fond
Model Checking Contest 2019
9th edition, Prague, Czech Republic, April 7, 2019 (TOOLympics)
Execution of r110-oct2-155272242200047
Last Updated
Apr 15, 2019

About the Execution of 2018-Gold for NeoElection-COL-4

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15919.240 3571259.00 3707044.00 4362.50 FTFTFTF?TF?FFTFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fko/mcc2019-input.r110-oct2-155272242200047.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................
=====================================================================
Generated by BenchKit 2-3954
Executing tool win2018
Input is NeoElection-COL-4, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r110-oct2-155272242200047
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 256K
-rw-r--r-- 1 mcc users 3.9K Feb 12 02:45 CTLCardinality.txt
-rw-r--r-- 1 mcc users 20K Feb 12 02:44 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Feb 8 01:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 8 01:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 104 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 342 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.6K Feb 5 00:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K Feb 5 00:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.5K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.6K Feb 4 06:52 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 22K Feb 4 06:51 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.9K Feb 1 00:29 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K Feb 1 00:28 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 4 22:21 UpperBounds.xml

-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 81K Mar 10 17:31 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-4-LTLCardinality-00
FORMULA_NAME NeoElection-COL-4-LTLCardinality-01
FORMULA_NAME NeoElection-COL-4-LTLCardinality-02
FORMULA_NAME NeoElection-COL-4-LTLCardinality-03
FORMULA_NAME NeoElection-COL-4-LTLCardinality-04
FORMULA_NAME NeoElection-COL-4-LTLCardinality-05
FORMULA_NAME NeoElection-COL-4-LTLCardinality-06
FORMULA_NAME NeoElection-COL-4-LTLCardinality-07
FORMULA_NAME NeoElection-COL-4-LTLCardinality-08
FORMULA_NAME NeoElection-COL-4-LTLCardinality-09
FORMULA_NAME NeoElection-COL-4-LTLCardinality-10
FORMULA_NAME NeoElection-COL-4-LTLCardinality-11
FORMULA_NAME NeoElection-COL-4-LTLCardinality-12
FORMULA_NAME NeoElection-COL-4-LTLCardinality-13
FORMULA_NAME NeoElection-COL-4-LTLCardinality-14
FORMULA_NAME NeoElection-COL-4-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1553031695001

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-4 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-4 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ NeoElection-COL-4 @ 3570 seconds
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 4220/65536 symbol table entries, 60 collisions
lola: preprocessing...
lola: Size of bit vector: 1830
lola: finding significant places
lola: 1830 places, 2390 transitions, 520 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 995 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-4-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p825 + p826 + p827 + p828 + p829)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929)
lola: after: (0 <= 11)
lola: always true
lola: LP says that atomic proposition is always false: (2 <= p1685 + p1686 + p1687 + p1688 + p1689)
lola: LP says that atomic proposition is always false: (2 <= p799 + p798 + p797 + p796 + p795)
lola: LP says that atomic proposition is always false: (1 <= p1685 + p1686 + p1687 + p1688 + p1689)
lola: place invariant simplifies atomic proposition
lola: before: (p5 + p6 + p7 + p8 + p9 <= p1828 + p1825 + p1822 + p1819 + p1816 + p1815 + p1817 + p1818 + p1820 + p1821 + p1823 + p1824 + p1826 + p1827 + p1829)
lola: after: (p5 + p6 + p7 + p8 + p9 <= 4)
lola: LP says that atomic proposition is always true: (p5 + p6 + p7 + p8 + p9 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929)
lola: after: (0 <= 9)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p1738 + p1737 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1728 + p1727 + p1726 + p1725 + p1724 + p1723 + p1722 + p1721 + p1720 + p1718 + p1717 + p1716 + p1715 + p1714 + p1713 + p1712 + p1711 + p1710 + p1708 + p1707 + p1706 + p1705 + p1704 + p1703 + p1702 + p1701 + p1700 + p1698 + p1697 + p1696 + p1695 + p1694 + p1693 + p1692 + p1691 + p1690 + p1699 + p1709 + p1719 + p1729 + p1739 <= p0 + p1 + p2 + p3 + p4)
lola: after: (4 <= p0 + p1 + p2 + p3 + p4)
lola: place invariant simplifies atomic proposition
lola: before: (p1813 + p1812 + p1810 + p1809 + p1807 + p1806 + p1804 + p1803 + p1801 + p1800 + p1798 + p1797 + p1795 + p1794 + p1792 + p1791 + p1789 + p1788 + p1786 + p1785 + p1783 + p1782 + p1780 + p1779 + p1777 + p1776 + p1774 + p1773 + p1771 + p1770 + p1768 + p1767 + p1765 + p1764 + p1762 + p1761 + p1759 + p1758 + p1756 + p1755 + p1753 + p1752 + p1750 + p1749 + p1747 + p1746 + p1744 + p1743 + p1741 + p1740 + p1742 + p1745 + p1748 + p1751 + p1754 + p1757 + p1760 + p1763 + p1766 + p1769 + p1772 + p1775 + p1778 + p1781 + p1784 + p1787 + p1790 + p1793 + p1796 + p1799 + p1802 + p1805 + p1808 + p1811 + p1814 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 + p499 + p498 + p497 + p496 + p494 + p493 + p492 + p491 + p506 + p507 + p508 + p509 + p489 + p511 + p512 + p513 + p514 + p488 + p516 + p517 + p518 + p519 + p487 + p521 + p522 + p523 + p524 + p486 + p526 + p527 + p528 + p529 + p484 + p483 + p482 + p481 + p479 + p478 + p536 + p537 + p538 + p539 + p477 + p541 + p542 + p543 + p544 + p476 + p546 + p547 + p548 + p549 + p469 + p551 + p552 + p553 + p554 + p468 + p556 + p557 + p558 + p559 + p467 + p466 + p464 + p463 + p462 + p461 + p566 + p567 + p568 + p569 + p459 + p571 + p572 + p573 + p574 + p458 + p576 + p577 + p578 + p579 + p457 + p581 + p582 + p583 + p584 + p456 + p586 + p587 + p588 + p589 + p454 + p453 + p452 + p451 + p449 + p448 + p596 + p597 + p598 + p599 + p447 + p446 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p429 + p428 + p427 + p426 + p424 + p423 + p422 + p601 + p602 + p603 + p604 + p421 + p606 + p607 + p608 + p609 + p419 + p611 + p612 + p613 + p614 + p418 + p616 + p617 + p618 + p619 + p417 + p416 + p409 + p408 + p407 + p406 + p626 + p627 + p628 + p629 + p404 + p631 + p632 + p633 + p634 + p403 + p636 + p637 + p638 + p639 + p402 + p641 + p642 + p643 + p644 + p401 + p646 + p647 + p648 + p649 + p656 + p657 + p658 + p659 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p671 + p672 + p673 + p674 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p691 + p692 + p693 + p694 + p696 + p697 + p698 + p699 + p701 + p702 + p703 + p704 + p706 + p707 + p708 + p709 + p716 + p717 + p718 + p719 + p721 + p722 + p723 + p724 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p746 + p747 + p748 + p749 + p751 + p752 + p753 + p754 + p756 + p757 + p758 + p759 + p761 + p762 + p763 + p764 + p766 + p767 + p768 + p769 + p776 + p777 + p778 + p779 + p781 + p782 + p783 + p784 + p786 + p787 + p788 + p789 + p791 + p792 + p793 + p794 + p399 + p398 + p397 + p396 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p369 + p368 + p367 + p366 + p364 + p363 + p362 + p361 + p359 + p358 + p357 + p356 + p349 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p339 + p338 + p337 + p336 + p334 + p333 + p332 + p331 + p329 + p328 + p327 + p326 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p309 + p308 + p307 + p306 + p304 + p46 + p47 + p48 + p49 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p289 + p288 + p287 + p56 + p57 + p58 + p59 + p286 + p61 + p62 + p63 + p64 + p284 + p66 + p67 + p68 + p69 + p283 + p71 + p72 + p73 + p74 + p282 + p76 + p77 + p78 + p79 + p281 + p279 + p278 + p277 + p276 + p274 + p86 + p87 + p88 + p89 + p273 + p91 + p92 + p93 + p94 + p272 + p96 + p97 + p98 + p99 + p271 + p269 + p268 + p267 + p266 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p219 + p218 + p217 + p216 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p189 + p188 + p187 + p186 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p129 + p128 + p127 + p126 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101)
lola: after: (16 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500)
lola: place invariant simplifies atomic proposition
lola: before: (p820 + p821 + p822 + p823 + p824 <= p5 + p6 + p7 + p8 + p9)
lola: after: (0 <= p5 + p6 + p7 + p8 + p9)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 <= p1738 + p1737 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1728 + p1727 + p1726 + p1725 + p1724 + p1723 + p1722 + p1721 + p1720 + p1718 + p1717 + p1716 + p1715 + p1714 + p1713 + p1712 + p1711 + p1710 + p1708 + p1707 + p1706 + p1705 + p1704 + p1703 + p1702 + p1701 + p1700 + p1698 + p1697 + p1696 + p1695 + p1694 + p1693 + p1692 + p1691 + p1690 + p1699 + p1709 + p1719 + p1729 + p1739)
lola: after: (8 <= 0)
lola: always false
lola: LP says that atomic proposition is always false: (1 <= p34 + p33 + p32 + p31 + p30)
lola: place invariant simplifies atomic proposition
