fond
Model Checking Contest 2019
9th edition, Prague, Czech Republic, April 7, 2019 (TOOLympics)
Execution of r110-oct2-155272242200053
Last Updated
Apr 15, 2019

About the Execution of 2018-Gold for NeoElection-COL-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
6175.000 3570013.00 3667906.00 498.70 TFFFFTTTFTFTTFF? normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fko/mcc2019-input.r110-oct2-155272242200053.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................
=====================================================================
Generated by BenchKit 2-3954
Executing tool win2018
Input is NeoElection-COL-6, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r110-oct2-155272242200053
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 268K
-rw-r--r-- 1 mcc users 3.9K Feb 12 02:53 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Feb 12 02:53 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.5K Feb 8 01:35 CTLFireability.txt
-rw-r--r-- 1 mcc users 20K Feb 8 01:34 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 104 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 342 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.6K Feb 5 00:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 10K Feb 5 00:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.1K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Feb 4 07:00 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 20K Feb 4 07:00 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Feb 1 00:41 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 14K Feb 1 00:41 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 4 22:21 UpperBounds.xml

-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 98K Mar 10 17:31 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-6-LTLCardinality-00
FORMULA_NAME NeoElection-COL-6-LTLCardinality-01
FORMULA_NAME NeoElection-COL-6-LTLCardinality-02
FORMULA_NAME NeoElection-COL-6-LTLCardinality-03
FORMULA_NAME NeoElection-COL-6-LTLCardinality-04
FORMULA_NAME NeoElection-COL-6-LTLCardinality-05
FORMULA_NAME NeoElection-COL-6-LTLCardinality-06
FORMULA_NAME NeoElection-COL-6-LTLCardinality-07
FORMULA_NAME NeoElection-COL-6-LTLCardinality-08
FORMULA_NAME NeoElection-COL-6-LTLCardinality-09
FORMULA_NAME NeoElection-COL-6-LTLCardinality-10
FORMULA_NAME NeoElection-COL-6-LTLCardinality-11
FORMULA_NAME NeoElection-COL-6-LTLCardinality-12
FORMULA_NAME NeoElection-COL-6-LTLCardinality-13
FORMULA_NAME NeoElection-COL-6-LTLCardinality-14
FORMULA_NAME NeoElection-COL-6-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1553031719874

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-6 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ NeoElection-COL-6 @ 3567 seconds
lola: LoLA will run for 3567 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 13363/65536 symbol table entries, 4016 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8533 transitions, 1204 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 2597 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-6-LTLCardinality.task
lola: LP says that atomic proposition is always true: (p4627 + p4628 + p4629 + p4630 + p4631 + p4632 + p4633 <= p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795)
lola: place invariant simplifies atomic proposition
lola: before: (p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 <= p2100 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2107 + p2108 + p2109 + p2110 + p2111 + p2099 + p2112 + p2098 + p2097 + p2113 + p2096 + p2114 + p2095 + p2115 + p2094 + p2116 + p2093 + p2117 + p2118 + p2119 + p2092 + p2091 + p2090 + p2089 + p2120 + p2088 + p2087 + p2121 + p2086 + p2085 + p2122 + p2084 + p2083 + p2123 + p2082 + p2081 + p2124 + p2080 + p2079 + p2125 + p2078 + p2077 + p2126 + p2076 + p2075 + p2127 + p2128 + p2129 + p2074 + p2073 + p2072 + p2130 + p2071 + p2131 + p2070 + p2132 + p2069 + p2133 + p2068 + p2134 + p2067 + p2135 + p2136 + p2066 + p2137 + p2138 + p2139 + p2140 + p2141 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2065 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2156 + p2157 + p2158 + p2159 + p2160 + p2161 + p2064 + p2162 + p2063 + p2163 + p2164 + p2062 + p2165 + p2166 + p2061 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2060 + p2059 + p2058 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351)
lola: after: (0 <= 30)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p4619 + p4618 + p4617 + p4616 + p4615 + p4614 + p4613)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4619 + p4618 + p4617 + p4616 + p4615 + p4614 + p4613)
lola: after: (3 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p4648 + p4649 + p4650 + p4651 + p4652 + p4653 + p4654 + p4655 + p4656 + p4657 + p4658 + p4659 + p4660 + p4662 + p4663 + p4664 + p4665 + p4666 + p4667 + p4668 + p4669 + p4670 + p4671 + p4672 + p4673 + p4674 + p4676 + p4677 + p4678 + p4679 + p4680 + p4681 + p4682 + p4683 + p4684 + p4685 + p4686 + p4687 + p4688 + p4690 + p4691 + p4692 + p4693 + p4694 + p4695 + p4696 + p4697 + p4698 + p4699 + p4700 + p4701 + p4702 + p4704 + p4705 + p4706 + p4707 + p4708 + p4709 + p4710 + p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4718 + p4719 + p4744 + p4743 + p4742 + p4720 + p4721 + p4722 + p4723 + p4724 + p4725 + p4726 + p4727 + p4728 + p4729 + p4741 + p4740 + p4739 + p4738 + p4737 + p4736 + p4735 + p4734 + p4730 + p4733 + p4732 + p4731 + p4745 + p4717 + p4703 + p4689 + p4675 + p4661 <= p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620)
lola: after: (6 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4828 + p4825 + p4822 + p4819 + p4816 + p4813 + p4810 + p4809 + p4811 + p4812 + p4814 + p4815 + p4817 + p4818 + p4820 + p4821 + p4823 + p4824 + p4826 + p4827 + p4829)
lola: after: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= 6)
lola: LP says that atomic proposition is always true: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p2100 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2107 + p2108 + p2109 + p2110 + p2111 + p2099 + p2112 + p2098 + p2097 + p2113 + p2096 + p2114 + p2095 + p2115 + p2094 + p2116 + p2093 + p2117 + p2118 + p2119 + p2092 + p2091 + p2090 + p2089 + p2120 + p2088 + p2087 + p2121 + p2086 + p2085 + p2122 + p2084 + p2083 + p2123 + p2082 + p2081 + p2124 + p2080 + p2079 + p2125 + p2078 + p2077 + p2126 + p2076 + p2075 + p2127 + p2128 + p2129 + p2074 + p2073 + p2072 + p2130 + p2071 + p2131 + p2070 + p2132 + p2069 + p2133 + p2068 + p2134 + p2067 + p2135 + p2136 + p2066 + p2137 + p2138 + p2139 + p2140 + p2141 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2065 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2156 + p2157 + p2158 + p2159 + p2160 + p2161 + p2064 + p2162 + p2063 + p2163 + p2164 + p2062 + p2165 + p2166 + p2061 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2060 + p2059 + p2058 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351)
lola: after: (0 <= 27)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 <= p4828 + p4825 + p4822 + p4819 + p4816 + p4813 + p4810 + p4809 + p4811 + p4812 + p4814 + p4815 + p4817 + p4818 + p4820 + p4821 + p4823 + p4824 + p4826 + p4827 + p4829)
lola: after: (0 <= 6)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4459 + p4460 + p4462 + p4463 + p4465 + p4466 + p4468 + p4469 + p4471 + p4472 + p4474 + p4475 + p4477 + p4478 + p4480 + p4481 + p4483 + p4484 + p4486 + p4487 + p4489 + p4490 + p4492 + p4493 + p4495 + p4496 + p4498 + p4499 + p4501 + p4502 + p4504 + p4505 + p4507 + p4508 + p4510 + p4511 + p4513 + p4514 + p4516 + p4517 + p4519 + p4520 + p4522 + p4523 + p4525 + p4526 + p4528 + p4529 + p4531 + p4532 + p4534 + p4535 + p4537 + p4538 + p4540 + p4541 + p4543 + p4544 + p4546 + p4547 + p4549 + p4550 + p4552 + p4553 + p4555 + p4556 + p4558 + p4559 + p4561 + p4562 + p4564 + p4565 + p4567 + p4568 + p4570 + p4571 + p4573 + p4574 + p4576 + p4577 + p4579 + p4580 + p4582 + p4583 + p4585 + p4586 + p4588 + p4589 + p4591 + p4592 + p4594 + p4595 + p4597 + p4598 + p4600 + p4601 + p4603 + p4604 + p4605 + p4602 + p4599 + p4596 + p4593 + p4590 + p4587 + p4584 + p4581 + p4578 + p4575 + p4572 + p4569 + p4566 + p4563 + p4560 + p4557 + p4554 + p4551 + p4548 + p4545 + p4542 + p4539 + p4536 + p4533 + p4530 + p4527 + p4524 + p4521 + p4518 + p4515 + p4512 + p4509 + p4506 + p4503 + p4500 + p4497 + p4494 + p4491 + p4488 + p4485 + p4482 + p4479 + p4476 + p4473 + p4470 + p4467 + p4464 + p4461)
lola: after: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= 36)
lola: LP says that atomic proposition is always true: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= 36)
lola: LP says that atomic proposition is always true: (p4417 + p4418 + p4419 + p4420 + p4421 + p4422 + p4423 + p4424 + p4425 + p4426 + p4427 + p4428 + p4429 + p4430 + p4431 + p4432 + p4433 + p4434 + p4435 + p4436 + p4437 + p4438 + p4439 + p4440 + p4441 + p4442 + p4443 + p4444 + p4445 + p4446 + p4447 + p4448 + p4449 + p4450 + p4451 + p4452 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458 <= p4410 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4018 + p4011 + p4004 + p4003 + p4002 + p4001 + p4000 + p4200 + p2996 + p2995 + p4207 + p4208 + p4209 + p4210 + p4211 + p4212 + p4213 + p4214 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p4221 + p2982 + p4228 + p2975 + p2968 + p2961 + p2954 + p2953 + p4235 + p2952 + p2951 + p2950 + p4242 + p2949 + p2948 + p2947 + p4249 + p4250 + p4251 + p4252 + p4253 + p4254 + p4255 + p4256 + p2940 + p4263 + p2933 + p2926 + p2919 + p2912 + p2911 + p4270 + p2910 + p4277 + p2909 + p2908 + p2907 + p2906 + p2905 + p4284 + p4291 + p4292 + p4293 + p4294 + p4295 + p4296 + p4297 + p4298 + p4305 + p2898 + p4312 + p2891 + p4319 + p2884 + p2877 + p2870 + p2869 + p2868 + p2867 + p4326 + p2866 + p2865 + p2864 + p2863 + p2856 + p4333 + p4334 + p3003 + p4335 + p4336 + p4337 + p2849 + p4338 + p2842 + p4339 + p2835 + p2828 + p4340 + p2827 + p3010 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2814 + p4347 + p3017 + p2807 + p2800 + p4354 + p3024 + p2793 + p4361 + p2786 + p2785 + p3031 + p2784 + p3032 + p2783 + p3033 + p2782 + p3034 + p2781 + p3035 + p2780 + p3036 + p4368 + p3037 + p2779 + p3038 + p2772 + p2765 + p2758 + p2751 + p4375 + p2744 + p4376 + p3045 + p4377 + p2743 + p4378 + p2742 + p4379 + p2741 + p2740 + p2739 + p2738 + p2737 + p2730 + p2723 + p2716 + p2709 + p2702 + p4380 + p4381 + p2701 + p4382 + p2700 + p3052 + p4389 + p3059 + p2699 + p2698 + p2697 + p2696 + p2695 + p4396 + p2688 + p3066 + p2681 + p2674 + p3999 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p2667 + p3998 + p3997 + p2660 + p3990 + p2659 + p3087 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p3094 + p3983 + p2646 + p3976 + p4403 + p2639 + p3969 + p2632 + p3962 + p3961 + p3960 + p3101 + p3959 + p3958 + p3957 + p2625 + p3956 + p3955 + p3108 + p2618 + p2617 + p3948 + p2616 + p2615 + p2614 + p3115 + p3116 + p3117 + p3118 + p3119 + p3120 + p3121 + p3122 + p2613 + p2612 + p2611 + p3941 + p2604 + p3934 + p3129 + p3927 + p3920 + p3919 + p3136 + p3918 + p3917 + p3916 + p3915 + p3914 + p3913 + p3906 + p3143 + p3150 + p2597 + p2590 + p2583 + p2576 + p3157 + p3158 + p3159 + p2575 + p3160 + p3161 + p3162 + p2574 + p3163 + p3164 + p2573 + p2572 + p2571 + p2570 + p2569 + p3899 + p3171 + p2562 + p3892 + p3178 + p2555 + p3885 + p2548 + p3878 + p3877 + p3185 + p3876 + p3875 + p3874 + p3873 + p2541 + p3872 + p3192 + p3871 + p2534 + p2533 + p3864 + p2532 + p2531 + p3199 + p2530 + p2529 + p2528 + p2527 + p3857 + p2520 + p3850 + p2513 + p3843 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p2506 + p3836 + p3835 + p3834 + p3833 + p3832 + p3831 + p3830 + p3213 + p3829 + p3822 + p3815 + p3808 + p3801 + p3220 + p3227 + p2499 + p2492 + p3234 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2478 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p2471 + p2464 + p3794 + p3793 + p3792 + p3255 + p3791 + p3790 + p3789 + p2457 + p3788 + p3787 + p2450 + p3780 + p2449 + p3262 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p3773 + p3269 + p2436 + p3766 + p3276 + p2429 + p3759 + p2422 + p3752 + p3751 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3750 + p3749 + p3748 + p3747 + p2415 + p3746 + p3297 + p3745 + p2408 + p2407 + p3738 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p3731 + p3724 + p3717 + p3710 + p3709 + p3708 + p3707 + p3706 + p3304 + p3705 + p3704 + p3703 + p2394 + p3311 + p2387 + p3318 + p2380 + p2373 + p2366 + p2365 + p3696 + p2364 + p3325 + p3326 + p3327 + p3328 + p3329 + p2363 + p3330 + p3331 + p2362 + p3332 + p2361 + p2360 + p2359 + p3689 + p2352 + p3682 + p3675 + p3339 + p3668 + p3667 + p3666 + p3665 + p3664 + p3663 + p3662 + p3661 + p3654 + p3647 + p3640 + p3633 + p3346 + p3626 + p3625 + p3624 + p3623 + p3622 + p3621 + p3620 + p3619 + p3612 + p3353 + p3605 + p3360 + p3598 + p3591 + p3584 + p3583 + p3582 + p3581 + p3580 + p3579 + p3367 + p3578 + p3368 + p3577 + p3369 + p3570 + p3563 + p3370 + p3371 + p3556 + p3372 + p3549 + p3373 + p3542 + p3374 + p3541 + p3540 + p3539 + p3538 + p3537 + p3536 + p3535 + p3528 + p3521 + p3514 + p3381 + p3507 + p3500 + p3388 + p3499 + p3498 + p3497 + p3496 + p3495 + p3494 + p3395 + p3493 + p3486 + p3479 + p3472 + p3465 + p3458 + p3457 + p3456 + p3455 + p3454 + p3453 + p3452 + p3451 + p3444 + p3437 + p3430 + p3423 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p3410 + p3409 + p3402 + p3401 + p3400 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3417 + p3418 + p3419 + p3420 + p3421 + p3422 + p3424 + p3425 + p3426 + p3427 + p3428 + p3429 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3438 + p3439 + p3440 + p3441 + p3442 + p3443 + p3445 + p3446 + p3447 + p3448 + p3449 + p3450 + p3459 + p3460 + p3461 + p3462 + p3463 + p3464 + p3399 + p3466 + p3398 + p3467 + p3468 + p3469 + p3470 + p3471 + p3397 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3396 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3394 + p3393 + p3392 + p3391 + p3390 + p3389 + p3387 + p3386 + p3385 + p3384 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3383 + p3508 + p3509 + p3382 + p3380 + p3510 + p3511 + p3512 + p3513 + p3379 + p3515 + p3516 + p3517 + p3518 + p3519 + p3520 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3378 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3377 + p3376 + p3375 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3550 + p3551 + p3552 + p3553 + p3554 + p3555 + p3557 + p3558 + p3559 + p3560 + p3561 + p3562 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3366 + p3365 + p3364 + p3585 + p3586 + p3587 + p3588 + p3589 + p3590 + p3592 + p3593 + p3594 + p3595 + p3596 + p3597 + p3363 + p3599 + p3362 + p3361 + p3359 + p3358 + p3357 + p3356 + p3355 + p3354 + p3600 + p3601 + p3602 + p3603 + p3604 + p3606 + p3607 + p3608 + p3609 + p3610 + p3611 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3352 + p3351 + p3350 + p3349 + p3627 + p3628 + p3629 + p3348 + p3347 + p3630 + p3631 + p3632 + p3634 + p3635 + p3636 + p3637 + p3638 + p3639 + p3345 + p3344 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3648 + p3649 + p3650 + p3651 + p3652 + p3653 + p3655 + p3656 + p3657 + p3658 + p3659 + p3660 + p3343 + p3342 + p3341 + p3340 + p3669 + p3670 + p3671 + p3672 + p3673 + p3674 + p3676 + p3677 + p3678 + p3338 + p3679 + p3337 + p3680 + p3681 + p3336 + p3683 + p3335 + p3684 + p2353 + p3685 + p2354 + p3686 + p2355 + p3687 + p2356 + p3688 + p2357 + p3334 + p2358 + p3690 + p3691 + p3333 + p3692 + p3693 + p3694 + p3695 + p3324 + p3323 + p3322 + p3697 + p3321 + p3698 + p2367 + p3699 + p2368 + p2369 + p2370 + p2371 + p2372 + p3320 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p3319 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p3317 + p2388 + p2389 + p3316 + p3315 + p2390 + p2391 + p3314 + p2392 + p3313 + p2393 + p3312 + p3310 + p2395 + p2396 + p2397 + p2398 + p2399 + p3309 + p3308 + p3307 + p3306 + p3700 + p3701 + p3702 + p3305 + p3303 + p3302 + p3301 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3300 + p3718 + p3719 + p3720 + p3721 + p3722 + p3723 + p3725 + p3726 + p3727 + p3728 + p3729 + p3730 + p2400 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3739 + p3299 + p2409 + p3740 + p3741 + p2410 + p3742 + p2411 + p3743 + p2412 + p3744 + p2413 + p3298 + p2414 + p3296 + p3295 + p3294 + p2416 + p3293 + p2417 + p3292 + p2418 + p2419 + p3291 + p3282 + p2420 + p3281 + p2421 + p3753 + p3280 + p3754 + p2423 + p3755 + p2424 + p3756 + p2425 + p3757 + p2426 + p3758 + p2427 + p3279 + p2428 + p3278 + p3760 + p3761 + p2430 + p3762 + p2431 + p3277 + p3763 + p2432 + p3275 + p3764 + p2433 + p3274 + p3765 + p2434 + p3273 + p3272 + p2435 + p3271 + p3767 + p3270 + p3268 + p3768 + p2437 + p3769 + p2438 + p2439 + p3770 + p3771 + p2440 + p3772 + p2441 + p2442 + p3774 + p3267 + p3775 + p3266 + p3776 + p3265 + p3777 + p3778 + p3264 + p3779 + p3263 + p3261 + p3781 + p3260 + p3782 + p2451 + p3783 + p2452 + p3784 + p2453 + p3785 + p2454 + p3786 + p2455 + p2456 + p3259 + p3258 + p3257 + p2458 + p2459 + p3256 + p2460 + p3254 + p2461 + p3253 + p2462 + p2463 + p3795 + p3252 + p3796 + p2465 + p3797 + p2466 + p3798 + p2467 + p3799 + p2468 + p2469 + p2470 + p3251 + p2472 + p2473 + p3250 + p2474 + p2475 + p3249 + p2476 + p2477 + p3240 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p3239 + p3238 + p3237 + p3236 + p3235 + p3233 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p3232 + p3231 + p3230 + p3229 + p3228 + p3226 + p3225 + p3224 + p3223 + p3222 + p3221 + p3219 + p3218 + p3217 + p3800 + p3802 + p3803 + p3804 + p3805 + p3806 + p3807 + p3216 + p3809 + p3810 + p3811 + p3812 + p3813 + p3814 + p3215 + p3816 + p3817 + p3818 + p3819 + p3820 + p3821 + p3214 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3212 + p3211 + p2500 + p2501 + p3210 + p2502 + p3209 + p2503 + p3208 + p2504 + p2505 + p3837 + p3207 + p3838 + p2507 + p3839 + p2508 + p2509 + p3840 + p3841 + p2510 + p3842 + p2511 + p2512 + p3844 + p3845 + p2514 + p3846 + p2515 + p3847 + p2516 + p3848 + p2517 + p3849 + p2518 + p2519 + p3851 + p3852 + p2521 + p3853 + p2522 + p3854 + p2523 + p3855 + p2524 + p3856 + p2525 + p2526 + p3858 + p3859 + p3860 + p3861 + p3862 + p3198 + p3863 + p3197 + p3196 + p3195 + p3865 + p3194 + p3866 + p2535 + p3867 + p2536 + p3868 + p2537 + p3869 + p2538 + p2539 + p3870 + p3193 + p2540 + p3191 + p3190 + p3189 + p2542 + p3188 + p2543 + p3187 + p2544 + p3186 + p2545 + p3184 + p2546 + p3183 + p2547 + p3879 + p3182 + p2549 + p3880 + p3881 + p2550 + p3882 + p2551 + p3883 + p2552 + p3884 + p2553 + p3181 + p2554 + p3886 + p3180 + p3887 + p2556 + p3888 + p2557 + p3179 + p3889 + p2558 + p3177 + p2559 + p3176 + p3175 + p3890 + p3891 + p2560 + p3174 + p2561 + p3173 + p3893 + p3172 + p3170 + p3894 + p2563 + p3895 + p2564 + p3896 + p2565 + p3897 + p2566 + p3898 + p2567 + p3169 + p2568 + p3168 + p3167 + p3166 + p3165 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p3156 + p2584 + p2585 + p2586 + p2587 + p2588 + p2589 + p3155 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p3154 + p2598 + p2599 + p3153 + p3152 + p3151 + p3149 + p3148 + p3147 + p3146 + p3145 + p3144 + p3142 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3907 + p3908 + p3909 + p3910 + p3911 + p3912 + p3141 + p3140 + p3139 + p3138 + p3137 + p3135 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3134 + p3928 + p3929 + p3133 + p3132 + p3131 + p3130 + p3930 + p3931 + p2600 + p3932 + p2601 + p3933 + p2602 + p3128 + p2603 + p3935 + p3127 + p3936 + p2605 + p3937 + p2606 + p3938 + p2607 + p3939 + p2608 + p2609 + p3940 + p3126 + p2610 + p3942 + p3125 + p3943 + p3124 + p3944 + p3123 + p3945 + p3114 + p3946 + p3113 + p3947 + p3112 + p3111 + p3110 + p3949 + p3109 + p2619 + p3950 + p3951 + p2620 + p3952 + p2621 + p3953 + p2622 + p3954 + p2623 + p3107 + p2624 + p3106 + p3105 + p3104 + p2626 + p3103 + p2627 + p3102 + p2628 + p2629 + p3100 + p4409 + p2630 + p4408 + p2631 + p3963 + p4407 + p3964 + p2633 + p3965 + p2634 + p3966 + p2635 + p3967 + p2636 + p3968 + p2637 + p4406 + p2638 + p4405 + p3970 + p3971 + p2640 + p3972 + p2641 + p4404 + p3973 + p2642 + p4402 + p3974 + p2643 + p4401 + p3975 + p2644 + p4400 + p3099 + p2645 + p3098 + p3977 + p3097 + p3096 + p3978 + p2647 + p3979 + p2648 + p2649 + p3980 + p3981 + p2650 + p3982 + p2651 + p3095 + p2652 + p3984 + p3093 + p3985 + p3092 + p3986 + p3091 + p3987 + p3090 + p3988 + p3089 + p3989 + p3088 + p3086 + p3085 + p3991 + p3084 + p3992 + p2661 + p3993 + p2662 + p3994 + p2663 + p3995 + p2664 + p3996 + p2665 + p3083 + p2666 + p3082 + p3081 + p3072 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p3071 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p3070 + p2682 + p2683 + p3069 + p2684 + p3068 + p2685 + p4399 + p2686 + p3067 + p2687 + p4398 + p4397 + p3065 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p3064 + p4395 + p3063 + p4394 + p3062 + p4393 + p3061 + p4392 + p3060 + p4391 + p4390 + p3058 + p3057 + p4388 + p3056 + p4387 + p3055 + p4386 + p3054 + p4385 + p3053 + p4384 + p4383 + p3051 + p3050 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p3049 + p3048 + p3047 + p3046 + p3044 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p3043 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p4374 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p3042 + p2766 + p2767 + p4373 + p2768 + p3041 + p2769 + p4372 + p3040 + p2770 + p2771 + p4371 + p4370 + p3039 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p4369 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p3030 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p4360 + p2794 + p2795 + p2796 + p2797 + p2798 + p2799 + p3029 + p3028 + p4359 + p3027 + p4358 + p3026 + p4357 + p3025 + p4356 + p4355 + p3023 + p3022 + p4353 + p3021 + p4352 + p3020 + p4351 + p4350 + p3019 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p3018 + p2808 + p2809 + p4349 + p4348 + p3016 + p3015 + p4346 + p3014 + p2810 + p2811 + p2812 + p2813 + p4345 + p2815 + p2816 + p2817 + p2818 + p2819 + p2820 + p3013 + p4344 + p3012 + p4343 + p3011 + p4342 + p4341 + p3009 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p3008 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p3007 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p3006 + p2850 + p2851 + p3005 + p2852 + p3004 + p2853 + p3002 + p2854 + p3001 + p2855 + p4332 + p3000 + p4331 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p4330 + p4329 + p4328 + p4327 + p4325 + p4324 + p4323 + p4322 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p4321 + p2878 + p2879 + p2880 + p2881 + p2882 + p2883 + p4320 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p4318 + p2892 + p2893 + p4317 + p2894 + p4316 + p2895 + p4315 + p2896 + p4314 + p2897 + p4313 + p4311 + p4310 + p2899 + p4309 + p4308 + p4307 + p4306 + p4304 + p4303 + p4302 + p4301 + p4300 + p4299 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2900 + p2901 + p2902 + p2903 + p2904 + p4283 + p4282 + p4281 + p4280 + p4279 + p4278 + p4276 + p4275 + p4274 + p4273 + p4272 + p4271 + p4269 + p4268 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p4267 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p4266 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p4265 + p2934 + p2935 + p4264 + p2936 + p4262 + p2937 + p4261 + p2938 + p4260 + p2939 + p4259 + p4258 + p4257 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p4248 + p4247 + p4246 + p4245 + p4244 + p4243 + p4241 + p4240 + p4239 + p4238 + p4237 + p4236 + p4234 + p4233 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p4232 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p4231 + p2969 + p2970 + p2971 + p2972 + p2973 + p2974 + p4230 + p2976 + p2977 + p4229 + p2978 + p4227 + p2979 + p4226 + p4225 + p2980 + p2981 + p4224 + p4223 + p4222 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p4220 + p4219 + p4218 + p4217 + p4216 + p4215 + p4206 + p4205 + p2997 + p2998 + p2999 + p4204 + p4203 + p4202 + p4201 + p4005 + p4006 + p4007 + p4008 + p4009 + p4010 + p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4019 + p4020 + p4021 + p4022 + p4023 + p4024 + p4026 + p4027 + p4028 + p4029 + p4030 + p4031 + p4033 + p4034 + p4035 + p4036 + p4037 + p4038 + p4047 + p4048 + p4049 + p4050 + p4051 + p4052 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4068 + p4069 + p4070 + p4071 + p4072 + p4073 + p4075 + p4076 + p4077 + p4078 + p4079 + p4080 + p4089 + p4090 + p4091 + p4092 + p4093 + p4094 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p4103 + p4104 + p4105 + p4106 + p4107 + p4108 + p4110 + p4111 + p4112 + p4113 + p4114 + p4115 + p4117 + p4118 + p4119 + p4120 + p4121 + p4122 + p4131 + p4132 + p4133 + p4134 + p4135 + p4136 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p4145 + p4146 + p4147 + p4148 + p4149 + p4150 + p4152 + p4153 + p4154 + p4155 + p4156 + p4157 + p4159 + p4160 + p4161 + p4162 + p4163 + p4164 + p4173 + p4174 + p4175 + p4176 + p4177 + p4178 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p4187 + p4188 + p4189 + p4190 + p4191 + p4192 + p4194 + p4195 + p4196 + p4197 + p4198 + p4199)
lola: after: (2 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4018 + p4011 + p4004 + p4003 + p4002 + p4001 + p4000 + p4200 + p2996 + p2995 + p4207 + p4208 + p4209 + p4210 + p4211 + p4212 + p4213 + p4214 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p4221 + p2982 + p4228 + p2975 + p2968 + p2961 + p2954 + p2953 + p4235 + p2952 + p2951 + p2950 + p4242 + p2949 + p2948 + p2947 + p4249 + p4250 + p4251 + p4252 + p4253 + p4254 + p4255 + p4256 + p2940 + p4263 + p2933 + p2926 + p2919 + p2912 + p2911 + p4270 + p2910 + p4277 + p2909 + p2908 + p2907 + p2906 + p2905 + p4284 + p4291 + p4292 + p4293 + p4294 + p4295 + p4296 + p4297 + p4298 + p4305 + p2898 + p4312 + p2891 + p4319 + p2884 + p2877 + p2870 + p2869 + p2868 + p2867 + p4326 + p2866 + p2865 + p2864 + p2863 + p2856 + p4333 + p4334 + p3003 + p4335 + p4336 + p4337 + p2849 + p4338 + p2842 + p4339 + p2835 + p2828 + p4340 + p2827 + p3010 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2814 + p4347 + p3017 + p2807 + p2800 + p4354 + p3024 + p2793 + p4361 + p2786 + p2785 + p3031 + p2784 + p3032 + p2783 + p3033 + p2782 + p3034 + p2781 + p3035 + p2780 + p3036 + p4368 + p3037 + p2779 + p3038 + p2772 + p2765 + p2758 + p2751 + p4375 + p2744 + p4376 + p3045 + p4377 + p2743 + p4378 + p2742 + p4379 + p2741 + p2740 + p2739 + p2738 + p2737 + p2730 + p2723 + p2716 + p2709 + p2702 + p4380 + p4381 + p2701 + p4382 + p2700 + p3052 + p4389 + p3059 + p2699 + p2698 + p2697 + p2696 + p2695 + p4396 + p2688 + p3066 + p2681 + p2674 + p3999 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p2667 + p3998 + p3997 + p2660 + p3990 + p2659 + p3087 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p3094 + p3983 + p2646 + p3976 + p4403 + p2639 + p3969 + p2632 + p3962 + p3961 + p3960 + p3101 + p3959 + p3958 + p3957 + p2625 + p3956 + p3955 + p3108 + p2618 + p2617 + p3948 + p2616 + p2615 + p2614 + p3115 + p3116 + p3117 + p3118 + p3119 + p3120 + p3121 + p3122 + p2613 + p2612 + p2611 + p3941 + p2604 + p3934 + p3129 + p3927 + p3920 + p3919 + p3136 + p3918 + p3917 + p3916 + p3915 + p3914 + p3913 + p3906 + p3143 + p3150 + p2597 + p2590 + p2583 + p2576 + p3157 + p3158 + p3159 + p2575 + p3160 + p3161 + p3162 + p2574 + p3163 + p3164 + p2573 + p2572 + p2571 + p2570 + p2569 + p3899 + p3171 + p2562 + p3892 + p3178 + p2555 + p3885 + p2548 + p3878 + p3877 + p3185 + p3876 + p3875 + p3874 + p3873 + p2541 + p3872 + p3192 + p3871 + p2534 + p2533 + p3864 + p2532 + p2531 + p3199 + p2530 + p2529 + p2528 + p2527 + p3857 + p2520 + p3850 + p2513 + p3843 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p2506 + p3836 + p3835 + p3834 + p3833 + p3832 + p3831 + p3830 + p3213 + p3829 + p3822 + p3815 + p3808 + p3801 + p3220 + p3227 + p2499 + p2492 + p3234 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2478 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p2471 + p2464 + p3794 + p3793 + p3792 + p3255 + p3791 + p3790 + p3789 + p2457 + p3788 + p3787 + p2450 + p3780 + p2449 + p3262 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p3773 + p3269 + p2436 + p3766 + p3276 + p2429 + p3759 + p2422 + p3752 + p3751 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3750 + p3749 + p3748 + p3747 + p2415 + p3746 + p3297 + p3745 + p2408 + p2407 + p3738 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p3731 + p3724 + p3717 + p3710 + p3709 + p3708 + p3707 + p3706 + p3304 + p3705 + p3704 + p3703 + p2394 + p3311 + p2387 + p3318 + p2380 + p2373 + p2366 + p2365 + p3696 + p2364 + p3325 + p3326 + p3327 + p3328 + p3329 + p2363 + p3330 + p3331 + p2362 + p3332 + p2361 + p2360 + p2359 + p3689 + p2352 + p3682 + p3675 + p3339 + p3668 + p3667 + p3666 + p3665 + p3664 + p3663 + p3662 + p3661 + p3654 + p3647 + p3640 + p3633 + p3346 + p3626 + p3625 + p3624 + p3623 + p3622 + p3621 + p3620 + p3619 + p3612 + p3353 + p3605 + p3360 + p3598 + p3591 + p3584 + p3583 + p3582 + p3581 + p3580 + p3579 + p3367 + p3578 + p3368 + p3577 + p3369 + p3570 + p3563 + p3370 + p3371 + p3556 + p3372 + p3549 + p3373 + p3542 + p3374 + p3541 + p3540 + p3539 + p3538 + p3537 + p3536 + p3535 + p3528 + p3521 + p3514 + p3381 + p3507 + p3500 + p3388 + p3499 + p3498 + p3497 + p3496 + p3495 + p3494 + p3395 + p3493 + p3486 + p3479 + p3472 + p3465 + p3458 + p3457 + p3456 + p3455 + p3454 + p3453 + p3452 + p3451 + p3444 + p3437 + p3430 + p3423 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p3410 + p3409 + p3402)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1900 + p1901 + p1902 + p1903 + p1899 + p1898 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1819 + p1818 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1817 + p1816 + p1815 + p1814 + p1777 + p1776 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1775 + p1774 + p1773 + p1772 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p97 + p96 + p95 + p94 + p93 + p92 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p55 + p54 + p53 + p52 + p51 + p50 + p979 + p978 + p977 + p976 + p975 + p974 + p13 + p12 + p11 + p10 + p937 + p936 + p935 + p934 + p933 + p932 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p895 + p894 + p893 + p892 + p891 + p890 + p853 + p852 + p851 + p850 + p849 + p848 + p811 + p810 + p809 + p808 + p807 + p806 + p1483 + p1482 + p1481 + p1480 + p1479 + p1478 + p1441 + p1440 + p1439 + p1438 + p1437 + p1436 + p8 + p9 + p769 + p768 + p767 + p766 + p765 + p764 + p727 + p726 + p725 + p724 + p723 + p722 + p1399 + p1398 + p1397 + p1396 + p1395 + p1394 + p1357 + p1356 + p1355 + p1354 + p1353 + p1352 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p685 + p684 + p683 + p682 + p681 + p680 + p643 + p642 + p641 + p640 + p639 + p638 + p601 + p600 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p599 + p598 + p597 + p596 + p559 + p558 + p557 + p556 + p555 + p554 + p517 + p516 + p515 + p514 + p513 + p512 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1105 + p1104 + p1103 + p1102 + p1101 + p1100 + p475 + p474 + p473 + p472 + p471 + p470 + p433 + p432 + p431 + p430 + p429 + p428 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p391 + p390 + p389 + p388 + p387 + p386 + p349 + p348 + p347 + p2024 + p346 + p2025 + p345 + p2026 + p344 + p307 + p2027 + p306 + p2028 + p2029 + p305 + p304 + p303 + p302 + p265 + p264 + p263 + p262 + p261 + p260 + p223 + p222 + p221 + p220 + p219 + p218 + p181 + p180 + p179 + p178 + p177 + p176 + p134 + p135 + p136 + p137 + p138 + p139 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p133 + p132 + p170 + p171 + p172 + p173 + p174 + p175 + p131 + p130 + p129 + p128 + p127 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p116 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p115 + p114 + p113 + p112 + p111 + p110 + p109 + p108 + p107 + p106 + p105 + p104 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p103 + p102 + p101 + p100 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p224 + p225 + p226 + p227 + p228 + p229 + p2057 + p2056 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p2055 + p2054 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p2053 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p2052 + p2051 + p2050 + p2049 + p2048 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p2047 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p2046 + p2045 + p2044 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p2043 + p2042 + p2041 + p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p300 + p301 + p2031 + p2030 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p2023 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p2022 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p2021 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p2020 + p2019 + p2018 + p2017 + p380 + p381 + p382 + p383 + p384 + p385 + p2016 + p2015 + p2014 + p2013 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p2012 + p2011 + p1000 + p1001 + p2010 + p1002 + p1003 + p1004 + p2009 + p1005 + p2008 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p2007 + p1013 + p1014 + p1015 + p2006 + p2005 + p2004 + p2003 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p2002 + p1028 + p1029 + p2001 + p1030 + p2000 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p7 + p6 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p5 + p4 + p3 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p2 + p1406 + p1 + p1407 + p0 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p800 + p801 + p802 + p803 + p804 + p805 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p896 + p897 + p898 + p899 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p14 + p15 + p16 + p17 + p18 + p19 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p1600 + p1601 + p1602 + p1603 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p90 + p91 + p98 + p99 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1999 + p1998 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1715 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1997 + p1996 + p1995 + p1994 + p1993 + p1992 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1991 + p1990 + p1989 + p1988 + p1981 + p1980 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1979 + p1978 + p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1949 + p1948 + p1947 + p1946 + p1939 + p1938 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1862 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 + p1920 + p1919 + p1918 + p1917 + p1916 + p1915 + p1914 + p1913 + p1912 + p1911 + p1910 + p1909 + p1908 + p1907 + p1906 + p1905 + p1904)
