About the Execution of 2018-Gold for NeoElection-COL-4
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15919.240 | 3571259.00 | 3707044.00 | 4362.50 | FTFTFTF?TF?FFTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r110-oct2-155272242200047.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................
=====================================================================
Generated by BenchKit 2-3954
Executing tool win2018
Input is NeoElection-COL-4, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r110-oct2-155272242200047
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 256K
-rw-r--r-- 1 mcc users 3.9K Feb 12 02:45 CTLCardinality.txt
-rw-r--r-- 1 mcc users 20K Feb 12 02:44 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Feb 8 01:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 8 01:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 104 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 342 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.6K Feb 5 00:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K Feb 5 00:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.5K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.6K Feb 4 06:52 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 22K Feb 4 06:51 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.9K Feb 1 00:29 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K Feb 1 00:28 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 4 22:21 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 81K Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-4-LTLCardinality-00
FORMULA_NAME NeoElection-COL-4-LTLCardinality-01
FORMULA_NAME NeoElection-COL-4-LTLCardinality-02
FORMULA_NAME NeoElection-COL-4-LTLCardinality-03
FORMULA_NAME NeoElection-COL-4-LTLCardinality-04
FORMULA_NAME NeoElection-COL-4-LTLCardinality-05
FORMULA_NAME NeoElection-COL-4-LTLCardinality-06
FORMULA_NAME NeoElection-COL-4-LTLCardinality-07
FORMULA_NAME NeoElection-COL-4-LTLCardinality-08
FORMULA_NAME NeoElection-COL-4-LTLCardinality-09
FORMULA_NAME NeoElection-COL-4-LTLCardinality-10
FORMULA_NAME NeoElection-COL-4-LTLCardinality-11
FORMULA_NAME NeoElection-COL-4-LTLCardinality-12
FORMULA_NAME NeoElection-COL-4-LTLCardinality-13
FORMULA_NAME NeoElection-COL-4-LTLCardinality-14
FORMULA_NAME NeoElection-COL-4-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1553031695001
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-4 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-4 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ NeoElection-COL-4 @ 3570 seconds
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 4220/65536 symbol table entries, 60 collisions
lola: preprocessing...
lola: Size of bit vector: 1830
lola: finding significant places
lola: 1830 places, 2390 transitions, 520 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 995 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-4-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p825 + p826 + p827 + p828 + p829)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929)
lola: after: (0 <= 11)
lola: always true
lola: LP says that atomic proposition is always false: (2 <= p1685 + p1686 + p1687 + p1688 + p1689)
lola: LP says that atomic proposition is always false: (2 <= p799 + p798 + p797 + p796 + p795)
lola: LP says that atomic proposition is always false: (1 <= p1685 + p1686 + p1687 + p1688 + p1689)
lola: place invariant simplifies atomic proposition
lola: before: (p5 + p6 + p7 + p8 + p9 <= p1828 + p1825 + p1822 + p1819 + p1816 + p1815 + p1817 + p1818 + p1820 + p1821 + p1823 + p1824 + p1826 + p1827 + p1829)
lola: after: (p5 + p6 + p7 + p8 + p9 <= 4)
lola: LP says that atomic proposition is always true: (p5 + p6 + p7 + p8 + p9 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929)
lola: after: (0 <= 9)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p1738 + p1737 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1728 + p1727 + p1726 + p1725 + p1724 + p1723 + p1722 + p1721 + p1720 + p1718 + p1717 + p1716 + p1715 + p1714 + p1713 + p1712 + p1711 + p1710 + p1708 + p1707 + p1706 + p1705 + p1704 + p1703 + p1702 + p1701 + p1700 + p1698 + p1697 + p1696 + p1695 + p1694 + p1693 + p1692 + p1691 + p1690 + p1699 + p1709 + p1719 + p1729 + p1739 <= p0 + p1 + p2 + p3 + p4)
lola: after: (4 <= p0 + p1 + p2 + p3 + p4)
lola: place invariant simplifies atomic proposition
lola: before: (p1813 + p1812 + p1810 + p1809 + p1807 + p1806 + p1804 + p1803 + p1801 + p1800 + p1798 + p1797 + p1795 + p1794 + p1792 + p1791 + p1789 + p1788 + p1786 + p1785 + p1783 + p1782 + p1780 + p1779 + p1777 + p1776 + p1774 + p1773 + p1771 + p1770 + p1768 + p1767 + p1765 + p1764 + p1762 + p1761 + p1759 + p1758 + p1756 + p1755 + p1753 + p1752 + p1750 + p1749 + p1747 + p1746 + p1744 + p1743 + p1741 + p1740 + p1742 + p1745 + p1748 + p1751 + p1754 + p1757 + p1760 + p1763 + p1766 + p1769 + p1772 + p1775 + p1778 + p1781 + p1784 + p1787 + p1790 + p1793 + p1796 + p1799 + p1802 + p1805 + p1808 + p1811 + p1814 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 + p499 + p498 + p497 + p496 + p494 + p493 + p492 + p491 + p506 + p507 + p508 + p509 + p489 + p511 + p512 + p513 + p514 + p488 + p516 + p517 + p518 + p519 + p487 + p521 + p522 + p523 + p524 + p486 + p526 + p527 + p528 + p529 + p484 + p483 + p482 + p481 + p479 + p478 + p536 + p537 + p538 + p539 + p477 + p541 + p542 + p543 + p544 + p476 + p546 + p547 + p548 + p549 + p469 + p551 + p552 + p553 + p554 + p468 + p556 + p557 + p558 + p559 + p467 + p466 + p464 + p463 + p462 + p461 + p566 + p567 + p568 + p569 + p459 + p571 + p572 + p573 + p574 + p458 + p576 + p577 + p578 + p579 + p457 + p581 + p582 + p583 + p584 + p456 + p586 + p587 + p588 + p589 + p454 + p453 + p452 + p451 + p449 + p448 + p596 + p597 + p598 + p599 + p447 + p446 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p429 + p428 + p427 + p426 + p424 + p423 + p422 + p601 + p602 + p603 + p604 + p421 + p606 + p607 + p608 + p609 + p419 + p611 + p612 + p613 + p614 + p418 + p616 + p617 + p618 + p619 + p417 + p416 + p409 + p408 + p407 + p406 + p626 + p627 + p628 + p629 + p404 + p631 + p632 + p633 + p634 + p403 + p636 + p637 + p638 + p639 + p402 + p641 + p642 + p643 + p644 + p401 + p646 + p647 + p648 + p649 + p656 + p657 + p658 + p659 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p671 + p672 + p673 + p674 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p691 + p692 + p693 + p694 + p696 + p697 + p698 + p699 + p701 + p702 + p703 + p704 + p706 + p707 + p708 + p709 + p716 + p717 + p718 + p719 + p721 + p722 + p723 + p724 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p746 + p747 + p748 + p749 + p751 + p752 + p753 + p754 + p756 + p757 + p758 + p759 + p761 + p762 + p763 + p764 + p766 + p767 + p768 + p769 + p776 + p777 + p778 + p779 + p781 + p782 + p783 + p784 + p786 + p787 + p788 + p789 + p791 + p792 + p793 + p794 + p399 + p398 + p397 + p396 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p369 + p368 + p367 + p366 + p364 + p363 + p362 + p361 + p359 + p358 + p357 + p356 + p349 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p339 + p338 + p337 + p336 + p334 + p333 + p332 + p331 + p329 + p328 + p327 + p326 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p309 + p308 + p307 + p306 + p304 + p46 + p47 + p48 + p49 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p289 + p288 + p287 + p56 + p57 + p58 + p59 + p286 + p61 + p62 + p63 + p64 + p284 + p66 + p67 + p68 + p69 + p283 + p71 + p72 + p73 + p74 + p282 + p76 + p77 + p78 + p79 + p281 + p279 + p278 + p277 + p276 + p274 + p86 + p87 + p88 + p89 + p273 + p91 + p92 + p93 + p94 + p272 + p96 + p97 + p98 + p99 + p271 + p269 + p268 + p267 + p266 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p219 + p218 + p217 + p216 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p189 + p188 + p187 + p186 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p129 + p128 + p127 + p126 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101)
lola: after: (16 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500)
lola: place invariant simplifies atomic proposition
lola: before: (p820 + p821 + p822 + p823 + p824 <= p5 + p6 + p7 + p8 + p9)
lola: after: (0 <= p5 + p6 + p7 + p8 + p9)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 <= p1738 + p1737 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1728 + p1727 + p1726 + p1725 + p1724 + p1723 + p1722 + p1721 + p1720 + p1718 + p1717 + p1716 + p1715 + p1714 + p1713 + p1712 + p1711 + p1710 + p1708 + p1707 + p1706 + p1705 + p1704 + p1703 + p1702 + p1701 + p1700 + p1698 + p1697 + p1696 + p1695 + p1694 + p1693 + p1692 + p1691 + p1690 + p1699 + p1709 + p1719 + p1729 + p1739)
lola: after: (8 <= 0)
lola: always false
lola: LP says that atomic proposition is always false: (1 <= p34 + p33 + p32 + p31 + p30)
lola: place invariant simplifies atomic proposition