lola: before: (p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 + p499 + p498 + p497 + p496 + p494 + p493 + p492 + p491 + p506 + p507 + p508 + p509 + p489 + p511 + p512 + p513 + p514 + p488 + p516 + p517 + p518 + p519 + p487 + p521 + p522 + p523 + p524 + p486 + p526 + p527 + p528 + p529 + p484 + p483 + p482 + p481 + p479 + p478 + p536 + p537 + p538 + p539 + p477 + p541 + p542 + p543 + p544 + p476 + p546 + p547 + p548 + p549 + p469 + p551 + p552 + p553 + p554 + p468 + p556 + p557 + p558 + p559 + p467 + p466 + p464 + p463 + p462 + p461 + p566 + p567 + p568 + p569 + p459 + p571 + p572 + p573 + p574 + p458 + p576 + p577 + p578 + p579 + p457 + p581 + p582 + p583 + p584 + p456 + p586 + p587 + p588 + p589 + p454 + p453 + p452 + p451 + p449 + p448 + p596 + p597 + p598 + p599 + p447 + p446 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p429 + p428 + p427 + p426 + p424 + p423 + p422 + p601 + p602 + p603 + p604 + p421 + p606 + p607 + p608 + p609 + p419 + p611 + p612 + p613 + p614 + p418 + p616 + p617 + p618 + p619 + p417 + p416 + p409 + p408 + p407 + p406 + p626 + p627 + p628 + p629 + p404 + p631 + p632 + p633 + p634 + p403 + p636 + p637 + p638 + p639 + p402 + p641 + p642 + p643 + p644 + p401 + p646 + p647 + p648 + p649 + p656 + p657 + p658 + p659 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p671 + p672 + p673 + p674 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p691 + p692 + p693 + p694 + p696 + p697 + p698 + p699 + p701 + p702 + p703 + p704 + p706 + p707 + p708 + p709 + p716 + p717 + p718 + p719 + p721 + p722 + p723 + p724 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p746 + p747 + p748 + p749 + p751 + p752 + p753 + p754 + p756 + p757 + p758 + p759 + p761 + p762 + p763 + p764 + p766 + p767 + p768 + p769 + p776 + p777 + p778 + p779 + p781 + p782 + p783 + p784 + p786 + p787 + p788 + p789 + p791 + p792 + p793 + p794 + p399 + p398 + p397 + p396 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p369 + p368 + p367 + p366 + p364 + p363 + p362 + p361 + p359 + p358 + p357 + p356 + p349 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p339 + p338 + p337 + p336 + p334 + p333 + p332 + p331 + p329 + p328 + p327 + p326 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p309 + p308 + p307 + p306 + p304 + p46 + p47 + p48 + p49 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p289 + p288 + p287 + p56 + p57 + p58 + p59 + p286 + p61 + p62 + p63 + p64 + p284 + p66 + p67 + p68 + p69 + p283 + p71 + p72 + p73 + p74 + p282 + p76 + p77 + p78 + p79 + p281 + p279 + p278 + p277 + p276 + p274 + p86 + p87 + p88 + p89 + p273 + p91 + p92 + p93 + p94 + p272 + p96 + p97 + p98 + p99 + p271 + p269 + p268 + p267 + p266 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p219 + p218 + p217 + p216 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p189 + p188 + p187 + p186 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p129 + p128 + p127 + p126 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 <= p1813 + p1812 + p1810 + p1809 + p1807 + p1806 + p1804 + p1803 + p1801 + p1800 + p1798 + p1797 + p1795 + p1794 + p1792 + p1791 + p1789 + p1788 + p1786 + p1785 + p1783 + p1782 + p1780 + p1779 + p1777 + p1776 + p1774 + p1773 + p1771 + p1770 + p1768 + p1767 + p1765 + p1764 + p1762 + p1761 + p1759 + p1758 + p1756 + p1755 + p1753 + p1752 + p1750 + p1749 + p1747 + p1746 + p1744 + p1743 + p1741 + p1740 + p1742 + p1745 + p1748 + p1751 + p1754 + p1757 + p1760 + p1763 + p1766 + p1769 + p1772 + p1775 + p1778 + p1781 + p1784 + p1787 + p1790 + p1793 + p1796 + p1799 + p1802 + p1805 + p1808 + p1811 + p1814)
lola: after: (p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 <= 16)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p35 + p36 + p37 + p38 + p39)
lola: after: (3 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p35 + p36 + p37 + p38 + p39 <= p1813 + p1812 + p1810 + p1809 + p1807 + p1806 + p1804 + p1803 + p1801 + p1800 + p1798 + p1797 + p1795 + p1794 + p1792 + p1791 + p1789 + p1788 + p1786 + p1785 + p1783 + p1782 + p1780 + p1779 + p1777 + p1776 + p1774 + p1773 + p1771 + p1770 + p1768 + p1767 + p1765 + p1764 + p1762 + p1761 + p1759 + p1758 + p1756 + p1755 + p1753 + p1752 + p1750 + p1749 + p1747 + p1746 + p1744 + p1743 + p1741 + p1740 + p1742 + p1745 + p1748 + p1751 + p1754 + p1757 + p1760 + p1763 + p1766 + p1769 + p1772 + p1775 + p1778 + p1781 + p1784 + p1787 + p1790 + p1793 + p1796 + p1799 + p1802 + p1805 + p1808 + p1811 + p1814)
lola: after: (0 <= 16)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1109 + p1108 + p1107 + p1106 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1105 + p1104 + p1103 + p1102 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1101 + p1100 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1099 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p1085 + p1084 + p1083 + p1082 + p1081 + p1080 + p1079 + p1078 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1077 + p1076 + p1075 + p1074 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1073 + p1072 + p1071 + p1070 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1069 + p1068 + p1067 + p1066 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1065 + p1064 + p1063 + p1062 + p1061 + p1060 + p1055 + p1054 + p1053 + p1052 + p1051 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1042 + p1041 + p1040 + p1039 + p1038 + p1037 + p1036 + p1035 + p1034 + p1033 + p1032 + p1031 + p1030 + p1025 + p1024 + p1023 + p1022 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1021 + p1020 + p1019 + p1018 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1017 + p1016 + p1015 + p1014 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1013 + p1012 + p1011 + p1010 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1009 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p1000 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p930 + p931 + p932 + p933 + p934 + p935 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 + p499 + p498 + p497 + p496 + p494 + p493 + p492 + p491 + p506 + p507 + p508 + p509 + p489 + p511 + p512 + p513 + p514 + p488 + p516 + p517 + p518 + p519 + p487 + p521 + p522 + p523 + p524 + p486 + p526 + p527 + p528 + p529 + p484 + p483 + p482 + p481 + p479 + p478 + p536 + p537 + p538 + p539 + p477 + p541 + p542 + p543 + p544 + p476 + p546 + p547 + p548 + p549 + p469 + p551 + p552 + p553 + p554 + p468 + p556 + p557 + p558 + p559 + p467 + p466 + p464 + p463 + p462 + p461 + p566 + p567 + p568 + p569 + p459 + p571 + p572 + p573 + p574 + p458 + p576 + p577 + p578 + p579 + p457 + p581 + p582 + p583 + p584 + p456 + p586 + p587 + p588 + p589 + p454 + p453 + p452 + p451 + p449 + p448 + p596 + p597 + p598 + p599 + p447 + p446 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p429 + p428 + p427 + p426 + p424 + p423 + p422 + p601 + p602 + p603 + p604 + p421 + p606 + p607 + p608 + p609 + p419 + p611 + p612 + p613 + p614 + p418 + p616 + p617 + p618 + p619 + p417 + p416 + p409 + p408 + p407 + p406 + p626 + p627 + p628 + p629 + p404 + p631 + p632 + p633 + p634 + p403 + p636 + p637 + p638 + p639 + p402 + p641 + p642 + p643 + p644 + p401 + p646 + p647 + p648 + p649 + p656 + p657 + p658 + p659 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p671 + p672 + p673 + p674 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p691 + p692 + p693 + p694 + p696 + p697 + p698 + p699 + p701 + p702 + p703 + p704 + p706 + p707 + p708 + p709 + p716 + p717 + p718 + p719 + p721 + p722 + p723 + p724 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p746 + p747 + p748 + p749 + p751 + p752 + p753 + p754 + p756 + p757 + p758 + p759 + p761 + p762 + p763 + p764 + p766 + p767 + p768 + p769 + p776 + p777 + p778 + p779 + p781 + p782 + p783 + p784 + p786 + p787 + p788 + p789 + p791 + p792 + p793 + p794 + p399 + p398 + p397 + p396 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p369 + p368 + p367 + p366 + p364 + p363 + p362 + p361 + p359 + p358 + p357 + p356 + p349 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p339 + p338 + p337 + p336 + p334 + p333 + p332 + p331 + p329 + p328 + p327 + p326 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p309 + p308 + p307 + p306 + p304 + p46 + p47 + p48 + p49 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p289 + p288 + p287 + p56 + p57 + p58 + p59 + p286 + p61 + p62 + p63 + p64 + p284 + p66 + p67 + p68 + p69 + p283 + p71 + p72 + p73 + p74 + p282 + p76 + p77 + p78 + p79 + p281 + p279 + p278 + p277 + p276 + p274 + p86 + p87 + p88 + p89 + p273 + p91 + p92 + p93 + p94 + p272 + p96 + p97 + p98 + p99 + p271 + p269 + p268 + p267 + p266 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p219 + p218 + p217 + p216 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p189 + p188 + p187 + p186 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p129 + p128 + p127 + p126 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101)
lola: after: (p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500)
lola: LP says that atomic proposition is always true: (p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500)
lola: place invariant simplifies atomic proposition
lola: before: (p1738 + p1737 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1728 + p1727 + p1726 + p1725 + p1724 + p1723 + p1722 + p1721 + p1720 + p1718 + p1717 + p1716 + p1715 + p1714 + p1713 + p1712 + p1711 + p1710 + p1708 + p1707 + p1706 + p1705 + p1704 + p1703 + p1702 + p1701 + p1700 + p1698 + p1697 + p1696 + p1695 + p1694 + p1693 + p1692 + p1691 + p1690 + p1699 + p1709 + p1719 + p1729 + p1739 <= p5 + p6 + p7 + p8 + p9)