lola: after: (3 <= p1900 + p1901 + p1902 + p1903 + p1899 + p1898 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1819 + p1818 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1817 + p1816 + p1815 + p1814 + p1777 + p1776 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1775 + p1774 + p1773 + p1772 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p97 + p96 + p95 + p94 + p93 + p92 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p55 + p54 + p53 + p52 + p51 + p50 + p979 + p978 + p977 + p976 + p975 + p974 + p13 + p12 + p11 + p10 + p937 + p936 + p935 + p934 + p933 + p932 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p895 + p894 + p893 + p892 + p891 + p890 + p853 + p852 + p851 + p850 + p849 + p848 + p811 + p810 + p809 + p808 + p807 + p806 + p1483 + p1482 + p1481 + p1480 + p1479 + p1478 + p1441 + p1440 + p1439 + p1438 + p1437 + p1436 + p8 + p9 + p769 + p768 + p767 + p766 + p765 + p764 + p727 + p726 + p725 + p724 + p723 + p722 + p1399 + p1398 + p1397 + p1396 + p1395 + p1394 + p1357 + p1356 + p1355 + p1354 + p1353 + p1352 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p685 + p684 + p683 + p682 + p681 + p680 + p643 + p642 + p641 + p640 + p639 + p638 + p601 + p600 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p599 + p598 + p597 + p596 + p559 + p558 + p557 + p556 + p555 + p554 + p517 + p516 + p515 + p514 + p513 + p512 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1105 + p1104 + p1103 + p1102 + p1101 + p1100 + p475 + p474 + p473 + p472 + p471 + p470 + p433 + p432 + p431 + p430 + p429 + p428 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p391 + p390 + p389 + p388 + p387 + p386 + p349 + p348 + p347 + p2024 + p346 + p2025 + p345 + p2026 + p344 + p307 + p2027 + p306 + p2028 + p2029 + p305 + p304 + p303 + p302 + p265 + p264 + p263 + p262 + p261 + p260 + p223 + p222 + p221 + p220 + p219 + p218 + p181 + p180 + p179 + p178 + p177 + p176 + p134 + p135 + p136 + p137 + p138 + p139)
lola: LP says that atomic proposition is always false: (3 <= p1900 + p1901 + p1902 + p1903 + p1899 + p1898 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1819 + p1818 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1817 + p1816 + p1815 + p1814 + p1777 + p1776 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1775 + p1774 + p1773 + p1772 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p97 + p96 + p95 + p94 + p93 + p92 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p55 + p54 + p53 + p52 + p51 + p50 + p979 + p978 + p977 + p976 + p975 + p974 + p13 + p12 + p11 + p10 + p937 + p936 + p935 + p934 + p933 + p932 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p895 + p894 + p893 + p892 + p891 + p890 + p853 + p852 + p851 + p850 + p849 + p848 + p811 + p810 + p809 + p808 + p807 + p806 + p1483 + p1482 + p1481 + p1480 + p1479 + p1478 + p1441 + p1440 + p1439 + p1438 + p1437 + p1436 + p8 + p9 + p769 + p768 + p767 + p766 + p765 + p764 + p727 + p726 + p725 + p724 + p723 + p722 + p1399 + p1398 + p1397 + p1396 + p1395 + p1394 + p1357 + p1356 + p1355 + p1354 + p1353 + p1352 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p685 + p684 + p683 + p682 + p681 + p680 + p643 + p642 + p641 + p640 + p639 + p638 + p601 + p600 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p599 + p598 + p597 + p596 + p559 + p558 + p557 + p556 + p555 + p554 + p517 + p516 + p515 + p514 + p513 + p512 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1105 + p1104 + p1103 + p1102 + p1101 + p1100 + p475 + p474 + p473 + p472 + p471 + p470 + p433 + p432 + p431 + p430 + p429 + p428 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p391 + p390 + p389 + p388 + p387 + p386 + p349 + p348 + p347 + p2024 + p346 + p2025 + p345 + p2026 + p344 + p307 + p2027 + p306 + p2028 + p2029 + p305 + p304 + p303 + p302 + p265 + p264 + p263 + p262 + p261 + p260 + p223 + p222 + p221 + p220 + p219 + p218 + p181 + p180 + p179 + p178 + p177 + p176 + p134 + p135 + p136 + p137 + p138 + p139)
lola: place invariant simplifies atomic proposition
lola: before: (p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634 <= p4410 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416)
lola: after: (0 <= p4410 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416)
lola: always true
lola: LP says that atomic proposition is always false: (1 <= p4417 + p4418 + p4419 + p4420 + p4421 + p4422 + p4423 + p4424 + p4425 + p4426 + p4427 + p4428 + p4429 + p4430 + p4431 + p4432 + p4433 + p4434 + p4435 + p4436 + p4437 + p4438 + p4439 + p4440 + p4441 + p4442 + p4443 + p4444 + p4445 + p4446 + p4447 + p4448 + p4449 + p4450 + p4451 + p4452 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458)
lola: place invariant simplifies atomic proposition
lola: before: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4018 + p4011 + p4004 + p4003 + p4002 + p4001 + p4000 + p4200 + p2996 + p2995 + p4207 + p4208 + p4209 + p4210 + p4211 + p4212 + p4213 + p4214 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p4221 + p2982 + p4228 + p2975 + p2968 + p2961 + p2954 + p2953 + p4235 + p2952 + p2951 + p2950 + p4242 + p2949 + p2948 + p2947 + p4249 + p4250 + p4251 + p4252 + p4253 + p4254 + p4255 + p4256 + p2940 + p4263 + p2933 + p2926 + p2919 + p2912 + p2911 + p4270 + p2910 + p4277 + p2909 + p2908 + p2907 + p2906 + p2905 + p4284 + p4291 + p4292 + p4293 + p4294 + p4295 + p4296 + p4297 + p4298 + p4305 + p2898 + p4312 + p2891 + p4319 + p2884 + p2877 + p2870 + p2869 + p2868 + p2867 + p4326 + p2866 + p2865 + p2864 + p2863 + p2856 + p4333 + p4334 + p3003 + p4335 + p4336 + p4337 + p2849 + p4338 + p2842 + p4339 + p2835 + p2828 + p4340 + p2827 + p3010 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2814 + p4347 + p3017 + p2807 + p2800 + p4354 + p3024 + p2793 + p4361 + p2786 + p2785 + p3031 + p2784 + p3032 + p2783 + p3033 + p2782 + p3034 + p2781 + p3035 + p2780 + p3036 + p4368 + p3037 + p2779 + p3038 + p2772 + p2765 + p2758 + p2751 + p4375 + p2744 + p4376 + p3045 + p4377 + p2743 + p4378 + p2742 + p4379 + p2741 + p2740 + p2739 + p2738 + p2737 + p2730 + p2723 + p2716 + p2709 + p2702 + p4380 + p4381 + p2701 + p4382 + p2700 + p3052 + p4389 + p3059 + p2699 + p2698 + p2697 + p2696 + p2695 + p4396 + p2688 + p3066 + p2681 + p2674 + p3999 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p2667 + p3998 + p3997 + p2660 + p3990 + p2659 + p3087 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p3094 + p3983 + p2646 + p3976 + p4403 + p2639 + p3969 + p2632 + p3962 + p3961 + p3960 + p3101 + p3959 + p3958 + p3957 + p2625 + p3956 + p3955 + p3108 + p2618 + p2617 + p3948 + p2616 + p2615 + p2614 + p3115 + p3116 + p3117 + p3118 + p3119 + p3120 + p3121 + p3122 + p2613 + p2612 + p2611 + p3941 + p2604 + p3934 + p3129 + p3927 + p3920 + p3919 + p3136 + p3918 + p3917 + p3916 + p3915 + p3914 + p3913 + p3906 + p3143 + p3150 + p2597 + p2590 + p2583 + p2576 + p3157 + p3158 + p3159 + p2575 + p3160 + p3161 + p3162 + p2574 + p3163 + p3164 + p2573 + p2572 + p2571 + p2570 + p2569 + p3899 + p3171 + p2562 + p3892 + p3178 + p2555 + p3885 + p2548 + p3878 + p3877 + p3185 + p3876 + p3875 + p3874 + p3873 + p2541 + p3872 + p3192 + p3871 + p2534 + p2533 + p3864 + p2532 + p2531 + p3199 + p2530 + p2529 + p2528 + p2527 + p3857 + p2520 + p3850 + p2513 + p3843 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p2506 + p3836 + p3835 + p3834 + p3833 + p3832 + p3831 + p3830 + p3213 + p3829 + p3822 + p3815 + p3808 + p3801 + p3220 + p3227 + p2499 + p2492 + p3234 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2478 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p2471 + p2464 + p3794 + p3793 + p3792 + p3255 + p3791 + p3790 + p3789 + p2457 + p3788 + p3787 + p2450 + p3780 + p2449 + p3262 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p3773 + p3269 + p2436 + p3766 + p3276 + p2429 + p3759 + p2422 + p3752 + p3751 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3750 + p3749 + p3748 + p3747 + p2415 + p3746 + p3297 + p3745 + p2408 + p2407 + p3738 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p3731 + p3724 + p3717 + p3710 + p3709 + p3708 + p3707 + p3706 + p3304 + p3705 + p3704 + p3703 + p2394 + p3311 + p2387 + p3318 + p2380 + p2373 + p2366 + p2365 + p3696 + p2364 + p3325 + p3326 + p3327 + p3328 + p3329 + p2363 + p3330 + p3331 + p2362 + p3332 + p2361 + p2360 + p2359 + p3689 + p2352 + p3682 + p3675 + p3339 + p3668 + p3667 + p3666 + p3665 + p3664 + p3663 + p3662 + p3661 + p3654 + p3647 + p3640 + p3633 + p3346 + p3626 + p3625 + p3624 + p3623 + p3622 + p3621 + p3620 + p3619 + p3612 + p3353 + p3605 + p3360 + p3598 + p3591 + p3584 + p3583 + p3582 + p3581 + p3580 + p3579 + p3367 + p3578 + p3368 + p3577 + p3369 + p3570 + p3563 + p3370 + p3371 + p3556 + p3372 + p3549 + p3373 + p3542 + p3374 + p3541 + p3540 + p3539 + p3538 + p3537 + p3536 + p3535 + p3528 + p3521 + p3514 + p3381 + p3507 + p3500 + p3388 + p3499 + p3498 + p3497 + p3496 + p3495 + p3494 + p3395 + p3493 + p3486 + p3479 + p3472 + p3465 + p3458 + p3457 + p3456 + p3455 + p3454 + p3453 + p3452 + p3451 + p3444 + p3437 + p3430 + p3423 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p3410 + p3409 + p3402 + p3401 + p3400 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3417 + p3418 + p3419 + p3420 + p3421 + p3422 + p3424 + p3425 + p3426 + p3427 + p3428 + p3429 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3438 + p3439 + p3440 + p3441 + p3442 + p3443 + p3445 + p3446 + p3447 + p3448 + p3449 + p3450 + p3459 + p3460 + p3461 + p3462 + p3463 + p3464 + p3399 + p3466 + p3398 + p3467 + p3468 + p3469 + p3470 + p3471 + p3397 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3396 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3394 + p3393 + p3392 + p3391 + p3390 + p3389 + p3387 + p3386 + p3385 + p3384 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3383 + p3508 + p3509 + p3382 + p3380 + p3510 + p3511 + p3512 + p3513 + p3379 + p3515 + p3516 + p3517 + p3518 + p3519 + p3520 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3378 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3377 + p3376 + p3375 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3550 + p3551 + p3552 + p3553 + p3554 + p3555 + p3557 + p3558 + p3559 + p3560 + p3561 + p3562 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3366 + p3365 + p3364 + p3585 + p3586 + p3587 + p3588 + p3589 + p3590 + p3592 + p3593 + p3594 + p3595 + p3596 + p3597 + p3363 + p3599 + p3362 + p3361 + p3359 + p3358 + p3357 + p3356 + p3355 + p3354 + p3600 + p3601 + p3602 + p3603 + p3604 + p3606 + p3607 + p3608 + p3609 + p3610 + p3611 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3352 + p3351 + p3350 + p3349 + p3627 + p3628 + p3629 + p3348 + p3347 + p3630 + p3631 + p3632 + p3634 + p3635 + p3636 + p3637 + p3638 + p3639 + p3345 + p3344 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3648 + p3649 + p3650 + p3651 + p3652 + p3653 + p3655 + p3656 + p3657 + p3658 + p3659 + p3660 + p3343 + p3342 + p3341 + p3340 + p3669 + p3670 + p3671 + p3672 + p3673 + p3674 + p3676 + p3677 + p3678 + p3338 + p3679 + p3337 + p3680 + p3681 + p3336 + p3683 + p3335 + p3684 + p2353 + p3685 + p2354 + p3686 + p2355 + p3687 + p2356 + p3688 + p2357 + p3334 + p2358 + p3690 + p3691 + p3333 + p3692 + p3693 + p3694 + p3695 + p3324 + p3323 + p3322 + p3697 + p3321 + p3698 + p2367 + p3699 + p2368 + p2369 + p2370 + p2371 + p2372 + p3320 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p3319 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p3317 + p2388 + p2389 + p3316 + p3315 + p2390 + p2391 + p3314 + p2392 + p3313 + p2393 + p3312 + p3310 + p2395 + p2396 + p2397 + p2398 + p2399 + p3309 + p3308 + p3307 + p3306 + p3700 + p3701 + p3702 + p3305 + p3303 + p3302 + p3301 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3300 + p3718 + p3719 + p3720 + p3721 + p3722 + p3723 + p3725 + p3726 + p3727 + p3728 + p3729 + p3730 + p2400 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3739 + p3299 + p2409 + p3740 + p3741 + p2410 + p3742 + p2411 + p3743 + p2412 + p3744 + p2413 + p3298 + p2414 + p3296 + p3295 + p3294 + p2416 + p3293 + p2417 + p3292 + p2418 + p2419 + p3291 + p3282 + p2420 + p3281 + p2421 + p3753 + p3280 + p3754 + p2423 + p3755 + p2424 + p3756 + p2425 + p3757 + p2426 + p3758 + p2427 + p3279 + p2428 + p3278 + p3760 + p3761 + p2430 + p3762 + p2431 + p3277 + p3763 + p2432 + p3275 + p3764 + p2433 + p3274 + p3765 + p2434 + p3273 + p3272 + p2435 + p3271 + p3767 + p3270 + p3268 + p3768 + p2437 + p3769 + p2438 + p2439 + p3770 + p3771 + p2440 + p3772 + p2441 + p2442 + p3774 + p3267 + p3775 + p3266 + p3776 + p3265 + p3777 + p3778 + p3264 + p3779 + p3263 + p3261 + p3781 + p3260 + p3782 + p2451 + p3783 + p2452 + p3784 + p2453 + p3785 + p2454 + p3786 + p2455 + p2456 + p3259 + p3258 + p3257 + p2458 + p2459 + p3256 + p2460 + p3254 + p2461 + p3253 + p2462 + p2463 + p3795 + p3252 + p3796 + p2465 + p3797 + p2466 + p3798 + p2467 + p3799 + p2468 + p2469 + p2470 + p3251 + p2472 + p2473 + p3250 + p2474 + p2475 + p3249 + p2476 + p2477 + p3240 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p3239 + p3238 + p3237 + p3236 + p3235 + p3233 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p3232 + p3231 + p3230 + p3229 + p3228 + p3226 + p3225 + p3224 + p3223 + p3222 + p3221 + p3219 + p3218 + p3217 + p3800 + p3802 + p3803 + p3804 + p3805 + p3806 + p3807 + p3216 + p3809 + p3810 + p3811 + p3812 + p3813 + p3814 + p3215 + p3816 + p3817 + p3818 + p3819 + p3820 + p3821 + p3214 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p3212 + p3211 + p2500 + p2501 + p3210 + p2502 + p3209 + p2503 + p3208 + p2504 + p2505 + p3837 + p3207 + p3838 + p2507 + p3839 + p2508 + p2509 + p3840 + p3841 + p2510 + p3842 + p2511 + p2512 + p3844 + p3845 + p2514 + p3846 + p2515 + p3847 + p2516 + p3848 + p2517 + p3849 + p2518 + p2519 + p3851 + p3852 + p2521 + p3853 + p2522 + p3854 + p2523 + p3855 + p2524 + p3856 + p2525 + p2526 + p3858 + p3859 + p3860 + p3861 + p3862 + p3198 + p3863 + p3197 + p3196 + p3195 + p3865 + p3194 + p3866 + p2535 + p3867 + p2536 + p3868 + p2537 + p3869 + p2538 + p2539 + p3870 + p3193 + p2540 + p3191 + p3190 + p3189 + p2542 + p3188 + p2543 + p3187 + p2544 + p3186 + p2545 + p3184 + p2546 + p3183 + p2547 + p3879 + p3182 + p2549 + p3880 + p3881 + p2550 + p3882 + p2551 + p3883 + p2552 + p3884 + p2553 + p3181 + p2554 + p3886 + p3180 + p3887 + p2556 + p3888 + p2557 + p3179 + p3889 + p2558 + p3177 + p2559 + p3176 + p3175 + p3890 + p3891 + p2560 + p3174 + p2561 + p3173 + p3893 + p3172 + p3170 + p3894 + p2563 + p3895 + p2564 + p3896 + p2565 + p3897 + p2566 + p3898 + p2567 + p3169 + p2568 + p3168 + p3167 + p3166 + p3165 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p3156 + p2584 + p2585 + p2586 + p2587 + p2588 + p2589 + p3155 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p3154 + p2598 + p2599 + p3153 + p3152 + p3151 + p3149 + p3148 + p3147 + p3146 + p3145 + p3144 + p3142 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3907 + p3908 + p3909 + p3910 + p3911 + p3912 + p3141 + p3140 + p3139 + p3138 + p3137 + p3135 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3134 + p3928 + p3929 + p3133 + p3132 + p3131 + p3130 + p3930 + p3931 + p2600 + p3932 + p2601 + p3933 + p2602 + p3128 + p2603 + p3935 + p3127 + p3936 + p2605 + p3937 + p2606 + p3938 + p2607 + p3939 + p2608 + p2609 + p3940 + p3126 + p2610 + p3942 + p3125 + p3943 + p3124 + p3944 + p3123 + p3945 + p3114 + p3946 + p3113 + p3947 + p3112 + p3111 + p3110 + p3949 + p3109 + p2619 + p3950 + p3951 + p2620 + p3952 + p2621 + p3953 + p2622 + p3954 + p2623 + p3107 + p2624 + p3106 + p3105 + p3104 + p2626 + p3103 + p2627 + p3102 + p2628 + p2629 + p3100 + p4409 + p2630 + p4408 + p2631 + p3963 + p4407 + p3964 + p2633 + p3965 + p2634 + p3966 + p2635 + p3967 + p2636 + p3968 + p2637 + p4406 + p2638 + p4405 + p3970 + p3971 + p2640 + p3972 + p2641 + p4404 + p3973 + p2642 + p4402 + p3974 + p2643 + p4401 + p3975 + p2644 + p4400 + p3099 + p2645 + p3098 + p3977 + p3097 + p3096 + p3978 + p2647 + p3979 + p2648 + p2649 + p3980 + p3981 + p2650 + p3982 + p2651 + p3095 + p2652 + p3984 + p3093 + p3985 + p3092 + p3986 + p3091 + p3987 + p3090 + p3988 + p3089 + p3989 + p3088 + p3086 + p3085 + p3991 + p3084 + p3992 + p2661 + p3993 + p2662 + p3994 + p2663 + p3995 + p2664 + p3996 + p2665 + p3083 + p2666 + p3082 + p3081 + p3072 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p3071 + p2675 + p2676 + p2677 + p2678 + p2679 + p2680 + p3070 + p2682 + p2683 + p3069 + p2684 + p3068 + p2685 + p4399 + p2686 + p3067 + p2687 + p4398 + p4397 + p3065 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p3064 + p4395 + p3063 + p4394 + p3062 + p4393 + p3061 + p4392 + p3060 + p4391 + p4390 + p3058 + p3057 + p4388 + p3056 + p4387 + p3055 + p4386 + p3054 + p4385 + p3053 + p4384 + p4383 + p3051 + p3050 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2731 + p2732 + p2733 + p2734 + p2735 + p2736 + p3049 + p3048 + p3047 + p3046 + p3044 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p3043 + p2752 + p2753 + p2754 + p2755 + p2756 + p2757 + p4374 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p3042 + p2766 + p2767 + p4373 + p2768 + p3041 + p2769 + p4372 + p3040 + p2770 + p2771 + p4371 + p4370 + p3039 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p4369 + p4367 + p4366 + p4365 + p4364 + p4363 + p4362 + p3030 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p4360 + p2794 + p2795 + p2796 + p2797 + p2798 + p2799 + p3029 + p3028 + p4359 + p3027 + p4358 + p3026 + p4357 + p3025 + p4356 + p4355 + p3023 + p3022 + p4353 + p3021 + p4352 + p3020 + p4351 + p4350 + p3019 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p3018 + p2808 + p2809 + p4349 + p4348 + p3016 + p3015 + p4346 + p3014 + p2810 + p2811 + p2812 + p2813 + p4345 + p2815 + p2816 + p2817 + p2818 + p2819 + p2820 + p3013 + p4344 + p3012 + p4343 + p3011 + p4342 + p4341 + p3009 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p3008 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p3007 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p3006 + p2850 + p2851 + p3005 + p2852 + p3004 + p2853 + p3002 + p2854 + p3001 + p2855 + p4332 + p3000 + p4331 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p4330 + p4329 + p4328 + p4327 + p4325 + p4324 + p4323 + p4322 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p4321 + p2878 + p2879 + p2880 + p2881 + p2882 + p2883 + p4320 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p4318 + p2892 + p2893 + p4317 + p2894 + p4316 + p2895 + p4315 + p2896 + p4314 + p2897 + p4313 + p4311 + p4310 + p2899 + p4309 + p4308 + p4307 + p4306 + p4304 + p4303 + p4302 + p4301 + p4300 + p4299 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p2900 + p2901 + p2902 + p2903 + p2904 + p4283 + p4282 + p4281 + p4280 + p4279 + p4278 + p4276 + p4275 + p4274 + p4273 + p4272 + p4271 + p4269 + p4268 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p4267 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p4266 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p4265 + p2934 + p2935 + p4264 + p2936 + p4262 + p2937 + p4261 + p2938 + p4260 + p2939 + p4259 + p4258 + p4257 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p4248 + p4247 + p4246 + p4245 + p4244 + p4243 + p4241 + p4240 + p4239 + p4238 + p4237 + p4236 + p4234 + p4233 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p4232 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p4231 + p2969 + p2970 + p2971 + p2972 + p2973 + p2974 + p4230 + p2976 + p2977 + p4229 + p2978 + p4227 + p2979 + p4226 + p4225 + p2980 + p2981 + p4224 + p4223 + p4222 + p2983 + p2984 + p2985 + p2986 + p2987 + p2988 + p4220 + p4219 + p4218 + p4217 + p4216 + p4215 + p4206 + p4205 + p2997 + p2998 + p2999 + p4204 + p4203 + p4202 + p4201 + p4005 + p4006 + p4007 + p4008 + p4009 + p4010 + p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4019 + p4020 + p4021 + p4022 + p4023 + p4024 + p4026 + p4027 + p4028 + p4029 + p4030 + p4031 + p4033 + p4034 + p4035 + p4036 + p4037 + p4038 + p4047 + p4048 + p4049 + p4050 + p4051 + p4052 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4068 + p4069 + p4070 + p4071 + p4072 + p4073 + p4075 + p4076 + p4077 + p4078 + p4079 + p4080 + p4089 + p4090 + p4091 + p4092 + p4093 + p4094 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p4103 + p4104 + p4105 + p4106 + p4107 + p4108 + p4110 + p4111 + p4112 + p4113 + p4114 + p4115 + p4117 + p4118 + p4119 + p4120 + p4121 + p4122 + p4131 + p4132 + p4133 + p4134 + p4135 + p4136 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p4145 + p4146 + p4147 + p4148 + p4149 + p4150 + p4152 + p4153 + p4154 + p4155 + p4156 + p4157 + p4159 + p4160 + p4161 + p4162 + p4163 + p4164 + p4173 + p4174 + p4175 + p4176 + p4177 + p4178 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p4187 + p4188 + p4189 + p4190 + p4191 + p4192 + p4194 + p4195 + p4196 + p4197 + p4198 + p4199)
lola: after: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4018 + p4011 + p4004 + p4003 + p4002 + p4001 + p4000 + p4200 + p2996 + p2995 + p4207 + p4208 + p4209 + p4210 + p4211 + p4212 + p4213 + p4214 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p4221 + p2982 + p4228 + p2975 + p2968 + p2961 + p2954 + p2953 + p4235 + p2952 + p2951 + p2950 + p4242 + p2949 + p2948 + p2947 + p4249 + p4250 + p4251 + p4252 + p4253 + p4254 + p4255 + p4256 + p2940 + p4263 + p2933 + p2926 + p2919 + p2912 + p2911 + p4270 + p2910 + p4277 + p2909 + p2908 + p2907 + p2906 + p2905 + p4284 + p4291 + p4292 + p4293 + p4294 + p4295 + p4296 + p4297 + p4298 + p4305 + p2898 + p4312 + p2891 + p4319 + p2884 + p2877 + p2870 + p2869 + p2868 + p2867 + p4326 + p2866 + p2865 + p2864 + p2863 + p2856 + p4333 + p4334 + p3003 + p4335 + p4336 + p4337 + p2849 + p4338 + p2842 + p4339 + p2835 + p2828 + p4340 + p2827 + p3010 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2814 + p4347 + p3017 + p2807 + p2800 + p4354 + p3024 + p2793 + p4361 + p2786 + p2785 + p3031 + p2784 + p3032 + p2783 + p3033 + p2782 + p3034 + p2781 + p3035 + p2780 + p3036 + p4368 + p3037 + p2779 + p3038 + p2772 + p2765 + p2758 + p2751 + p4375 + p2744 + p4376 + p3045 + p4377 + p2743 + p4378 + p2742 + p4379 + p2741 + p2740 + p2739 + p2738 + p2737 + p2730 + p2723 + p2716 + p2709 + p2702 + p4380 + p4381 + p2701 + p4382 + p2700 + p3052 + p4389 + p3059 + p2699 + p2698 + p2697 + p2696 + p2695 + p4396 + p2688 + p3066 + p2681 + p2674 + p3999 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p2667 + p3998 + p3997 + p2660 + p3990 + p2659 + p3087 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p3094 + p3983 + p2646 + p3976 + p4403 + p2639 + p3969 + p2632 + p3962 + p3961 + p3960 + p3101 + p3959 + p3958 + p3957 + p2625 + p3956 + p3955 + p3108 + p2618 + p2617 + p3948 + p2616 + p2615 + p2614 + p3115 + p3116 + p3117 + p3118 + p3119 + p3120 + p3121 + p3122 + p2613 + p2612 + p2611 + p3941 + p2604 + p3934 + p3129 + p3927 + p3920 + p3919 + p3136 + p3918 + p3917 + p3916 + p3915 + p3914 + p3913 + p3906 + p3143 + p3150 + p2597 + p2590 + p2583 + p2576 + p3157 + p3158 + p3159 + p2575 + p3160 + p3161 + p3162 + p2574 + p3163 + p3164 + p2573 + p2572 + p2571 + p2570 + p2569 + p3899 + p3171 + p2562 + p3892 + p3178 + p2555 + p3885 + p2548 + p3878 + p3877 + p3185 + p3876 + p3875 + p3874 + p3873 + p2541 + p3872 + p3192 + p3871 + p2534 + p2533 + p3864 + p2532 + p2531 + p3199 + p2530 + p2529 + p2528 + p2527 + p3857 + p2520 + p3850 + p2513 + p3843 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p2506 + p3836 + p3835 + p3834 + p3833 + p3832 + p3831 + p3830 + p3213 + p3829 + p3822 + p3815 + p3808 + p3801 + p3220 + p3227 + p2499 + p2492 + p3234 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2478 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p2471 + p2464 + p3794 + p3793 + p3792 + p3255 + p3791 + p3790 + p3789 + p2457 + p3788 + p3787 + p2450 + p3780 + p2449 + p3262 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p3773 + p3269 + p2436 + p3766 + p3276 + p2429 + p3759 + p2422 + p3752 + p3751 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3750 + p3749 + p3748 + p3747 + p2415 + p3746 + p3297 + p3745 + p2408 + p2407 + p3738 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p3731 + p3724 + p3717 + p3710 + p3709 + p3708 + p3707 + p3706 + p3304 + p3705 + p3704 + p3703 + p2394 + p3311 + p2387 + p3318 + p2380 + p2373 + p2366 + p2365 + p3696 + p2364 + p3325 + p3326 + p3327 + p3328 + p3329 + p2363 + p3330 + p3331 + p2362 + p3332 + p2361 + p2360 + p2359 + p3689 + p2352 + p3682 + p3675 + p3339 + p3668 + p3667 + p3666 + p3665 + p3664 + p3663 + p3662 + p3661 + p3654 + p3647 + p3640 + p3633 + p3346 + p3626 + p3625 + p3624 + p3623 + p3622 + p3621 + p3620 + p3619 + p3612 + p3353 + p3605 + p3360 + p3598 + p3591 + p3584 + p3583 + p3582 + p3581 + p3580 + p3579 + p3367 + p3578 + p3368 + p3577 + p3369 + p3570 + p3563 + p3370 + p3371 + p3556 + p3372 + p3549 + p3373 + p3542 + p3374 + p3541 + p3540 + p3539 + p3538 + p3537 + p3536 + p3535 + p3528 + p3521 + p3514 + p3381 + p3507 + p3500 + p3388 + p3499 + p3498 + p3497 + p3496 + p3495 + p3494 + p3395 + p3493 + p3486 + p3479 + p3472 + p3465 + p3458 + p3457 + p3456 + p3455 + p3454 + p3453 + p3452 + p3451 + p3444 + p3437 + p3430 + p3423 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p3410 + p3409 + p3402)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4828 + p4825 + p4822 + p4819 + p4816 + p4813 + p4810 + p4809 + p4811 + p4812 + p4814 + p4815 + p4817 + p4818 + p4820 + p4821 + p4823 + p4824 + p4826 + p4827 + p4829)
lola: after: (0 <= 3)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1900 + p1901 + p1902 + p1903 + p1899 + p1898 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1819 + p1818 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1817 + p1816 + p1815 + p1814 + p1777 + p1776 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1775 + p1774 + p1773 + p1772 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p97 + p96 + p95 + p94 + p93 + p92 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p55 + p54 + p53 + p52 + p51 + p50 + p979 + p978 + p977 + p976 + p975 + p974 + p13 + p12 + p11 + p10 + p937 + p936 + p935 + p934 + p933 + p932 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p895 + p894 + p893 + p892 + p891 + p890 + p853 + p852 + p851 + p850 + p849 + p848 + p811 + p810 + p809 + p808 + p807 + p806 + p1483 + p1482 + p1481 + p1480 + p1479 + p1478 + p1441 + p1440 + p1439 + p1438 + p1437 + p1436 + p8 + p9 + p769 + p768 + p767 + p766 + p765 + p764 + p727 + p726 + p725 + p724 + p723 + p722 + p1399 + p1398 + p1397 + p1396 + p1395 + p1394 + p1357 + p1356 + p1355 + p1354 + p1353 + p1352 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p685 + p684 + p683 + p682 + p681 + p680 + p643 + p642 + p641 + p640 + p639 + p638 + p601 + p600 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p599 + p598 + p597 + p596 + p559 + p558 + p557 + p556 + p555 + p554 + p517 + p516 + p515 + p514 + p513 + p512 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1105 + p1104 + p1103 + p1102 + p1101 + p1100 + p475 + p474 + p473 + p472 + p471 + p470 + p433 + p432 + p431 + p430 + p429 + p428 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p391 + p390 + p389 + p388 + p387 + p386 + p349 + p348 + p347 + p2024 + p346 + p2025 + p345 + p2026 + p344 + p307 + p2027 + p306 + p2028 + p2029 + p305 + p304 + p303 + p302 + p265 + p264 + p263 + p262 + p261 + p260 + p223 + p222 + p221 + p220 + p219 + p218 + p181 + p180 + p179 + p178 + p177 + p176 + p134 + p135 + p136 + p137 + p138 + p139 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p133 + p132 + p170 + p171 + p172 + p173 + p174 + p175 + p131 + p130 + p129 + p128 + p127 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p116 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p115 + p114 + p113 + p112 + p111 + p110 + p109 + p108 + p107 + p106 + p105 + p104 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p103 + p102 + p101 + p100 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p224 + p225 + p226 + p227 + p228 + p229 + p2057 + p2056 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p2055 + p2054 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p2053 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p2052 + p2051 + p2050 + p2049 + p2048 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p2047 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p2046 + p2045 + p2044 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p2043 + p2042 + p2041 + p2040 + p2039 + p2038 + p2037 + p2036 + p2035 + p2034 + p2033 + p2032 + p300 + p301 + p2031 + p2030 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p2023 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p2022 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p2021 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p2020 + p2019 + p2018 + p2017 + p380 + p381 + p382 + p383 + p384 + p385 + p2016 + p2015 + p2014 + p2013 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p2012 + p2011 + p1000 + p1001 + p2010 + p1002 + p1003 + p1004 + p2009 + p1005 + p2008 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p2007 + p1013 + p1014 + p1015 + p2006 + p2005 + p2004 + p2003 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p2002 + p1028 + p1029 + p2001 + p1030 + p2000 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p7 + p6 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p5 + p4 + p3 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p2 + p1406 + p1 + p1407 + p0 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p800 + p801 + p802 + p803 + p804 + p805 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p896 + p897 + p898 + p899 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p14 + p15 + p16 + p17 + p18 + p19 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p1600 + p1601 + p1602 + p1603 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p90 + p91 + p98 + p99 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1999 + p1998 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1715 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1997 + p1996 + p1995 + p1994 + p1993 + p1992 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1991 + p1990 + p1989 + p1988 + p1981 + p1980 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1979 + p1978 + p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1952 + p1951 + p1950 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1949 + p1948 + p1947 + p1946 + p1939 + p1938 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1937 + p1936 + p1935 + p1934 + p1933 + p1932 + p1862 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 + p1920 + p1919 + p1918 + p1917 + p1916 + p1915 + p1914 + p1913 + p1912 + p1911 + p1910 + p1909 + p1908 + p1907 + p1906 + p1905 + p1904)
lola: after: (2 <= p1900 + p1901 + p1902 + p1903 + p1899 + p1898 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1819 + p1818 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1817 + p1816 + p1815 + p1814 + p1777 + p1776 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1775 + p1774 + p1773 + p1772 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p97 + p96 + p95 + p94 + p93 + p92 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p55 + p54 + p53 + p52 + p51 + p50 + p979 + p978 + p977 + p976 + p975 + p974 + p13 + p12 + p11 + p10 + p937 + p936 + p935 + p934 + p933 + p932 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p895 + p894 + p893 + p892 + p891 + p890 + p853 + p852 + p851 + p850 + p849 + p848 + p811 + p810 + p809 + p808 + p807 + p806 + p1483 + p1482 + p1481 + p1480 + p1479 + p1478 + p1441 + p1440 + p1439 + p1438 + p1437 + p1436 + p8 + p9 + p769 + p768 + p767 + p766 + p765 + p764 + p727 + p726 + p725 + p724 + p723 + p722 + p1399 + p1398 + p1397 + p1396 + p1395 + p1394 + p1357 + p1356 + p1355 + p1354 + p1353 + p1352 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p685 + p684 + p683 + p682 + p681 + p680 + p643 + p642 + p641 + p640 + p639 + p638 + p601 + p600 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p599 + p598 + p597 + p596 + p559 + p558 + p557 + p556 + p555 + p554 + p517 + p516 + p515 + p514 + p513 + p512 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1105 + p1104 + p1103 + p1102 + p1101 + p1100 + p475 + p474 + p473 + p472 + p471 + p470 + p433 + p432 + p431 + p430 + p429 + p428 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p391 + p390 + p389 + p388 + p387 + p386 + p349 + p348 + p347 + p2024 + p346 + p2025 + p345 + p2026 + p344 + p307 + p2027 + p306 + p2028 + p2029 + p305 + p304 + p303 + p302 + p265 + p264 + p263 + p262 + p261 + p260 + p223 + p222 + p221 + p220 + p219 + p218 + p181 + p180 + p179 + p178 + p177 + p176 + p134 + p135 + p136 + p137 + p138 + p139)
