About the Execution of LoLA for NeoElection-PT-8
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
11730.280 | 3594287.00 | 3831940.00 | 254.90 | TTF?FTTFTFFTFTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r104-oct2-155272225600238.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.....................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is NeoElection-PT-8, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r104-oct2-155272225600238
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 30M
-rw-r--r-- 1 mcc users 293K Feb 12 03:09 CTLCardinality.txt
-rw-r--r-- 1 mcc users 736K Feb 12 03:09 CTLCardinality.xml
-rw-r--r-- 1 mcc users 452K Feb 8 02:03 CTLFireability.txt
-rw-r--r-- 1 mcc users 1.2M Feb 8 02:03 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 103 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 341 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 26K Feb 5 00:19 LTLCardinality.txt
-rw-r--r-- 1 mcc users 64K Feb 5 00:19 LTLCardinality.xml
-rw-r--r-- 1 mcc users 126K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 340K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 317K Feb 4 07:16 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 766K Feb 4 07:16 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 1.7M Feb 1 01:23 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 4.3M Feb 1 01:23 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 97K Feb 4 22:22 UpperBounds.txt
-rw-r--r-- 1 mcc users 197K Feb 4 22:22 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_col
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 6 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 20M Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-8-CTLCardinality-00
FORMULA_NAME NeoElection-PT-8-CTLCardinality-01
FORMULA_NAME NeoElection-PT-8-CTLCardinality-02
FORMULA_NAME NeoElection-PT-8-CTLCardinality-03
FORMULA_NAME NeoElection-PT-8-CTLCardinality-04
FORMULA_NAME NeoElection-PT-8-CTLCardinality-05
FORMULA_NAME NeoElection-PT-8-CTLCardinality-06
FORMULA_NAME NeoElection-PT-8-CTLCardinality-07
FORMULA_NAME NeoElection-PT-8-CTLCardinality-08
FORMULA_NAME NeoElection-PT-8-CTLCardinality-09
FORMULA_NAME NeoElection-PT-8-CTLCardinality-10
FORMULA_NAME NeoElection-PT-8-CTLCardinality-11
FORMULA_NAME NeoElection-PT-8-CTLCardinality-12
FORMULA_NAME NeoElection-PT-8-CTLCardinality-13
FORMULA_NAME NeoElection-PT-8-CTLCardinality-14
FORMULA_NAME NeoElection-PT-8-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1552784063292
info: Time: 3600 - MCC
vrfy: Checking CTLCardinality @ NeoElection-PT-8 @ 3570 seconds
FORMULA NeoElection-PT-8-CTLCardinality-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-06 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-01 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-00 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-07 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-8-CTLCardinality-03 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: -24
rslt: Output for CTLCardinality @ NeoElection-PT-8
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=CTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=tarjan",
"--stateequation=par",
"--quickchecks",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ctl",
"--json=CTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sun Mar 17 00:54:23 2019
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 212
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 227
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 243
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 262
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 283
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 309
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 340
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 378
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 425
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 74
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 486
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1,
"visible_transitions": 0
},
"processed": "(1 <= P-poll__networl_5_2_AnsP_8)",
"processed_size": 33,
"rewrites": 77
},
"result":
{
"edges": 7,
"markings": 8,
"produced_by": "state space /EXEF",
"value": true
},
"task":
{
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance_from_all_successors",
"workflow": "stateequation"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 563
