markings, 802138567 edges, 31282 markings/sec, 2255 secs
lola: 69089088 markings, 803882035 edges, 38052 markings/sec, 2260 secs
lola: 69261300 markings, 805636929 edges, 34442 markings/sec, 2265 secs
lola: 69426062 markings, 807399654 edges, 32952 markings/sec, 2270 secs
lola: 69584409 markings, 809170203 edges, 31669 markings/sec, 2275 secs
lola: 69740362 markings, 810941226 edges, 31191 markings/sec, 2280 secs
lola: 69883720 markings, 812715983 edges, 28672 markings/sec, 2285 secs
lola: 70051204 markings, 814475585 edges, 33497 markings/sec, 2290 secs
lola: 70246195 markings, 816217665 edges, 38998 markings/sec, 2295 secs
lola: 70433320 markings, 817965309 edges, 37425 markings/sec, 2300 secs
lola: 70599356 markings, 819726667 edges, 33207 markings/sec, 2305 secs
lola: 70777755 markings, 821475120 edges, 35680 markings/sec, 2310 secs
lola: 70953898 markings, 823221842 edges, 35229 markings/sec, 2315 secs
lola: 71110174 markings, 824959930 edges, 31255 markings/sec, 2320 secs
lola: 71278894 markings, 826704790 edges, 33744 markings/sec, 2325 secs
lola: 71434650 markings, 828470948 edges, 31151 markings/sec, 2330 secs
lola: 71579646 markings, 830246652 edges, 28999 markings/sec, 2335 secs
lola: 71719441 markings, 832031244 edges, 27959 markings/sec, 2340 secs
lola: 71908177 markings, 833786653 edges, 37747 markings/sec, 2345 secs
lola: 72076178 markings, 835555169 edges, 33600 markings/sec, 2350 secs
lola: 72243375 markings, 837327040 edges, 33439 markings/sec, 2355 secs
lola: 72402242 markings, 839119058 edges, 31773 markings/sec, 2360 secs
lola: 72558092 markings, 840901657 edges, 31170 markings/sec, 2365 secs
lola: 72698835 markings, 842681907 edges, 28149 markings/sec, 2370 secs
lola: 72856160 markings, 844447438 edges, 31465 markings/sec, 2375 secs
lola: 73013066 markings, 846222026 edges, 31381 markings/sec, 2380 secs
lola: 73167640 markings, 847985051 edges, 30915 markings/sec, 2385 secs
lola: 73309814 markings, 849757292 edges, 28435 markings/sec, 2390 secs
lola: 73457689 markings, 851530981 edges, 29575 markings/sec, 2395 secs
lola: 73602230 markings, 853310837 edges, 28908 markings/sec, 2400 secs
lola: 73736931 markings, 855095540 edges, 26940 markings/sec, 2405 secs
lola: 73875812 markings, 856878155 edges, 27776 markings/sec, 2410 secs
lola: 74004279 markings, 858666583 edges, 25693 markings/sec, 2415 secs
lola: 74122401 markings, 860462270 edges, 23624 markings/sec, 2420 secs
lola: 74315194 markings, 862207456 edges, 38559 markings/sec, 2425 secs
lola: 74506754 markings, 863952524 edges, 38312 markings/sec, 2430 secs
lola: 74683405 markings, 865709349 edges, 35330 markings/sec, 2435 secs
lola: 74839508 markings, 867479192 edges, 31221 markings/sec, 2440 secs
lola: 75031175 markings, 869216989 edges, 38333 markings/sec, 2445 secs
lola: 75202239 markings, 870965708 edges, 34213 markings/sec, 2450 secs
lola: 75365983 markings, 872724020 edges, 32749 markings/sec, 2455 secs
lola: 75524030 markings, 874492070 edges, 31609 markings/sec, 2460 secs
lola: 75679817 markings, 876259290 edges, 31157 markings/sec, 2465 secs
lola: 75822982 markings, 878034009 edges, 28633 markings/sec, 2470 secs
lola: 75984220 markings, 879792119 edges, 32248 markings/sec, 2475 secs
lola: 76161730 markings, 881545550 edges, 35502 markings/sec, 2480 secs
lola: 76317945 markings, 883312337 edges, 31243 markings/sec, 2485 secs
lola: 76492861 markings, 885071794 edges, 34983 markings/sec, 2490 secs
lola: 76648787 markings, 886842399 edges, 31185 markings/sec, 2495 secs
lola: 76799953 markings, 888618144 edges, 30233 markings/sec, 2500 secs
lola: 76931322 markings, 890407108 edges, 26274 markings/sec, 2505 secs
lola: 77104643 markings, 892160816 edges, 34664 markings/sec, 2510 secs
lola: 77260239 markings, 893925455 edges, 31119 markings/sec, 2515 secs
lola: 77405506 markings, 895635636 edges, 29053 markings/sec, 2520 secs
lola: 77514685 markings, 897060371 edges, 21836 markings/sec, 2525 secs
lola: 77575166 markings, 897858296 edges, 12096 markings/sec, 2530 secs
lola: Child process aborted or communication problem between parent and child process
lola: RESULT
lola:
SUMMARY: no no yes no no no no yes no no no yes yes unknown no no
lola:
preliminary result: no no yes no no no no yes no no no yes yes unknown no no
lola: memory consumption: 104892 KB
lola: time consumption: 3170 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished

BK_STOP 1553900100445

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-32"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is QuasiCertifProtocol-COL-32, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r126-oct2-155274853300249"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-32.tgz
mv QuasiCertifProtocol-COL-32 execution
cd execution
if [ "LTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "LTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;