lola: LP says that atomic proposition is always false: (2 <= p1900 + p1901 + p1902 + p1903 + p1899 + p1898 + p1861 + p1860 + p1859 + p1858 + p1857 + p1856 + p1819 + p1818 + p1940 + p1941 + p1942 + p1943 + p1944 + p1945 + p1817 + p1816 + p1815 + p1814 + p1777 + p1776 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1775 + p1774 + p1773 + p1772 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1693 + p1692 + p1691 + p1690 + p1689 + p1688 + p1651 + p1650 + p1649 + p1648 + p1647 + p1646 + p97 + p96 + p95 + p94 + p93 + p92 + p1609 + p1608 + p1607 + p1606 + p1605 + p1604 + p55 + p54 + p53 + p52 + p51 + p50 + p979 + p978 + p977 + p976 + p975 + p974 + p13 + p12 + p11 + p10 + p937 + p936 + p935 + p934 + p933 + p932 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1525 + p1524 + p1523 + p1522 + p1521 + p1520 + p895 + p894 + p893 + p892 + p891 + p890 + p853 + p852 + p851 + p850 + p849 + p848 + p811 + p810 + p809 + p808 + p807 + p806 + p1483 + p1482 + p1481 + p1480 + p1479 + p1478 + p1441 + p1440 + p1439 + p1438 + p1437 + p1436 + p8 + p9 + p769 + p768 + p767 + p766 + p765 + p764 + p727 + p726 + p725 + p724 + p723 + p722 + p1399 + p1398 + p1397 + p1396 + p1395 + p1394 + p1357 + p1356 + p1355 + p1354 + p1353 + p1352 + p1315 + p1314 + p1313 + p1312 + p1311 + p1310 + p685 + p684 + p683 + p682 + p681 + p680 + p643 + p642 + p641 + p640 + p639 + p638 + p601 + p600 + p1273 + p1272 + p1271 + p1270 + p1269 + p1268 + p1231 + p1230 + p1229 + p1228 + p1227 + p1226 + p599 + p598 + p597 + p596 + p559 + p558 + p557 + p556 + p555 + p554 + p517 + p516 + p515 + p514 + p513 + p512 + p1189 + p1188 + p1187 + p1186 + p1185 + p1184 + p1147 + p1146 + p1145 + p1144 + p1143 + p1142 + p1105 + p1104 + p1103 + p1102 + p1101 + p1100 + p475 + p474 + p473 + p472 + p471 + p470 + p433 + p432 + p431 + p430 + p429 + p428 + p1063 + p1062 + p1061 + p1060 + p1059 + p1058 + p1021 + p1020 + p1019 + p1018 + p1017 + p1016 + p391 + p390 + p389 + p388 + p387 + p386 + p349 + p348 + p347 + p2024 + p346 + p2025 + p345 + p2026 + p344 + p307 + p2027 + p306 + p2028 + p2029 + p305 + p304 + p303 + p302 + p265 + p264 + p263 + p262 + p261 + p260 + p223 + p222 + p221 + p220 + p219 + p218 + p181 + p180 + p179 + p178 + p177 + p176 + p134 + p135 + p136 + p137 + p138 + p139)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4640 + p4639 + p4638 + p4637 + p4636 + p4635 + p4634)
lola: after: (3 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p4626 + p4625 + p4624 + p4623 + p4622 + p4621 + p4620)
lola: after: (3 <= 0)
lola: always false
lola: A (F (X (G (X (TRUE))))) : A (F (G ((TRUE U FALSE)))) : A ((1 <= p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795)) : A (X (FALSE)) : A (FALSE) : A ((TRUE U X (X (TRUE)))) : A ((((p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4410 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416) U TRUE) U G (F (TRUE)))) : A (TRUE) : A ((2 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4018 + p4011 + p4004 + p4003 + p4002 + p4001 + p4000 + p4200 + p2996 + p2995 + p4207 + p4208 + p4209 + p4210 + p4211 + p4212 + p4213 + p4214 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p4221 + p2982 + p4228 + p2975 + p2968 + p2961 + p2954 + p2953 + p4235 + p2952 + p2951 + p2950 + p4242 + p2949 + p2948 + p2947 + p4249 + p4250 + p4251 + p4252 + p4253 + p4254 + p4255 + p4256 + p2940 + p4263 + p2933 + p2926 + p2919 + p2912 + p2911 + p4270 + p2910 + p4277 + p2909 + p2908 + p2907 + p2906 + p2905 + p4284 + p4291 + p4292 + p4293 + p4294 + p4295 + p4296 + p4297 + p4298 + p4305 + p2898 + p4312 + p2891 + p4319 + p2884 + p2877 + p2870 + p2869 + p2868 + p2867 + p4326 + p2866 + p2865 + p2864 + p2863 + p2856 + p4333 + p4334 + p3003 + p4335 + p4336 + p4337 + p2849 + p4338 + p2842 + p4339 + p2835 + p2828 + p4340 + p2827 + p3010 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2814 + p4347 + p3017 + p2807 + p2800 + p4354 + p3024 + p2793 + p4361 + p2786 + p2785 + p3031 + p2784 + p3032 + p2783 + p3033 + p2782 + p3034 + p2781 + p3035 + p2780 + p3036 + p4368 + p3037 + p2779 + p3038 + p2772 + p2765 + p2758 + p2751 + p4375 + p2744 + p4376 + p3045 + p4377 + p2743 + p4378 + p2742 + p4379 + p2741 + p2740 + p2739 + p2738 + p2737 + p2730 + p2723 + p2716 + p2709 + p2702 + p4380 + p4381 + p2701 + p4382 + p2700 + p3052 + p4389 + p3059 + p2699 + p2698 + p2697 + p2696 + p2695 + p4396 + p2688 + p3066 + p2681 + p2674 + p3999 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p2667 + p3998 + p3997 + p2660 + p3990 + p2659 + p3087 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p3094 + p3983 + p2646 + p3976 + p4403 + p2639 + p3969 + p2632 + p3962 + p3961 + p3960 + p3101 + p3959 + p3958 + p3957 + p2625 + p3956 + p3955 + p3108 + p2618 + p2617 + p3948 + p2616 + p2615 + p2614 + p3115 + p3116 + p3117 + p3118 + p3119 + p3120 + p3121 + p3122 + p2613 + p2612 + p2611 + p3941 + p2604 + p3934 + p3129 + p3927 + p3920 + p3919 + p3136 + p3918 + p3917 + p3916 + p3915 + p3914 + p3913 + p3906 + p3143 + p3150 + p2597 + p2590 + p2583 + p2576 + p3157 + p3158 + p3159 + p2575 + p3160 + p3161 + p3162 + p2574 + p3163 + p3164 + p2573 + p2572 + p2571 + p2570 + p2569 + p3899 + p3171 + p2562 + p3892 + p3178 + p2555 + p3885 + p2548 + p3878 + p3877 + p3185 + p3876 + p3875 + p3874 + p3873 + p2541 + p3872 + p3192 + p3871 + p2534 + p2533 + p3864 + p2532 + p2531 + p3199 + p2530 + p2529 + p2528 + p2527 + p3857 + p2520 + p3850 + p2513 + p3843 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p2506 + p3836 + p3835 + p3834 + p3833 + p3832 + p3831 + p3830 + p3213 + p3829 + p3822 + p3815 + p3808 + p3801 + p3220 + p3227 + p2499 + p2492 + p3234 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2478 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p2471 + p2464 + p3794 + p3793 + p3792 + p3255 + p3791 + p3790 + p3789 + p2457 + p3788 + p3787 + p2450 + p3780 + p2449 + p3262 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p3773 + p3269 + p2436 + p3766 + p3276 + p2429 + p3759 + p2422 + p3752 + p3751 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3750 + p3749 + p3748 + p3747 + p2415 + p3746 + p3297 + p3745 + p2408 + p2407 + p3738 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p3731 + p3724 + p3717 + p3710 + p3709 + p3708 + p3707 + p3706 + p3304 + p3705 + p3704 + p3703 + p2394 + p3311 + p2387 + p3318 + p2380 + p2373 + p2366 + p2365 + p3696 + p2364 + p3325 + p3326 + p3327 + p3328 + p3329 + p2363 + p3330 + p3331 + p2362 + p3332 + p2361 + p2360 + p2359 + p3689 + p2352 + p3682 + p3675 + p3339 + p3668 + p3667 + p3666 + p3665 + p3664 + p3663 + p3662 + p3661 + p3654 + p3647 + p3640 + p3633 + p3346 + p3626 + p3625 + p3624 + p3623 + p3622 + p3621 + p3620 + p3619 + p3612 + p3353 + p3605 + p3360 + p3598 + p3591 + p3584 + p3583 + p3582 + p3581 + p3580 + p3579 + p3367 + p3578 + p3368 + p3577 + p3369 + p3570 + p3563 + p3370 + p3371 + p3556 + p3372 + p3549 + p3373 + p3542 + p3374 + p3541 + p3540 + p3539 + p3538 + p3537 + p3536 + p3535 + p3528 + p3521 + p3514 + p3381 + p3507 + p3500 + p3388 + p3499 + p3498 + p3497 + p3496 + p3495 + p3494 + p3395 + p3493 + p3486 + p3479 + p3472 + p3465 + p3458 + p3457 + p3456 + p3455 + p3454 + p3453 + p3452 + p3451 + p3444 + p3437 + p3430 + p3423 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p3410 + p3409 + p3402)) : A (G ((FALSE U X (TRUE)))) : A (G (X (G (F (FALSE))))) : A ((p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4018 + p4011 + p4004 + p4003 + p4002 + p4001 + p4000 + p4200 + p2996 + p2995 + p4207 + p4208 + p4209 + p4210 + p4211 + p4212 + p4213 + p4214 + p2994 + p2993 + p2992 + p2991 + p2990 + p2989 + p4221 + p2982 + p4228 + p2975 + p2968 + p2961 + p2954 + p2953 + p4235 + p2952 + p2951 + p2950 + p4242 + p2949 + p2948 + p2947 + p4249 + p4250 + p4251 + p4252 + p4253 + p4254 + p4255 + p4256 + p2940 + p4263 + p2933 + p2926 + p2919 + p2912 + p2911 + p4270 + p2910 + p4277 + p2909 + p2908 + p2907 + p2906 + p2905 + p4284 + p4291 + p4292 + p4293 + p4294 + p4295 + p4296 + p4297 + p4298 + p4305 + p2898 + p4312 + p2891 + p4319 + p2884 + p2877 + p2870 + p2869 + p2868 + p2867 + p4326 + p2866 + p2865 + p2864 + p2863 + p2856 + p4333 + p4334 + p3003 + p4335 + p4336 + p4337 + p2849 + p4338 + p2842 + p4339 + p2835 + p2828 + p4340 + p2827 + p3010 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2814 + p4347 + p3017 + p2807 + p2800 + p4354 + p3024 + p2793 + p4361 + p2786 + p2785 + p3031 + p2784 + p3032 + p2783 + p3033 + p2782 + p3034 + p2781 + p3035 + p2780 + p3036 + p4368 + p3037 + p2779 + p3038 + p2772 + p2765 + p2758 + p2751 + p4375 + p2744 + p4376 + p3045 + p4377 + p2743 + p4378 + p2742 + p4379 + p2741 + p2740 + p2739 + p2738 + p2737 + p2730 + p2723 + p2716 + p2709 + p2702 + p4380 + p4381 + p2701 + p4382 + p2700 + p3052 + p4389 + p3059 + p2699 + p2698 + p2697 + p2696 + p2695 + p4396 + p2688 + p3066 + p2681 + p2674 + p3999 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p2667 + p3998 + p3997 + p2660 + p3990 + p2659 + p3087 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p3094 + p3983 + p2646 + p3976 + p4403 + p2639 + p3969 + p2632 + p3962 + p3961 + p3960 + p3101 + p3959 + p3958 + p3957 + p2625 + p3956 + p3955 + p3108 + p2618 + p2617 + p3948 + p2616 + p2615 + p2614 + p3115 + p3116 + p3117 + p3118 + p3119 + p3120 + p3121 + p3122 + p2613 + p2612 + p2611 + p3941 + p2604 + p3934 + p3129 + p3927 + p3920 + p3919 + p3136 + p3918 + p3917 + p3916 + p3915 + p3914 + p3913 + p3906 + p3143 + p3150 + p2597 + p2590 + p2583 + p2576 + p3157 + p3158 + p3159 + p2575 + p3160 + p3161 + p3162 + p2574 + p3163 + p3164 + p2573 + p2572 + p2571 + p2570 + p2569 + p3899 + p3171 + p2562 + p3892 + p3178 + p2555 + p3885 + p2548 + p3878 + p3877 + p3185 + p3876 + p3875 + p3874 + p3873 + p2541 + p3872 + p3192 + p3871 + p2534 + p2533 + p3864 + p2532 + p2531 + p3199 + p2530 + p2529 + p2528 + p2527 + p3857 + p2520 + p3850 + p2513 + p3843 + p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p2506 + p3836 + p3835 + p3834 + p3833 + p3832 + p3831 + p3830 + p3213 + p3829 + p3822 + p3815 + p3808 + p3801 + p3220 + p3227 + p2499 + p2492 + p3234 + p2491 + p2490 + p2489 + p2488 + p2487 + p2486 + p2485 + p2478 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p2471 + p2464 + p3794 + p3793 + p3792 + p3255 + p3791 + p3790 + p3789 + p2457 + p3788 + p3787 + p2450 + p3780 + p2449 + p3262 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p3773 + p3269 + p2436 + p3766 + p3276 + p2429 + p3759 + p2422 + p3752 + p3751 + p3283 + p3284 + p3285 + p3286 + p3287 + p3288 + p3289 + p3290 + p3750 + p3749 + p3748 + p3747 + p2415 + p3746 + p3297 + p3745 + p2408 + p2407 + p3738 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p3731 + p3724 + p3717 + p3710 + p3709 + p3708 + p3707 + p3706 + p3304 + p3705 + p3704 + p3703 + p2394 + p3311 + p2387 + p3318 + p2380 + p2373 + p2366 + p2365 + p3696 + p2364 + p3325 + p3326 + p3327 + p3328 + p3329 + p2363 + p3330 + p3331 + p2362 + p3332 + p2361 + p2360 + p2359 + p3689 + p2352 + p3682 + p3675 + p3339 + p3668 + p3667 + p3666 + p3665 + p3664 + p3663 + p3662 + p3661 + p3654 + p3647 + p3640 + p3633 + p3346 + p3626 + p3625 + p3624 + p3623 + p3622 + p3621 + p3620 + p3619 + p3612 + p3353 + p3605 + p3360 + p3598 + p3591 + p3584 + p3583 + p3582 + p3581 + p3580 + p3579 + p3367 + p3578 + p3368 + p3577 + p3369 + p3570 + p3563 + p3370 + p3371 + p3556 + p3372 + p3549 + p3373 + p3542 + p3374 + p3541 + p3540 + p3539 + p3538 + p3537 + p3536 + p3535 + p3528 + p3521 + p3514 + p3381 + p3507 + p3500 + p3388 + p3499 + p3498 + p3497 + p3496 + p3495 + p3494 + p3395 + p3493 + p3486 + p3479 + p3472 + p3465 + p3458 + p3457 + p3456 + p3455 + p3454 + p3453 + p3452 + p3451 + p3444 + p3437 + p3430 + p3423 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p3410 + p3409 + p3402)) : A (TRUE) : A (F ((G (FALSE) U F (FALSE)))) : A (F (FALSE)) : A (F ((2 <= p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612)))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-6-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795)
lola: processed formula length: 60
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-3 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 295 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-COL-6-LTLCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 6 will run for 354 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (2 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 + p4042 + p4041 + p4040 + p4039 + p4032 + p4025 + p4... (shortened)
lola: processed formula length: 4708
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 393 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 442 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= p4193 + p4186 + p4179 + p4172 + p4171 + p4170 + p4169 + p4168 + p4167 + p4166 + p4165 + p4158 + p4151 + p4144 + p4137 + p4130 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p4116 + p4109 + p4102 + p4095 + p4088 + p4087 + p4086 + p4085 + p4084 + p4083 + p4082 + p4081 + p4074 + p4067 + p4060 + p4053 + p4046 + p4045 + p4044 + p4043 ... (shortened)
lola: processed formula length: 4760
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 506 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 590 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
========================================
FORMULA NeoElection-COL-6-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 708 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-COL-6-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 12 will run for 885 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola:
FORMULA NeoElection-COL-6-LTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 13 will run for 1181 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola:
FORMULA NeoElection-COL-6-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 14 will run for 1771 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 60 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================

FORMULA NeoElection-COL-6-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 3543 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((2 <= p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:659
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= 1)
lola: processed formula length: 60
lola: 62 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: 88541 markings, 134405 edges, 17708 markings/sec, 0 secs
lola: 173232 markings, 269753 edges, 16938 markings/sec, 5 secs
lola: 252823 markings, 407838 edges, 15918 markings/sec, 10 secs
lola: 328635 markings, 548841 edges, 15162 markings/sec, 15 secs
lola: 405280 markings, 691522 edges, 15329 markings/sec, 20 secs
lola: 481898 markings, 830052 edges, 15324 markings/sec, 25 secs
lola: 564766 markings, 967126 edges, 16574 markings/sec, 30 secs
lola: 642450 markings, 1107367 edges, 15537 markings/sec, 35 secs
lola: 721187 markings, 1243153 edges, 15747 markings/sec, 40 secs
lola: 798217 markings, 1384030 edges, 15406 markings/sec, 45 secs
lola: 884250 markings, 1528315 edges, 17207 markings/sec, 50 secs
lola: 967514 markings, 1675170 edges, 16653 markings/sec, 55 secs
lola: 1049825 markings, 1821511 edges, 16462 markings/sec, 60 secs
lola: 1131705 markings, 1959642 edges, 16376 markings/sec, 65 secs
lola: 1207058 markings, 2103126 edges, 15071 markings/sec, 70 secs
lola: 1285754 markings, 2243259 edges, 15739 markings/sec, 75 secs
lola: 1373049 markings, 2388159 edges, 17459 markings/sec, 80 secs
lola: 1456168 markings, 2538716 edges, 16624 markings/sec, 85 secs
lola: 1541946 markings, 2686046 edges, 17156 markings/sec, 90 secs
lola: 1626787 markings, 2834570 edges, 16968 markings/sec, 95 secs
lola: 1712735 markings, 2982996 edges, 17190 markings/sec, 100 secs
lola: 1794034 markings, 3125453 edges, 16260 markings/sec, 105 secs
lola: 1871185 markings, 3262849 edges, 15430 markings/sec, 110 secs
lola: 1947409 markings, 3402093 edges, 15245 markings/sec, 115 secs
lola: 2021721 markings, 3540334 edges, 14862 markings/sec, 120 secs
lola: 2101499 markings, 3682372 edges, 15956 markings/sec, 125 secs
lola: 2176773 markings, 3821858 edges, 15055 markings/sec, 130 secs
lola: 2267165 markings, 3965602 edges, 18078 markings/sec, 135 secs
lola: 2352683 markings, 4113118 edges, 17104 markings/sec, 140 secs