lola: after: (4 <= p5 + p6 + p7 + p8 + p9)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p35 + p36 + p37 + p38 + p39)
lola: after: (2 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1109 + p1108 + p1107 + p1106 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1105 + p1104 + p1103 + p1102 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1101 + p1100 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1099 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p1085 + p1084 + p1083 + p1082 + p1081 + p1080 + p1079 + p1078 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1077 + p1076 + p1075 + p1074 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1073 + p1072 + p1071 + p1070 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1069 + p1068 + p1067 + p1066 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1065 + p1064 + p1063 + p1062 + p1061 + p1060 + p1055 + p1054 + p1053 + p1052 + p1051 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1042 + p1041 + p1040 + p1039 + p1038 + p1037 + p1036 + p1035 + p1034 + p1033 + p1032 + p1031 + p1030 + p1025 + p1024 + p1023 + p1022 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1021 + p1020 + p1019 + p1018 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1017 + p1016 + p1015 + p1014 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1013 + p1012 + p1011 + p1010 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1009 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p1000 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p930 + p931 + p932 + p933 + p934 + p935 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679)
lola: after: (p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116)
lola: A (FALSE) : A (F (F (G (X (TRUE))))) : A (F (X ((FALSE U FALSE)))) : A ((((3 <= p1684 + p1683 + p1682 + p1681 + p1680) U FALSE) U G (TRUE))) : A (X ((1 <= p1684 + p1683 + p1682 + p1681 + p1680))) : A (G (X (G (TRUE)))) : A ((2 <= p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)) : A (G (F (G (G ((4 <= p0 + p1 + p2 + p3 + p4)))))) : A (X (X (((16 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500) U TRUE)))) : A (F ((FALSE U FALSE))) : A (F (F (G (G ((p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 <= 16)))))) : A (G (G (F (X ((3 <= p5 + p6 + p7 + p8 + p9)))))) : A (X (F (X (X (FALSE))))) : A (TRUE) : A ((TRUE U G ((4 <= p5 + p6 + p7 + p8 + p9)))) : A (F ((F (FALSE) U X ((p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:374
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-0 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (2 <= p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)
lola: processed formula length: 124
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-COL-4-LTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((1 <= p1684 + p1683 + p1682 + p1681 + p1680)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((1 <= p1684 + p1683 + p1682 + p1681 + p1680)))
lola: processed formula length: 52
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 169 markings, 169 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + ... (shortened)
lola: processed formula length: 825
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p5 + p6 + p7 + p8 + p9))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p5 + p6 + p7 + p8 + p9))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 169 markings, 169 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p5 + p6 + p7 + p8 + p9))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p5 + p6 + p7 + p8 + p9))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 170 markings, 171 edges
lola: ========================================

FORMULA NeoElection-COL-4-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1783 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 290808 markings, 1362742 edges, 58162 markings/sec, 0 secs
lola: 559608 markings, 2772149 edges, 53760 markings/sec, 5 secs
lola: 823668 markings, 4174609 edges, 52812 markings/sec, 10 secs
lola: 1093585 markings, 5561558 edges, 53983 markings/sec, 15 secs
lola: 1360134 markings, 6917213 edges, 53310 markings/sec, 20 secs
lola: 1629999 markings, 8276155 edges, 53973 markings/sec, 25 secs
lola: 1898533 markings, 9624495 edges, 53707 markings/sec, 30 secs
lola: 2159086 markings, 10960317 edges, 52111 markings/sec, 35 secs
lola: 2435808 markings, 12298374 edges, 55344 markings/sec, 40 secs
lola: 2709941 markings, 13621868 edges, 54827 markings/sec, 45 secs
lola: 2983254 markings, 14952247 edges, 54663 markings/sec, 50 secs
lola: 3248057 markings, 16312330 edges, 52961 markings/sec, 55 secs
lola: 3510132 markings, 17653190 edges, 52415 markings/sec, 60 secs
lola: 3774334 markings, 18975222 edges, 52840 markings/sec, 65 secs
lola: 4053879 markings, 20324593 edges, 55909 markings/sec, 70 secs
lola: 4329416 markings, 21654519 edges, 55107 markings/sec, 75 secs
lola: 4601193 markings, 22992328 edges, 54355 markings/sec, 80 secs
lola: 4881149 markings, 24353892 edges, 55991 markings/sec, 85 secs
lola: 5139627 markings, 25744842 edges, 51696 markings/sec, 90 secs
lola: 5388969 markings, 27120670 edges, 49868 markings/sec, 95 secs
lola: 5645627 markings, 28470495 edges, 51332 markings/sec, 100 secs
lola: 5901018 markings, 29799168 edges, 51078 markings/sec, 105 secs
lola: 6155444 markings, 31125202 edges, 50885 markings/sec, 110 secs
lola: 6414754 markings, 32470287 edges, 51862 markings/sec, 115 secs
lola: 6669874 markings, 33792461 edges, 51024 markings/sec, 120 secs
lola: 6924517 markings, 35110988 edges, 50929 markings/sec, 125 secs
lola: 7189776 markings, 36437935 edges, 53052 markings/sec, 130 secs
lola: 7454120 markings, 37745058 edges, 52869 markings/sec, 135 secs
lola: 7717318 markings, 39050396 edges, 52640 markings/sec, 140 secs
lola: 7969635 markings, 40373588 edges, 50463 markings/sec, 145 secs
lola: 8216260 markings, 41675632 edges, 49325 markings/sec, 150 secs
lola: 8471858 markings, 42986960 edges, 51120 markings/sec, 155 secs
lola: 8737724 markings, 44317925 edges, 53173 markings/sec, 160 secs
lola: 9001676 markings, 45642273 edges, 52790 markings/sec, 165 secs
lola: 9270039 markings, 46969403 edges, 53673 markings/sec, 170 secs
lola: 9541373 markings, 48322506 edges, 54267 markings/sec, 175 secs
lola: 9813831 markings, 49705722 edges, 54492 markings/sec, 180 secs
lola: 10058021 markings, 51127747 edges, 48838 markings/sec, 185 secs
lola: 10311403 markings, 52563409 edges, 50676 markings/sec, 190 secs
lola: 10569872 markings, 53954299 edges, 51694 markings/sec, 195 secs
lola: 10818528 markings, 55325337 edges, 49731 markings/sec, 200 secs
lola: 11071423 markings, 56696499 edges, 50579 markings/sec, 205 secs
lola: 11327235 markings, 58065585 edges, 51162 markings/sec, 210 secs
lola: 11568239 markings, 59406135 edges, 48201 markings/sec, 215 secs
lola: 11837571 markings, 60758403 edges, 53866 markings/sec, 220 secs
lola: 12092655 markings, 62087090 edges, 51017 markings/sec, 225 secs
lola: 12350068 markings, 63414958 edges, 51483 markings/sec, 230 secs
lola: 12598259 markings, 64756309 edges, 49638 markings/sec, 235 secs
lola: 12836983 markings, 66078276 edges, 47745 markings/sec, 240 secs
lola: 13083279 markings, 67403234 edges, 49259 markings/sec, 245 secs
lola: 13342791 markings, 68753955 edges, 51902 markings/sec, 250 secs
lola: 13603455 markings, 70106399 edges, 52133 markings/sec, 255 secs
lola: 13862817 markings, 71441963 edges, 51872 markings/sec, 260 secs
lola: 14112386 markings, 72742521 edges, 49914 markings/sec, 265 secs
lola: 14381906 markings, 74051898 edges, 53904 markings/sec, 270 secs
lola: 14633467 markings, 75380899 edges, 50312 markings/sec, 275 secs
lola: 14871899 markings, 76705104 edges, 47686 markings/sec, 280 secs
lola: 15118408 markings, 78029743 edges, 49302 markings/sec, 285 secs
lola: 15373626 markings, 79328431 edges, 51044 markings/sec, 290 secs
lola: 15624606 markings, 80639639 edges, 50196 markings/sec, 295 secs
lola: 15875043 markings, 81953863 edges, 50087 markings/sec, 300 secs
lola: 16127235 markings, 83264292 edges, 50438 markings/sec, 305 secs
lola: 16370973 markings, 84573872 edges, 48748 markings/sec, 310 secs
lola: 16645272 markings, 85890272 edges, 54860 markings/sec, 315 secs
lola: 16904504 markings, 87204004 edges, 51846 markings/sec, 320 secs
lola: 17161146 markings, 88466382 edges, 51328 markings/sec, 325 secs
lola: 17419737 markings, 89795579 edges, 51718 markings/sec, 330 secs
lola: 17670358 markings, 91118731 edges, 50124 markings/sec, 335 secs
lola: 17919171 markings, 92407172 edges, 49763 markings/sec, 340 secs
lola: 18170403 markings, 93708007 edges, 50246 markings/sec, 345 secs
lola: 18440061 markings, 95023328 edges, 53932 markings/sec, 350 secs
lola: 18699370 markings, 96325366 edges, 51862 markings/sec, 355 secs
lola: 18962297 markings, 97624140 edges, 52585 markings/sec, 360 secs
lola: 19233232 markings, 98973039 edges, 54187 markings/sec, 365 secs
lola: 19484999 markings, 100349820 edges, 50353 markings/sec, 370 secs
lola: 19720546 markings, 101727099 edges, 47109 markings/sec, 375 secs
lola: 19967284 markings, 103091851 edges, 49348 markings/sec, 380 secs
lola: 20222515 markings, 104446573 edges, 51046 markings/sec, 385 secs