lola: before: (p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 + p499 + p498 + p497 + p496 + p494 + p493 + p492 + p491 + p506 + p507 + p508 + p509 + p489 + p511 + p512 + p513 + p514 + p488 + p516 + p517 + p518 + p519 + p487 + p521 + p522 + p523 + p524 + p486 + p526 + p527 + p528 + p529 + p484 + p483 + p482 + p481 + p479 + p478 + p536 + p537 + p538 + p539 + p477 + p541 + p542 + p543 + p544 + p476 + p546 + p547 + p548 + p549 + p469 + p551 + p552 + p553 + p554 + p468 + p556 + p557 + p558 + p559 + p467 + p466 + p464 + p463 + p462 + p461 + p566 + p567 + p568 + p569 + p459 + p571 + p572 + p573 + p574 + p458 + p576 + p577 + p578 + p579 + p457 + p581 + p582 + p583 + p584 + p456 + p586 + p587 + p588 + p589 + p454 + p453 + p452 + p451 + p449 + p448 + p596 + p597 + p598 + p599 + p447 + p446 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p429 + p428 + p427 + p426 + p424 + p423 + p422 + p601 + p602 + p603 + p604 + p421 + p606 + p607 + p608 + p609 + p419 + p611 + p612 + p613 + p614 + p418 + p616 + p617 + p618 + p619 + p417 + p416 + p409 + p408 + p407 + p406 + p626 + p627 + p628 + p629 + p404 + p631 + p632 + p633 + p634 + p403 + p636 + p637 + p638 + p639 + p402 + p641 + p642 + p643 + p644 + p401 + p646 + p647 + p648 + p649 + p656 + p657 + p658 + p659 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p671 + p672 + p673 + p674 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p691 + p692 + p693 + p694 + p696 + p697 + p698 + p699 + p701 + p702 + p703 + p704 + p706 + p707 + p708 + p709 + p716 + p717 + p718 + p719 + p721 + p722 + p723 + p724 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p746 + p747 + p748 + p749 + p751 + p752 + p753 + p754 + p756 + p757 + p758 + p759 + p761 + p762 + p763 + p764 + p766 + p767 + p768 + p769 + p776 + p777 + p778 + p779 + p781 + p782 + p783 + p784 + p786 + p787 + p788 + p789 + p791 + p792 + p793 + p794 + p399 + p398 + p397 + p396 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p369 + p368 + p367 + p366 + p364 + p363 + p362 + p361 + p359 + p358 + p357 + p356 + p349 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p339 + p338 + p337 + p336 + p334 + p333 + p332 + p331 + p329 + p328 + p327 + p326 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p309 + p308 + p307 + p306 + p304 + p46 + p47 + p48 + p49 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p289 + p288 + p287 + p56 + p57 + p58 + p59 + p286 + p61 + p62 + p63 + p64 + p284 + p66 + p67 + p68 + p69 + p283 + p71 + p72 + p73 + p74 + p282 + p76 + p77 + p78 + p79 + p281 + p279 + p278 + p277 + p276 + p274 + p86 + p87 + p88 + p89 + p273 + p91 + p92 + p93 + p94 + p272 + p96 + p97 + p98 + p99 + p271 + p269 + p268 + p267 + p266 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p219 + p218 + p217 + p216 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p189 + p188 + p187 + p186 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p129 + p128 + p127 + p126 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 <= p1813 + p1812 + p1810 + p1809 + p1807 + p1806 + p1804 + p1803 + p1801 + p1800 + p1798 + p1797 + p1795 + p1794 + p1792 + p1791 + p1789 + p1788 + p1786 + p1785 + p1783 + p1782 + p1780 + p1779 + p1777 + p1776 + p1774 + p1773 + p1771 + p1770 + p1768 + p1767 + p1765 + p1764 + p1762 + p1761 + p1759 + p1758 + p1756 + p1755 + p1753 + p1752 + p1750 + p1749 + p1747 + p1746 + p1744 + p1743 + p1741 + p1740 + p1742 + p1745 + p1748 + p1751 + p1754 + p1757 + p1760 + p1763 + p1766 + p1769 + p1772 + p1775 + p1778 + p1781 + p1784 + p1787 + p1790 + p1793 + p1796 + p1799 + p1802 + p1805 + p1808 + p1811 + p1814)
lola: after: (p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 <= 16)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p35 + p36 + p37 + p38 + p39)
lola: after: (3 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p35 + p36 + p37 + p38 + p39 <= p1813 + p1812 + p1810 + p1809 + p1807 + p1806 + p1804 + p1803 + p1801 + p1800 + p1798 + p1797 + p1795 + p1794 + p1792 + p1791 + p1789 + p1788 + p1786 + p1785 + p1783 + p1782 + p1780 + p1779 + p1777 + p1776 + p1774 + p1773 + p1771 + p1770 + p1768 + p1767 + p1765 + p1764 + p1762 + p1761 + p1759 + p1758 + p1756 + p1755 + p1753 + p1752 + p1750 + p1749 + p1747 + p1746 + p1744 + p1743 + p1741 + p1740 + p1742 + p1745 + p1748 + p1751 + p1754 + p1757 + p1760 + p1763 + p1766 + p1769 + p1772 + p1775 + p1778 + p1781 + p1784 + p1787 + p1790 + p1793 + p1796 + p1799 + p1802 + p1805 + p1808 + p1811 + p1814)
lola: after: (0 <= 16)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1109 + p1108 + p1107 + p1106 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1105 + p1104 + p1103 + p1102 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1101 + p1100 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1099 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p1085 + p1084 + p1083 + p1082 + p1081 + p1080 + p1079 + p1078 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1077 + p1076 + p1075 + p1074 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1073 + p1072 + p1071 + p1070 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1069 + p1068 + p1067 + p1066 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1065 + p1064 + p1063 + p1062 + p1061 + p1060 + p1055 + p1054 + p1053 + p1052 + p1051 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1042 + p1041 + p1040 + p1039 + p1038 + p1037 + p1036 + p1035 + p1034 + p1033 + p1032 + p1031 + p1030 + p1025 + p1024 + p1023 + p1022 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1021 + p1020 + p1019 + p1018 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1017 + p1016 + p1015 + p1014 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1013 + p1012 + p1011 + p1010 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1009 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p1000 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p930 + p931 + p932 + p933 + p934 + p935 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 + p499 + p498 + p497 + p496 + p494 + p493 + p492 + p491 + p506 + p507 + p508 + p509 + p489 + p511 + p512 + p513 + p514 + p488 + p516 + p517 + p518 + p519 + p487 + p521 + p522 + p523 + p524 + p486 + p526 + p527 + p528 + p529 + p484 + p483 + p482 + p481 + p479 + p478 + p536 + p537 + p538 + p539 + p477 + p541 + p542 + p543 + p544 + p476 + p546 + p547 + p548 + p549 + p469 + p551 + p552 + p553 + p554 + p468 + p556 + p557 + p558 + p559 + p467 + p466 + p464 + p463 + p462 + p461 + p566 + p567 + p568 + p569 + p459 + p571 + p572 + p573 + p574 + p458 + p576 + p577 + p578 + p579 + p457 + p581 + p582 + p583 + p584 + p456 + p586 + p587 + p588 + p589 + p454 + p453 + p452 + p451 + p449 + p448 + p596 + p597 + p598 + p599 + p447 + p446 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p429 + p428 + p427 + p426 + p424 + p423 + p422 + p601 + p602 + p603 + p604 + p421 + p606 + p607 + p608 + p609 + p419 + p611 + p612 + p613 + p614 + p418 + p616 + p617 + p618 + p619 + p417 + p416 + p409 + p408 + p407 + p406 + p626 + p627 + p628 + p629 + p404 + p631 + p632 + p633 + p634 + p403 + p636 + p637 + p638 + p639 + p402 + p641 + p642 + p643 + p644 + p401 + p646 + p647 + p648 + p649 + p656 + p657 + p658 + p659 + p661 + p662 + p663 + p664 + p666 + p667 + p668 + p669 + p671 + p672 + p673 + p674 + p676 + p677 + p678 + p679 + p686 + p687 + p688 + p689 + p691 + p692 + p693 + p694 + p696 + p697 + p698 + p699 + p701 + p702 + p703 + p704 + p706 + p707 + p708 + p709 + p716 + p717 + p718 + p719 + p721 + p722 + p723 + p724 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p746 + p747 + p748 + p749 + p751 + p752 + p753 + p754 + p756 + p757 + p758 + p759 + p761 + p762 + p763 + p764 + p766 + p767 + p768 + p769 + p776 + p777 + p778 + p779 + p781 + p782 + p783 + p784 + p786 + p787 + p788 + p789 + p791 + p792 + p793 + p794 + p399 + p398 + p397 + p396 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p369 + p368 + p367 + p366 + p364 + p363 + p362 + p361 + p359 + p358 + p357 + p356 + p349 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p339 + p338 + p337 + p336 + p334 + p333 + p332 + p331 + p329 + p328 + p327 + p326 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p309 + p308 + p307 + p306 + p304 + p46 + p47 + p48 + p49 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p289 + p288 + p287 + p56 + p57 + p58 + p59 + p286 + p61 + p62 + p63 + p64 + p284 + p66 + p67 + p68 + p69 + p283 + p71 + p72 + p73 + p74 + p282 + p76 + p77 + p78 + p79 + p281 + p279 + p278 + p277 + p276 + p274 + p86 + p87 + p88 + p89 + p273 + p91 + p92 + p93 + p94 + p272 + p96 + p97 + p98 + p99 + p271 + p269 + p268 + p267 + p266 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p219 + p218 + p217 + p216 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p189 + p188 + p187 + p186 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p129 + p128 + p127 + p126 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101)
lola: after: (p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500)
lola: LP says that atomic proposition is always true: (p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500)
lola: place invariant simplifies atomic proposition
lola: before: (p1738 + p1737 + p1736 + p1735 + p1734 + p1733 + p1732 + p1731 + p1730 + p1728 + p1727 + p1726 + p1725 + p1724 + p1723 + p1722 + p1721 + p1720 + p1718 + p1717 + p1716 + p1715 + p1714 + p1713 + p1712 + p1711 + p1710 + p1708 + p1707 + p1706 + p1705 + p1704 + p1703 + p1702 + p1701 + p1700 + p1698 + p1697 + p1696 + p1695 + p1694 + p1693 + p1692 + p1691 + p1690 + p1699 + p1709 + p1719 + p1729 + p1739 <= p5 + p6 + p7 + p8 + p9)
lola: after: (4 <= p5 + p6 + p7 + p8 + p9)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p35 + p36 + p37 + p38 + p39)