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "A (G ((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0)))",
"processed_size": 201,
"rewrites": 76
},
"result":
{
"produced_by": "state equation",
"value": true
},
"task":
{
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 675
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 18,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 18,
"visible_transitions": 0
},
"processed": "A (G ((P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 <= P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)))",
"processed_size": 422,
"rewrites": 76
},
"result":
{
"edges": 1024,
"markings": 256,
"produced_by": "state space",
"value": true
},
"task":
{
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "invariance",
"workflow": "stateequation||search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 900
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "(P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= 0)",
"processed_size": 184,
"rewrites": 77
},
"result":
{
"edges": 80,
"markings": 81,
"produced_by": "state space / EG",
"value": true
},
"task":
{
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 20988
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "eventual_occurrence",
"workflow": "stateequation"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1351
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 1,
"F": 0,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "E (G ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= 0)))",
"processed_size": 192,
"rewrites": 75
},
"result":
{
"edges": 80,
"markings": 81,
"produced_by": "state space / EG",
"value": false
},
"task":
{
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 20988
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "possible_preservation",
"workflow": "stateequation"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 2702
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 2702
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 1,
"F": 1,
"G": 0,
"U": 0,
"X": 0,
"aconj": 1,
"adisj": 0,
"aneg": 1,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "E (F (((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0))))",
"processed_size": 203,
"rewrites": 75
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space",
"value": true
},
"task":
{
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion"
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "reachability",
"workflow": "stateequation||search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1134,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1134,
"visible_transitions": 0
},
"processed": "(P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_3_1_RP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_8 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_8 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_8_4_AnsP_8 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_4_1_AskP_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_5_8_AnnP_0 + P-network_8_1_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_8_4_AskP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_6_8_AnnP_0 + P-network_7_2_RI_0 + P-network_0_8_AskP_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_7_6_AI_0 + P-network_5_7_AI_0 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_6_0_AnsP_8 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_3_8_AI_0 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_8_0_AI_0 + P-network_1_5_AnnP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_0_8_RI_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_7_5_AskP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_8_4_RI_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_8 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_8_7_RI_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_4_8_RP_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_8 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_6_8_RI_0 + P-network_8_2_AnnP_0 + P-network_7_3_AI_0 + P-network_8_6_RP_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_8 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_2_2_AskP_0 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_8_AnnP_0 + P-network_2_1_AskP_0 + P-network_8_1_AnnP_0 + P-network_5_8_RI_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_1_4_AnnP_0 + P-network_2_8_AI_0 + P-network_4_7_AI_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_8 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_8_5_AI_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_5_6_AskP_0 + P-network_3_3_AnnP_0 + P-network_8_3_AI_0 + P-network_2_6_AskP_0 + P-network_8_6_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_0_8_AnsP_0 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_3 + P-network_0_8_AnsP_4 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_8 + P-network_7_7_RP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_7_8_AI_0 + P-network_6_4_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_5_8_RP_0 + P-network_0_2_RP_0 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_4_5_AI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_0_3_AskP_0 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_6_AI_0 + P-network_3_8_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_0_7_AI_0 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_1_0_AnnP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_8 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_8 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_7_5_RI_0 + P-network_6_4_AskP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_7_0_AskP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_5_6_RI_0 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_8_3_AskP_0 + P-network_0_5_RI_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_3_7_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_8_1_RI_0 + P-network_1_8_RI_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_3_7_AskP_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_4_4_AnnP_0 + P-network_1_7_RI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_8_8_AskP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_2_8_AnnP_0 + P-network_7_4_RI_0 + P-network_8_4_RP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_7_1_AI_0 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_3_8_RP_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_8_2_AI_0 + P-network_6_5_RP_0 + P-network_5_2_AI_0 + P-network_4_7_AnnP_0 + P-network_5_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_0_AskP_0 + P-network_8_0_AnnP_0 + P-network_4_8_RI_0 + P-network_6_7_RI_0 + P-network_2_5_AnsP_8 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_3_3_AI_0 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_8_6_RI_0 + P-network_7_3_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_8 + P-network_2_7_RP_0 + P-network_7_8_AnsP_8 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_0 + P-network_1_3_AnnP_0 + P-network_1_4_AI_0 + P-network_1_8_AI_0 + P-network_3_7_AI_0 + P-network_0_8_RP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_8_8_RP_0 + P-network_7_8_AnnP_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_1_8_AskP_0 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_8_2_RI_0 + P-network_2_5_AskP_0 + P-network_8_5_AnnP_0 + P-network_6_3_RI_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_8 + P-network_4_4_RI_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_7_8_AskP_0 + P-network_1_8_AnnP_0 + P-network_6_8_AI_0 + P-network_6_3_AnsP_8 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_2_5_AnnP_0 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_8_7_AI_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_8_5_AskP_0 + P-network_3_7_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_8 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_3_2_AskP_0 + P-network_6_3_AskP_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_8_0_RP_0 + P-network_3_4_AnsP_8 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_7_2_RP_0 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_8_2_AskP_0 + P-network_8_7_AnsP_8 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_5_3_RP_0 + P-network_5_2_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_8 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_6_8_AskP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_4_RP_0 + P-network_3_5_RP_0 + P-network_0_8_AnnP_0 + P-network_4_1_AI_0 + P-network_5_3_AnsP_8 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_8 + P-network_2_1_AI_0 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_4_1_AnnP_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_8_7_AskP_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_0_6_AnnP_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_1_5_RP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_8_3_RI_0 + P-network_0_2_AI_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_2_8_RP_0 + P-network_6_6_AskP_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_1_8_AnsP_0 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_8 + P-network_7_0_RI_0 + P-network_0_5_AnsP_0 + P-network_5_1_RI_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_8_5_RP_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_7_3_AnnP_0 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_4_6_AnnP_0 + P-network_1_3_RI_0 + P-network_3_8_RI_0 + P-network_2_0_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_8_5_AnsP_0 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_8 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_0_8_AI_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_7_8_RP_0 + P-network_8_4_AI_0 + P-network_5_8_AskP_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_8_0_AskP_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_3_1_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_8 + P-network_2_4_AskP_0 + P-network_8_4_AnnP_0 + P-network_8_8_RI_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_5_8_AI_0 + P-network_6_2_AnsP_8 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_4_7_AskP_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_6_0_RP_0 + P-network_4_8_AnsP_0 + P-network_3_6_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_4_1_RP_0 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_4_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_3_RP_0 + P-network_5_1_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_8 + P-network_7_0_RP_0 + P-network_4_8_AskP_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_8_1_AskP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_6_1_AskP_0 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_2_0_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_8_0_RI_0 + P-network_0_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_8_8_AnnP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_2_8_AskP_0 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_8_2_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_3_8_AnsP_8 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_0 + P-network_8_6_AskP_0 + P-network_8_0_AnsP_0 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_8 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_8 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_3_5_AnnP_0 + P-network_0_5_AI_0 + P-network_1_8_RP_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_8_1_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_3_8_AskP_0 + P-network_2_8_RI_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_4_2_AskP_0 + P-network_8_5_RI_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_0_RP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_6_8_RP_0 + P-network_7_4_AI_0 + P-network_8_7_RP_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_3_0_AnnP_0 + P-network_8_6_AI_0 + P-network_2_3_AskP_0 + P-network_8_3_AnnP_0 + P-network_7_8_RI_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_2_8_AnsP_4 + P-network_6_7_AI_0 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_7_6_AskP_0 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_8 + P-network_1_6_AnnP_0 + P-network_4_8_AI_0 <= 56)",
"processed_size": 25601,
"rewrites": 77
},
"result":
{
"edges": 752,
"markings": 753,
"produced_by": "state space / EG",
"value": false
},
"task":
{
"compoundnumber": 17,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "reachability preserving/insertion",
"visible": 22113
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "eventual_occurrence",
"workflow": "stateequation"
}
}
],
"exit":
{
"localtimelimitreached": false
},
"result":
{
"produced_by": "boolean",
"value": false
},
"task":
{
"compoundnumber": 15,
"type": "boolean"
}
}
],
"exit":
{
"error": null,
"memory": 1345392,
"runtime": 3570.000000,
"signal": null,
"timelimitreached": true
},
"files":
{
"JSON": "CTLCardinality.json",
"formula": "CTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "A(F(**)) : A(G(**)) : FALSE : A(F(A(X(*)))) : (A(F(*)) AND (E(F(*)) AND E(F(*)))) : TRUE : A(G(**)) : E(G(*)) : A(X(A(G(**)))) : FALSE : FALSE : TRUE : FALSE : TRUE : FALSE : TRUE"
},
"net":
{
"arcs": 129195,
"conflict_clusters": 7182,
"places": 10062,
"places_significant": 2295,
"singleton_clusters": 0,
"transitions": 22266
},
"result":
{