lola: 20473075 markings, 105838699 edges, 50112 markings/sec, 390 secs
lola: 20731403 markings, 107236830 edges, 51666 markings/sec, 395 secs
lola: 20985935 markings, 108620333 edges, 50906 markings/sec, 400 secs
lola: 21249842 markings, 110001565 edges, 52781 markings/sec, 405 secs
lola: 21513912 markings, 111370692 edges, 52814 markings/sec, 410 secs
lola: 21770941 markings, 112694392 edges, 51406 markings/sec, 415 secs
lola: 22024696 markings, 114028741 edges, 50751 markings/sec, 420 secs
lola: 22268441 markings, 115363472 edges, 48749 markings/sec, 425 secs
lola: 22510124 markings, 116683146 edges, 48337 markings/sec, 430 secs
lola: 22750779 markings, 118005613 edges, 48131 markings/sec, 435 secs
lola: 23019935 markings, 119341117 edges, 53831 markings/sec, 440 secs
lola: 23270931 markings, 120665735 edges, 50199 markings/sec, 445 secs
lola: 23526566 markings, 121981440 edges, 51127 markings/sec, 450 secs
lola: 23774030 markings, 123273139 edges, 49493 markings/sec, 455 secs
lola: 24041223 markings, 124637969 edges, 53439 markings/sec, 460 secs
lola: 24283300 markings, 126034518 edges, 48415 markings/sec, 465 secs
lola: 24524775 markings, 127408337 edges, 48295 markings/sec, 470 secs
lola: 24775013 markings, 128781878 edges, 50048 markings/sec, 475 secs
lola: 25019756 markings, 130145800 edges, 48949 markings/sec, 480 secs
lola: 25271366 markings, 131486319 edges, 50322 markings/sec, 485 secs
lola: 25518435 markings, 132857661 edges, 49414 markings/sec, 490 secs
lola: 25757659 markings, 134207084 edges, 47845 markings/sec, 495 secs
lola: 26020430 markings, 135552022 edges, 52554 markings/sec, 500 secs
lola: 26275873 markings, 136896880 edges, 51089 markings/sec, 505 secs
lola: 26533756 markings, 138233015 edges, 51577 markings/sec, 510 secs
lola: 26784611 markings, 139583036 edges, 50171 markings/sec, 515 secs
lola: 27024048 markings, 140919025 edges, 47887 markings/sec, 520 secs
lola: 27266859 markings, 142246746 edges, 48562 markings/sec, 525 secs
lola: 27515928 markings, 143583974 edges, 49814 markings/sec, 530 secs
lola: 27773119 markings, 144926514 edges, 51438 markings/sec, 535 secs
lola: 28029170 markings, 146251331 edges, 51210 markings/sec, 540 secs
lola: 28289585 markings, 147596816 edges, 52083 markings/sec, 545 secs
lola: 28557616 markings, 148947127 edges, 53606 markings/sec, 550 secs
lola: 28798387 markings, 150331664 edges, 48154 markings/sec, 555 secs
lola: 29037584 markings, 151684037 edges, 47839 markings/sec, 560 secs
lola: 29288777 markings, 153047079 edges, 50239 markings/sec, 565 secs
lola: 29534284 markings, 154401671 edges, 49101 markings/sec, 570 secs
lola: 29783808 markings, 155731394 edges, 49905 markings/sec, 575 secs
lola: 30033247 markings, 157098137 edges, 49888 markings/sec, 580 secs
lola: 30274852 markings, 158440129 edges, 48321 markings/sec, 585 secs
lola: 30538451 markings, 159777809 edges, 52720 markings/sec, 590 secs
lola: 30794423 markings, 161111831 edges, 51194 markings/sec, 595 secs
lola: 31050579 markings, 162434261 edges, 51231 markings/sec, 600 secs
lola: 31303568 markings, 163767773 edges, 50598 markings/sec, 605 secs
lola: 31542938 markings, 165096265 edges, 47874 markings/sec, 610 secs
lola: 31785753 markings, 166413069 edges, 48563 markings/sec, 615 secs
lola: 32033230 markings, 167741182 edges, 49495 markings/sec, 620 secs
lola: 32295841 markings, 169076532 edges, 52522 markings/sec, 625 secs
lola: 32549226 markings, 170392043 edges, 50677 markings/sec, 630 secs
lola: 32804247 markings, 171702648 edges, 51004 markings/sec, 635 secs
lola: 33063657 markings, 173005744 edges, 51882 markings/sec, 640 secs
lola: 33323980 markings, 174316101 edges, 52065 markings/sec, 645 secs
lola: 33565262 markings, 175650419 edges, 48256 markings/sec, 650 secs
lola: 33809395 markings, 176960024 edges, 48827 markings/sec, 655 secs
lola: 34059929 markings, 178283208 edges, 50107 markings/sec, 660 secs
lola: 34310265 markings, 179599353 edges, 50067 markings/sec, 665 secs
lola: 34563647 markings, 180886462 edges, 50676 markings/sec, 670 secs
lola: 34817023 markings, 182208708 edges, 50675 markings/sec, 675 secs
lola: 35061841 markings, 183521589 edges, 48964 markings/sec, 680 secs
lola: 35326019 markings, 184833837 edges, 52836 markings/sec, 685 secs
lola: 35588000 markings, 186147667 edges, 52396 markings/sec, 690 secs
lola: 35851565 markings, 187450817 edges, 52713 markings/sec, 695 secs
lola: 36112128 markings, 188762123 edges, 52113 markings/sec, 700 secs
lola: 36358940 markings, 190072426 edges, 49362 markings/sec, 705 secs
lola: 36606360 markings, 191363731 edges, 49484 markings/sec, 710 secs
lola: 36857400 markings, 192664053 edges, 50208 markings/sec, 715 secs
lola: 37122919 markings, 193972204 edges, 53104 markings/sec, 720 secs
lola: 37383923 markings, 195278958 edges, 52201 markings/sec, 725 secs
lola: 37644970 markings, 196569185 edges, 52209 markings/sec, 730 secs
lola: 37913398 markings, 197903713 edges, 53686 markings/sec, 735 secs
lola: 38175032 markings, 199256849 edges, 52327 markings/sec, 740 secs
lola: 38412478 markings, 200644638 edges, 47489 markings/sec, 745 secs
lola: 38654215 markings, 202006429 edges, 48347 markings/sec, 750 secs
lola: 38905113 markings, 203358374 edges, 50180 markings/sec, 755 secs
lola: 39150860 markings, 204712052 edges, 49149 markings/sec, 760 secs
lola: 39398767 markings, 206057532 edges, 49581 markings/sec, 765 secs
lola: 39651255 markings, 207405151 edges, 50498 markings/sec, 770 secs
lola: 39890877 markings, 208748381 edges, 47924 markings/sec, 775 secs
lola: 40161039 markings, 210086958 edges, 54032 markings/sec, 780 secs
lola: 40413826 markings, 211420636 edges, 50557 markings/sec, 785 secs
lola: 40671641 markings, 212747372 edges, 51563 markings/sec, 790 secs
lola: 40922972 markings, 214088237 edges, 50266 markings/sec, 795 secs
lola: 41160224 markings, 215414465 edges, 47450 markings/sec, 800 secs
lola: 41405557 markings, 216731556 edges, 49067 markings/sec, 805 secs
lola: 41657290 markings, 218057638 edges, 50347 markings/sec, 810 secs
lola: 41914517 markings, 219389421 edges, 51445 markings/sec, 815 secs
lola: 42169808 markings, 220706855 edges, 51058 markings/sec, 820 secs
lola: 42423224 markings, 222013882 edges, 50683 markings/sec, 825 secs
lola: 42676148 markings, 223321195 edges, 50585 markings/sec, 830 secs
lola: 42923819 markings, 224643743 edges, 49534 markings/sec, 835 secs
lola: 43152372 markings, 225984846 edges, 45711 markings/sec, 840 secs
lola: 43385580 markings, 227307784 edges, 46642 markings/sec, 845 secs
lola: 43628824 markings, 228622722 edges, 48649 markings/sec, 850 secs
lola: 43868171 markings, 229941583 edges, 47869 markings/sec, 855 secs
lola: 44106297 markings, 231253294 edges, 47625 markings/sec, 860 secs
lola: 44350756 markings, 232568405 edges, 48892 markings/sec, 865 secs
lola: 44581462 markings, 233884644 edges, 46141 markings/sec, 870 secs
lola: 44845307 markings, 235208092 edges, 52769 markings/sec, 875 secs
lola: 45092660 markings, 236521390 edges, 49471 markings/sec, 880 secs
lola: 45345324 markings, 237829309 edges, 50533 markings/sec, 885 secs
lola: 45590453 markings, 239152993 edges, 49026 markings/sec, 890 secs
lola: 45822151 markings, 240456063 edges, 46340 markings/sec, 895 secs
lola: 46060450 markings, 241750993 edges, 47660 markings/sec, 900 secs
lola: 46305299 markings, 243060612 edges, 48970 markings/sec, 905 secs
lola: 46557097 markings, 244376098 edges, 50360 markings/sec, 910 secs
lola: 46807476 markings, 245676370 edges, 50076 markings/sec, 915 secs
lola: 47058719 markings, 246969460 edges, 50249 markings/sec, 920 secs
lola: 47316811 markings, 248285414 edges, 51618 markings/sec, 925 secs
lola: 47555856 markings, 249623437 edges, 47809 markings/sec, 930 secs
lola: 47785462 markings, 250951171 edges, 45921 markings/sec, 935 secs
lola: 48022412 markings, 252276608 edges, 47390 markings/sec, 940 secs
lola: 48266265 markings, 253580437 edges, 48771 markings/sec, 945 secs
lola: 48502636 markings, 254897499 edges, 47274 markings/sec, 950 secs
lola: 48743925 markings, 256220229 edges, 48258 markings/sec, 955 secs
lola: 48986183 markings, 257522963 edges, 48452 markings/sec, 960 secs
lola: 49226692 markings, 258855433 edges, 48102 markings/sec, 965 secs
lola: 49480141 markings, 260179092 edges, 50690 markings/sec, 970 secs
lola: 49732204 markings, 261483727 edges, 50413 markings/sec, 975 secs
lola: 49983031 markings, 262792295 edges, 50165 markings/sec, 980 secs
lola: 50221212 markings, 264110200 edges, 47636 markings/sec, 985 secs
lola: 50454989 markings, 265408093 edges, 46755 markings/sec, 990 secs
lola: 50693955 markings, 266706790 edges, 47793 markings/sec, 995 secs
lola: 50946969 markings, 268018654 edges, 50603 markings/sec, 1000 secs
lola: 51194645 markings, 269328249 edges, 49535 markings/sec, 1005 secs
lola: 51445406 markings, 270627473 edges, 50152 markings/sec, 1010 secs
lola: 51696767 markings, 271951217 edges, 50272 markings/sec, 1015 secs
lola: 51956144 markings, 273316036 edges, 51875 markings/sec, 1020 secs
lola: 52202645 markings, 274695569 edges, 49300 markings/sec, 1025 secs
lola: 52441702 markings, 276083779 edges, 47811 markings/sec, 1030 secs
lola: 52680850 markings, 277439317 edges, 47830 markings/sec, 1035 secs