lola: after: (2 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1109 + p1108 + p1107 + p1106 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1105 + p1104 + p1103 + p1102 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1101 + p1100 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1099 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p1085 + p1084 + p1083 + p1082 + p1081 + p1080 + p1079 + p1078 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1077 + p1076 + p1075 + p1074 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1073 + p1072 + p1071 + p1070 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1069 + p1068 + p1067 + p1066 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1065 + p1064 + p1063 + p1062 + p1061 + p1060 + p1055 + p1054 + p1053 + p1052 + p1051 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1042 + p1041 + p1040 + p1039 + p1038 + p1037 + p1036 + p1035 + p1034 + p1033 + p1032 + p1031 + p1030 + p1025 + p1024 + p1023 + p1022 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1021 + p1020 + p1019 + p1018 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1017 + p1016 + p1015 + p1014 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1013 + p1012 + p1011 + p1010 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1009 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p1000 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p930 + p931 + p932 + p933 + p934 + p935 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679)
lola: after: (p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116)
lola: A (FALSE) : A (F (F (G (X (TRUE))))) : A (F (X ((FALSE U FALSE)))) : A ((((3 <= p1684 + p1683 + p1682 + p1681 + p1680) U FALSE) U G (TRUE))) : A (X ((1 <= p1684 + p1683 + p1682 + p1681 + p1680))) : A (G (X (G (TRUE)))) : A ((2 <= p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)) : A (G (F (G (G ((4 <= p0 + p1 + p2 + p3 + p4)))))) : A (X (X (((16 <= p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500) U TRUE)))) : A (F ((FALSE U FALSE))) : A (F (F (G (G ((p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 + p264 + p265 + p270 + p95 + p90 + p85 + p275 + p84 + p83 + p82 + p81 + p280 + p80 + p75 + p70 + p65 + p285 + p60 + p55 + p54 + p53 + p290 + p291 + p292 + p293 + p294 + p295 + p52 + p51 + p50 + p300 + p45 + p305 + p310 + p315 + p320 + p321 + p322 + p323 + p324 + p325 + p330 + p335 + p340 + p345 + p350 + p351 + p352 + p353 + p354 + p355 + p360 + p365 + p370 + p375 + p380 + p381 + p382 + p383 + p384 + p385 + p390 + p395 + p790 + p785 + p780 + p775 + p774 + p773 + p772 + p771 + p770 + p765 + p760 + p755 + p750 + p745 + p744 + p743 + p742 + p741 + p740 + p735 + p730 + p725 + p720 + p715 + p714 + p713 + p712 + p711 + p710 + p705 + p700 + p695 + p690 + p685 + p684 + p683 + p682 + p681 + p680 + p675 + p670 + p665 + p660 + p655 + p654 + p653 + p652 + p651 + p650 + p400 + p645 + p640 + p635 + p630 + p405 + p625 + p624 + p623 + p622 + p410 + p411 + p412 + p413 + p414 + p415 + p621 + p620 + p615 + p610 + p420 + p605 + p600 + p425 + p430 + p435 + p440 + p441 + p442 + p443 + p444 + p445 + p595 + p594 + p450 + p593 + p592 + p591 + p590 + p455 + p585 + p580 + p575 + p570 + p460 + p565 + p564 + p563 + p562 + p465 + p561 + p560 + p555 + p550 + p470 + p471 + p472 + p473 + p474 + p475 + p545 + p540 + p535 + p534 + p480 + p533 + p532 + p531 + p530 + p485 + p525 + p520 + p515 + p510 + p490 + p505 + p504 + p503 + p502 + p495 + p501 + p500 <= 16)))))) : A (G (G (F (X ((3 <= p5 + p6 + p7 + p8 + p9)))))) : A (X (F (X (X (FALSE))))) : A (TRUE) : A ((TRUE U G ((4 <= p5 + p6 + p7 + p8 + p9)))) : A (F ((F (FALSE) U X ((p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + p1416 + p1026 + p1027 + p1028 + p1029 + p1056 + p1057 + p1058 + p1059 + p1389 + p1388 + p1387 + p1386 + p1359 + p1358 + p1357 + p1356 + p1329 + p1328 + p1327 + p1326 + p1086 + p1087 + p1088 + p1089 + p1299 + p1298 + p1297 + p1296 + p1269 + p1268 + p1267 + p1266 + p1239 + p1238 + p1237 + p1236 + p1209 + p1208 + p1207 + p1206 + p1179 + p1178 + p1177 + p1176 + p1149 + p1148 + p1147 + p1146 + p1119 + p1118 + p1117 + p1116)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:374
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-0 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (2 <= p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)
lola: processed formula length: 124
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-COL-4-LTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((1 <= p1684 + p1683 + p1682 + p1681 + p1680)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((1 <= p1684 + p1683 + p1682 + p1681 + p1680)))
lola: processed formula length: 52
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 169 markings, 169 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((p0 + p1 + p2 + p3 + p4 <= p1659 + p1658 + p1657 + p1656 + p1629 + p1628 + p1627 + p1626 + p999 + p998 + p997 + p996 + p969 + p968 + p967 + p966 + p939 + p938 + p937 + p936 + p1599 + p1598 + p1597 + p1596 + p1569 + p1568 + p1567 + p1566 + p1539 + p1538 + p1537 + p1536 + p1509 + p1508 + p1507 + p1506 + p1479 + p1478 + p1477 + p1476 + p1449 + p1448 + p1447 + p1446 + p1419 + p1418 + p1417 + ... (shortened)
lola: processed formula length: 825
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p5 + p6 + p7 + p8 + p9))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p5 + p6 + p7 + p8 + p9))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 169 markings, 169 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p5 + p6 + p7 + p8 + p9))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p5 + p6 + p7 + p8 + p9))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 170 markings, 171 edges
lola: ========================================
FORMULA NeoElection-COL-4-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1783 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 290808 markings, 1362742 edges, 58162 markings/sec, 0 secs
lola: 559608 markings, 2772149 edges, 53760 markings/sec, 5 secs
lola: 823668 markings, 4174609 edges, 52812 markings/sec, 10 secs
lola: 1093585 markings, 5561558 edges, 53983 markings/sec, 15 secs
lola: 1360134 markings, 6917213 edges, 53310 markings/sec, 20 secs
lola: 1629999 markings, 8276155 edges, 53973 markings/sec, 25 secs
lola: 1898533 markings, 9624495 edges, 53707 markings/sec, 30 secs
lola: 2159086 markings, 10960317 edges, 52111 markings/sec, 35 secs
lola: 2435808 markings, 12298374 edges, 55344 markings/sec, 40 secs
lola: 2709941 markings, 13621868 edges, 54827 markings/sec, 45 secs
lola: 2983254 markings, 14952247 edges, 54663 markings/sec, 50 secs
lola: 3248057 markings, 16312330 edges, 52961 markings/sec, 55 secs
lola: 3510132 markings, 17653190 edges, 52415 markings/sec, 60 secs
lola: 3774334 markings, 18975222 edges, 52840 markings/sec, 65 secs
lola: 4053879 markings, 20324593 edges, 55909 markings/sec, 70 secs
lola: 4329416 markings, 21654519 edges, 55107 markings/sec, 75 secs
lola: 4601193 markings, 22992328 edges, 54355 markings/sec, 80 secs
lola: 4881149 markings, 24353892 edges, 55991 markings/sec, 85 secs
lola: 5139627 markings, 25744842 edges, 51696 markings/sec, 90 secs
lola: 5388969 markings, 27120670 edges, 49868 markings/sec, 95 secs
lola: 5645627 markings, 28470495 edges, 51332 markings/sec, 100 secs
lola: 5901018 markings, 29799168 edges, 51078 markings/sec, 105 secs
lola: 6155444 markings, 31125202 edges, 50885 markings/sec, 110 secs
lola: 6414754 markings, 32470287 edges, 51862 markings/sec, 115 secs
lola: 6669874 markings, 33792461 edges, 51024 markings/sec, 120 secs
lola: 6924517 markings, 35110988 edges, 50929 markings/sec, 125 secs
lola: 7189776 markings, 36437935 edges, 53052 markings/sec, 130 secs
lola: 7454120 markings, 37745058 edges, 52869 markings/sec, 135 secs
lola: 7717318 markings, 39050396 edges, 52640 markings/sec, 140 secs
lola: 7969635 markings, 40373588 edges, 50463 markings/sec, 145 secs
lola: 8216260 markings, 41675632 edges, 49325 markings/sec, 150 secs
lola: 8471858 markings, 42986960 edges, 51120 markings/sec, 155 secs
lola: 8737724 markings, 44317925 edges, 53173 markings/sec, 160 secs
lola: 9001676 markings, 45642273 edges, 52790 markings/sec, 165 secs
lola: 9270039 markings, 46969403 edges, 53673 markings/sec, 170 secs
lola: 9541373 markings, 48322506 edges, 54267 markings/sec, 175 secs
lola: 9813831 markings, 49705722 edges, 54492 markings/sec, 180 secs
lola: 10058021 markings, 51127747 edges, 48838 markings/sec, 185 secs
lola: 10311403 markings, 52563409 edges, 50676 markings/sec, 190 secs
lola: 10569872 markings, 53954299 edges, 51694 markings/sec, 195 secs
lola: 10818528 markings, 55325337 edges, 49731 markings/sec, 200 secs
lola: 11071423 markings, 56696499 edges, 50579 markings/sec, 205 secs
lola: 11327235 markings, 58065585 edges, 51162 markings/sec, 210 secs
lola: 11568239 markings, 59406135 edges, 48201 markings/sec, 215 secs
lola: 11837571 markings, 60758403 edges, 53866 markings/sec, 220 secs
lola: 12092655 markings, 62087090 edges, 51017 markings/sec, 225 secs
lola: 12350068 markings, 63414958 edges, 51483 markings/sec, 230 secs
lola: 12598259 markings, 64756309 edges, 49638 markings/sec, 235 secs
lola: 12836983 markings, 66078276 edges, 47745 markings/sec, 240 secs
lola: 13083279 markings, 67403234 edges, 49259 markings/sec, 245 secs
lola: 13342791 markings, 68753955 edges, 51902 markings/sec, 250 secs
lola: 13603455 markings, 70106399 edges, 52133 markings/sec, 255 secs
lola: 13862817 markings, 71441963 edges, 51872 markings/sec, 260 secs
lola: 14112386 markings, 72742521 edges, 49914 markings/sec, 265 secs
lola: 14381906 markings, 74051898 edges, 53904 markings/sec, 270 secs
lola: 14633467 markings, 75380899 edges, 50312 markings/sec, 275 secs
lola: 14871899 markings, 76705104 edges, 47686 markings/sec, 280 secs
lola: 15118408 markings, 78029743 edges, 49302 markings/sec, 285 secs
lola: 15373626 markings, 79328431 edges, 51044 markings/sec, 290 secs
lola: 15624606 markings, 80639639 edges, 50196 markings/sec, 295 secs
lola: 15875043 markings, 81953863 edges, 50087 markings/sec, 300 secs
lola: 16127235 markings, 83264292 edges, 50438 markings/sec, 305 secs
lola: 16370973 markings, 84573872 edges, 48748 markings/sec, 310 secs