lola: 2437505 markings, 4261593 edges, 16964 markings/sec, 145 secs
lola: 2524613 markings, 4406885 edges, 17422 markings/sec, 150 secs
lola: 2607663 markings, 4549795 edges, 16610 markings/sec, 155 secs
lola: 2696887 markings, 4698348 edges, 17845 markings/sec, 160 secs
lola: 2783458 markings, 4843645 edges, 17314 markings/sec, 165 secs
lola: 2865023 markings, 4987815 edges, 16313 markings/sec, 170 secs
lola: 2953956 markings, 5137612 edges, 17787 markings/sec, 175 secs
lola: 3043974 markings, 5288983 edges, 18004 markings/sec, 180 secs
lola: 3132745 markings, 5439525 edges, 17754 markings/sec, 185 secs
lola: 3215416 markings, 5582913 edges, 16534 markings/sec, 190 secs
lola: 3298303 markings, 5727932 edges, 16577 markings/sec, 195 secs
lola: 3382862 markings, 5870619 edges, 16912 markings/sec, 200 secs
lola: 3470073 markings, 6015429 edges, 17442 markings/sec, 205 secs
lola: 3552747 markings, 6165663 edges, 16535 markings/sec, 210 secs
lola: 3636615 markings, 6310072 edges, 16774 markings/sec, 215 secs
lola: 3717386 markings, 6452265 edges, 16154 markings/sec, 220 secs
lola: 3803912 markings, 6601293 edges, 17305 markings/sec, 225 secs
lola: 3888606 markings, 6746564 edges, 16939 markings/sec, 230 secs
lola: 3969342 markings, 6891875 edges, 16147 markings/sec, 235 secs
lola: 4056133 markings, 7041585 edges, 17358 markings/sec, 240 secs
lola: 4144879 markings, 7195008 edges, 17749 markings/sec, 245 secs
lola: 4233036 markings, 7348528 edges, 17631 markings/sec, 250 secs
lola: 4314693 markings, 7492930 edges, 16331 markings/sec, 255 secs
lola: 4396336 markings, 7639575 edges, 16329 markings/sec, 260 secs
lola: 4482249 markings, 7785084 edges, 17183 markings/sec, 265 secs
lola: 4574119 markings, 7934680 edges, 18374 markings/sec, 270 secs
lola: 4662473 markings, 8090585 edges, 17671 markings/sec, 275 secs
lola: 4752600 markings, 8242840 edges, 18025 markings/sec, 280 secs
lola: 4841279 markings, 8395124 edges, 17736 markings/sec, 285 secs
lola: 4934491 markings, 8551453 edges, 18642 markings/sec, 290 secs
lola: 5026888 markings, 8705209 edges, 18479 markings/sec, 295 secs
lola: 5110198 markings, 8852476 edges, 16662 markings/sec, 300 secs
lola: 5199047 markings, 9002504 edges, 17770 markings/sec, 305 secs
lola: 5291694 markings, 9157922 edges, 18529 markings/sec, 310 secs
lola: 5382270 markings, 9312044 edges, 18115 markings/sec, 315 secs
lola: 5466779 markings, 9458030 edges, 16902 markings/sec, 320 secs
lola: 5550875 markings, 9605277 edges, 16819 markings/sec, 325 secs
lola: 5638331 markings, 9752307 edges, 17491 markings/sec, 330 secs
lola: 5731605 markings, 9905115 edges, 18655 markings/sec, 335 secs
lola: 5825958 markings, 10059491 edges, 18871 markings/sec, 340 secs
lola: 5918793 markings, 10212352 edges, 18567 markings/sec, 345 secs
lola: 6016584 markings, 10371232 edges, 19558 markings/sec, 350 secs
lola: 6107258 markings, 10522550 edges, 18135 markings/sec, 355 secs
lola: 6195863 markings, 10668421 edges, 17721 markings/sec, 360 secs
lola: 6285205 markings, 10817102 edges, 17868 markings/sec, 365 secs
lola: 6376319 markings, 10968416 edges, 18223 markings/sec, 370 secs
lola: 6466007 markings, 11119574 edges, 17938 markings/sec, 375 secs
lola: 6557629 markings, 11273531 edges, 18324 markings/sec, 380 secs
lola: 6647485 markings, 11423525 edges, 17971 markings/sec, 385 secs
lola: 6733646 markings, 11564473 edges, 17232 markings/sec, 390 secs
lola: 6814247 markings, 11710462 edges, 16120 markings/sec, 395 secs
lola: 6898276 markings, 11854958 edges, 16806 markings/sec, 400 secs
lola: 6979728 markings, 11997592 edges, 16290 markings/sec, 405 secs
lola: 7063200 markings, 12142507 edges, 16694 markings/sec, 410 secs
lola: 7147470 markings, 12289694 edges, 16854 markings/sec, 415 secs
lola: 7227236 markings, 12430730 edges, 15953 markings/sec, 420 secs
lola: 7309885 markings, 12573182 edges, 16530 markings/sec, 425 secs
lola: 7395888 markings, 12722374 edges, 17201 markings/sec, 430 secs
lola: 7482214 markings, 12872004 edges, 17265 markings/sec, 435 secs
lola: 7562763 markings, 13014035 edges, 16110 markings/sec, 440 secs
lola: 7641576 markings, 13155459 edges, 15763 markings/sec, 445 secs
lola: 7720021 markings, 13297228 edges, 15689 markings/sec, 450 secs
lola: 7809977 markings, 13445115 edges, 17991 markings/sec, 455 secs
lola: 7898122 markings, 13592210 edges, 17629 markings/sec, 460 secs
lola: 7987116 markings, 13741405 edges, 17799 markings/sec, 465 secs
lola: 8077971 markings, 13892563 edges, 18171 markings/sec, 470 secs
lola: 8166166 markings, 14041574 edges, 17639 markings/sec, 475 secs
lola: 8252398 markings, 14185637 edges, 17246 markings/sec, 480 secs
lola: 8336564 markings, 14330692 edges, 16833 markings/sec, 485 secs
lola: 8421856 markings, 14476112 edges, 17058 markings/sec, 490 secs
lola: 8505548 markings, 14620049 edges, 16738 markings/sec, 495 secs
lola: 8593842 markings, 14770672 edges, 17659 markings/sec, 500 secs
lola: 8674984 markings, 14913756 edges, 16228 markings/sec, 505 secs
lola: 8763225 markings, 15052269 edges, 17648 markings/sec, 510 secs
lola: 8844171 markings, 15193613 edges, 16189 markings/sec, 515 secs
lola: 8924349 markings, 15335868 edges, 16036 markings/sec, 520 secs
lola: 9013369 markings, 15482406 edges, 17804 markings/sec, 525 secs
lola: 9096517 markings, 15623865 edges, 16630 markings/sec, 530 secs
lola: 9181646 markings, 15767164 edges, 17026 markings/sec, 535 secs
lola: 9267528 markings, 15909128 edges, 17176 markings/sec, 540 secs
lola: 9347020 markings, 16050219 edges, 15898 markings/sec, 545 secs
lola: 9433321 markings, 16195346 edges, 17260 markings/sec, 550 secs
lola: 9522718 markings, 16346006 edges, 17879 markings/sec, 555 secs
lola: 9611471 markings, 16496481 edges, 17751 markings/sec, 560 secs
lola: 9691076 markings, 16635674 edges, 15921 markings/sec, 565 secs
lola: 9773996 markings, 16779086 edges, 16584 markings/sec, 570 secs
lola: 9856680 markings, 16921054 edges, 16537 markings/sec, 575 secs
lola: 9945110 markings, 17066964 edges, 17686 markings/sec, 580 secs
lola: 10038240 markings, 17216441 edges, 18626 markings/sec, 585 secs
lola: 10128123 markings, 17364806 edges, 17977 markings/sec, 590 secs
lola: 10222153 markings, 17517404 edges, 18806 markings/sec, 595 secs
lola: 10312850 markings, 17667498 edges, 18139 markings/sec, 600 secs
lola: 10402096 markings, 17813900 edges, 17849 markings/sec, 605 secs
lola: 10489213 markings, 17960668 edges, 17423 markings/sec, 610 secs
lola: 10579746 markings, 18111055 edges, 18107 markings/sec, 615 secs
lola: 10668888 markings, 18260491 edges, 17828 markings/sec, 620 secs
lola: 10762926 markings, 18416933 edges, 18808 markings/sec, 625 secs
lola: 10847365 markings, 18561095 edges, 16888 markings/sec, 630 secs
lola: 10936720 markings, 18707339 edges, 17871 markings/sec, 635 secs
lola: 11032382 markings, 18862410 edges, 19132 markings/sec, 640 secs
lola: 11126573 markings, 19015229 edges, 18838 markings/sec, 645 secs
lola: 11219295 markings, 19168275 edges, 18544 markings/sec, 650 secs
lola: 11313761 markings, 19323511 edges, 18893 markings/sec, 655 secs
lola: 11404708 markings, 19474197 edges, 18189 markings/sec, 660 secs
lola: 11504351 markings, 19630722 edges, 19929 markings/sec, 665 secs
lola: 11602123 markings, 19786357 edges, 19554 markings/sec, 670 secs
lola: 11698923 markings, 19941124 edges, 19360 markings/sec, 675 secs
lola: 11790428 markings, 20088293 edges, 18301 markings/sec, 680 secs
lola: 11877149 markings, 20234492 edges, 17344 markings/sec, 685 secs
lola: 11968622 markings, 20386200 edges, 18295 markings/sec, 690 secs
lola: 12057551 markings, 20535382 edges, 17786 markings/sec, 695 secs
lola: 12151831 markings, 20692283 edges, 18856 markings/sec, 700 secs
lola: 12238498 markings, 20841731 edges, 17333 markings/sec, 705 secs
lola: 12334437 markings, 20995367 edges, 19188 markings/sec, 710 secs
lola: 12430904 markings, 21151362 edges, 19293 markings/sec, 715 secs
lola: 12523850 markings, 21303593 edges, 18589 markings/sec, 720 secs
lola: 12616760 markings, 21453277 edges, 18582 markings/sec, 725 secs
lola: 12705087 markings, 21599566 edges, 17665 markings/sec, 730 secs
lola: 12788485 markings, 21751101 edges, 16680 markings/sec, 735 secs
lola: 12874123 markings, 21898528 edges, 17128 markings/sec, 740 secs
lola: 12957797 markings, 22046216 edges, 16735 markings/sec, 745 secs
lola: 13045922 markings, 22197832 edges, 17625 markings/sec, 750 secs
lola: 13133272 markings, 22346879 edges, 17470 markings/sec, 755 secs
lola: 13214587 markings, 22494288 edges, 16263 markings/sec, 760 secs
lola: 13302267 markings, 22645506 edges, 17536 markings/sec, 765 secs
lola: 13392109 markings, 22800262 edges, 17968 markings/sec, 770 secs
lola: 13480183 markings, 22952516 edges, 17615 markings/sec, 775 secs
lola: 13559665 markings, 23095217 edges, 15896 markings/sec, 780 secs
lola: 13643892 markings, 23245883 edges, 16845 markings/sec, 785 secs
lola: 13732837 markings, 23397801 edges, 17789 markings/sec, 790 secs
lola: 13827451 markings, 23555310 edges, 18923 markings/sec, 795 secs
lola: 13922697 markings, 23714142 edges, 19049 markings/sec, 800 secs
lola: 14016727 markings, 23872521 edges, 18806 markings/sec, 805 secs
lola: 14111637 markings, 24032288 edges, 18982 markings/sec, 810 secs
lola: 14203098 markings, 24185698 edges, 18292 markings/sec, 815 secs
lola: 14292859 markings, 24339494 edges, 17952 markings/sec, 820 secs
lola: 14383430 markings, 24493974 edges, 18114 markings/sec, 825 secs
lola: 14472272 markings, 24646923 edges, 17768 markings/sec, 830 secs
lola: 14565282 markings, 24804987 edges, 18602 markings/sec, 835 secs
lola: 14652299 markings, 24957332 edges, 17403 markings/sec, 840 secs
lola: 14748374 markings, 25116888 edges, 19215 markings/sec, 845 secs
lola: 14844642 markings, 25276471 edges, 19254 markings/sec, 850 secs
lola: 14938977 markings, 25436070 edges, 18867 markings/sec, 855 secs
lola: 15039458 markings, 25602195 edges, 20096 markings/sec, 860 secs
lola: 15131344 markings, 25759741 edges, 18377 markings/sec, 865 secs
lola: 15233105 markings, 25923383 edges, 20352 markings/sec, 870 secs
lola: 15334770 markings, 26088007 edges, 20333 markings/sec, 875 secs
lola: 15433994 markings, 26250376 edges, 19845 markings/sec, 880 secs
lola: 15528296 markings, 26405286 edges, 18860 markings/sec, 885 secs
lola: 15617769 markings, 26558867 edges, 17895 markings/sec, 890 secs
lola: 15708436 markings, 26713563 edges, 18133 markings/sec, 895 secs
lola: 15797854 markings, 26867503 edges, 17884 markings/sec, 900 secs
lola: 15888702 markings, 27023722 edges, 18170 markings/sec, 905 secs
lola: 15977464 markings, 27176302 edges, 17752 markings/sec, 910 secs
lola: 16074571 markings, 27335340 edges, 19421 markings/sec, 915 secs
lola: 16167809 markings, 27490802 edges, 18648 markings/sec, 920 secs
lola: 16260692 markings, 27647104 edges, 18577 markings/sec, 925 secs
lola: 16355645 markings, 27796590 edges, 18991 markings/sec, 930 secs
lola: 16442903 markings, 27949222 edges, 17452 markings/sec, 935 secs
lola: 16531172 markings, 28102100 edges, 17654 markings/sec, 940 secs
lola: 16620344 markings, 28253387 edges, 17834 markings/sec, 945 secs
lola: 16711268 markings, 28408676 edges, 18185 markings/sec, 950 secs
lola: 16808699 markings, 28571353 edges, 19486 markings/sec, 955 secs
lola: 16899973 markings, 28726981 edges, 18255 markings/sec, 960 secs
lola: 16992024 markings, 28881304 edges, 18410 markings/sec, 965 secs
lola: 17085129 markings, 29040736 edges, 18621 markings/sec, 970 secs
lola: 17182814 markings, 29205009 edges, 19537 markings/sec, 975 secs
lola: 17270433 markings, 29356242 edges, 17524 markings/sec, 980 secs
lola: 17356577 markings, 29507824 edges, 17229 markings/sec, 985 secs
lola: 17447130 markings, 29661930 edges, 18111 markings/sec, 990 secs
lola: 17541988 markings, 29818252 edges, 18972 markings/sec, 995 secs
lola: 17639628 markings, 29977344 edges, 19528 markings/sec, 1000 secs
lola: 17738699 markings, 30138914 edges, 19814 markings/sec, 1005 secs
lola: 17840541 markings, 30304108 edges, 20368 markings/sec, 1010 secs
lola: 17935054 markings, 30462065 edges, 18903 markings/sec, 1015 secs
lola: 18027786 markings, 30615280 edges, 18546 markings/sec, 1020 secs
lola: 18118539 markings, 30768674 edges, 18151 markings/sec, 1025 secs
lola: 18215871 markings, 30928695 edges, 19466 markings/sec, 1030 secs
lola: 18309870 markings, 31086438 edges, 18800 markings/sec, 1035 secs
lola: 18403347 markings, 31243662 edges, 18695 markings/sec, 1040 secs
lola: 18498633 markings, 31399710 edges, 19057 markings/sec, 1045 secs
lola: 18595200 markings, 31560020 edges, 19313 markings/sec, 1050 secs
lola: 18696582 markings, 31724573 edges, 20276 markings/sec, 1055 secs
lola: 18796480 markings, 31888047 edges, 19980 markings/sec, 1060 secs
lola: 18899341 markings, 32056230 edges, 20572 markings/sec, 1065 secs
lola: 18997972 markings, 32219509 edges, 19726 markings/sec, 1070 secs
lola: 19106004 markings, 32389260 edges, 21606 markings/sec, 1075 secs
lola: 19210346 markings, 32555840 edges, 20868 markings/sec, 1080 secs
lola: 19315214 markings, 32724152 edges, 20974 markings/sec, 1085 secs
lola: 19410710 markings, 32881079 edges, 19099 markings/sec, 1090 secs
lola: 19502952 markings, 33037184 edges, 18448 markings/sec, 1095 secs
lola: 19601854 markings, 33199710 edges, 19780 markings/sec, 1100 secs
lola: 19696692 markings, 33358156 edges, 18968 markings/sec, 1105 secs
lola: 19789931 markings, 33516281 edges, 18648 markings/sec, 1110 secs
lola: 19881089 markings, 33666584 edges, 18232 markings/sec, 1115 secs
lola: 19978318 markings, 33822219 edges, 19446 markings/sec, 1120 secs
lola: 20070418 markings, 33973127 edges, 18420 markings/sec, 1125 secs
lola: 20168687 markings, 34134628 edges, 19654 markings/sec, 1130 secs
lola: 20263280 markings, 34288930 edges, 18919 markings/sec, 1135 secs
lola: 20357323 markings, 34443047 edges, 18809 markings/sec, 1140 secs
lola: 20455141 markings, 34600870 edges, 19564 markings/sec, 1145 secs
lola: 20553338 markings, 34761038 edges, 19639 markings/sec, 1150 secs
lola: 20650331 markings, 34921601 edges, 19399 markings/sec, 1155 secs
lola: 20748173 markings, 35080226 edges, 19568 markings/sec, 1160 secs
lola: 20853676 markings, 35245910 edges, 21101 markings/sec, 1165 secs
lola: 20951998 markings, 35403546 edges, 19664 markings/sec, 1170 secs
lola: 21049553 markings, 35560575 edges, 19511 markings/sec, 1175 secs
lola: 21148832 markings, 35716496 edges, 19856 markings/sec, 1180 secs
lola: 21253795 markings, 35883101 edges, 20993 markings/sec, 1185 secs
lola: 21354419 markings, 36043182 edges, 20125 markings/sec, 1190 secs
lola: 21453621 markings, 36201428 edges, 19840 markings/sec, 1195 secs
lola: 21551391 markings, 36359712 edges, 19554 markings/sec, 1200 secs
lola: 21644328 markings, 36512298 edges, 18587 markings/sec, 1205 secs
lola: 21732928 markings, 36662623 edges, 17720 markings/sec, 1210 secs
lola: 21829849 markings, 36821603 edges, 19384 markings/sec, 1215 secs
lola: 21924045 markings, 36978953 edges, 18839 markings/sec, 1220 secs
lola: 22016907 markings, 37136344 edges, 18572 markings/sec, 1225 secs
lola: 22113011 markings, 37294745 edges, 19221 markings/sec, 1230 secs
lola: 22215343 markings, 37459091 edges, 20466 markings/sec, 1235 secs
lola: 22312734 markings, 37618036 edges, 19478 markings/sec, 1240 secs
lola: 22410427 markings, 37778189 edges, 19539 markings/sec, 1245 secs
lola: 22513215 markings, 37943275 edges, 20558 markings/sec, 1250 secs
lola: 22616375 markings, 38109826 edges, 20632 markings/sec, 1255 secs
lola: 22714359 markings, 38269426 edges, 19597 markings/sec, 1260 secs
lola: 22809933 markings, 38426751 edges, 19115 markings/sec, 1265 secs
lola: 22903817 markings, 38578246 edges, 18777 markings/sec, 1270 secs
lola: 22989383 markings, 38717802 edges, 17113 markings/sec, 1275 secs
lola: 23069215 markings, 38861428 edges, 15966 markings/sec, 1280 secs
lola: 23151580 markings, 39003605 edges, 16473 markings/sec, 1285 secs
lola: 23233905 markings, 39146704 edges, 16465 markings/sec, 1290 secs
lola: 23319194 markings, 39295577 edges, 17058 markings/sec, 1295 secs
lola: 23405854 markings, 39446941 edges, 17332 markings/sec, 1300 secs
lola: 23487390 markings, 39591189 edges, 16307 markings/sec, 1305 secs
lola: 23572834 markings, 39738131 edges, 17089 markings/sec, 1310 secs
lola: 23660340 markings, 39890733 edges, 17501 markings/sec, 1315 secs
lola: 23747554 markings, 40042105 edges, 17443 markings/sec, 1320 secs
lola: 23829640 markings, 40186899 edges, 16417 markings/sec, 1325 secs