lola: 52928089 markings, 278819884 edges, 49448 markings/sec, 1040 secs
lola: 53175018 markings, 280162536 edges, 49386 markings/sec, 1045 secs
lola: 53418601 markings, 281525852 edges, 48717 markings/sec, 1050 secs
lola: 53663647 markings, 282857774 edges, 49009 markings/sec, 1055 secs
lola: 53910526 markings, 284234490 edges, 49376 markings/sec, 1060 secs
lola: 54155782 markings, 285572417 edges, 49051 markings/sec, 1065 secs
lola: 54389849 markings, 286919902 edges, 46813 markings/sec, 1070 secs
lola: 54649058 markings, 288274059 edges, 51842 markings/sec, 1075 secs
lola: 54902761 markings, 289612758 edges, 50741 markings/sec, 1080 secs
lola: 55158282 markings, 290944283 edges, 51104 markings/sec, 1085 secs
lola: 55414021 markings, 292279843 edges, 51148 markings/sec, 1090 secs
lola: 55657526 markings, 293626455 edges, 48701 markings/sec, 1095 secs
lola: 55899066 markings, 294954408 edges, 48308 markings/sec, 1100 secs
lola: 56139223 markings, 296271506 edges, 48031 markings/sec, 1105 secs
lola: 56385156 markings, 297590513 edges, 49187 markings/sec, 1110 secs
lola: 56630212 markings, 298920827 edges, 49011 markings/sec, 1115 secs
lola: 56888919 markings, 300278126 edges, 51741 markings/sec, 1120 secs
lola: 57139746 markings, 301609129 edges, 50165 markings/sec, 1125 secs
lola: 57392968 markings, 302933142 edges, 50644 markings/sec, 1130 secs
lola: 57643580 markings, 304278449 edges, 50122 markings/sec, 1135 secs
lola: 57878959 markings, 305645396 edges, 47076 markings/sec, 1140 secs
lola: 58098367 markings, 307030972 edges, 43882 markings/sec, 1145 secs
lola: 58306604 markings, 308416324 edges, 41647 markings/sec, 1150 secs
lola: 58519965 markings, 309771109 edges, 42672 markings/sec, 1155 secs
lola: 58737709 markings, 311099828 edges, 43549 markings/sec, 1160 secs
lola: 58952637 markings, 312465892 edges, 42986 markings/sec, 1165 secs
lola: 59170931 markings, 313800006 edges, 43659 markings/sec, 1170 secs
lola: 59391809 markings, 315178006 edges, 44176 markings/sec, 1175 secs
lola: 59605671 markings, 316535639 edges, 42772 markings/sec, 1180 secs
lola: 59830231 markings, 317894414 edges, 44912 markings/sec, 1185 secs
lola: 60058657 markings, 319247670 edges, 45685 markings/sec, 1190 secs
lola: 60287914 markings, 320586430 edges, 45851 markings/sec, 1195 secs
lola: 60515950 markings, 321920901 edges, 45607 markings/sec, 1200 secs
lola: 60736527 markings, 323288645 edges, 44115 markings/sec, 1205 secs
lola: 60946417 markings, 324616198 edges, 41978 markings/sec, 1210 secs
lola: 61153986 markings, 325912336 edges, 41514 markings/sec, 1215 secs
lola: 61366555 markings, 327249502 edges, 42514 markings/sec, 1220 secs
lola: 61602979 markings, 328593461 edges, 47285 markings/sec, 1225 secs
lola: 61826541 markings, 329926407 edges, 44712 markings/sec, 1230 secs
lola: 62052119 markings, 331254225 edges, 45116 markings/sec, 1235 secs
lola: 62289456 markings, 332551303 edges, 47467 markings/sec, 1240 secs
lola: 62539608 markings, 333844887 edges, 50030 markings/sec, 1245 secs
lola: 62780988 markings, 335146773 edges, 48276 markings/sec, 1250 secs
lola: 63009571 markings, 336466416 edges, 45717 markings/sec, 1255 secs
lola: 63236808 markings, 337756374 edges, 45447 markings/sec, 1260 secs
lola: 63475686 markings, 339068461 edges, 47776 markings/sec, 1265 secs
lola: 63716808 markings, 340354445 edges, 48224 markings/sec, 1270 secs
lola: 63955283 markings, 341657193 edges, 47695 markings/sec, 1275 secs
lola: 64193858 markings, 342932030 edges, 47715 markings/sec, 1280 secs
lola: 64434347 markings, 344249779 edges, 48098 markings/sec, 1285 secs
lola: 64674410 markings, 345537640 edges, 48013 markings/sec, 1290 secs
lola: 64904921 markings, 346835996 edges, 46102 markings/sec, 1295 secs
lola: 65162481 markings, 348150903 edges, 51512 markings/sec, 1300 secs
lola: 65410726 markings, 349445034 edges, 49649 markings/sec, 1305 secs
lola: 65661125 markings, 350731973 edges, 50080 markings/sec, 1310 secs
lola: 65911044 markings, 352022853 edges, 49984 markings/sec, 1315 secs
lola: 66150830 markings, 353331111 edges, 47957 markings/sec, 1320 secs
lola: 66384440 markings, 354605227 edges, 46722 markings/sec, 1325 secs
lola: 66620784 markings, 355872112 edges, 47269 markings/sec, 1330 secs
lola: 66857899 markings, 357156908 edges, 47423 markings/sec, 1335 secs
lola: 67110140 markings, 358452482 edges, 50448 markings/sec, 1340 secs
lola: 67357226 markings, 359751538 edges, 49417 markings/sec, 1345 secs
lola: 67604857 markings, 361022037 edges, 49526 markings/sec, 1350 secs
lola: 67853637 markings, 362297337 edges, 49756 markings/sec, 1355 secs
lola: 68102892 markings, 363637040 edges, 49851 markings/sec, 1360 secs
lola: 68352348 markings, 364971400 edges, 49891 markings/sec, 1365 secs
lola: 68577026 markings, 366347143 edges, 44936 markings/sec, 1370 secs
lola: 68804978 markings, 367691031 edges, 45590 markings/sec, 1375 secs
lola: 69043772 markings, 369040837 edges, 47759 markings/sec, 1380 secs
lola: 69284374 markings, 370359783 edges, 48120 markings/sec, 1385 secs
lola: 69519171 markings, 371702107 edges, 46959 markings/sec, 1390 secs
lola: 69755639 markings, 373029409 edges, 47294 markings/sec, 1395 secs
lola: 69995873 markings, 374374762 edges, 48047 markings/sec, 1400 secs
lola: 70226600 markings, 375703040 edges, 46145 markings/sec, 1405 secs
lola: 70468501 markings, 377025194 edges, 48380 markings/sec, 1410 secs
lola: 70716858 markings, 378361845 edges, 49671 markings/sec, 1415 secs
lola: 70962105 markings, 379675417 edges, 49049 markings/sec, 1420 secs
lola: 71210263 markings, 380987824 edges, 49632 markings/sec, 1425 secs
lola: 71449602 markings, 382310165 edges, 47868 markings/sec, 1430 secs
lola: 71680284 markings, 383631309 edges, 46136 markings/sec, 1435 secs
lola: 71910909 markings, 384927565 edges, 46125 markings/sec, 1440 secs
lola: 72149551 markings, 386242221 edges, 47728 markings/sec, 1445 secs
lola: 72392493 markings, 387564947 edges, 48588 markings/sec, 1450 secs
lola: 72641213 markings, 388900750 edges, 49744 markings/sec, 1455 secs
lola: 72887165 markings, 390219013 edges, 49190 markings/sec, 1460 secs
lola: 73135042 markings, 391532567 edges, 49575 markings/sec, 1465 secs
lola: 73385541 markings, 392861977 edges, 50100 markings/sec, 1470 secs
lola: 73641057 markings, 394180598 edges, 51103 markings/sec, 1475 secs
lola: 73873404 markings, 395534752 edges, 46469 markings/sec, 1480 secs
lola: 74109277 markings, 396849382 edges, 47175 markings/sec, 1485 secs
lola: 74351391 markings, 398186261 edges, 48423 markings/sec, 1490 secs
lola: 74593907 markings, 399511784 edges, 48503 markings/sec, 1495 secs
lola: 74839198 markings, 400813377 edges, 49058 markings/sec, 1500 secs
lola: 75082046 markings, 402145064 edges, 48570 markings/sec, 1505 secs
lola: 75317645 markings, 403464403 edges, 47120 markings/sec, 1510 secs
lola: 75576653 markings, 404789856 edges, 51802 markings/sec, 1515 secs
lola: 75827835 markings, 406107400 edges, 50236 markings/sec, 1520 secs
lola: 76080175 markings, 407417162 edges, 50468 markings/sec, 1525 secs
lola: 76328758 markings, 408740180 edges, 49717 markings/sec, 1530 secs
lola: 76567172 markings, 410049095 edges, 47683 markings/sec, 1535 secs
lola: 76808961 markings, 411346129 edges, 48358 markings/sec, 1540 secs
lola: 77051995 markings, 412652623 edges, 48607 markings/sec, 1545 secs
lola: 77312695 markings, 413970796 edges, 52140 markings/sec, 1550 secs
lola: 77563969 markings, 415272872 edges, 50255 markings/sec, 1555 secs
lola: 77821383 markings, 416574245 edges, 51483 markings/sec, 1560 secs
lola: 78074162 markings, 417880757 edges, 50556 markings/sec, 1565 secs
lola: 78322199 markings, 419207951 edges, 49607 markings/sec, 1570 secs
lola: 78553908 markings, 420552035 edges, 46342 markings/sec, 1575 secs
lola: 78791222 markings, 421877087 edges, 47463 markings/sec, 1580 secs
lola: 79033525 markings, 423197003 edges, 48461 markings/sec, 1585 secs
lola: 79276312 markings, 424518290 edges, 48557 markings/sec, 1590 secs
lola: 79518931 markings, 425830101 edges, 48524 markings/sec, 1595 secs
lola: 79765477 markings, 427152704 edges, 49309 markings/sec, 1600 secs
lola: 80001022 markings, 428481188 edges, 47109 markings/sec, 1605 secs
lola: 80265183 markings, 429803073 edges, 52832 markings/sec, 1610 secs
lola: 80512876 markings, 431115308 edges, 49539 markings/sec, 1615 secs
lola: 80765181 markings, 432423162 edges, 50461 markings/sec, 1620 secs
lola: 81011406 markings, 433746711 edges, 49245 markings/sec, 1625 secs
lola: 81246070 markings, 435046402 edges, 46933 markings/sec, 1630 secs
lola: 81490732 markings, 436335601 edges, 48932 markings/sec, 1635 secs
lola: 81738117 markings, 437647709 edges, 49477 markings/sec, 1640 secs
lola: 81991956 markings, 438965372 edges, 50768 markings/sec, 1645 secs
lola: 82245902 markings, 440261678 edges, 50789 markings/sec, 1650 secs
lola: 82497853 markings, 441553559 edges, 50390 markings/sec, 1655 secs
lola: 82742575 markings, 442870430 edges, 48944 markings/sec, 1660 secs
lola: 82979107 markings, 444190341 edges, 47306 markings/sec, 1665 secs
lola: 83203140 markings, 445530311 edges, 44807 markings/sec, 1670 secs
lola: 83427353 markings, 446832152 edges, 44843 markings/sec, 1675 secs