lola: 16645272 markings, 85890272 edges, 54860 markings/sec, 315 secs
lola: 16904504 markings, 87204004 edges, 51846 markings/sec, 320 secs
lola: 17161146 markings, 88466382 edges, 51328 markings/sec, 325 secs
lola: 17419737 markings, 89795579 edges, 51718 markings/sec, 330 secs
lola: 17670358 markings, 91118731 edges, 50124 markings/sec, 335 secs
lola: 17919171 markings, 92407172 edges, 49763 markings/sec, 340 secs
lola: 18170403 markings, 93708007 edges, 50246 markings/sec, 345 secs
lola: 18440061 markings, 95023328 edges, 53932 markings/sec, 350 secs
lola: 18699370 markings, 96325366 edges, 51862 markings/sec, 355 secs
lola: 18962297 markings, 97624140 edges, 52585 markings/sec, 360 secs
lola: 19233232 markings, 98973039 edges, 54187 markings/sec, 365 secs
lola: 19484999 markings, 100349820 edges, 50353 markings/sec, 370 secs
lola: 19720546 markings, 101727099 edges, 47109 markings/sec, 375 secs
lola: 19967284 markings, 103091851 edges, 49348 markings/sec, 380 secs
lola: 20222515 markings, 104446573 edges, 51046 markings/sec, 385 secs
lola: 20473075 markings, 105838699 edges, 50112 markings/sec, 390 secs
lola: 20731403 markings, 107236830 edges, 51666 markings/sec, 395 secs
lola: 20985935 markings, 108620333 edges, 50906 markings/sec, 400 secs
lola: 21249842 markings, 110001565 edges, 52781 markings/sec, 405 secs
lola: 21513912 markings, 111370692 edges, 52814 markings/sec, 410 secs
lola: 21770941 markings, 112694392 edges, 51406 markings/sec, 415 secs
lola: 22024696 markings, 114028741 edges, 50751 markings/sec, 420 secs
lola: 22268441 markings, 115363472 edges, 48749 markings/sec, 425 secs
lola: 22510124 markings, 116683146 edges, 48337 markings/sec, 430 secs
lola: 22750779 markings, 118005613 edges, 48131 markings/sec, 435 secs
lola: 23019935 markings, 119341117 edges, 53831 markings/sec, 440 secs
lola: 23270931 markings, 120665735 edges, 50199 markings/sec, 445 secs
lola: 23526566 markings, 121981440 edges, 51127 markings/sec, 450 secs
lola: 23774030 markings, 123273139 edges, 49493 markings/sec, 455 secs
lola: 24041223 markings, 124637969 edges, 53439 markings/sec, 460 secs
lola: 24283300 markings, 126034518 edges, 48415 markings/sec, 465 secs
lola: 24524775 markings, 127408337 edges, 48295 markings/sec, 470 secs
lola: 24775013 markings, 128781878 edges, 50048 markings/sec, 475 secs
lola: 25019756 markings, 130145800 edges, 48949 markings/sec, 480 secs
lola: 25271366 markings, 131486319 edges, 50322 markings/sec, 485 secs
lola: 25518435 markings, 132857661 edges, 49414 markings/sec, 490 secs
lola: 25757659 markings, 134207084 edges, 47845 markings/sec, 495 secs
lola: 26020430 markings, 135552022 edges, 52554 markings/sec, 500 secs
lola: 26275873 markings, 136896880 edges, 51089 markings/sec, 505 secs
lola: 26533756 markings, 138233015 edges, 51577 markings/sec, 510 secs
lola: 26784611 markings, 139583036 edges, 50171 markings/sec, 515 secs
lola: 27024048 markings, 140919025 edges, 47887 markings/sec, 520 secs
lola: 27266859 markings, 142246746 edges, 48562 markings/sec, 525 secs
lola: 27515928 markings, 143583974 edges, 49814 markings/sec, 530 secs
lola: 27773119 markings, 144926514 edges, 51438 markings/sec, 535 secs
lola: 28029170 markings, 146251331 edges, 51210 markings/sec, 540 secs
lola: 28289585 markings, 147596816 edges, 52083 markings/sec, 545 secs
lola: 28557616 markings, 148947127 edges, 53606 markings/sec, 550 secs
lola: 28798387 markings, 150331664 edges, 48154 markings/sec, 555 secs
lola: 29037584 markings, 151684037 edges, 47839 markings/sec, 560 secs
lola: 29288777 markings, 153047079 edges, 50239 markings/sec, 565 secs
lola: 29534284 markings, 154401671 edges, 49101 markings/sec, 570 secs
lola: 29783808 markings, 155731394 edges, 49905 markings/sec, 575 secs
lola: 30033247 markings, 157098137 edges, 49888 markings/sec, 580 secs
lola: 30274852 markings, 158440129 edges, 48321 markings/sec, 585 secs
lola: 30538451 markings, 159777809 edges, 52720 markings/sec, 590 secs
lola: 30794423 markings, 161111831 edges, 51194 markings/sec, 595 secs
lola: 31050579 markings, 162434261 edges, 51231 markings/sec, 600 secs
lola: 31303568 markings, 163767773 edges, 50598 markings/sec, 605 secs
lola: 31542938 markings, 165096265 edges, 47874 markings/sec, 610 secs
lola: 31785753 markings, 166413069 edges, 48563 markings/sec, 615 secs
lola: 32033230 markings, 167741182 edges, 49495 markings/sec, 620 secs
lola: 32295841 markings, 169076532 edges, 52522 markings/sec, 625 secs
lola: 32549226 markings, 170392043 edges, 50677 markings/sec, 630 secs
lola: 32804247 markings, 171702648 edges, 51004 markings/sec, 635 secs
lola: 33063657 markings, 173005744 edges, 51882 markings/sec, 640 secs
lola: 33323980 markings, 174316101 edges, 52065 markings/sec, 645 secs
lola: 33565262 markings, 175650419 edges, 48256 markings/sec, 650 secs
lola: 33809395 markings, 176960024 edges, 48827 markings/sec, 655 secs
lola: 34059929 markings, 178283208 edges, 50107 markings/sec, 660 secs
lola: 34310265 markings, 179599353 edges, 50067 markings/sec, 665 secs
lola: 34563647 markings, 180886462 edges, 50676 markings/sec, 670 secs
lola: 34817023 markings, 182208708 edges, 50675 markings/sec, 675 secs
lola: 35061841 markings, 183521589 edges, 48964 markings/sec, 680 secs
lola: 35326019 markings, 184833837 edges, 52836 markings/sec, 685 secs
lola: 35588000 markings, 186147667 edges, 52396 markings/sec, 690 secs
lola: 35851565 markings, 187450817 edges, 52713 markings/sec, 695 secs
lola: 36112128 markings, 188762123 edges, 52113 markings/sec, 700 secs
lola: 36358940 markings, 190072426 edges, 49362 markings/sec, 705 secs
lola: 36606360 markings, 191363731 edges, 49484 markings/sec, 710 secs
lola: 36857400 markings, 192664053 edges, 50208 markings/sec, 715 secs
lola: 37122919 markings, 193972204 edges, 53104 markings/sec, 720 secs
lola: 37383923 markings, 195278958 edges, 52201 markings/sec, 725 secs
lola: 37644970 markings, 196569185 edges, 52209 markings/sec, 730 secs
lola: 37913398 markings, 197903713 edges, 53686 markings/sec, 735 secs
lola: 38175032 markings, 199256849 edges, 52327 markings/sec, 740 secs
lola: 38412478 markings, 200644638 edges, 47489 markings/sec, 745 secs
lola: 38654215 markings, 202006429 edges, 48347 markings/sec, 750 secs
lola: 38905113 markings, 203358374 edges, 50180 markings/sec, 755 secs
lola: 39150860 markings, 204712052 edges, 49149 markings/sec, 760 secs
lola: 39398767 markings, 206057532 edges, 49581 markings/sec, 765 secs
lola: 39651255 markings, 207405151 edges, 50498 markings/sec, 770 secs
lola: 39890877 markings, 208748381 edges, 47924 markings/sec, 775 secs
lola: 40161039 markings, 210086958 edges, 54032 markings/sec, 780 secs
lola: 40413826 markings, 211420636 edges, 50557 markings/sec, 785 secs
lola: 40671641 markings, 212747372 edges, 51563 markings/sec, 790 secs
lola: 40922972 markings, 214088237 edges, 50266 markings/sec, 795 secs
lola: 41160224 markings, 215414465 edges, 47450 markings/sec, 800 secs
lola: 41405557 markings, 216731556 edges, 49067 markings/sec, 805 secs
lola: 41657290 markings, 218057638 edges, 50347 markings/sec, 810 secs
lola: 41914517 markings, 219389421 edges, 51445 markings/sec, 815 secs
lola: 42169808 markings, 220706855 edges, 51058 markings/sec, 820 secs
lola: 42423224 markings, 222013882 edges, 50683 markings/sec, 825 secs
lola: 42676148 markings, 223321195 edges, 50585 markings/sec, 830 secs
lola: 42923819 markings, 224643743 edges, 49534 markings/sec, 835 secs
lola: 43152372 markings, 225984846 edges, 45711 markings/sec, 840 secs
lola: 43385580 markings, 227307784 edges, 46642 markings/sec, 845 secs
lola: 43628824 markings, 228622722 edges, 48649 markings/sec, 850 secs
lola: 43868171 markings, 229941583 edges, 47869 markings/sec, 855 secs
lola: 44106297 markings, 231253294 edges, 47625 markings/sec, 860 secs
lola: 44350756 markings, 232568405 edges, 48892 markings/sec, 865 secs
lola: 44581462 markings, 233884644 edges, 46141 markings/sec, 870 secs
lola: 44845307 markings, 235208092 edges, 52769 markings/sec, 875 secs
lola: 45092660 markings, 236521390 edges, 49471 markings/sec, 880 secs
lola: 45345324 markings, 237829309 edges, 50533 markings/sec, 885 secs
lola: 45590453 markings, 239152993 edges, 49026 markings/sec, 890 secs
lola: 45822151 markings, 240456063 edges, 46340 markings/sec, 895 secs
lola: 46060450 markings, 241750993 edges, 47660 markings/sec, 900 secs
lola: 46305299 markings, 243060612 edges, 48970 markings/sec, 905 secs
lola: 46557097 markings, 244376098 edges, 50360 markings/sec, 910 secs
lola: 46807476 markings, 245676370 edges, 50076 markings/sec, 915 secs
lola: 47058719 markings, 246969460 edges, 50249 markings/sec, 920 secs
lola: 47316811 markings, 248285414 edges, 51618 markings/sec, 925 secs
lola: 47555856 markings, 249623437 edges, 47809 markings/sec, 930 secs
lola: 47785462 markings, 250951171 edges, 45921 markings/sec, 935 secs
lola: 48022412 markings, 252276608 edges, 47390 markings/sec, 940 secs
lola: 48266265 markings, 253580437 edges, 48771 markings/sec, 945 secs
lola: 48502636 markings, 254897499 edges, 47274 markings/sec, 950 secs
lola: 48743925 markings, 256220229 edges, 48258 markings/sec, 955 secs
lola: 48986183 markings, 257522963 edges, 48452 markings/sec, 960 secs
lola: 49226692 markings, 258855433 edges, 48102 markings/sec, 965 secs
lola: 49480141 markings, 260179092 edges, 50690 markings/sec, 970 secs
lola: 49732204 markings, 261483727 edges, 50413 markings/sec, 975 secs
lola: 49983031 markings, 262792295 edges, 50165 markings/sec, 980 secs
lola: 50221212 markings, 264110200 edges, 47636 markings/sec, 985 secs