lola: 23910248 markings, 40331649 edges, 16122 markings/sec, 1330 secs
lola: 23992756 markings, 40476762 edges, 16502 markings/sec, 1335 secs
lola: 24083246 markings, 40628030 edges, 18098 markings/sec, 1340 secs
lola: 24174649 markings, 40779681 edges, 18281 markings/sec, 1345 secs
lola: 24264547 markings, 40931230 edges, 17980 markings/sec, 1350 secs
lola: 24359512 markings, 41088413 edges, 18993 markings/sec, 1355 secs
lola: 24447760 markings, 41239112 edges, 17650 markings/sec, 1360 secs
lola: 24535544 markings, 41386556 edges, 17557 markings/sec, 1365 secs
lola: 24622142 markings, 41534461 edges, 17320 markings/sec, 1370 secs
lola: 24710234 markings, 41684361 edges, 17618 markings/sec, 1375 secs
lola: 24796997 markings, 41834106 edges, 17353 markings/sec, 1380 secs
lola: 24883824 markings, 41983573 edges, 17365 markings/sec, 1385 secs
lola: 24971299 markings, 42131578 edges, 17495 markings/sec, 1390 secs
lola: 25065214 markings, 42288721 edges, 18783 markings/sec, 1395 secs
lola: 25161437 markings, 42449183 edges, 19245 markings/sec, 1400 secs
lola: 25255895 markings, 42607987 edges, 18892 markings/sec, 1405 secs
lola: 25354398 markings, 42771636 edges, 19701 markings/sec, 1410 secs
lola: 25446037 markings, 42928749 edges, 18328 markings/sec, 1415 secs
lola: 25547807 markings, 43092131 edges, 20354 markings/sec, 1420 secs
lola: 25648526 markings, 43255385 edges, 20144 markings/sec, 1425 secs
lola: 25747320 markings, 43417167 edges, 19759 markings/sec, 1430 secs
lola: 25834717 markings, 43562139 edges, 17479 markings/sec, 1435 secs
lola: 25922203 markings, 43711401 edges, 17497 markings/sec, 1440 secs
lola: 26010128 markings, 43861206 edges, 17585 markings/sec, 1445 secs
lola: 26096583 markings, 44010453 edges, 17291 markings/sec, 1450 secs
lola: 26184836 markings, 44161909 edges, 17651 markings/sec, 1455 secs
lola: 26270163 markings, 44309451 edges, 17065 markings/sec, 1460 secs
lola: 26364485 markings, 44463950 edges, 18864 markings/sec, 1465 secs
lola: 26455604 markings, 44615192 edges, 18224 markings/sec, 1470 secs
lola: 26548619 markings, 44771490 edges, 18603 markings/sec, 1475 secs
lola: 26638852 markings, 44920775 edges, 18047 markings/sec, 1480 secs
lola: 26731439 markings, 45074742 edges, 18517 markings/sec, 1485 secs
lola: 26823902 markings, 45228377 edges, 18493 markings/sec, 1490 secs
lola: 26916834 markings, 45384535 edges, 18586 markings/sec, 1495 secs
lola: 27009059 markings, 45539956 edges, 18445 markings/sec, 1500 secs
lola: 27099053 markings, 45691057 edges, 17999 markings/sec, 1505 secs
lola: 27196782 markings, 45847204 edges, 19546 markings/sec, 1510 secs
lola: 27291912 markings, 46002149 edges, 19026 markings/sec, 1515 secs
lola: 27387185 markings, 46158829 edges, 19055 markings/sec, 1520 secs
lola: 27486457 markings, 46318478 edges, 19854 markings/sec, 1525 secs
lola: 27586940 markings, 46481447 edges, 20097 markings/sec, 1530 secs
lola: 27686069 markings, 46641992 edges, 19826 markings/sec, 1535 secs
lola: 27782927 markings, 46799925 edges, 19372 markings/sec, 1540 secs
lola: 27878268 markings, 46957564 edges, 19068 markings/sec, 1545 secs
lola: 27970054 markings, 47110882 edges, 18357 markings/sec, 1550 secs
lola: 28059162 markings, 47263074 edges, 17822 markings/sec, 1555 secs
lola: 28149012 markings, 47417243 edges, 17970 markings/sec, 1560 secs
lola: 28242001 markings, 47575365 edges, 18598 markings/sec, 1565 secs
lola: 28329108 markings, 47727491 edges, 17421 markings/sec, 1570 secs
lola: 28421740 markings, 47882176 edges, 18526 markings/sec, 1575 secs
lola: 28517642 markings, 48040841 edges, 19180 markings/sec, 1580 secs
lola: 28610093 markings, 48194999 edges, 18490 markings/sec, 1585 secs
lola: 28703989 markings, 48351801 edges, 18779 markings/sec, 1590 secs
lola: 28803065 markings, 48513884 edges, 19815 markings/sec, 1595 secs
lola: 28901014 markings, 48676055 edges, 19590 markings/sec, 1600 secs
lola: 28994610 markings, 48831818 edges, 18719 markings/sec, 1605 secs
lola: 29087795 markings, 48989063 edges, 18637 markings/sec, 1610 secs
lola: 29179965 markings, 49141081 edges, 18434 markings/sec, 1615 secs
lola: 29261442 markings, 49289441 edges, 16295 markings/sec, 1620 secs
lola: 29339726 markings, 49443166 edges, 15657 markings/sec, 1625 secs
lola: 29420579 markings, 49592864 edges, 16171 markings/sec, 1630 secs
lola: 29499679 markings, 49742061 edges, 15820 markings/sec, 1635 secs
lola: 29582361 markings, 49895371 edges, 16536 markings/sec, 1640 secs
lola: 29665285 markings, 50048992 edges, 16585 markings/sec, 1645 secs
lola: 29743025 markings, 50197565 edges, 15548 markings/sec, 1650 secs
lola: 29826212 markings, 50350800 edges, 16637 markings/sec, 1655 secs
lola: 29909927 markings, 50507740 edges, 16743 markings/sec, 1660 secs
lola: 29994855 markings, 50665381 edges, 16986 markings/sec, 1665 secs
lola: 30073661 markings, 50814255 edges, 15761 markings/sec, 1670 secs
lola: 30150532 markings, 50962485 edges, 15374 markings/sec, 1675 secs
lola: 30226527 markings, 51111543 edges, 15199 markings/sec, 1680 secs
lola: 30312799 markings, 51266277 edges, 17254 markings/sec, 1685 secs
lola: 30397072 markings, 51420900 edges, 16855 markings/sec, 1690 secs
lola: 30483129 markings, 51576853 edges, 17211 markings/sec, 1695 secs
lola: 30568858 markings, 51734164 edges, 17146 markings/sec, 1700 secs
lola: 30654966 markings, 51891871 edges, 17222 markings/sec, 1705 secs
lola: 30737064 markings, 52044002 edges, 16420 markings/sec, 1710 secs
lola: 30817782 markings, 52196303 edges, 16144 markings/sec, 1715 secs
lola: 30898785 markings, 52346889 edges, 16201 markings/sec, 1720 secs
lola: 30979609 markings, 52499891 edges, 16165 markings/sec, 1725 secs
lola: 31062864 markings, 52654961 edges, 16651 markings/sec, 1730 secs
lola: 31143915 markings, 52808616 edges, 16210 markings/sec, 1735 secs
lola: 31226042 markings, 52959976 edges, 16425 markings/sec, 1740 secs
lola: 31312060 markings, 53117786 edges, 17204 markings/sec, 1745 secs
lola: 31398212 markings, 53275758 edges, 17230 markings/sec, 1750 secs
lola: 31483130 markings, 53432771 edges, 16984 markings/sec, 1755 secs
lola: 31574358 markings, 53596659 edges, 18246 markings/sec, 1760 secs
lola: 31658042 markings, 53753277 edges, 16737 markings/sec, 1765 secs
lola: 31745320 markings, 53912955 edges, 17456 markings/sec, 1770 secs
lola: 31832610 markings, 54069849 edges, 17458 markings/sec, 1775 secs
lola: 31912557 markings, 54216585 edges, 15989 markings/sec, 1780 secs
lola: 31993264 markings, 54365529 edges, 16141 markings/sec, 1785 secs
lola: 32071088 markings, 54506686 edges, 15565 markings/sec, 1790 secs
lola: 32145450 markings, 54647923 edges, 14872 markings/sec, 1795 secs
lola: 32220536 markings, 54788993 edges, 15017 markings/sec, 1800 secs
lola: 32294906 markings, 54929842 edges, 14874 markings/sec, 1805 secs
lola: 32372656 markings, 55074274 edges, 15550 markings/sec, 1810 secs
lola: 32447389 markings, 55216099 edges, 14947 markings/sec, 1815 secs
lola: 32521030 markings, 55356641 edges, 14728 markings/sec, 1820 secs
lola: 32599571 markings, 55501833 edges, 15708 markings/sec, 1825 secs
lola: 32677798 markings, 55647558 edges, 15645 markings/sec, 1830 secs
lola: 32753029 markings, 55790368 edges, 15046 markings/sec, 1835 secs
lola: 32829338 markings, 55933155 edges, 15262 markings/sec, 1840 secs
lola: 32904664 markings, 56071508 edges, 15065 markings/sec, 1845 secs
lola: 32982148 markings, 56211562 edges, 15497 markings/sec, 1850 secs
lola: 33060247 markings, 56352981 edges, 15620 markings/sec, 1855 secs
lola: 33135416 markings, 56492091 edges, 15034 markings/sec, 1860 secs
lola: 33216347 markings, 56638678 edges, 16186 markings/sec, 1865 secs
lola: 33290527 markings, 56777540 edges, 14836 markings/sec, 1870 secs
lola: 33367863 markings, 56918728 edges, 15467 markings/sec, 1875 secs
lola: 33449169 markings, 57064875 edges, 16261 markings/sec, 1880 secs
lola: 33525807 markings, 57206225 edges, 15328 markings/sec, 1885 secs
lola: 33603697 markings, 57349305 edges, 15578 markings/sec, 1890 secs
lola: 33683677 markings, 57496906 edges, 15996 markings/sec, 1895 secs
lola: 33770505 markings, 57652865 edges, 17366 markings/sec, 1900 secs
lola: 33856359 markings, 57809875 edges, 17171 markings/sec, 1905 secs
lola: 33939537 markings, 57964907 edges, 16636 markings/sec, 1910 secs
lola: 34021582 markings, 58115744 edges, 16409 markings/sec, 1915 secs
lola: 34102728 markings, 58268981 edges, 16229 markings/sec, 1920 secs
lola: 34183186 markings, 58416689 edges, 16092 markings/sec, 1925 secs
lola: 34260694 markings, 58563728 edges, 15502 markings/sec, 1930 secs
lola: 34340058 markings, 58712286 edges, 15873 markings/sec, 1935 secs
lola: 34417043 markings, 58859061 edges, 15397 markings/sec, 1940 secs
lola: 34501091 markings, 59013980 edges, 16810 markings/sec, 1945 secs
lola: 34578704 markings, 59163381 edges, 15523 markings/sec, 1950 secs
lola: 34658517 markings, 59312979 edges, 15963 markings/sec, 1955 secs
lola: 34742150 markings, 59467213 edges, 16727 markings/sec, 1960 secs
lola: 34821295 markings, 59616709 edges, 15829 markings/sec, 1965 secs
lola: 34901474 markings, 59768436 edges, 16036 markings/sec, 1970 secs
lola: 34982729 markings, 59920621 edges, 16251 markings/sec, 1975 secs
lola: 35067611 markings, 60077268 edges, 16976 markings/sec, 1980 secs
lola: 35150265 markings, 60235293 edges, 16531 markings/sec, 1985 secs
lola: 35230328 markings, 60386345 edges, 16013 markings/sec, 1990 secs
lola: 35309531 markings, 60537670 edges, 15841 markings/sec, 1995 secs
lola: 35388337 markings, 60691252 edges, 15761 markings/sec, 2000 secs
lola: 35461456 markings, 60839601 edges, 14624 markings/sec, 2005 secs
lola: 35533837 markings, 60987324 edges, 14476 markings/sec, 2010 secs
lola: 35609797 markings, 61141264 edges, 15192 markings/sec, 2015 secs
lola: 35680444 markings, 61287375 edges, 14129 markings/sec, 2020 secs
lola: 35754161 markings, 61436358 edges, 14743 markings/sec, 2025 secs
lola: 35824079 markings, 61583035 edges, 13984 markings/sec, 2030 secs
lola: 35896620 markings, 61733364 edges, 14508 markings/sec, 2035 secs
lola: 35972440 markings, 61888875 edges, 15164 markings/sec, 2040 secs
lola: 36046136 markings, 62043577 edges, 14739 markings/sec, 2045 secs
lola: 36118633 markings, 62196822 edges, 14499 markings/sec, 2050 secs
lola: 36193063 markings, 62353879 edges, 14886 markings/sec, 2055 secs
lola: 36269770 markings, 62511578 edges, 15341 markings/sec, 2060 secs
lola: 36347493 markings, 62673440 edges, 15545 markings/sec, 2065 secs
lola: 36420322 markings, 62831599 edges, 14566 markings/sec, 2070 secs
lola: 36492659 markings, 62984940 edges, 14467 markings/sec, 2075 secs
lola: 36563735 markings, 63136987 edges, 14215 markings/sec, 2080 secs
lola: 36632655 markings, 63292411 edges, 13784 markings/sec, 2085 secs
lola: 36697924 markings, 63444862 edges, 13054 markings/sec, 2090 secs
lola: 36763329 markings, 63598192 edges, 13081 markings/sec, 2095 secs
lola: 36825586 markings, 63754474 edges, 12451 markings/sec, 2100 secs
lola: 36885591 markings, 63909979 edges, 12001 markings/sec, 2105 secs
lola: 36965070 markings, 64056606 edges, 15896 markings/sec, 2110 secs
lola: 37042805 markings, 64201325 edges, 15547 markings/sec, 2115 secs
lola: 37119899 markings, 64343182 edges, 15419 markings/sec, 2120 secs
lola: 37197477 markings, 64486187 edges, 15516 markings/sec, 2125 secs
lola: 37271247 markings, 64627311 edges, 14754 markings/sec, 2130 secs
lola: 37346281 markings, 64774216 edges, 15007 markings/sec, 2135 secs
lola: 37418176 markings, 64918684 edges, 14379 markings/sec, 2140 secs
lola: 37484638 markings, 65064556 edges, 13292 markings/sec, 2145 secs
lola: 37552980 markings, 65211534 edges, 13668 markings/sec, 2150 secs
lola: 37614036 markings, 65361983 edges, 12211 markings/sec, 2155 secs
lola: 37678242 markings, 65511349 edges, 12841 markings/sec, 2160 secs
lola: 37743949 markings, 65660331 edges, 13141 markings/sec, 2165 secs
lola: 37809118 markings, 65810631 edges, 13034 markings/sec, 2170 secs
lola: 37869697 markings, 65956770 edges, 12116 markings/sec, 2175 secs
lola: 37942262 markings, 66102506 edges, 14513 markings/sec, 2180 secs
lola: 38007998 markings, 66250489 edges, 13147 markings/sec, 2185 secs
lola: 38073349 markings, 66399107 edges, 13070 markings/sec, 2190 secs
lola: 38141939 markings, 66543318 edges, 13718 markings/sec, 2195 secs
lola: 38203757 markings, 66690291 edges, 12364 markings/sec, 2200 secs
lola: 38264674 markings, 66837181 edges, 12183 markings/sec, 2205 secs
lola: 38342471 markings, 66984932 edges, 15559 markings/sec, 2210 secs
lola: 38421670 markings, 67131253 edges, 15840 markings/sec, 2215 secs
lola: 38494340 markings, 67280604 edges, 14534 markings/sec, 2220 secs
lola: 38562028 markings, 67431939 edges, 13538 markings/sec, 2225 secs
lola: 38628302 markings, 67583111 edges, 13255 markings/sec, 2230 secs
lola: 38699293 markings, 67734461 edges, 14198 markings/sec, 2235 secs
lola: 38768193 markings, 67888356 edges, 13780 markings/sec, 2240 secs
lola: 38844255 markings, 68035800 edges, 15212 markings/sec, 2245 secs
lola: 38919113 markings, 68181938 edges, 14972 markings/sec, 2250 secs
lola: 38987811 markings, 68331773 edges, 13740 markings/sec, 2255 secs
lola: 39050291 markings, 68483331 edges, 12496 markings/sec, 2260 secs
lola: 39115477 markings, 68633554 edges, 13037 markings/sec, 2265 secs
lola: 39181000 markings, 68783279 edges, 13105 markings/sec, 2270 secs
lola: 39249082 markings, 68934237 edges, 13616 markings/sec, 2275 secs
lola: 39333636 markings, 69089219 edges, 16911 markings/sec, 2280 secs
lola: 39413976 markings, 69243014 edges, 16068 markings/sec, 2285 secs
lola: 39485170 markings, 69400450 edges, 14239 markings/sec, 2290 secs
lola: 39555466 markings, 69558763 edges, 14059 markings/sec, 2295 secs
lola: 39627289 markings, 69714862 edges, 14365 markings/sec, 2300 secs
lola: 39698042 markings, 69870783 edges, 14151 markings/sec, 2305 secs
lola: 39777754 markings, 70028199 edges, 15942 markings/sec, 2310 secs
lola: 39852482 markings, 70187983 edges, 14946 markings/sec, 2315 secs
lola: 39928580 markings, 70344572 edges, 15220 markings/sec, 2320 secs
lola: 39999369 markings, 70497757 edges, 14158 markings/sec, 2325 secs
lola: 40063192 markings, 70639782 edges, 12765 markings/sec, 2330 secs
lola: 40136325 markings, 70780306 edges, 14627 markings/sec, 2335 secs
lola: 40207466 markings, 70920573 edges, 14228 markings/sec, 2340 secs
lola: 40273831 markings, 71065451 edges, 13273 markings/sec, 2345 secs
lola: 40333587 markings, 71211087 edges, 11951 markings/sec, 2350 secs
lola: 40396185 markings, 71355465 edges, 12520 markings/sec, 2355 secs
lola: 40459211 markings, 71499322 edges, 12605 markings/sec, 2360 secs
lola: 40520863 markings, 71643311 edges, 12330 markings/sec, 2365 secs
lola: 40592068 markings, 71788608 edges, 14241 markings/sec, 2370 secs
lola: 40656912 markings, 71935888 edges, 12969 markings/sec, 2375 secs
lola: 40724005 markings, 72076519 edges, 13419 markings/sec, 2380 secs
lola: 40783513 markings, 72220124 edges, 11902 markings/sec, 2385 secs
lola: 40853867 markings, 72363563 edges, 14071 markings/sec, 2390 secs
lola: 40938617 markings, 72512073 edges, 16950 markings/sec, 2395 secs
lola: 41021437 markings, 72658296 edges, 16564 markings/sec, 2400 secs
lola: 41101584 markings, 72805840 edges, 16029 markings/sec, 2405 secs
lola: 41175546 markings, 72954547 edges, 14792 markings/sec, 2410 secs
lola: 41242299 markings, 73101705 edges, 13351 markings/sec, 2415 secs
lola: 41317206 markings, 73255445 edges, 14981 markings/sec, 2420 secs
lola: 41386747 markings, 73405090 edges, 13908 markings/sec, 2425 secs
lola: 41461574 markings, 73556102 edges, 14965 markings/sec, 2430 secs
lola: 41535145 markings, 73708427 edges, 14714 markings/sec, 2435 secs
lola: 41605690 markings, 73859615 edges, 14109 markings/sec, 2440 secs
lola: 41685646 markings, 74013169 edges, 15991 markings/sec, 2445 secs
lola: 41767732 markings, 74164924 edges, 16417 markings/sec, 2450 secs
lola: 41837208 markings, 74310438 edges, 13895 markings/sec, 2455 secs
lola: 41908198 markings, 74454285 edges, 14198 markings/sec, 2460 secs
lola: 41982213 markings, 74595897 edges, 14803 markings/sec, 2465 secs
lola: 42054200 markings, 74737076 edges, 14397 markings/sec, 2470 secs
lola: 42118239 markings, 74879133 edges, 12808 markings/sec, 2475 secs
lola: 42184055 markings, 75019500 edges, 13163 markings/sec, 2480 secs
lola: 42264609 markings, 75165702 edges, 16111 markings/sec, 2485 secs
lola: 42342107 markings, 75316250 edges, 15500 markings/sec, 2490 secs