lola: 83659653 markings, 448161538 edges, 46460 markings/sec, 1680 secs
lola: 83894025 markings, 449459881 edges, 46874 markings/sec, 1685 secs
lola: 84125628 markings, 450777308 edges, 46321 markings/sec, 1690 secs
lola: 84359268 markings, 452075490 edges, 46728 markings/sec, 1695 secs
lola: 84594605 markings, 453397926 edges, 47067 markings/sec, 1700 secs
lola: 84822138 markings, 454706330 edges, 45507 markings/sec, 1705 secs
lola: 85057995 markings, 456021232 edges, 47171 markings/sec, 1710 secs
lola: 85304220 markings, 457345294 edges, 49245 markings/sec, 1715 secs
lola: 85545185 markings, 458652006 edges, 48193 markings/sec, 1720 secs
lola: 85789353 markings, 459948211 edges, 48834 markings/sec, 1725 secs
lola: 86026788 markings, 461258878 edges, 47487 markings/sec, 1730 secs
lola: 86254851 markings, 462569504 edges, 45613 markings/sec, 1735 secs
lola: 86485206 markings, 463853865 edges, 46071 markings/sec, 1740 secs
lola: 86723543 markings, 465134520 edges, 47667 markings/sec, 1745 secs
lola: 86957969 markings, 466441512 edges, 46885 markings/sec, 1750 secs
lola: 87205023 markings, 467759853 edges, 49411 markings/sec, 1755 secs
lola: 87448104 markings, 469054721 edges, 48616 markings/sec, 1760 secs
lola: 87693999 markings, 470345391 edges, 49179 markings/sec, 1765 secs
lola: 87941177 markings, 471665996 edges, 49436 markings/sec, 1770 secs
lola: 88181864 markings, 472990220 edges, 48137 markings/sec, 1775 secs
lola: local time limit reached - aborting
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1783 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 ... (shortened)
lola: processed formula length: 1748
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 660827 markings, 1109990 edges, 132165 markings/sec, 0 secs
lola: 1293192 markings, 2215586 edges, 126473 markings/sec, 5 secs
lola: 1917823 markings, 3296703 edges, 124926 markings/sec, 10 secs
lola: 2542349 markings, 4412524 edges, 124905 markings/sec, 15 secs
lola: 3167282 markings, 5518689 edges, 124987 markings/sec, 20 secs
lola: 3794417 markings, 6607975 edges, 125427 markings/sec, 25 secs
lola: 4399679 markings, 7686955 edges, 121052 markings/sec, 30 secs
lola: 5002409 markings, 8781771 edges, 120546 markings/sec, 35 secs
lola: 5599863 markings, 9908323 edges, 119491 markings/sec, 40 secs
lola: 6167102 markings, 10998300 edges, 113448 markings/sec, 45 secs
lola: 6763065 markings, 12084482 edges, 119193 markings/sec, 50 secs
lola: 7363652 markings, 13167864 edges, 120117 markings/sec, 55 secs
lola: 7964448 markings, 14249911 edges, 120159 markings/sec, 60 secs
lola: 8541468 markings, 15329859 edges, 115404 markings/sec, 65 secs
lola: 9122744 markings, 16405832 edges, 116255 markings/sec, 70 secs
lola: 9700399 markings, 17487815 edges, 115531 markings/sec, 75 secs
lola: 10285282 markings, 18543809 edges, 116977 markings/sec, 80 secs
lola: 10868857 markings, 19592705 edges, 116715 markings/sec, 85 secs
lola: 11443234 markings, 20653363 edges, 114875 markings/sec, 90 secs
lola: 12022565 markings, 21695099 edges, 115866 markings/sec, 95 secs
lola: 12614487 markings, 22759842 edges, 118384 markings/sec, 100 secs
lola: 13219657 markings, 23846198 edges, 121034 markings/sec, 105 secs
lola: 13811093 markings, 24925329 edges, 118287 markings/sec, 110 secs
lola: 14386902 markings, 26008388 edges, 115162 markings/sec, 115 secs
lola: 14965912 markings, 27069759 edges, 115802 markings/sec, 120 secs
lola: 15560565 markings, 28178393 edges, 118931 markings/sec, 125 secs
lola: 16183212 markings, 29285274 edges, 124529 markings/sec, 130 secs
lola: 16807727 markings, 30369217 edges, 124903 markings/sec, 135 secs
lola: 17416643 markings, 31455722 edges, 121783 markings/sec, 140 secs
lola: 17996716 markings, 32585925 edges, 116015 markings/sec, 145 secs
lola: 18551893 markings, 33709953 edges, 111035 markings/sec, 150 secs
lola: 19120768 markings, 34787265 edges, 113775 markings/sec, 155 secs
lola: 19707493 markings, 35889665 edges, 117345 markings/sec, 160 secs
lola: 20278363 markings, 36970080 edges, 114174 markings/sec, 165 secs
lola: 20856280 markings, 38059595 edges, 115583 markings/sec, 170 secs
lola: 21432768 markings, 39128463 edges, 115298 markings/sec, 175 secs
lola: 22014593 markings, 40201316 edges, 116365 markings/sec, 180 secs
lola: 22579741 markings, 41250268 edges, 113030 markings/sec, 185 secs
lola: 23144641 markings, 42317179 edges, 112980 markings/sec, 190 secs
lola: 23730683 markings, 43357392 edges, 117208 markings/sec, 195 secs
lola: 24319861 markings, 44426511 edges, 117836 markings/sec, 200 secs
lola: 24897293 markings, 45509953 edges, 115486 markings/sec, 205 secs
lola: 25468157 markings, 46594263 edges, 114173 markings/sec, 210 secs
lola: 26044903 markings, 47655915 edges, 115349 markings/sec, 215 secs
lola: 26601651 markings, 48783704 edges, 111350 markings/sec, 220 secs
lola: 27142810 markings, 49929362 edges, 108232 markings/sec, 225 secs
lola: 27688893 markings, 51007914 edges, 109217 markings/sec, 230 secs
lola: 28237107 markings, 52135579 edges, 109643 markings/sec, 235 secs
lola: 28785054 markings, 53235359 edges, 109589 markings/sec, 240 secs
lola: 29366144 markings, 54310690 edges, 116218 markings/sec, 245 secs
lola: 29947894 markings, 55397796 edges, 116350 markings/sec, 250 secs
lola: 30492954 markings, 56468379 edges, 109012 markings/sec, 255 secs
lola: 31061152 markings, 57528448 edges, 113640 markings/sec, 260 secs
lola: 31653790 markings, 58583171 edges, 118528 markings/sec, 265 secs
lola: 32205717 markings, 59674979 edges, 110385 markings/sec, 270 secs
lola: 32779618 markings, 60766857 edges, 114780 markings/sec, 275 secs
lola: 33355569 markings, 61835909 edges, 115190 markings/sec, 280 secs
lola: 33953787 markings, 62935386 edges, 119644 markings/sec, 285 secs
lola: 34560650 markings, 64043517 edges, 121373 markings/sec, 290 secs
lola: 35109958 markings, 65140622 edges, 109862 markings/sec, 295 secs
lola: 35641998 markings, 66217892 edges, 106408 markings/sec, 300 secs
lola: 36183937 markings, 67299824 edges, 108388 markings/sec, 305 secs
lola: 36773966 markings, 68399218 edges, 118006 markings/sec, 310 secs
lola: 37303590 markings, 69514716 edges, 105925 markings/sec, 315 secs
lola: 37836296 markings, 70598533 edges, 106541 markings/sec, 320 secs
lola: 38375112 markings, 71672653 edges, 107763 markings/sec, 325 secs
lola: 38890760 markings, 72787795 edges, 103130 markings/sec, 330 secs
lola: 39427139 markings, 73897651 edges, 107276 markings/sec, 335 secs
lola: 39959357 markings, 74958399 edges, 106444 markings/sec, 340 secs
lola: 40477971 markings, 76054708 edges, 103723 markings/sec, 345 secs
lola: 40961016 markings, 77124419 edges, 96609 markings/sec, 350 secs
lola: 41446614 markings, 78196406 edges, 97120 markings/sec, 355 secs
lola: 41980824 markings, 79284201 edges, 106842 markings/sec, 360 secs
lola: 42527799 markings, 80374946 edges, 109395 markings/sec, 365 secs
lola: 42971601 markings, 81481571 edges, 88760 markings/sec, 370 secs
lola: 43496514 markings, 82476455 edges, 104983 markings/sec, 375 secs
lola: 44038275 markings, 83526361 edges, 108352 markings/sec, 380 secs
lola: 44573803 markings, 84585466 edges, 107106 markings/sec, 385 secs
lola: 45095091 markings, 85652614 edges, 104258 markings/sec, 390 secs
lola: 45612067 markings, 86717656 edges, 103395 markings/sec, 395 secs
lola: 46100103 markings, 87779892 edges, 97607 markings/sec, 400 secs
lola: 46575838 markings, 88855112 edges, 95147 markings/sec, 405 secs
lola: 47048629 markings, 89910703 edges, 94558 markings/sec, 410 secs
lola: 47520269 markings, 90984290 edges, 94328 markings/sec, 415 secs
lola: 48011893 markings, 92027454 edges, 98325 markings/sec, 420 secs
lola: 48508630 markings, 93057388 edges, 99347 markings/sec, 425 secs
lola: 49007685 markings, 94087568 edges, 99811 markings/sec, 430 secs
lola: 49532229 markings, 95077343 edges, 104909 markings/sec, 435 secs
lola: 50007002 markings, 96120761 edges, 94955 markings/sec, 440 secs
lola: 50521382 markings, 97125265 edges, 102876 markings/sec, 445 secs
lola: 51050529 markings, 98126910 edges, 105829 markings/sec, 450 secs
lola: 51583158 markings, 99164416 edges, 106526 markings/sec, 455 secs
lola: 52105697 markings, 100234336 edges, 104508 markings/sec, 460 secs
lola: 52623549 markings, 101301310 edges, 103570 markings/sec, 465 secs
lola: 53151463 markings, 102344870 edges, 105583 markings/sec, 470 secs
lola: 53652074 markings, 103392800 edges, 100122 markings/sec, 475 secs
lola: 54147278 markings, 104435749 edges, 99041 markings/sec, 480 secs
lola: 54682993 markings, 105458206 edges, 107143 markings/sec, 485 secs
lola: 55233739 markings, 106512244 edges, 110149 markings/sec, 490 secs
lola: 55870492 markings, 107595178 edges, 127351 markings/sec, 495 secs
lola: 56468772 markings, 108658039 edges, 119656 markings/sec, 500 secs
lola: 57058237 markings, 109727199 edges, 117893 markings/sec, 505 secs
lola: 57643509 markings, 110751836 edges, 117054 markings/sec, 510 secs
lola: 58242174 markings, 111834655 edges, 119733 markings/sec, 515 secs
lola: 58846077 markings, 112911077 edges, 120781 markings/sec, 520 secs
lola: 59431344 markings, 113982574 edges, 117053 markings/sec, 525 secs