lola: 50454989 markings, 265408093 edges, 46755 markings/sec, 990 secs
lola: 50693955 markings, 266706790 edges, 47793 markings/sec, 995 secs
lola: 50946969 markings, 268018654 edges, 50603 markings/sec, 1000 secs
lola: 51194645 markings, 269328249 edges, 49535 markings/sec, 1005 secs
lola: 51445406 markings, 270627473 edges, 50152 markings/sec, 1010 secs
lola: 51696767 markings, 271951217 edges, 50272 markings/sec, 1015 secs
lola: 51956144 markings, 273316036 edges, 51875 markings/sec, 1020 secs
lola: 52202645 markings, 274695569 edges, 49300 markings/sec, 1025 secs
lola: 52441702 markings, 276083779 edges, 47811 markings/sec, 1030 secs
lola: 52680850 markings, 277439317 edges, 47830 markings/sec, 1035 secs
lola: 52928089 markings, 278819884 edges, 49448 markings/sec, 1040 secs
lola: 53175018 markings, 280162536 edges, 49386 markings/sec, 1045 secs
lola: 53418601 markings, 281525852 edges, 48717 markings/sec, 1050 secs
lola: 53663647 markings, 282857774 edges, 49009 markings/sec, 1055 secs
lola: 53910526 markings, 284234490 edges, 49376 markings/sec, 1060 secs
lola: 54155782 markings, 285572417 edges, 49051 markings/sec, 1065 secs
lola: 54389849 markings, 286919902 edges, 46813 markings/sec, 1070 secs
lola: 54649058 markings, 288274059 edges, 51842 markings/sec, 1075 secs
lola: 54902761 markings, 289612758 edges, 50741 markings/sec, 1080 secs
lola: 55158282 markings, 290944283 edges, 51104 markings/sec, 1085 secs
lola: 55414021 markings, 292279843 edges, 51148 markings/sec, 1090 secs
lola: 55657526 markings, 293626455 edges, 48701 markings/sec, 1095 secs
lola: 55899066 markings, 294954408 edges, 48308 markings/sec, 1100 secs
lola: 56139223 markings, 296271506 edges, 48031 markings/sec, 1105 secs
lola: 56385156 markings, 297590513 edges, 49187 markings/sec, 1110 secs
lola: 56630212 markings, 298920827 edges, 49011 markings/sec, 1115 secs
lola: 56888919 markings, 300278126 edges, 51741 markings/sec, 1120 secs
lola: 57139746 markings, 301609129 edges, 50165 markings/sec, 1125 secs
lola: 57392968 markings, 302933142 edges, 50644 markings/sec, 1130 secs
lola: 57643580 markings, 304278449 edges, 50122 markings/sec, 1135 secs
lola: 57878959 markings, 305645396 edges, 47076 markings/sec, 1140 secs
lola: 58098367 markings, 307030972 edges, 43882 markings/sec, 1145 secs
lola: 58306604 markings, 308416324 edges, 41647 markings/sec, 1150 secs
lola: 58519965 markings, 309771109 edges, 42672 markings/sec, 1155 secs
lola: 58737709 markings, 311099828 edges, 43549 markings/sec, 1160 secs
lola: 58952637 markings, 312465892 edges, 42986 markings/sec, 1165 secs
lola: 59170931 markings, 313800006 edges, 43659 markings/sec, 1170 secs
lola: 59391809 markings, 315178006 edges, 44176 markings/sec, 1175 secs
lola: 59605671 markings, 316535639 edges, 42772 markings/sec, 1180 secs
lola: 59830231 markings, 317894414 edges, 44912 markings/sec, 1185 secs
lola: 60058657 markings, 319247670 edges, 45685 markings/sec, 1190 secs
lola: 60287914 markings, 320586430 edges, 45851 markings/sec, 1195 secs
lola: 60515950 markings, 321920901 edges, 45607 markings/sec, 1200 secs
lola: 60736527 markings, 323288645 edges, 44115 markings/sec, 1205 secs
lola: 60946417 markings, 324616198 edges, 41978 markings/sec, 1210 secs
lola: 61153986 markings, 325912336 edges, 41514 markings/sec, 1215 secs
lola: 61366555 markings, 327249502 edges, 42514 markings/sec, 1220 secs
lola: 61602979 markings, 328593461 edges, 47285 markings/sec, 1225 secs
lola: 61826541 markings, 329926407 edges, 44712 markings/sec, 1230 secs
lola: 62052119 markings, 331254225 edges, 45116 markings/sec, 1235 secs
lola: 62289456 markings, 332551303 edges, 47467 markings/sec, 1240 secs
lola: 62539608 markings, 333844887 edges, 50030 markings/sec, 1245 secs
lola: 62780988 markings, 335146773 edges, 48276 markings/sec, 1250 secs
lola: 63009571 markings, 336466416 edges, 45717 markings/sec, 1255 secs
lola: 63236808 markings, 337756374 edges, 45447 markings/sec, 1260 secs
lola: 63475686 markings, 339068461 edges, 47776 markings/sec, 1265 secs
lola: 63716808 markings, 340354445 edges, 48224 markings/sec, 1270 secs
lola: 63955283 markings, 341657193 edges, 47695 markings/sec, 1275 secs
lola: 64193858 markings, 342932030 edges, 47715 markings/sec, 1280 secs
lola: 64434347 markings, 344249779 edges, 48098 markings/sec, 1285 secs
lola: 64674410 markings, 345537640 edges, 48013 markings/sec, 1290 secs
lola: 64904921 markings, 346835996 edges, 46102 markings/sec, 1295 secs
lola: 65162481 markings, 348150903 edges, 51512 markings/sec, 1300 secs
lola: 65410726 markings, 349445034 edges, 49649 markings/sec, 1305 secs
lola: 65661125 markings, 350731973 edges, 50080 markings/sec, 1310 secs
lola: 65911044 markings, 352022853 edges, 49984 markings/sec, 1315 secs
lola: 66150830 markings, 353331111 edges, 47957 markings/sec, 1320 secs
lola: 66384440 markings, 354605227 edges, 46722 markings/sec, 1325 secs
lola: 66620784 markings, 355872112 edges, 47269 markings/sec, 1330 secs
lola: 66857899 markings, 357156908 edges, 47423 markings/sec, 1335 secs
lola: 67110140 markings, 358452482 edges, 50448 markings/sec, 1340 secs
lola: 67357226 markings, 359751538 edges, 49417 markings/sec, 1345 secs
lola: 67604857 markings, 361022037 edges, 49526 markings/sec, 1350 secs
lola: 67853637 markings, 362297337 edges, 49756 markings/sec, 1355 secs
lola: 68102892 markings, 363637040 edges, 49851 markings/sec, 1360 secs
lola: 68352348 markings, 364971400 edges, 49891 markings/sec, 1365 secs
lola: 68577026 markings, 366347143 edges, 44936 markings/sec, 1370 secs
lola: 68804978 markings, 367691031 edges, 45590 markings/sec, 1375 secs
lola: 69043772 markings, 369040837 edges, 47759 markings/sec, 1380 secs
lola: 69284374 markings, 370359783 edges, 48120 markings/sec, 1385 secs
lola: 69519171 markings, 371702107 edges, 46959 markings/sec, 1390 secs
lola: 69755639 markings, 373029409 edges, 47294 markings/sec, 1395 secs
lola: 69995873 markings, 374374762 edges, 48047 markings/sec, 1400 secs
lola: 70226600 markings, 375703040 edges, 46145 markings/sec, 1405 secs
lola: 70468501 markings, 377025194 edges, 48380 markings/sec, 1410 secs
lola: 70716858 markings, 378361845 edges, 49671 markings/sec, 1415 secs
lola: 70962105 markings, 379675417 edges, 49049 markings/sec, 1420 secs
lola: 71210263 markings, 380987824 edges, 49632 markings/sec, 1425 secs
lola: 71449602 markings, 382310165 edges, 47868 markings/sec, 1430 secs
lola: 71680284 markings, 383631309 edges, 46136 markings/sec, 1435 secs
lola: 71910909 markings, 384927565 edges, 46125 markings/sec, 1440 secs
lola: 72149551 markings, 386242221 edges, 47728 markings/sec, 1445 secs
lola: 72392493 markings, 387564947 edges, 48588 markings/sec, 1450 secs
lola: 72641213 markings, 388900750 edges, 49744 markings/sec, 1455 secs
lola: 72887165 markings, 390219013 edges, 49190 markings/sec, 1460 secs
lola: 73135042 markings, 391532567 edges, 49575 markings/sec, 1465 secs
lola: 73385541 markings, 392861977 edges, 50100 markings/sec, 1470 secs
lola: 73641057 markings, 394180598 edges, 51103 markings/sec, 1475 secs
lola: 73873404 markings, 395534752 edges, 46469 markings/sec, 1480 secs
lola: 74109277 markings, 396849382 edges, 47175 markings/sec, 1485 secs
lola: 74351391 markings, 398186261 edges, 48423 markings/sec, 1490 secs
lola: 74593907 markings, 399511784 edges, 48503 markings/sec, 1495 secs
lola: 74839198 markings, 400813377 edges, 49058 markings/sec, 1500 secs
lola: 75082046 markings, 402145064 edges, 48570 markings/sec, 1505 secs
lola: 75317645 markings, 403464403 edges, 47120 markings/sec, 1510 secs
lola: 75576653 markings, 404789856 edges, 51802 markings/sec, 1515 secs
lola: 75827835 markings, 406107400 edges, 50236 markings/sec, 1520 secs
lola: 76080175 markings, 407417162 edges, 50468 markings/sec, 1525 secs
lola: 76328758 markings, 408740180 edges, 49717 markings/sec, 1530 secs
lola: 76567172 markings, 410049095 edges, 47683 markings/sec, 1535 secs
lola: 76808961 markings, 411346129 edges, 48358 markings/sec, 1540 secs
lola: 77051995 markings, 412652623 edges, 48607 markings/sec, 1545 secs
lola: 77312695 markings, 413970796 edges, 52140 markings/sec, 1550 secs
lola: 77563969 markings, 415272872 edges, 50255 markings/sec, 1555 secs
lola: 77821383 markings, 416574245 edges, 51483 markings/sec, 1560 secs
lola: 78074162 markings, 417880757 edges, 50556 markings/sec, 1565 secs
lola: 78322199 markings, 419207951 edges, 49607 markings/sec, 1570 secs
lola: 78553908 markings, 420552035 edges, 46342 markings/sec, 1575 secs
lola: 78791222 markings, 421877087 edges, 47463 markings/sec, 1580 secs
lola: 79033525 markings, 423197003 edges, 48461 markings/sec, 1585 secs
lola: 79276312 markings, 424518290 edges, 48557 markings/sec, 1590 secs
lola: 79518931 markings, 425830101 edges, 48524 markings/sec, 1595 secs
lola: 79765477 markings, 427152704 edges, 49309 markings/sec, 1600 secs
lola: 80001022 markings, 428481188 edges, 47109 markings/sec, 1605 secs
lola: 80265183 markings, 429803073 edges, 52832 markings/sec, 1610 secs
lola: 80512876 markings, 431115308 edges, 49539 markings/sec, 1615 secs
lola: 80765181 markings, 432423162 edges, 50461 markings/sec, 1620 secs
lola: 81011406 markings, 433746711 edges, 49245 markings/sec, 1625 secs
lola: 81246070 markings, 435046402 edges, 46933 markings/sec, 1630 secs
lola: 81490732 markings, 436335601 edges, 48932 markings/sec, 1635 secs
lola: 81738117 markings, 437647709 edges, 49477 markings/sec, 1640 secs
lola: 81991956 markings, 438965372 edges, 50768 markings/sec, 1645 secs
lola: 82245902 markings, 440261678 edges, 50789 markings/sec, 1650 secs