"interim_value": "yes yes no unknown no yes yes no yes no no yes no yes no yes ",
"preliminary_value": "yes yes no unknown no yes yes no yes no no yes no yes no yes ",
"value": "yes yes no unknown no yes yes no yes no no yes no yes no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 32328/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 10062
lola: finding significant places
lola: 10062 places, 22266 transitions, 2295 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from CTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_0_7_8 + P-masterList_0_7_7 + P-masterList_0_7_6 + P-masterList_0_7_5 + P-masterList_0_7_4 + P-masterList_0_7_3 + P-masterList_0_7_2 + P-masterList_0_7_1 + P-masterList_0_7_0 + P-masterList_5_2_0 + P-masterList_5_2_1 + P-masterList_5_2_2 + P-masterList_5_2_3 + P-masterList_5_2_4 + P-masterList_5_2_5 + P-masterList_5_2_6 + P-masterList_5_2_7 + P-masterList_5_2_8 + P-masterList_8_8_8 + P-masterList_8_8_7 + P-masterList_8_8_6 + P-masterList_8_8_5 + P-masterList_8_8_4 + P-masterList_8_8_3 + P-masterList_8_8_2 + P-masterList_8_8_1 + P-masterList_8_8_0 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_3_0 + P-masterList_5_3_1 + P-masterList_5_3_2 + P-masterList_5_3_3 + P-masterList_5_3_4 + P-masterList_5_3_5 + P-masterList_5_3_6 + P-masterList_5_3_7 + P-masterList_5_3_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_5_4_0 + P-masterList_5_4_1 + P-masterList_5_4_2 + P-masterList_5_4_3 + P-masterList_5_4_4 + P-masterList_5_4_5 + P-masterList_5_4_6 + P-masterList_5_4_7 + P-masterList_5_4_8 + P-masterList_4_7_8 + P-masterList_4_7_7 + P-masterList_4_7_6 + P-masterList_4_7_5 + P-masterList_4_7_4 + P-masterList_4_7_3 + P-masterList_4_7_2 + P-masterList_4_7_1 + P-masterList_4_7_0 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_6_8 + P-masterList_0_6_7 + P-masterList_0_6_6 + P-masterList_0_6_5 + P-masterList_0_6_4 + P-masterList_0_6_3 + P-masterList_0_6_2 + P-masterList_0_6_1 + P-masterList_0_6_0 + P-masterList_5_5_0 + P-masterList_5_5_1 + P-masterList_5_5_2 + P-masterList_5_5_3 + P-masterList_5_5_4 + P-masterList_5_5_5 + P-masterList_5_5_6 + P-masterList_5_5_7 + P-masterList_5_5_8 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_8_7_8 + P-masterList_8_7_7 + P-masterList_8_7_6 + P-masterList_8_7_5 + P-masterList_8_7_4 + P-masterList_8_7_3 + P-masterList_8_7_2 + P-masterList_8_7_1 + P-masterList_8_7_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_4_6_8 + P-masterList_4_6_7 + P-masterList_4_6_6 + P-masterList_4_6_5 + P-masterList_4_6_4 + P-masterList_4_6_3 + P-masterList_4_6_2 + P-masterList_4_6_1 + P-masterList_4_6_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_0_5_8 + P-masterList_0_5_7 + P-masterList_0_5_6 + P-masterList_0_5_5 + P-masterList_0_5_4 + P-masterList_0_5_3 + P-masterList_0_5_2 + P-masterList_0_5_1 + P-masterList_0_5_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_8_6_8 + P-masterList_8_6_7 + P-masterList_8_6_6 + P-masterList_8_6_5 + P-masterList_8_6_4 + P-masterList_8_6_3 + P-masterList_8_6_2 + P-masterList_8_6_1 + P-masterList_8_6_0 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_4_5_8 + P-masterList_4_5_7 + P-masterList_4_5_6 + P-masterList_4_5_5 + P-masterList_4_5_4 + P-masterList_4_5_3 + P-masterList_4_5_2 + P-masterList_4_5_1 + P-masterList_4_5_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_2_4_0 + P-masterList_2_4_1 + P-masterList_2_4_2 + P-masterList_2_4_3 + P-masterList_2_4_4 + P-masterList_2_4_5 + P-masterList_2_4_6 + P-masterList_2_4_7 + P-masterList_2_4_8 + P-masterList_0_4_8 + P-masterList_0_4_7 + P-masterList_0_4_6 + P-masterList_0_4_5 + P-masterList_0_4_4 + P-masterList_0_4_3 + P-masterList_0_4_2 + P-masterList_0_4_1 + P-masterList_0_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_2_5_0 + P-masterList_2_5_1 + P-masterList_2_5_2 + P-masterList_2_5_3 + P-masterList_2_5_4 + P-masterList_2_5_5 + P-masterList_2_5_6 + P-masterList_2_5_7 + P-masterList_2_5_8 + P-masterList_8_5_8 + P-masterList_8_5_7 + P-masterList_8_5_6 + P-masterList_8_5_5 + P-masterList_8_5_4 + P-masterList_8_5_3 + P-masterList_8_5_2 + P-masterList_8_5_1 + P-masterList_8_5_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_2_6_0 + P-masterList_2_6_1 + P-masterList_2_6_2 + P-masterList_2_6_3 + P-masterList_2_6_4 + P-masterList_2_6_5 + P-masterList_2_6_6 + P-masterList_2_6_7 + P-masterList_2_6_8 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_4_4_8 + P-masterList_4_4_7 + P-masterList_4_4_6 + P-masterList_4_4_5 + P-masterList_4_4_4 + P-masterList_4_4_3 + P-masterList_4_4_2 + P-masterList_4_4_1 + P-masterList_4_4_0 + P-masterList_2_7_0 + P-masterList_2_7_1 + P-masterList_2_7_2 + P-masterList_2_7_3 + P-masterList_2_7_4 + P-masterList_2_7_5 + P-masterList_2_7_6 + P-masterList_2_7_7 + P-masterList_2_7_8 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_8_4_8 + P-masterList_8_4_7 + P-masterList_8_4_6 + P-masterList_8_4_5 + P-masterList_8_4_4 + P-masterList_8_4_3 + P-masterList_8_4_2 + P-masterList_8_4_1 + P-masterList_8_4_0 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_3_1_4 + P-masterList_3_1_5 + P-masterList_3_1_6 + P-masterList_3_1_7 + P-masterList_3_1_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_4_3_8 + P-masterList_4_3_7 + P-masterList_4_3_6 + P-masterList_4_3_5 + P-masterList_4_3_4 + P-masterList_4_3_3 + P-masterList_4_3_2 + P-masterList_4_3_1 + P-masterList_4_3_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_3_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 + P-masterList_4_2_8 + P-masterList_4_2_7 + P-masterList_4_2_6 + P-masterList_4_2_5 + P-masterList_4_2_4 + P-masterList_4_2_3 + P-masterList_4_2_2 + P-masterList_4_2_1 + P-masterList_4_2_0 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_7_7_0 + P-masterList_7_7_1 + P-masterList_7_7_2 + P-masterList_7_7_3 + P-masterList_7_7_4 + P-masterList_7_7_5 + P-masterList_7_7_6 + P-masterList_7_7_7 + P-masterList_7_7_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_7_8_0 + P-masterList_7_8_1 + P-masterList_7_8_2 + P-masterList_7_8_3 + P-masterList_7_8_4 + P-masterList_7_8_5 + P-masterList_7_8_6 + P-masterList_7_8_7 + P-masterList_7_8_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_8_1_0 + P-masterList_8_1_1 + P-masterList_8_1_2 + P-masterList_8_1_3 + P-masterList_8_1_4 + P-masterList_8_1_5 + P-masterList_8_1_6 + P-masterList_8_1_7 + P-masterList_8_1_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8)
lola: after: (56 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8)
lola: place invariant simplifies atomic proposition
lola: before: (P-stage_3_PRIM + P-stage_7_SEC + P-stage_2_PRIM + P-stage_5_SEC + P-stage_3_SEC + P-stage_7_PRIM + P-stage_1_NEG + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_SEC + P-stage_4_SEC + P-stage_8_SEC + P-stage_8_NEG + P-stage_4_NEG + P-stage_1_PRIM + P-stage_0_NEG + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_NEG + P-stage_2_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_6_SEC + P-stage_2_SEC + P-stage_8_PRIM + P-stage_7_NEG + P-stage_3_NEG <= P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (8 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-stage_3_PRIM + P-stage_7_SEC + P-stage_2_PRIM + P-stage_5_SEC + P-stage_3_SEC + P-stage_7_PRIM + P-stage_1_NEG + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_SEC + P-stage_4_SEC + P-stage_8_SEC + P-stage_8_NEG + P-stage_4_NEG + P-stage_1_PRIM + P-stage_0_NEG + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_NEG + P-stage_2_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_6_SEC + P-stage_2_SEC + P-stage_8_PRIM + P-stage_7_NEG + P-stage_3_NEG <= P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (8 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-negotiation_2_0_NONE + P-negotiation_3_6_CO + P-negotiation_8_5_DONE + P-negotiation_0_1_NONE + P-negotiation_6_6_DONE + P-negotiation_7_1_CO + P-negotiation_4_7_DONE + P-negotiation_2_8_DONE + P-negotiation_8_5_CO + P-negotiation_0_4_CO + P-negotiation_3_2_DONE + P-negotiation_0_6_DONE + P-negotiation_7_3_DONE + P-negotiation_6_3_DONE + P-negotiation_0_6_CO + P-negotiation_5_4_DONE + P-negotiation_3_5_DONE + P-negotiation_1_6_DONE + P-negotiation_1_8_CO + P-negotiation_7_8_NONE + P-negotiation_8_7_CO + P-negotiation_1_8_DONE + P-negotiation_5_3_CO + P-negotiation_3_7_DONE + P-negotiation_5_6_DONE + P-negotiation_7_5_DONE + P-negotiation_1_0_CO + P-negotiation_6_8_DONE + P-negotiation_8_7_DONE + P-negotiation_5_6_CO + P-negotiation_2_2_NONE + P-negotiation_4_1_NONE + P-negotiation_6_7_CO + P-negotiation_7_2_NONE + P-negotiation_1_0_DONE + P-negotiation_8_0_DONE + P-negotiation_6_1_DONE + P-negotiation_2_1_CO + P-negotiation_4_2_DONE + P-negotiation_6_0_CO + P-negotiation_2_5_CO + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_6_6_NONE + P-negotiation_0_3_DONE + P-negotiation_2_2_DONE + P-negotiation_4_1_DONE + P-negotiation_4_7_NONE + P-negotiation_2_8_NONE + P-negotiation_6_0_DONE + P-negotiation_3_5_CO + P-negotiation_0_8_CO + P-negotiation_1_5_DONE + P-negotiation_3_4_DONE + P-negotiation_5_3_DONE + P-negotiation_7_2_DONE + P-negotiation_7_0_CO + P-negotiation_7_5_CO + P-negotiation_0_8_DONE + P-negotiation_2_7_DONE + P-negotiation_4_6_DONE + P-negotiation_6_5_DONE + P-negotiation_8_4_DONE + P-negotiation_5_8_CO + P-negotiation_5_8_DONE + P-negotiation_7_7_DONE + P-negotiation_1_2_NONE + P-negotiation_3_0_DONE + P-negotiation_8_4_CO + P-negotiation_1_1_DONE + P-negotiation_4_4_CO + P-negotiation_7_3_NONE + P-negotiation_5_4_NONE + P-negotiation_0_3_CO + P-negotiation_0_5_NONE + P-negotiation_2_4_NONE + P-negotiation_1_6_NONE + P-negotiation_4_3_NONE + P-negotiation_0_0_DONE + P-negotiation_6_2_CO + P-negotiation_2_7_CO + P-negotiation_1_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_1_2_DONE + P-negotiation_3_1_DONE + P-negotiation_5_0_DONE + P-negotiation_1_7_CO + P-negotiation_5_2_CO + P-negotiation_0_5_DONE + P-negotiation_8_6_NONE + P-negotiation_2_4_DONE + P-negotiation_4_3_DONE + P-negotiation_3_1_CO + P-negotiation_6_2_DONE + P-negotiation_8_1_DONE + P-negotiation_7_7_CO + P-negotiation_8_0_NONE + P-negotiation_6_3_CO + P-negotiation_6_1_NONE + P-negotiation_1_7_DONE + P-negotiation_3_6_DONE + P-negotiation_5_5_DONE + P-negotiation_7_4_DONE + P-negotiation_4_2_NONE + P-negotiation_2_3_NONE + P-negotiation_8_8_DONE + P-negotiation_0_0_CO + P-negotiation_4_8_DONE + P-negotiation_8_1_CO + P-negotiation_6_7_DONE + P-negotiation_8_6_DONE + P-negotiation_4_6_CO + P-negotiation_4_0_NONE + P-negotiation_2_0_CO + P-negotiation_3_2_CO + P-negotiation_7_8_CO + P-negotiation_1_4_NONE + P-negotiation_3_4_CO + P-negotiation_5_0_CO + P-negotiation_1_5_CO + P-negotiation_0_7_NONE + P-negotiation_2_6_NONE + P-negotiation_4_5_NONE + P-negotiation_6_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_0_1_CO + P-negotiation_8_2_CO + P-negotiation_3_0_NONE + P-negotiation_1_1_NONE + P-negotiation_7_6_DONE + P-negotiation_5_7_DONE + P-negotiation_3_8_NONE + P-negotiation_3_8_DONE + P-negotiation_3_3_CO + P-negotiation_5_7_NONE + P-negotiation_7_6_NONE + P-negotiation_1_4_DONE + P-negotiation_3_3_DONE + P-negotiation_5_2_DONE + P-negotiation_7_1_DONE + P-negotiation_4_8_CO + P-negotiation_6_5_CO + P-negotiation_8_3_CO + P-negotiation_0_7_DONE + P-negotiation_8_8_NONE + P-negotiation_2_6_DONE + P-negotiation_4_5_DONE + P-negotiation_5_1_CO + P-negotiation_6_4_DONE + P-negotiation_0_2_CO + P-negotiation_8_3_DONE + P-negotiation_1_6_CO + P-negotiation_4_7_CO + P-negotiation_8_3_NONE + P-negotiation_6_4_CO + P-negotiation_7_1_NONE + P-negotiation_5_2_NONE + P-negotiation_3_3_NONE + P-negotiation_2_1_NONE + P-negotiation_0_2_NONE + P-negotiation_0_4_NONE + P-negotiation_6_6_CO + P-negotiation_1_4_CO + P-negotiation_2_8_CO + P-negotiation_6_7_NONE + P-negotiation_4_8_NONE + P-negotiation_4_5_CO + P-negotiation_8_0_CO + P-negotiation_3_6_NONE + P-negotiation_1_7_NONE + P-negotiation_8_1_NONE + P-negotiation_6_2_NONE + P-negotiation_7_6_CO + P-negotiation_3_5_NONE + P-negotiation_3_0_CO + P-negotiation_5_0_NONE + P-negotiation_3_1_NONE + P-negotiation_1_2_CO + P-negotiation_2_6_CO + P-negotiation_0_0_NONE + P-negotiation_6_1_CO + P-negotiation_7_7_NONE + P-negotiation_5_8_NONE + P-negotiation_4_3_CO + P-negotiation_5_7_CO + P-negotiation_1_1_CO + P-negotiation_8_4_NONE + P-negotiation_6_5_NONE + P-negotiation_4_6_NONE + P-negotiation_2_7_NONE + P-negotiation_8_5_NONE + P-negotiation_0_8_NONE + P-negotiation_7_4_CO + P-negotiation_5_3_NONE + P-negotiation_3_4_NONE + P-negotiation_1_5_NONE + P-negotiation_8_8_CO + P-negotiation_0_7_CO + P-negotiation_4_2_CO + P-negotiation_6_0_NONE + P-negotiation_0_3_NONE + P-negotiation_2_4_CO + P-negotiation_1_0_NONE + P-negotiation_3_8_CO + P-negotiation_7_3_CO + P-negotiation_8_2_DONE + P-negotiation_4_1_CO + P-negotiation_4_4_DONE + P-negotiation_2_5_DONE + P-negotiation_8_7_NONE + P-negotiation_6_8_NONE + P-negotiation_5_5_CO + P-negotiation_7_0_DONE + P-negotiation_5_1_DONE + P-negotiation_1_3_DONE + P-negotiation_7_5_NONE + P-negotiation_5_6_NONE + P-negotiation_2_3_CO + P-negotiation_3_7_NONE + P-negotiation_1_8_NONE + P-negotiation_3_7_CO + P-negotiation_7_2_CO + P-negotiation_2_0_DONE + P-negotiation_8_2_NONE + P-negotiation_0_1_DONE + P-negotiation_6_3_NONE + P-negotiation_4_4_NONE + P-negotiation_2_5_NONE + P-negotiation_8_6_CO + P-negotiation_0_6_NONE + P-negotiation_0_5_CO + P-negotiation_4_0_CO + P-negotiation_5_4_CO + P-negotiation_7_0_NONE + P-negotiation_5_1_NONE + P-negotiation_3_2_NONE + P-negotiation_1_3_NONE + P-negotiation_7_8_DONE + P-negotiation_6_8_CO + P-negotiation_2_2_CO)