lola: 60008670 markings, 115014378 edges, 115465 markings/sec, 530 secs
lola: 60604442 markings, 116084944 edges, 119154 markings/sec, 535 secs
lola: 61161591 markings, 117173761 edges, 111430 markings/sec, 540 secs
lola: 61746199 markings, 118228439 edges, 116922 markings/sec, 545 secs
lola: 62340047 markings, 119281634 edges, 118770 markings/sec, 550 secs
lola: 62889398 markings, 120332793 edges, 109870 markings/sec, 555 secs
lola: 63418831 markings, 121375280 edges, 105887 markings/sec, 560 secs
lola: 63954199 markings, 122419206 edges, 107074 markings/sec, 565 secs
lola: 64521931 markings, 123503328 edges, 113546 markings/sec, 570 secs
lola: 65052934 markings, 124593202 edges, 106201 markings/sec, 575 secs
lola: 65568667 markings, 125619143 edges, 103147 markings/sec, 580 secs
lola: 66115416 markings, 126653509 edges, 109350 markings/sec, 585 secs
lola: 66675663 markings, 127700557 edges, 112049 markings/sec, 590 secs
lola: 67248584 markings, 128742319 edges, 114584 markings/sec, 595 secs
lola: 67824974 markings, 129789591 edges, 115278 markings/sec, 600 secs
lola: 68373900 markings, 130823404 edges, 109785 markings/sec, 605 secs
lola: 68916807 markings, 131863870 edges, 108581 markings/sec, 610 secs
lola: 69462530 markings, 132894287 edges, 109145 markings/sec, 615 secs
lola: 70008010 markings, 133940246 edges, 109096 markings/sec, 620 secs
lola: 70560266 markings, 134956353 edges, 110451 markings/sec, 625 secs
lola: 71111122 markings, 135970005 edges, 110171 markings/sec, 630 secs
lola: 71657865 markings, 136984623 edges, 109349 markings/sec, 635 secs
lola: 72197857 markings, 137973230 edges, 107998 markings/sec, 640 secs
lola: 72731861 markings, 139007887 edges, 106801 markings/sec, 645 secs
lola: 73289753 markings, 140007473 edges, 111578 markings/sec, 650 secs
lola: 73846540 markings, 141042939 edges, 111357 markings/sec, 655 secs
lola: 74420111 markings, 142090877 edges, 114714 markings/sec, 660 secs
lola: 74994402 markings, 143135473 edges, 114858 markings/sec, 665 secs
lola: 75546173 markings, 144172057 edges, 110354 markings/sec, 670 secs
lola: 76088040 markings, 145209559 edges, 108373 markings/sec, 675 secs
lola: 76636731 markings, 146245574 edges, 109738 markings/sec, 680 secs
lola: 77188071 markings, 147286013 edges, 110268 markings/sec, 685 secs
lola: 77763301 markings, 148344466 edges, 115046 markings/sec, 690 secs
lola: 78349366 markings, 149409148 edges, 117213 markings/sec, 695 secs
lola: 78900743 markings, 150450210 edges, 110275 markings/sec, 700 secs
lola: 79454085 markings, 151483578 edges, 110668 markings/sec, 705 secs
lola: 80004213 markings, 152523464 edges, 110026 markings/sec, 710 secs
lola: 80583365 markings, 153589736 edges, 115830 markings/sec, 715 secs
lola: 81120749 markings, 154637927 edges, 107477 markings/sec, 720 secs
lola: 81673052 markings, 155672191 edges, 110461 markings/sec, 725 secs
lola: 82223911 markings, 156712193 edges, 110172 markings/sec, 730 secs
lola: 82745053 markings, 157771997 edges, 104228 markings/sec, 735 secs
lola: 83295672 markings, 158824151 edges, 110124 markings/sec, 740 secs
lola: 83846185 markings, 159854544 edges, 110103 markings/sec, 745 secs
lola: 84365682 markings, 160896808 edges, 103899 markings/sec, 750 secs
lola: 84862947 markings, 161929642 edges, 99453 markings/sec, 755 secs
lola: 85364200 markings, 162967559 edges, 100251 markings/sec, 760 secs
lola: 85917531 markings, 164015457 edges, 110666 markings/sec, 765 secs
lola: 86408434 markings, 165079575 edges, 98181 markings/sec, 770 secs
lola: 86915158 markings, 166083393 edges, 101345 markings/sec, 775 secs
lola: 87443416 markings, 167087452 edges, 105652 markings/sec, 780 secs
lola: 87984524 markings, 168111537 edges, 108222 markings/sec, 785 secs
lola: 88526665 markings, 169147432 edges, 108428 markings/sec, 790 secs
lola: 89067092 markings, 170183432 edges, 108085 markings/sec, 795 secs
lola: 89579179 markings, 171198909 edges, 102417 markings/sec, 800 secs
lola: 90093135 markings, 172237254 edges, 102791 markings/sec, 805 secs
lola: 90613453 markings, 173251751 edges, 104064 markings/sec, 810 secs
lola: 91129870 markings, 174298668 edges, 103283 markings/sec, 815 secs
lola: 91647978 markings, 175306419 edges, 103622 markings/sec, 820 secs
lola: 92169166 markings, 176310613 edges, 104238 markings/sec, 825 secs
lola: 92690862 markings, 177298804 edges, 104339 markings/sec, 830 secs
lola: 93209591 markings, 178296999 edges, 103746 markings/sec, 835 secs
lola: 93733490 markings, 179300064 edges, 104780 markings/sec, 840 secs
lola: 94280868 markings, 180297609 edges, 109476 markings/sec, 845 secs
lola: 94827963 markings, 181325342 edges, 109419 markings/sec, 850 secs
lola: 95365421 markings, 182357050 edges, 107492 markings/sec, 855 secs
lola: 95905111 markings, 183394474 edges, 107938 markings/sec, 860 secs
lola: 96429709 markings, 184391053 edges, 104920 markings/sec, 865 secs
lola: 96945235 markings, 185429384 edges, 103105 markings/sec, 870 secs
lola: 97482356 markings, 186429143 edges, 107424 markings/sec, 875 secs
lola: 98028822 markings, 187468317 edges, 109293 markings/sec, 880 secs
lola: 98650974 markings, 188530041 edges, 124430 markings/sec, 885 secs
lola: 99249145 markings, 189578644 edges, 119634 markings/sec, 890 secs
lola: 99822686 markings, 190623335 edges, 114708 markings/sec, 895 secs
lola: 100394579 markings, 191634631 edges, 114379 markings/sec, 900 secs
lola: 100979823 markings, 192688552 edges, 117049 markings/sec, 905 secs
lola: 101582375 markings, 193751894 edges, 120510 markings/sec, 910 secs
lola: 102147732 markings, 194798076 edges, 113071 markings/sec, 915 secs
lola: 102723422 markings, 195820617 edges, 115138 markings/sec, 920 secs
lola: 103299070 markings, 196857801 edges, 115130 markings/sec, 925 secs
lola: 103846467 markings, 197915504 edges, 109479 markings/sec, 930 secs
lola: 104423676 markings, 198969481 edges, 115442 markings/sec, 935 secs
lola: 104998590 markings, 199987922 edges, 114983 markings/sec, 940 secs
lola: 105556874 markings, 201032628 edges, 111657 markings/sec, 945 secs
lola: 106078183 markings, 202053136 edges, 104262 markings/sec, 950 secs
lola: 106602711 markings, 203077776 edges, 104906 markings/sec, 955 secs
lola: 107142802 markings, 204129208 edges, 108018 markings/sec, 960 secs
lola: 107689728 markings, 205194879 edges, 109385 markings/sec, 965 secs
lola: 108182991 markings, 206236876 edges, 98653 markings/sec, 970 secs
lola: 108714572 markings, 207211711 edges, 106316 markings/sec, 975 secs
lola: 109253312 markings, 208245421 edges, 107748 markings/sec, 980 secs
lola: 109810317 markings, 209264941 edges, 111401 markings/sec, 985 secs
lola: 110276210 markings, 210115475 edges, 93179 markings/sec, 990 secs
lola: 110367452 markings, 210279755 edges, 18248 markings/sec, 995 secs
lola: 110415041 markings, 210371025 edges, 9518 markings/sec, 1000 secs
lola: 110420607 markings, 210380504 edges, 1113 markings/sec, 1005 secs
lola: 110436018 markings, 210408866 edges, 3082 markings/sec, 1010 secs
lola: 110437902 markings, 210412423 edges, 377 markings/sec, 1015 secs
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 291278 markings, 1364738 edges, 58256 markings/sec, 0 secs
lola: 556752 markings, 2754908 edges, 53095 markings/sec, 5 secs
lola: 814396 markings, 4127930 edges, 51529 markings/sec, 10 secs
lola: 1083198 markings, 5502282 edges, 53760 markings/sec, 15 secs
lola: 1349612 markings, 6860496 edges, 53283 markings/sec, 20 secs
lola: 1615936 markings, 8213783 edges, 53265 markings/sec, 25 secs
lola: 1886081 markings, 9562523 edges, 54029 markings/sec, 30 secs
lola: 2148751 markings, 10913808 edges, 52534 markings/sec, 35 secs
lola: 2427357 markings, 12258810 edges, 55721 markings/sec, 40 secs
lola: 2702715 markings, 13588361 edges, 55072 markings/sec, 45 secs
lola: 2977403 markings, 14923709 edges, 54938 markings/sec, 50 secs
lola: 3238888 markings, 16263834 edges, 52297 markings/sec, 55 secs
lola: 3498272 markings, 17590238 edges, 51877 markings/sec, 60 secs
lola: 3762577 markings, 18921559 edges, 52861 markings/sec, 65 secs
lola: 4042193 markings, 20256125 edges, 55923 markings/sec, 70 secs
lola: 4313436 markings, 21580077 edges, 54249 markings/sec, 75 secs
lola: 4584865 markings, 22900122 edges, 54286 markings/sec, 80 secs
lola: 4863039 markings, 24265070 edges, 55635 markings/sec, 85 secs
lola: 5120019 markings, 25649656 edges, 51396 markings/sec, 90 secs
lola: 5370466 markings, 27022372 edges, 50089 markings/sec, 95 secs
lola: 5630586 markings, 28389366 edges, 52024 markings/sec, 100 secs
lola: 5890841 markings, 29737556 edges, 52051 markings/sec, 105 secs
lola: 6146892 markings, 31084958 edges, 51210 markings/sec, 110 secs
lola: 6408912 markings, 32443211 edges, 52404 markings/sec, 115 secs
lola: 6668118 markings, 33781914 edges, 51841 markings/sec, 120 secs
lola: 6927220 markings, 35123368 edges, 51820 markings/sec, 125 secs
lola: 7195771 markings, 36467018 edges, 53710 markings/sec, 130 secs
lola: 7463477 markings, 37792025 edges, 53541 markings/sec, 135 secs
lola: 7731126 markings, 39119424 edges, 53530 markings/sec, 140 secs
lola: 7985553 markings, 40458681 edges, 50885 markings/sec, 145 secs
lola: 8235417 markings, 41778131 edges, 49973 markings/sec, 150 secs