lola: 82497853 markings, 441553559 edges, 50390 markings/sec, 1655 secs
lola: 82742575 markings, 442870430 edges, 48944 markings/sec, 1660 secs
lola: 82979107 markings, 444190341 edges, 47306 markings/sec, 1665 secs
lola: 83203140 markings, 445530311 edges, 44807 markings/sec, 1670 secs
lola: 83427353 markings, 446832152 edges, 44843 markings/sec, 1675 secs
lola: 83659653 markings, 448161538 edges, 46460 markings/sec, 1680 secs
lola: 83894025 markings, 449459881 edges, 46874 markings/sec, 1685 secs
lola: 84125628 markings, 450777308 edges, 46321 markings/sec, 1690 secs
lola: 84359268 markings, 452075490 edges, 46728 markings/sec, 1695 secs
lola: 84594605 markings, 453397926 edges, 47067 markings/sec, 1700 secs
lola: 84822138 markings, 454706330 edges, 45507 markings/sec, 1705 secs
lola: 85057995 markings, 456021232 edges, 47171 markings/sec, 1710 secs
lola: 85304220 markings, 457345294 edges, 49245 markings/sec, 1715 secs
lola: 85545185 markings, 458652006 edges, 48193 markings/sec, 1720 secs
lola: 85789353 markings, 459948211 edges, 48834 markings/sec, 1725 secs
lola: 86026788 markings, 461258878 edges, 47487 markings/sec, 1730 secs
lola: 86254851 markings, 462569504 edges, 45613 markings/sec, 1735 secs
lola: 86485206 markings, 463853865 edges, 46071 markings/sec, 1740 secs
lola: 86723543 markings, 465134520 edges, 47667 markings/sec, 1745 secs
lola: 86957969 markings, 466441512 edges, 46885 markings/sec, 1750 secs
lola: 87205023 markings, 467759853 edges, 49411 markings/sec, 1755 secs
lola: 87448104 markings, 469054721 edges, 48616 markings/sec, 1760 secs
lola: 87693999 markings, 470345391 edges, 49179 markings/sec, 1765 secs
lola: 87941177 markings, 471665996 edges, 49436 markings/sec, 1770 secs
lola: 88181864 markings, 472990220 edges, 48137 markings/sec, 1775 secs
lola: local time limit reached - aborting
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1783 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p100 + p105 + p110 + p111 + p112 + p113 + p114 + p115 + p120 + p125 + p130 + p135 + p140 + p141 + p142 + p143 + p144 + p145 + p150 + p155 + p160 + p165 + p170 + p171 + p172 + p173 + p174 + p175 + p180 + p185 + p190 + p195 + p200 + p201 + p202 + p203 + p204 + p205 + p210 + p215 + p220 + p225 + p230 + p231 + p232 + p233 + p234 + p235 + p240 + p245 + p250 + p255 + p260 + p261 + p262 + p263 ... (shortened)
lola: processed formula length: 1748
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 660827 markings, 1109990 edges, 132165 markings/sec, 0 secs
lola: 1293192 markings, 2215586 edges, 126473 markings/sec, 5 secs
lola: 1917823 markings, 3296703 edges, 124926 markings/sec, 10 secs
lola: 2542349 markings, 4412524 edges, 124905 markings/sec, 15 secs
lola: 3167282 markings, 5518689 edges, 124987 markings/sec, 20 secs
lola: 3794417 markings, 6607975 edges, 125427 markings/sec, 25 secs
lola: 4399679 markings, 7686955 edges, 121052 markings/sec, 30 secs
lola: 5002409 markings, 8781771 edges, 120546 markings/sec, 35 secs
lola: 5599863 markings, 9908323 edges, 119491 markings/sec, 40 secs
lola: 6167102 markings, 10998300 edges, 113448 markings/sec, 45 secs
lola: 6763065 markings, 12084482 edges, 119193 markings/sec, 50 secs
lola: 7363652 markings, 13167864 edges, 120117 markings/sec, 55 secs
lola: 7964448 markings, 14249911 edges, 120159 markings/sec, 60 secs
lola: 8541468 markings, 15329859 edges, 115404 markings/sec, 65 secs
lola: 9122744 markings, 16405832 edges, 116255 markings/sec, 70 secs
lola: 9700399 markings, 17487815 edges, 115531 markings/sec, 75 secs
lola: 10285282 markings, 18543809 edges, 116977 markings/sec, 80 secs
lola: 10868857 markings, 19592705 edges, 116715 markings/sec, 85 secs
lola: 11443234 markings, 20653363 edges, 114875 markings/sec, 90 secs
lola: 12022565 markings, 21695099 edges, 115866 markings/sec, 95 secs
lola: 12614487 markings, 22759842 edges, 118384 markings/sec, 100 secs
lola: 13219657 markings, 23846198 edges, 121034 markings/sec, 105 secs
lola: 13811093 markings, 24925329 edges, 118287 markings/sec, 110 secs
lola: 14386902 markings, 26008388 edges, 115162 markings/sec, 115 secs
lola: 14965912 markings, 27069759 edges, 115802 markings/sec, 120 secs
lola: 15560565 markings, 28178393 edges, 118931 markings/sec, 125 secs
lola: 16183212 markings, 29285274 edges, 124529 markings/sec, 130 secs
lola: 16807727 markings, 30369217 edges, 124903 markings/sec, 135 secs
lola: 17416643 markings, 31455722 edges, 121783 markings/sec, 140 secs
lola: 17996716 markings, 32585925 edges, 116015 markings/sec, 145 secs
lola: 18551893 markings, 33709953 edges, 111035 markings/sec, 150 secs
lola: 19120768 markings, 34787265 edges, 113775 markings/sec, 155 secs
lola: 19707493 markings, 35889665 edges, 117345 markings/sec, 160 secs
lola: 20278363 markings, 36970080 edges, 114174 markings/sec, 165 secs
lola: 20856280 markings, 38059595 edges, 115583 markings/sec, 170 secs
lola: 21432768 markings, 39128463 edges, 115298 markings/sec, 175 secs
lola: 22014593 markings, 40201316 edges, 116365 markings/sec, 180 secs
lola: 22579741 markings, 41250268 edges, 113030 markings/sec, 185 secs
lola: 23144641 markings, 42317179 edges, 112980 markings/sec, 190 secs
lola: 23730683 markings, 43357392 edges, 117208 markings/sec, 195 secs
lola: 24319861 markings, 44426511 edges, 117836 markings/sec, 200 secs
lola: 24897293 markings, 45509953 edges, 115486 markings/sec, 205 secs
lola: 25468157 markings, 46594263 edges, 114173 markings/sec, 210 secs
lola: 26044903 markings, 47655915 edges, 115349 markings/sec, 215 secs
lola: 26601651 markings, 48783704 edges, 111350 markings/sec, 220 secs
lola: 27142810 markings, 49929362 edges, 108232 markings/sec, 225 secs
lola: 27688893 markings, 51007914 edges, 109217 markings/sec, 230 secs
lola: 28237107 markings, 52135579 edges, 109643 markings/sec, 235 secs
lola: 28785054 markings, 53235359 edges, 109589 markings/sec, 240 secs
lola: 29366144 markings, 54310690 edges, 116218 markings/sec, 245 secs
lola: 29947894 markings, 55397796 edges, 116350 markings/sec, 250 secs
lola: 30492954 markings, 56468379 edges, 109012 markings/sec, 255 secs
lola: 31061152 markings, 57528448 edges, 113640 markings/sec, 260 secs
lola: 31653790 markings, 58583171 edges, 118528 markings/sec, 265 secs
lola: 32205717 markings, 59674979 edges, 110385 markings/sec, 270 secs
lola: 32779618 markings, 60766857 edges, 114780 markings/sec, 275 secs
lola: 33355569 markings, 61835909 edges, 115190 markings/sec, 280 secs
lola: 33953787 markings, 62935386 edges, 119644 markings/sec, 285 secs
lola: 34560650 markings, 64043517 edges, 121373 markings/sec, 290 secs
lola: 35109958 markings, 65140622 edges, 109862 markings/sec, 295 secs
lola: 35641998 markings, 66217892 edges, 106408 markings/sec, 300 secs
lola: 36183937 markings, 67299824 edges, 108388 markings/sec, 305 secs
lola: 36773966 markings, 68399218 edges, 118006 markings/sec, 310 secs
lola: 37303590 markings, 69514716 edges, 105925 markings/sec, 315 secs
lola: 37836296 markings, 70598533 edges, 106541 markings/sec, 320 secs
lola: 38375112 markings, 71672653 edges, 107763 markings/sec, 325 secs
lola: 38890760 markings, 72787795 edges, 103130 markings/sec, 330 secs
lola: 39427139 markings, 73897651 edges, 107276 markings/sec, 335 secs
lola: 39959357 markings, 74958399 edges, 106444 markings/sec, 340 secs
lola: 40477971 markings, 76054708 edges, 103723 markings/sec, 345 secs
lola: 40961016 markings, 77124419 edges, 96609 markings/sec, 350 secs
lola: 41446614 markings, 78196406 edges, 97120 markings/sec, 355 secs
lola: 41980824 markings, 79284201 edges, 106842 markings/sec, 360 secs
lola: 42527799 markings, 80374946 edges, 109395 markings/sec, 365 secs
lola: 42971601 markings, 81481571 edges, 88760 markings/sec, 370 secs
lola: 43496514 markings, 82476455 edges, 104983 markings/sec, 375 secs
lola: 44038275 markings, 83526361 edges, 108352 markings/sec, 380 secs
lola: 44573803 markings, 84585466 edges, 107106 markings/sec, 385 secs
lola: 45095091 markings, 85652614 edges, 104258 markings/sec, 390 secs
lola: 45612067 markings, 86717656 edges, 103395 markings/sec, 395 secs
lola: 46100103 markings, 87779892 edges, 97607 markings/sec, 400 secs
lola: 46575838 markings, 88855112 edges, 95147 markings/sec, 405 secs
lola: 47048629 markings, 89910703 edges, 94558 markings/sec, 410 secs
lola: 47520269 markings, 90984290 edges, 94328 markings/sec, 415 secs
lola: 48011893 markings, 92027454 edges, 98325 markings/sec, 420 secs
lola: 48508630 markings, 93057388 edges, 99347 markings/sec, 425 secs
lola: 49007685 markings, 94087568 edges, 99811 markings/sec, 430 secs
lola: 49532229 markings, 95077343 edges, 104909 markings/sec, 435 secs
lola: 50007002 markings, 96120761 edges, 94955 markings/sec, 440 secs
lola: 50521382 markings, 97125265 edges, 102876 markings/sec, 445 secs
lola: 51050529 markings, 98126910 edges, 105829 markings/sec, 450 secs
lola: 51583158 markings, 99164416 edges, 106526 markings/sec, 455 secs
lola: 52105697 markings, 100234336 edges, 104508 markings/sec, 460 secs
lola: 52623549 markings, 101301310 edges, 103570 markings/sec, 465 secs
lola: 53151463 markings, 102344870 edges, 105583 markings/sec, 470 secs
lola: 53652074 markings, 103392800 edges, 100122 markings/sec, 475 secs
lola: 54147278 markings, 104435749 edges, 99041 markings/sec, 480 secs
lola: 54682993 markings, 105458206 edges, 107143 markings/sec, 485 secs
lola: 55233739 markings, 106512244 edges, 110149 markings/sec, 490 secs
lola: 55870492 markings, 107595178 edges, 127351 markings/sec, 495 secs
lola: 56468772 markings, 108658039 edges, 119656 markings/sec, 500 secs