lola: 42418644 markings, 75473716 edges, 15307 markings/sec, 2495 secs
lola: 42495077 markings, 75630242 edges, 15287 markings/sec, 2500 secs
lola: 42576143 markings, 75785982 edges, 16213 markings/sec, 2505 secs
lola: 42651991 markings, 75935876 edges, 15170 markings/sec, 2510 secs
lola: 42729806 markings, 76087403 edges, 15563 markings/sec, 2515 secs
lola: 42806742 markings, 76236284 edges, 15387 markings/sec, 2520 secs
lola: 42874529 markings, 76386437 edges, 13557 markings/sec, 2525 secs
lola: 42944415 markings, 76536019 edges, 13977 markings/sec, 2530 secs
lola: 43020019 markings, 76687909 edges, 15121 markings/sec, 2535 secs
lola: 43093024 markings, 76837725 edges, 14601 markings/sec, 2540 secs
lola: 43164422 markings, 76980811 edges, 14280 markings/sec, 2545 secs
lola: 43242160 markings, 77121309 edges, 15548 markings/sec, 2550 secs
lola: 43322678 markings, 77266808 edges, 16104 markings/sec, 2555 secs
lola: 43400224 markings, 77413751 edges, 15509 markings/sec, 2560 secs
lola: 43471099 markings, 77560049 edges, 14175 markings/sec, 2565 secs
lola: 43536841 markings, 77707501 edges, 13148 markings/sec, 2570 secs
lola: 43607405 markings, 77858188 edges, 14113 markings/sec, 2575 secs
lola: 43674667 markings, 78007606 edges, 13452 markings/sec, 2580 secs
lola: 43746097 markings, 78155991 edges, 14286 markings/sec, 2585 secs
lola: 43815849 markings, 78304603 edges, 13950 markings/sec, 2590 secs
lola: 43881921 markings, 78451001 edges, 13214 markings/sec, 2595 secs
lola: 43952402 markings, 78590238 edges, 14096 markings/sec, 2600 secs
lola: 44026472 markings, 78730543 edges, 14814 markings/sec, 2605 secs
lola: 44095053 markings, 78876259 edges, 13716 markings/sec, 2610 secs
lola: 44163173 markings, 79018767 edges, 13624 markings/sec, 2615 secs
lola: 44232037 markings, 79155366 edges, 13773 markings/sec, 2620 secs
lola: 44302015 markings, 79295862 edges, 13996 markings/sec, 2625 secs
lola: 44365302 markings, 79441210 edges, 12657 markings/sec, 2630 secs
lola: 44430778 markings, 79585960 edges, 13095 markings/sec, 2635 secs
lola: 44512932 markings, 79736102 edges, 16431 markings/sec, 2640 secs
lola: 44584102 markings, 79881002 edges, 14234 markings/sec, 2645 secs
lola: 44654303 markings, 80029358 edges, 14040 markings/sec, 2650 secs
lola: 44727497 markings, 80181046 edges, 14639 markings/sec, 2655 secs
lola: 44804888 markings, 80336249 edges, 15478 markings/sec, 2660 secs
lola: 44878659 markings, 80487173 edges, 14754 markings/sec, 2665 secs
lola: 44953110 markings, 80632835 edges, 14890 markings/sec, 2670 secs
lola: 45023297 markings, 80777586 edges, 14037 markings/sec, 2675 secs
lola: 45088230 markings, 80923523 edges, 12987 markings/sec, 2680 secs
lola: 45151201 markings, 81065520 edges, 12594 markings/sec, 2685 secs
lola: 45223878 markings, 81213984 edges, 14535 markings/sec, 2690 secs
lola: 45291251 markings, 81358302 edges, 13475 markings/sec, 2695 secs
lola: 45355112 markings, 81511923 edges, 12772 markings/sec, 2700 secs
lola: 45440540 markings, 81661613 edges, 17086 markings/sec, 2705 secs
lola: 45525886 markings, 81810549 edges, 17069 markings/sec, 2710 secs
lola: 45607616 markings, 81957488 edges, 16346 markings/sec, 2715 secs
lola: 45684500 markings, 82106703 edges, 15377 markings/sec, 2720 secs
lola: 45755081 markings, 82254377 edges, 14116 markings/sec, 2725 secs
lola: 45822771 markings, 82401034 edges, 13538 markings/sec, 2730 secs
lola: 45895054 markings, 82552671 edges, 14457 markings/sec, 2735 secs
lola: 45967004 markings, 82699828 edges, 14390 markings/sec, 2740 secs
lola: 46037713 markings, 82847318 edges, 14142 markings/sec, 2745 secs
lola: 46110290 markings, 82995274 edges, 14515 markings/sec, 2750 secs
lola: 46176930 markings, 83142923 edges, 13328 markings/sec, 2755 secs
lola: 46264693 markings, 83296629 edges, 17553 markings/sec, 2760 secs
lola: 46339025 markings, 83447032 edges, 14866 markings/sec, 2765 secs
lola: 46413217 markings, 83598413 edges, 14838 markings/sec, 2770 secs
lola: 46487280 markings, 83747822 edges, 14813 markings/sec, 2775 secs
lola: 46567211 markings, 83895590 edges, 15986 markings/sec, 2780 secs
lola: 46634171 markings, 84041936 edges, 13392 markings/sec, 2785 secs
lola: 46703134 markings, 84188501 edges, 13793 markings/sec, 2790 secs
lola: 46781646 markings, 84340992 edges, 15702 markings/sec, 2795 secs
lola: 46864805 markings, 84494416 edges, 16632 markings/sec, 2800 secs
lola: 46939790 markings, 84651573 edges, 14997 markings/sec, 2805 secs
lola: 47015723 markings, 84806643 edges, 15187 markings/sec, 2810 secs
lola: 47096988 markings, 84962603 edges, 16253 markings/sec, 2815 secs
lola: 47177365 markings, 85119263 edges, 16075 markings/sec, 2820 secs
lola: 47250730 markings, 85267975 edges, 14673 markings/sec, 2825 secs
lola: 47329558 markings, 85415470 edges, 15766 markings/sec, 2830 secs
lola: 47396526 markings, 85562126 edges, 13394 markings/sec, 2835 secs
lola: 47466241 markings, 85710021 edges, 13943 markings/sec, 2840 secs
lola: 47540414 markings, 85860957 edges, 14835 markings/sec, 2845 secs
lola: 47612771 markings, 86008404 edges, 14471 markings/sec, 2850 secs
lola: 47680513 markings, 86153395 edges, 13548 markings/sec, 2855 secs
lola: 47772188 markings, 86305921 edges, 18335 markings/sec, 2860 secs
lola: 47856191 markings, 86457227 edges, 16801 markings/sec, 2865 secs
lola: 47930529 markings, 86604302 edges, 14868 markings/sec, 2870 secs
lola: 48008398 markings, 86753418 edges, 15574 markings/sec, 2875 secs
lola: 48084476 markings, 86901586 edges, 15216 markings/sec, 2880 secs
lola: 48170355 markings, 87054725 edges, 17176 markings/sec, 2885 secs
lola: 48249506 markings, 87206304 edges, 15830 markings/sec, 2890 secs
lola: 48331295 markings, 87357661 edges, 16358 markings/sec, 2895 secs
lola: 48407640 markings, 87507811 edges, 15269 markings/sec, 2900 secs
lola: 48496197 markings, 87666527 edges, 17711 markings/sec, 2905 secs
lola: 48578454 markings, 87819149 edges, 16451 markings/sec, 2910 secs
lola: 48658441 markings, 87970109 edges, 15997 markings/sec, 2915 secs
lola: 48736842 markings, 88114693 edges, 15680 markings/sec, 2920 secs
lola: 48810232 markings, 88258718 edges, 14678 markings/sec, 2925 secs
lola: 48886969 markings, 88407018 edges, 15347 markings/sec, 2930 secs
lola: 48972768 markings, 88555924 edges, 17160 markings/sec, 2935 secs
lola: 49058331 markings, 88710560 edges, 17113 markings/sec, 2940 secs
lola: 49131908 markings, 88860581 edges, 14715 markings/sec, 2945 secs
lola: 49212280 markings, 89016551 edges, 16074 markings/sec, 2950 secs
lola: 49287852 markings, 89168314 edges, 15114 markings/sec, 2955 secs
lola: 49373776 markings, 89325781 edges, 17185 markings/sec, 2960 secs
lola: 49452878 markings, 89481626 edges, 15820 markings/sec, 2965 secs
lola: 49529825 markings, 89627994 edges, 15389 markings/sec, 2970 secs
lola: 49600389 markings, 89768393 edges, 14113 markings/sec, 2975 secs
lola: 49686443 markings, 89927920 edges, 17211 markings/sec, 2980 secs
lola: 49770006 markings, 90087356 edges, 16713 markings/sec, 2985 secs
lola: 49852868 markings, 90244057 edges, 16572 markings/sec, 2990 secs
lola: 49929297 markings, 90394966 edges, 15286 markings/sec, 2995 secs
lola: 50005982 markings, 90547207 edges, 15337 markings/sec, 3000 secs
lola: 50075945 markings, 90700483 edges, 13993 markings/sec, 3005 secs
lola: 50155561 markings, 90851276 edges, 15923 markings/sec, 3010 secs
lola: 50237337 markings, 90999479 edges, 16355 markings/sec, 3015 secs
lola: 50318294 markings, 91146934 edges, 16191 markings/sec, 3020 secs
lola: 50391269 markings, 91291756 edges, 14595 markings/sec, 3025 secs
lola: 50461662 markings, 91440360 edges, 14079 markings/sec, 3030 secs
lola: 50526934 markings, 91586092 edges, 13054 markings/sec, 3035 secs
lola: 50594756 markings, 91734502 edges, 13564 markings/sec, 3040 secs
lola: 50662301 markings, 91878926 edges, 13509 markings/sec, 3045 secs
lola: 50731319 markings, 92025390 edges, 13804 markings/sec, 3050 secs
lola: 50800257 markings, 92171318 edges, 13788 markings/sec, 3055 secs
lola: 50863717 markings, 92316618 edges, 12692 markings/sec, 3060 secs
lola: 50946299 markings, 92464989 edges, 16516 markings/sec, 3065 secs
lola: 51018820 markings, 92614955 edges, 14504 markings/sec, 3070 secs
lola: 51089792 markings, 92764394 edges, 14194 markings/sec, 3075 secs
lola: 51161064 markings, 92911673 edges, 14254 markings/sec, 3080 secs
lola: 51235852 markings, 93055047 edges, 14958 markings/sec, 3085 secs
lola: 51300766 markings, 93200971 edges, 12983 markings/sec, 3090 secs
lola: 51366266 markings, 93345209 edges, 13100 markings/sec, 3095 secs
lola: 51440981 markings, 93492359 edges, 14943 markings/sec, 3100 secs
lola: 51520288 markings, 93643760 edges, 15861 markings/sec, 3105 secs
lola: 51588795 markings, 93793304 edges, 13701 markings/sec, 3110 secs
lola: 51660329 markings, 93942951 edges, 14307 markings/sec, 3115 secs
lola: 51737857 markings, 94095914 edges, 15506 markings/sec, 3120 secs
lola: 51812515 markings, 94245768 edges, 14932 markings/sec, 3125 secs
lola: 51883531 markings, 94391703 edges, 14203 markings/sec, 3130 secs
lola: 51956360 markings, 94533779 edges, 14566 markings/sec, 3135 secs
lola: 52020398 markings, 94677950 edges, 12808 markings/sec, 3140 secs
lola: 52085394 markings, 94820838 edges, 12999 markings/sec, 3145 secs
lola: 52154433 markings, 94965291 edges, 13808 markings/sec, 3150 secs
lola: 52222826 markings, 95109053 edges, 13679 markings/sec, 3155 secs
lola: 52287884 markings, 95251145 edges, 13012 markings/sec, 3160 secs
lola: 52374586 markings, 95398572 edges, 17340 markings/sec, 3165 secs
lola: 52453722 markings, 95546275 edges, 15827 markings/sec, 3170 secs
lola: 52525551 markings, 95690864 edges, 14366 markings/sec, 3175 secs
lola: 52598604 markings, 95836225 edges, 14611 markings/sec, 3180 secs
lola: 52671695 markings, 95981926 edges, 14618 markings/sec, 3185 secs
lola: 52753217 markings, 96130988 edges, 16304 markings/sec, 3190 secs
lola: 52828586 markings, 96279188 edges, 15074 markings/sec, 3195 secs
lola: 52905588 markings, 96425063 edges, 15400 markings/sec, 3200 secs
lola: 52978449 markings, 96570871 edges, 14572 markings/sec, 3205 secs
lola: 53061022 markings, 96723408 edges, 16515 markings/sec, 3210 secs
lola: 53140712 markings, 96875536 edges, 15938 markings/sec, 3215 secs
lola: 53219735 markings, 97027189 edges, 15805 markings/sec, 3220 secs
lola: 53295543 markings, 97172794 edges, 15162 markings/sec, 3225 secs
lola: 53368042 markings, 97317596 edges, 14500 markings/sec, 3230 secs
lola: 53442340 markings, 97464952 edges, 14860 markings/sec, 3235 secs
lola: 53526214 markings, 97611244 edges, 16775 markings/sec, 3240 secs
lola: 53602807 markings, 97757335 edges, 15319 markings/sec, 3245 secs
lola: 53671026 markings, 97898986 edges, 13644 markings/sec, 3250 secs
lola: 53740692 markings, 98041559 edges, 13933 markings/sec, 3255 secs
lola: 53811910 markings, 98188352 edges, 14244 markings/sec, 3260 secs
lola: 53890233 markings, 98335284 edges, 15665 markings/sec, 3265 secs
lola: 53964725 markings, 98485226 edges, 14898 markings/sec, 3270 secs
lola: 54039563 markings, 98632515 edges, 14968 markings/sec, 3275 secs
lola: 54114696 markings, 98781416 edges, 15027 markings/sec, 3280 secs
lola: 54193675 markings, 98935697 edges, 15796 markings/sec, 3285 secs
lola: 54272901 markings, 99090793 edges, 15845 markings/sec, 3290 secs
lola: 54351442 markings, 99241112 edges, 15708 markings/sec, 3295 secs
lola: 54421591 markings, 99387252 edges, 14030 markings/sec, 3300 secs
lola: 54494272 markings, 99535192 edges, 14536 markings/sec, 3305 secs
lola: 54565334 markings, 99683972 edges, 14212 markings/sec, 3310 secs
lola: 54641717 markings, 99840041 edges, 15277 markings/sec, 3315 secs
lola: 54716879 markings, 99998026 edges, 15032 markings/sec, 3320 secs
lola: 54786228 markings, 100158285 edges, 13870 markings/sec, 3325 secs
lola: 54867133 markings, 100307158 edges, 16181 markings/sec, 3330 secs
lola: 54947990 markings, 100450703 edges, 16171 markings/sec, 3335 secs
lola: 55031259 markings, 100596892 edges, 16654 markings/sec, 3340 secs
lola: 55106354 markings, 100739691 edges, 15019 markings/sec, 3345 secs
lola: 55177608 markings, 100885383 edges, 14251 markings/sec, 3350 secs
lola: 55241729 markings, 101028261 edges, 12824 markings/sec, 3355 secs
lola: 55308709 markings, 101172819 edges, 13396 markings/sec, 3360 secs
lola: 55374262 markings, 101315842 edges, 13111 markings/sec, 3365 secs
lola: 55450412 markings, 101464586 edges, 15230 markings/sec, 3370 secs
lola: 55523387 markings, 101611702 edges, 14595 markings/sec, 3375 secs
lola: 55591862 markings, 101756739 edges, 13695 markings/sec, 3380 secs
lola: 55667955 markings, 101902442 edges, 15219 markings/sec, 3385 secs
lola: 55748298 markings, 102050792 edges, 16069 markings/sec, 3390 secs
lola: 55817560 markings, 102197728 edges, 13852 markings/sec, 3395 secs
lola: 55892139 markings, 102347154 edges, 14916 markings/sec, 3400 secs
lola: 55967611 markings, 102490456 edges, 15094 markings/sec, 3405 secs
lola: 56039122 markings, 102632964 edges, 14302 markings/sec, 3410 secs
lola: 56102959 markings, 102775345 edges, 12767 markings/sec, 3415 secs
lola: 56171965 markings, 102920756 edges, 13801 markings/sec, 3420 secs
lola: 56256036 markings, 103070602 edges, 16814 markings/sec, 3425 secs
lola: 56331035 markings, 103220157 edges, 15000 markings/sec, 3430 secs
lola: 56404529 markings, 103371184 edges, 14699 markings/sec, 3435 secs
lola: 56482258 markings, 103527064 edges, 15546 markings/sec, 3440 secs
lola: 56561708 markings, 103681141 edges, 15890 markings/sec, 3445 secs
lola: 56636675 markings, 103830042 edges, 14993 markings/sec, 3450 secs
lola: 56711219 markings, 103975001 edges, 14909 markings/sec, 3455 secs
lola: 56785477 markings, 104118344 edges, 14852 markings/sec, 3460 secs
lola: 56849117 markings, 104260966 edges, 12728 markings/sec, 3465 secs
lola: 56918616 markings, 104406604 edges, 13900 markings/sec, 3470 secs
lola: 56990808 markings, 104552105 edges, 14438 markings/sec, 3475 secs
lola: 57062361 markings, 104696847 edges, 14311 markings/sec, 3480 secs
lola: 57127357 markings, 104834441 edges, 12999 markings/sec, 3485 secs
lola: 57214233 markings, 104979440 edges, 17375 markings/sec, 3490 secs
lola: 57292713 markings, 105120418 edges, 15696 markings/sec, 3495 secs
lola: 57358547 markings, 105251592 edges, 13167 markings/sec, 3500 secs
lola: 57426553 markings, 105384873 edges, 13601 markings/sec, 3505 secs
lola: 57499547 markings, 105522023 edges, 14599 markings/sec, 3510 secs
lola: 57571117 markings, 105656302 edges, 14314 markings/sec, 3515 secs
lola: 57646096 markings, 105793430 edges, 14996 markings/sec, 3520 secs
lola: 57719384 markings, 105930125 edges, 14658 markings/sec, 3525 secs
lola: 57789631 markings, 106063182 edges, 14049 markings/sec, 3530 secs
lola: 57859487 markings, 106197140 edges, 13971 markings/sec, 3535 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no no no no yes yes yes no yes no yes yes no no unknown
lola: memory consumption: 6084712 KB
lola: time consumption: 3567 seconds
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: A (F ((2 <= p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:659
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: (p4606 + p4607 + p4608 + p4609 + p4610 + p4611 + p4612 <= 1)
lola: processed formula length: 60
lola: 62 rewrites
lola: closed formula file NeoElection-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: time limit reached - aborting
lola:
preliminary result: yes no no no no yes yes yes no yes no yes yes no no unknown
lola: lola:
preliminary result: yes no no no no yes yes yes no yes no yes yes no no unknown
caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes no no no no yes yes yes no yes no yes yes no no unknown
lola: memory consumption: 51108 KB
lola: time consumption: 3567 seconds
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes no no no no yes yes yes no yes no yes yes no no unknown
lola: memory consumption: 51168 KB
lola: time consumption: 3567 seconds

BK_STOP 1553035289887

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-6"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2018"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool win2018"
echo " Input is NeoElection-COL-6, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r110-oct2-155272242200053"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-6.tgz
mv NeoElection-COL-6 execution
cd execution
if [ "LTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "LTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;