lola: 8492459 markings, 43094830 edges, 51408 markings/sec, 155 secs
lola: 8759075 markings, 44421609 edges, 53323 markings/sec, 160 secs
lola: 9024145 markings, 45749772 edges, 53014 markings/sec, 165 secs
lola: 9290510 markings, 47066729 edges, 53273 markings/sec, 170 secs
lola: 9560012 markings, 48411897 edges, 53900 markings/sec, 175 secs
lola: 9825457 markings, 49765000 edges, 53089 markings/sec, 180 secs
lola: 10062767 markings, 51155104 edges, 47462 markings/sec, 185 secs
lola: 10303905 markings, 52515138 edges, 48228 markings/sec, 190 secs
lola: 10553882 markings, 53872361 edges, 49995 markings/sec, 195 secs
lola: 10800965 markings, 55225739 edges, 49417 markings/sec, 200 secs
lola: 11048941 markings, 56569428 edges, 49595 markings/sec, 205 secs
lola: 11300736 markings, 57922505 edges, 50359 markings/sec, 210 secs
lola: 11539989 markings, 59266583 edges, 47851 markings/sec, 215 secs
lola: 11811171 markings, 60609104 edges, 54236 markings/sec, 220 secs
lola: 12064180 markings, 61943973 edges, 50602 markings/sec, 225 secs
lola: 12322283 markings, 63271828 edges, 51621 markings/sec, 230 secs
lola: 12574603 markings, 64614694 edges, 50464 markings/sec, 235 secs
lola: 12811591 markings, 65941703 edges, 47398 markings/sec, 240 secs
lola: 13056828 markings, 67258921 edges, 49047 markings/sec, 245 secs
lola: 13309287 markings, 68588921 edges, 50492 markings/sec, 250 secs
lola: 13567157 markings, 69923501 edges, 51574 markings/sec, 255 secs
lola: 13822550 markings, 71243075 edges, 51079 markings/sec, 260 secs
lola: 14074255 markings, 72544812 edges, 50341 markings/sec, 265 secs
lola: 14341383 markings, 73852016 edges, 53426 markings/sec, 270 secs
lola: 14597112 markings, 75176428 edges, 51146 markings/sec, 275 secs
lola: 14837552 markings, 76504911 edges, 48088 markings/sec, 280 secs
lola: 15081865 markings, 77827766 edges, 48863 markings/sec, 285 secs
lola: 15334223 markings, 79141191 edges, 50472 markings/sec, 290 secs
lola: 15585883 markings, 80454535 edges, 50332 markings/sec, 295 secs
lola: 15837416 markings, 81760046 edges, 50307 markings/sec, 300 secs
lola: 16089564 markings, 83075792 edges, 50430 markings/sec, 305 secs
lola: 16333324 markings, 84384290 edges, 48752 markings/sec, 310 secs
lola: 16605788 markings, 85701752 edges, 54493 markings/sec, 315 secs
lola: 16866388 markings, 87010873 edges, 52120 markings/sec, 320 secs
lola: 17129495 markings, 88314236 edges, 52621 markings/sec, 325 secs
lola: 17388897 markings, 89624548 edges, 51880 markings/sec, 330 secs
lola: 17634005 markings, 90929402 edges, 49022 markings/sec, 335 secs
lola: 17882067 markings, 92220181 edges, 49612 markings/sec, 340 secs
lola: 18130672 markings, 93519677 edges, 49721 markings/sec, 345 secs
lola: 18404236 markings, 94834625 edges, 54713 markings/sec, 350 secs
lola: 18661333 markings, 96139632 edges, 51419 markings/sec, 355 secs
lola: 18924907 markings, 97433827 edges, 52715 markings/sec, 360 secs
lola: 19194116 markings, 98782145 edges, 53842 markings/sec, 365 secs
lola: 19451229 markings, 100150575 edges, 51423 markings/sec, 370 secs
lola: 19687785 markings, 101534670 edges, 47311 markings/sec, 375 secs
lola: 19931758 markings, 102903449 edges, 48795 markings/sec, 380 secs
lola: 20185197 markings, 104242749 edges, 50688 markings/sec, 385 secs
lola: 20429649 markings, 105602144 edges, 48890 markings/sec, 390 secs
lola: 20678513 markings, 106962107 edges, 49773 markings/sec, 395 secs
lola: 20932662 markings, 108298748 edges, 50830 markings/sec, 400 secs
lola: 21178023 markings, 109646274 edges, 49072 markings/sec, 405 secs
lola: 21441220 markings, 111000529 edges, 52639 markings/sec, 410 secs
lola: 21702674 markings, 112351711 edges, 52291 markings/sec, 415 secs
lola: 21960990 markings, 113686552 edges, 51663 markings/sec, 420 secs
lola: 22204669 markings, 115031558 edges, 48736 markings/sec, 425 secs
lola: 22446305 markings, 116356215 edges, 48327 markings/sec, 430 secs
lola: 22692888 markings, 117682404 edges, 49317 markings/sec, 435 secs
lola: 22954125 markings, 119015750 edges, 52247 markings/sec, 440 secs
lola: 23209265 markings, 120349259 edges, 51028 markings/sec, 445 secs
lola: 23465575 markings, 121672232 edges, 51262 markings/sec, 450 secs
lola: 23715199 markings, 122971752 edges, 49925 markings/sec, 455 secs
lola: 23985708 markings, 124348027 edges, 54102 markings/sec, 460 secs
lola: 24232829 markings, 125748138 edges, 49424 markings/sec, 465 secs
lola: 24475727 markings, 127133151 edges, 48580 markings/sec, 470 secs
lola: 24723793 markings, 128518410 edges, 49613 markings/sec, 475 secs
lola: 24973801 markings, 129886184 edges, 50002 markings/sec, 480 secs
lola: 25224113 markings, 131242762 edges, 50062 markings/sec, 485 secs
lola: 25475287 markings, 132620564 edges, 50235 markings/sec, 490 secs
lola: 25719040 markings, 133981377 edges, 48751 markings/sec, 495 secs
lola: 25979145 markings, 135335774 edges, 52021 markings/sec, 500 secs
lola: 26236151 markings, 136688816 edges, 51401 markings/sec, 505 secs
lola: 26495089 markings, 138029465 edges, 51788 markings/sec, 510 secs
lola: 26748700 markings, 139379533 edges, 50722 markings/sec, 515 secs
lola: 26989941 markings, 140725397 edges, 48248 markings/sec, 520 secs
lola: 27231927 markings, 142059748 edges, 48397 markings/sec, 525 secs
lola: 27478473 markings, 143400663 edges, 49309 markings/sec, 530 secs
lola: 27741227 markings, 144749787 edges, 52551 markings/sec, 535 secs
lola: 27996656 markings, 146083532 edges, 51086 markings/sec, 540 secs
lola: 28255280 markings, 147425411 edges, 51725 markings/sec, 545 secs
lola: 28525170 markings, 148781198 edges, 53978 markings/sec, 550 secs
lola: 28772140 markings, 150162268 edges, 49394 markings/sec, 555 secs
lola: 29008491 markings, 151528797 edges, 47270 markings/sec, 560 secs
lola: 29258932 markings, 152895457 edges, 50088 markings/sec, 565 secs
lola: 29508648 markings, 154246526 edges, 49943 markings/sec, 570 secs
lola: 29754958 markings, 155585862 edges, 49262 markings/sec, 575 secs
lola: 30007194 markings, 156949271 edges, 50447 markings/sec, 580 secs
lola: 30250845 markings, 158296969 edges, 48730 markings/sec, 585 secs
lola: 30512960 markings, 159641027 edges, 52423 markings/sec, 590 secs
lola: 30770014 markings, 160985175 edges, 51411 markings/sec, 595 secs
lola: 31028985 markings, 162319188 edges, 51794 markings/sec, 600 secs
lola: 31284768 markings, 163661937 edges, 51157 markings/sec, 605 secs
lola: 31526613 markings, 165001752 edges, 48369 markings/sec, 610 secs
lola: 31769900 markings, 166328225 edges, 48657 markings/sec, 615 secs
lola: 32016908 markings, 167660973 edges, 49402 markings/sec, 620 secs
lola: 32283442 markings, 169001646 edges, 53307 markings/sec, 625 secs
lola: 32537174 markings, 170333229 edges, 50746 markings/sec, 630 secs
lola: 32794567 markings, 171654251 edges, 51479 markings/sec, 635 secs
lola: 33056584 markings, 172962778 edges, 52403 markings/sec, 640 secs
lola: 33318503 markings, 174285686 edges, 52384 markings/sec, 645 secs
lola: 33561777 markings, 175629698 edges, 48655 markings/sec, 650 secs
lola: 33806695 markings, 176946454 edges, 48984 markings/sec, 655 secs
lola: 34057717 markings, 178271648 edges, 50204 markings/sec, 660 secs
lola: 34308346 markings, 179590512 edges, 50126 markings/sec, 665 secs
lola: 34562742 markings, 180882620 edges, 50879 markings/sec, 670 secs
lola: 34816646 markings, 182206793 edges, 50781 markings/sec, 675 secs
lola: 35061430 markings, 183519585 edges, 48957 markings/sec, 680 secs
lola: 35325945 markings, 184833389 edges, 52903 markings/sec, 685 secs
lola: 35588172 markings, 186148527 edges, 52445 markings/sec, 690 secs
lola: 35851959 markings, 187452470 edges, 52757 markings/sec, 695 secs
lola: 36112771 markings, 188765014 edges, 52162 markings/sec, 700 secs
lola: 36360115 markings, 190078256 edges, 49469 markings/sec, 705 secs
lola: 36607639 markings, 191369321 edges, 49505 markings/sec, 710 secs
lola: 36858381 markings, 192670107 edges, 50148 markings/sec, 715 secs
lola: 37125355 markings, 193983851 edges, 53395 markings/sec, 720 secs
lola: 37387642 markings, 195298589 edges, 52457 markings/sec, 725 secs
lola: 37651222 markings, 196602988 edges, 52716 markings/sec, 730 secs
lola: 37921514 markings, 197943543 edges, 54058 markings/sec, 735 secs
lola: 38183093 markings, 199305991 edges, 52316 markings/sec, 740 secs
lola: 38413225 markings, 200649467 edges, 46026 markings/sec, 745 secs
lola: 38641980 markings, 201927295 edges, 45751 markings/sec, 750 secs
lola: time limit reached - aborting
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola: memory consumption: 5373744 KB
lola: time consumption: 3571 seconds
lola: memory consumption: 5373744 KB
lola: time consumption: 3571 seconds

BK_STOP 1553035266260

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-4"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2018"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool win2018"
echo " Input is NeoElection-COL-4, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r110-oct2-155272242200047"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-4.tgz
mv NeoElection-COL-4 execution
cd execution
if [ "LTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "LTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;