lola: 57058237 markings, 109727199 edges, 117893 markings/sec, 505 secs
lola: 57643509 markings, 110751836 edges, 117054 markings/sec, 510 secs
lola: 58242174 markings, 111834655 edges, 119733 markings/sec, 515 secs
lola: 58846077 markings, 112911077 edges, 120781 markings/sec, 520 secs
lola: 59431344 markings, 113982574 edges, 117053 markings/sec, 525 secs
lola: 60008670 markings, 115014378 edges, 115465 markings/sec, 530 secs
lola: 60604442 markings, 116084944 edges, 119154 markings/sec, 535 secs
lola: 61161591 markings, 117173761 edges, 111430 markings/sec, 540 secs
lola: 61746199 markings, 118228439 edges, 116922 markings/sec, 545 secs
lola: 62340047 markings, 119281634 edges, 118770 markings/sec, 550 secs
lola: 62889398 markings, 120332793 edges, 109870 markings/sec, 555 secs
lola: 63418831 markings, 121375280 edges, 105887 markings/sec, 560 secs
lola: 63954199 markings, 122419206 edges, 107074 markings/sec, 565 secs
lola: 64521931 markings, 123503328 edges, 113546 markings/sec, 570 secs
lola: 65052934 markings, 124593202 edges, 106201 markings/sec, 575 secs
lola: 65568667 markings, 125619143 edges, 103147 markings/sec, 580 secs
lola: 66115416 markings, 126653509 edges, 109350 markings/sec, 585 secs
lola: 66675663 markings, 127700557 edges, 112049 markings/sec, 590 secs
lola: 67248584 markings, 128742319 edges, 114584 markings/sec, 595 secs
lola: 67824974 markings, 129789591 edges, 115278 markings/sec, 600 secs
lola: 68373900 markings, 130823404 edges, 109785 markings/sec, 605 secs
lola: 68916807 markings, 131863870 edges, 108581 markings/sec, 610 secs
lola: 69462530 markings, 132894287 edges, 109145 markings/sec, 615 secs
lola: 70008010 markings, 133940246 edges, 109096 markings/sec, 620 secs
lola: 70560266 markings, 134956353 edges, 110451 markings/sec, 625 secs
lola: 71111122 markings, 135970005 edges, 110171 markings/sec, 630 secs
lola: 71657865 markings, 136984623 edges, 109349 markings/sec, 635 secs
lola: 72197857 markings, 137973230 edges, 107998 markings/sec, 640 secs
lola: 72731861 markings, 139007887 edges, 106801 markings/sec, 645 secs
lola: 73289753 markings, 140007473 edges, 111578 markings/sec, 650 secs
lola: 73846540 markings, 141042939 edges, 111357 markings/sec, 655 secs
lola: 74420111 markings, 142090877 edges, 114714 markings/sec, 660 secs
lola: 74994402 markings, 143135473 edges, 114858 markings/sec, 665 secs
lola: 75546173 markings, 144172057 edges, 110354 markings/sec, 670 secs
lola: 76088040 markings, 145209559 edges, 108373 markings/sec, 675 secs
lola: 76636731 markings, 146245574 edges, 109738 markings/sec, 680 secs
lola: 77188071 markings, 147286013 edges, 110268 markings/sec, 685 secs
lola: 77763301 markings, 148344466 edges, 115046 markings/sec, 690 secs
lola: 78349366 markings, 149409148 edges, 117213 markings/sec, 695 secs
lola: 78900743 markings, 150450210 edges, 110275 markings/sec, 700 secs
lola: 79454085 markings, 151483578 edges, 110668 markings/sec, 705 secs
lola: 80004213 markings, 152523464 edges, 110026 markings/sec, 710 secs
lola: 80583365 markings, 153589736 edges, 115830 markings/sec, 715 secs
lola: 81120749 markings, 154637927 edges, 107477 markings/sec, 720 secs
lola: 81673052 markings, 155672191 edges, 110461 markings/sec, 725 secs
lola: 82223911 markings, 156712193 edges, 110172 markings/sec, 730 secs
lola: 82745053 markings, 157771997 edges, 104228 markings/sec, 735 secs
lola: 83295672 markings, 158824151 edges, 110124 markings/sec, 740 secs
lola: 83846185 markings, 159854544 edges, 110103 markings/sec, 745 secs
lola: 84365682 markings, 160896808 edges, 103899 markings/sec, 750 secs
lola: 84862947 markings, 161929642 edges, 99453 markings/sec, 755 secs
lola: 85364200 markings, 162967559 edges, 100251 markings/sec, 760 secs
lola: 85917531 markings, 164015457 edges, 110666 markings/sec, 765 secs
lola: 86408434 markings, 165079575 edges, 98181 markings/sec, 770 secs
lola: 86915158 markings, 166083393 edges, 101345 markings/sec, 775 secs
lola: 87443416 markings, 167087452 edges, 105652 markings/sec, 780 secs
lola: 87984524 markings, 168111537 edges, 108222 markings/sec, 785 secs
lola: 88526665 markings, 169147432 edges, 108428 markings/sec, 790 secs
lola: 89067092 markings, 170183432 edges, 108085 markings/sec, 795 secs
lola: 89579179 markings, 171198909 edges, 102417 markings/sec, 800 secs
lola: 90093135 markings, 172237254 edges, 102791 markings/sec, 805 secs
lola: 90613453 markings, 173251751 edges, 104064 markings/sec, 810 secs
lola: 91129870 markings, 174298668 edges, 103283 markings/sec, 815 secs
lola: 91647978 markings, 175306419 edges, 103622 markings/sec, 820 secs
lola: 92169166 markings, 176310613 edges, 104238 markings/sec, 825 secs
lola: 92690862 markings, 177298804 edges, 104339 markings/sec, 830 secs
lola: 93209591 markings, 178296999 edges, 103746 markings/sec, 835 secs
lola: 93733490 markings, 179300064 edges, 104780 markings/sec, 840 secs
lola: 94280868 markings, 180297609 edges, 109476 markings/sec, 845 secs
lola: 94827963 markings, 181325342 edges, 109419 markings/sec, 850 secs
lola: 95365421 markings, 182357050 edges, 107492 markings/sec, 855 secs
lola: 95905111 markings, 183394474 edges, 107938 markings/sec, 860 secs
lola: 96429709 markings, 184391053 edges, 104920 markings/sec, 865 secs
lola: 96945235 markings, 185429384 edges, 103105 markings/sec, 870 secs
lola: 97482356 markings, 186429143 edges, 107424 markings/sec, 875 secs
lola: 98028822 markings, 187468317 edges, 109293 markings/sec, 880 secs
lola: 98650974 markings, 188530041 edges, 124430 markings/sec, 885 secs
lola: 99249145 markings, 189578644 edges, 119634 markings/sec, 890 secs
lola: 99822686 markings, 190623335 edges, 114708 markings/sec, 895 secs
lola: 100394579 markings, 191634631 edges, 114379 markings/sec, 900 secs
lola: 100979823 markings, 192688552 edges, 117049 markings/sec, 905 secs
lola: 101582375 markings, 193751894 edges, 120510 markings/sec, 910 secs
lola: 102147732 markings, 194798076 edges, 113071 markings/sec, 915 secs
lola: 102723422 markings, 195820617 edges, 115138 markings/sec, 920 secs
lola: 103299070 markings, 196857801 edges, 115130 markings/sec, 925 secs
lola: 103846467 markings, 197915504 edges, 109479 markings/sec, 930 secs
lola: 104423676 markings, 198969481 edges, 115442 markings/sec, 935 secs
lola: 104998590 markings, 199987922 edges, 114983 markings/sec, 940 secs
lola: 105556874 markings, 201032628 edges, 111657 markings/sec, 945 secs
lola: 106078183 markings, 202053136 edges, 104262 markings/sec, 950 secs
lola: 106602711 markings, 203077776 edges, 104906 markings/sec, 955 secs
lola: 107142802 markings, 204129208 edges, 108018 markings/sec, 960 secs
lola: 107689728 markings, 205194879 edges, 109385 markings/sec, 965 secs
lola: 108182991 markings, 206236876 edges, 98653 markings/sec, 970 secs
lola: 108714572 markings, 207211711 edges, 106316 markings/sec, 975 secs
lola: 109253312 markings, 208245421 edges, 107748 markings/sec, 980 secs
lola: 109810317 markings, 209264941 edges, 111401 markings/sec, 985 secs
lola: 110276210 markings, 210115475 edges, 93179 markings/sec, 990 secs
lola: 110367452 markings, 210279755 edges, 18248 markings/sec, 995 secs
lola: 110415041 markings, 210371025 edges, 9518 markings/sec, 1000 secs
lola: 110420607 markings, 210380504 edges, 1113 markings/sec, 1005 secs
lola: 110436018 markings, 210408866 edges, 3082 markings/sec, 1010 secs
lola: 110437902 markings, 210412423 edges, 377 markings/sec, 1015 secs
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p0 + p1 + p2 + p3 + p4))))
lola: processed formula length: 41
lola: 56 rewrites
lola: closed formula file NeoElection-COL-4-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 291278 markings, 1364738 edges, 58256 markings/sec, 0 secs
lola: 556752 markings, 2754908 edges, 53095 markings/sec, 5 secs
lola: 814396 markings, 4127930 edges, 51529 markings/sec, 10 secs
lola: 1083198 markings, 5502282 edges, 53760 markings/sec, 15 secs
lola: 1349612 markings, 6860496 edges, 53283 markings/sec, 20 secs
lola: 1615936 markings, 8213783 edges, 53265 markings/sec, 25 secs
lola: 1886081 markings, 9562523 edges, 54029 markings/sec, 30 secs
lola: 2148751 markings, 10913808 edges, 52534 markings/sec, 35 secs
lola: 2427357 markings, 12258810 edges, 55721 markings/sec, 40 secs
lola: 2702715 markings, 13588361 edges, 55072 markings/sec, 45 secs
lola: 2977403 markings, 14923709 edges, 54938 markings/sec, 50 secs
lola: 3238888 markings, 16263834 edges, 52297 markings/sec, 55 secs
lola: 3498272 markings, 17590238 edges, 51877 markings/sec, 60 secs
lola: 3762577 markings, 18921559 edges, 52861 markings/sec, 65 secs
lola: 4042193 markings, 20256125 edges, 55923 markings/sec, 70 secs
lola: 4313436 markings, 21580077 edges, 54249 markings/sec, 75 secs
lola: 4584865 markings, 22900122 edges, 54286 markings/sec, 80 secs
lola: 4863039 markings, 24265070 edges, 55635 markings/sec, 85 secs
lola: 5120019 markings, 25649656 edges, 51396 markings/sec, 90 secs
lola: 5370466 markings, 27022372 edges, 50089 markings/sec, 95 secs
lola: 5630586 markings, 28389366 edges, 52024 markings/sec, 100 secs
lola: 5890841 markings, 29737556 edges, 52051 markings/sec, 105 secs
lola: 6146892 markings, 31084958 edges, 51210 markings/sec, 110 secs
lola: 6408912 markings, 32443211 edges, 52404 markings/sec, 115 secs
lola: 6668118 markings, 33781914 edges, 51841 markings/sec, 120 secs
lola: 6927220 markings, 35123368 edges, 51820 markings/sec, 125 secs
lola: 7195771 markings, 36467018 edges, 53710 markings/sec, 130 secs
lola: 7463477 markings, 37792025 edges, 53541 markings/sec, 135 secs
lola: 7731126 markings, 39119424 edges, 53530 markings/sec, 140 secs
lola: 7985553 markings, 40458681 edges, 50885 markings/sec, 145 secs
lola: 8235417 markings, 41778131 edges, 49973 markings/sec, 150 secs
lola: 8492459 markings, 43094830 edges, 51408 markings/sec, 155 secs
lola: 8759075 markings, 44421609 edges, 53323 markings/sec, 160 secs
lola: 9024145 markings, 45749772 edges, 53014 markings/sec, 165 secs
lola: 9290510 markings, 47066729 edges, 53273 markings/sec, 170 secs
lola: 9560012 markings, 48411897 edges, 53900 markings/sec, 175 secs
lola: 9825457 markings, 49765000 edges, 53089 markings/sec, 180 secs
lola: 10062767 markings, 51155104 edges, 47462 markings/sec, 185 secs
lola: 10303905 markings, 52515138 edges, 48228 markings/sec, 190 secs
lola: 10553882 markings, 53872361 edges, 49995 markings/sec, 195 secs
lola: 10800965 markings, 55225739 edges, 49417 markings/sec, 200 secs
lola: 11048941 markings, 56569428 edges, 49595 markings/sec, 205 secs
lola: 11300736 markings, 57922505 edges, 50359 markings/sec, 210 secs
lola: 11539989 markings, 59266583 edges, 47851 markings/sec, 215 secs
lola: 11811171 markings, 60609104 edges, 54236 markings/sec, 220 secs
lola: 12064180 markings, 61943973 edges, 50602 markings/sec, 225 secs
lola: 12322283 markings, 63271828 edges, 51621 markings/sec, 230 secs
lola: 12574603 markings, 64614694 edges, 50464 markings/sec, 235 secs
lola: 12811591 markings, 65941703 edges, 47398 markings/sec, 240 secs
lola: 13056828 markings, 67258921 edges, 49047 markings/sec, 245 secs
lola: 13309287 markings, 68588921 edges, 50492 markings/sec, 250 secs
lola: 13567157 markings, 69923501 edges, 51574 markings/sec, 255 secs
lola: 13822550 markings, 71243075 edges, 51079 markings/sec, 260 secs
lola: 14074255 markings, 72544812 edges, 50341 markings/sec, 265 secs
lola: 14341383 markings, 73852016 edges, 53426 markings/sec, 270 secs
lola: 14597112 markings, 75176428 edges, 51146 markings/sec, 275 secs
lola: 14837552 markings, 76504911 edges, 48088 markings/sec, 280 secs
lola: 15081865 markings, 77827766 edges, 48863 markings/sec, 285 secs
lola: 15334223 markings, 79141191 edges, 50472 markings/sec, 290 secs
lola: 15585883 markings, 80454535 edges, 50332 markings/sec, 295 secs
lola: 15837416 markings, 81760046 edges, 50307 markings/sec, 300 secs
lola: 16089564 markings, 83075792 edges, 50430 markings/sec, 305 secs
lola: 16333324 markings, 84384290 edges, 48752 markings/sec, 310 secs
lola: 16605788 markings, 85701752 edges, 54493 markings/sec, 315 secs
lola: 16866388 markings, 87010873 edges, 52120 markings/sec, 320 secs
lola: 17129495 markings, 88314236 edges, 52621 markings/sec, 325 secs
lola: 17388897 markings, 89624548 edges, 51880 markings/sec, 330 secs
lola: 17634005 markings, 90929402 edges, 49022 markings/sec, 335 secs
lola: 17882067 markings, 92220181 edges, 49612 markings/sec, 340 secs
lola: 18130672 markings, 93519677 edges, 49721 markings/sec, 345 secs
lola: 18404236 markings, 94834625 edges, 54713 markings/sec, 350 secs
lola: 18661333 markings, 96139632 edges, 51419 markings/sec, 355 secs
lola: 18924907 markings, 97433827 edges, 52715 markings/sec, 360 secs
lola: 19194116 markings, 98782145 edges, 53842 markings/sec, 365 secs
lola: 19451229 markings, 100150575 edges, 51423 markings/sec, 370 secs
lola: 19687785 markings, 101534670 edges, 47311 markings/sec, 375 secs
lola: 19931758 markings, 102903449 edges, 48795 markings/sec, 380 secs
lola: 20185197 markings, 104242749 edges, 50688 markings/sec, 385 secs
lola: 20429649 markings, 105602144 edges, 48890 markings/sec, 390 secs
lola: 20678513 markings, 106962107 edges, 49773 markings/sec, 395 secs
lola: 20932662 markings, 108298748 edges, 50830 markings/sec, 400 secs
lola: 21178023 markings, 109646274 edges, 49072 markings/sec, 405 secs
lola: 21441220 markings, 111000529 edges, 52639 markings/sec, 410 secs
lola: 21702674 markings, 112351711 edges, 52291 markings/sec, 415 secs
lola: 21960990 markings, 113686552 edges, 51663 markings/sec, 420 secs
lola: 22204669 markings, 115031558 edges, 48736 markings/sec, 425 secs
lola: 22446305 markings, 116356215 edges, 48327 markings/sec, 430 secs
lola: 22692888 markings, 117682404 edges, 49317 markings/sec, 435 secs
lola: 22954125 markings, 119015750 edges, 52247 markings/sec, 440 secs
lola: 23209265 markings, 120349259 edges, 51028 markings/sec, 445 secs
lola: 23465575 markings, 121672232 edges, 51262 markings/sec, 450 secs
lola: 23715199 markings, 122971752 edges, 49925 markings/sec, 455 secs
lola: 23985708 markings, 124348027 edges, 54102 markings/sec, 460 secs
lola: 24232829 markings, 125748138 edges, 49424 markings/sec, 465 secs
lola: 24475727 markings, 127133151 edges, 48580 markings/sec, 470 secs
lola: 24723793 markings, 128518410 edges, 49613 markings/sec, 475 secs
lola: 24973801 markings, 129886184 edges, 50002 markings/sec, 480 secs
lola: 25224113 markings, 131242762 edges, 50062 markings/sec, 485 secs
lola: 25475287 markings, 132620564 edges, 50235 markings/sec, 490 secs
lola: 25719040 markings, 133981377 edges, 48751 markings/sec, 495 secs
lola: 25979145 markings, 135335774 edges, 52021 markings/sec, 500 secs
lola: 26236151 markings, 136688816 edges, 51401 markings/sec, 505 secs
lola: 26495089 markings, 138029465 edges, 51788 markings/sec, 510 secs
lola: 26748700 markings, 139379533 edges, 50722 markings/sec, 515 secs
lola: 26989941 markings, 140725397 edges, 48248 markings/sec, 520 secs
lola: 27231927 markings, 142059748 edges, 48397 markings/sec, 525 secs
lola: 27478473 markings, 143400663 edges, 49309 markings/sec, 530 secs
lola: 27741227 markings, 144749787 edges, 52551 markings/sec, 535 secs
lola: 27996656 markings, 146083532 edges, 51086 markings/sec, 540 secs
lola: 28255280 markings, 147425411 edges, 51725 markings/sec, 545 secs
lola: 28525170 markings, 148781198 edges, 53978 markings/sec, 550 secs
lola: 28772140 markings, 150162268 edges, 49394 markings/sec, 555 secs
lola: 29008491 markings, 151528797 edges, 47270 markings/sec, 560 secs
lola: 29258932 markings, 152895457 edges, 50088 markings/sec, 565 secs
lola: 29508648 markings, 154246526 edges, 49943 markings/sec, 570 secs
lola: 29754958 markings, 155585862 edges, 49262 markings/sec, 575 secs
lola: 30007194 markings, 156949271 edges, 50447 markings/sec, 580 secs
lola: 30250845 markings, 158296969 edges, 48730 markings/sec, 585 secs
lola: 30512960 markings, 159641027 edges, 52423 markings/sec, 590 secs
lola: 30770014 markings, 160985175 edges, 51411 markings/sec, 595 secs
lola: 31028985 markings, 162319188 edges, 51794 markings/sec, 600 secs
lola: 31284768 markings, 163661937 edges, 51157 markings/sec, 605 secs
lola: 31526613 markings, 165001752 edges, 48369 markings/sec, 610 secs
lola: 31769900 markings, 166328225 edges, 48657 markings/sec, 615 secs
lola: 32016908 markings, 167660973 edges, 49402 markings/sec, 620 secs
lola: 32283442 markings, 169001646 edges, 53307 markings/sec, 625 secs
lola: 32537174 markings, 170333229 edges, 50746 markings/sec, 630 secs
lola: 32794567 markings, 171654251 edges, 51479 markings/sec, 635 secs
lola: 33056584 markings, 172962778 edges, 52403 markings/sec, 640 secs
lola: 33318503 markings, 174285686 edges, 52384 markings/sec, 645 secs
lola: 33561777 markings, 175629698 edges, 48655 markings/sec, 650 secs
lola: 33806695 markings, 176946454 edges, 48984 markings/sec, 655 secs
lola: 34057717 markings, 178271648 edges, 50204 markings/sec, 660 secs
lola: 34308346 markings, 179590512 edges, 50126 markings/sec, 665 secs
lola: 34562742 markings, 180882620 edges, 50879 markings/sec, 670 secs
lola: 34816646 markings, 182206793 edges, 50781 markings/sec, 675 secs
lola: 35061430 markings, 183519585 edges, 48957 markings/sec, 680 secs
lola: 35325945 markings, 184833389 edges, 52903 markings/sec, 685 secs
lola: 35588172 markings, 186148527 edges, 52445 markings/sec, 690 secs
lola: 35851959 markings, 187452470 edges, 52757 markings/sec, 695 secs
lola: 36112771 markings, 188765014 edges, 52162 markings/sec, 700 secs
lola: 36360115 markings, 190078256 edges, 49469 markings/sec, 705 secs
lola: 36607639 markings, 191369321 edges, 49505 markings/sec, 710 secs
lola: 36858381 markings, 192670107 edges, 50148 markings/sec, 715 secs
lola: 37125355 markings, 193983851 edges, 53395 markings/sec, 720 secs
lola: 37387642 markings, 195298589 edges, 52457 markings/sec, 725 secs
lola: 37651222 markings, 196602988 edges, 52716 markings/sec, 730 secs
lola: 37921514 markings, 197943543 edges, 54058 markings/sec, 735 secs
lola: 38183093 markings, 199305991 edges, 52316 markings/sec, 740 secs
lola: 38413225 markings, 200649467 edges, 46026 markings/sec, 745 secs
lola: 38641980 markings, 201927295 edges, 45751 markings/sec, 750 secs
lola: time limit reached - aborting
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola:
preliminary result: no yes no yes no yes no unknown yes no unknown no no yes no yes
lola: memory consumption: 5373744 KB
lola: time consumption: 3571 seconds
lola: memory consumption: 5373744 KB
lola: time consumption: 3571 seconds
BK_STOP 1553035266260
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-4"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="win2018"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool win2018"
echo " Input is NeoElection-COL-4, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r110-oct2-155272242200047"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-4.tgz
mv NeoElection-COL-4 execution
cd execution
if [ "LTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "LTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;