lola: after: (0 <= 62)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-negotiation_2_0_NONE + P-negotiation_3_6_CO + P-negotiation_8_5_DONE + P-negotiation_0_1_NONE + P-negotiation_6_6_DONE + P-negotiation_7_1_CO + P-negotiation_4_7_DONE + P-negotiation_2_8_DONE + P-negotiation_8_5_CO + P-negotiation_0_4_CO + P-negotiation_3_2_DONE + P-negotiation_0_6_DONE + P-negotiation_7_3_DONE + P-negotiation_6_3_DONE + P-negotiation_0_6_CO + P-negotiation_5_4_DONE + P-negotiation_3_5_DONE + P-negotiation_1_6_DONE + P-negotiation_1_8_CO + P-negotiation_7_8_NONE + P-negotiation_8_7_CO + P-negotiation_1_8_DONE + P-negotiation_5_3_CO + P-negotiation_3_7_DONE + P-negotiation_5_6_DONE + P-negotiation_7_5_DONE + P-negotiation_1_0_CO + P-negotiation_6_8_DONE + P-negotiation_8_7_DONE + P-negotiation_5_6_CO + P-negotiation_2_2_NONE + P-negotiation_4_1_NONE + P-negotiation_6_7_CO + P-negotiation_7_2_NONE + P-negotiation_1_0_DONE + P-negotiation_8_0_DONE + P-negotiation_6_1_DONE + P-negotiation_2_1_CO + P-negotiation_4_2_DONE + P-negotiation_6_0_CO + P-negotiation_2_5_CO + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_6_6_NONE + P-negotiation_0_3_DONE + P-negotiation_2_2_DONE + P-negotiation_4_1_DONE + P-negotiation_4_7_NONE + P-negotiation_2_8_NONE + P-negotiation_6_0_DONE + P-negotiation_3_5_CO + P-negotiation_0_8_CO + P-negotiation_1_5_DONE + P-negotiation_3_4_DONE + P-negotiation_5_3_DONE + P-negotiation_7_2_DONE + P-negotiation_7_0_CO + P-negotiation_7_5_CO + P-negotiation_0_8_DONE + P-negotiation_2_7_DONE + P-negotiation_4_6_DONE + P-negotiation_6_5_DONE + P-negotiation_8_4_DONE + P-negotiation_5_8_CO + P-negotiation_5_8_DONE + P-negotiation_7_7_DONE + P-negotiation_1_2_NONE + P-negotiation_3_0_DONE + P-negotiation_8_4_CO + P-negotiation_1_1_DONE + P-negotiation_4_4_CO + P-negotiation_7_3_NONE + P-negotiation_5_4_NONE + P-negotiation_0_3_CO + P-negotiation_0_5_NONE + P-negotiation_2_4_NONE + P-negotiation_1_6_NONE + P-negotiation_4_3_NONE + P-negotiation_0_0_DONE + P-negotiation_6_2_CO + P-negotiation_2_7_CO + P-negotiation_1_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_1_2_DONE + P-negotiation_3_1_DONE + P-negotiation_5_0_DONE + P-negotiation_1_7_CO + P-negotiation_5_2_CO + P-negotiation_0_5_DONE + P-negotiation_8_6_NONE + P-negotiation_2_4_DONE + P-negotiation_4_3_DONE + P-negotiation_3_1_CO + P-negotiation_6_2_DONE + P-negotiation_8_1_DONE + P-negotiation_7_7_CO + P-negotiation_8_0_NONE + P-negotiation_6_3_CO + P-negotiation_6_1_NONE + P-negotiation_1_7_DONE + P-negotiation_3_6_DONE + P-negotiation_5_5_DONE + P-negotiation_7_4_DONE + P-negotiation_4_2_NONE + P-negotiation_2_3_NONE + P-negotiation_8_8_DONE + P-negotiation_0_0_CO + P-negotiation_4_8_DONE + P-negotiation_8_1_CO + P-negotiation_6_7_DONE + P-negotiation_8_6_DONE + P-negotiation_4_6_CO + P-negotiation_4_0_NONE + P-negotiation_2_0_CO + P-negotiation_3_2_CO + P-negotiation_7_8_CO + P-negotiation_1_4_NONE + P-negotiation_3_4_CO + P-negotiation_5_0_CO + P-negotiation_1_5_CO + P-negotiation_0_7_NONE + P-negotiation_2_6_NONE + P-negotiation_4_5_NONE + P-negotiation_6_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_0_1_CO + P-negotiation_8_2_CO + P-negotiation_3_0_NONE + P-negotiation_1_1_NONE + P-negotiation_7_6_DONE + P-negotiation_5_7_DONE + P-negotiation_3_8_NONE + P-negotiation_3_8_DONE + P-negotiation_3_3_CO + P-negotiation_5_7_NONE + P-negotiation_7_6_NONE + P-negotiation_1_4_DONE + P-negotiation_3_3_DONE + P-negotiation_5_2_DONE + P-negotiation_7_1_DONE + P-negotiation_4_8_CO + P-negotiation_6_5_CO + P-negotiation_8_3_CO + P-negotiation_0_7_DONE + P-negotiation_8_8_NONE + P-negotiation_2_6_DONE + P-negotiation_4_5_DONE + P-negotiation_5_1_CO + P-negotiation_6_4_DONE + P-negotiation_0_2_CO + P-negotiation_8_3_DONE + P-negotiation_1_6_CO + P-negotiation_4_7_CO + P-negotiation_8_3_NONE + P-negotiation_6_4_CO + P-negotiation_7_1_NONE + P-negotiation_5_2_NONE + P-negotiation_3_3_NONE + P-negotiation_2_1_NONE + P-negotiation_0_2_NONE + P-negotiation_0_4_NONE + P-negotiation_6_6_CO + P-negotiation_1_4_CO + P-negotiation_2_8_CO + P-negotiation_6_7_NONE + P-negotiation_4_8_NONE + P-negotiation_4_5_CO + P-negotiation_8_0_CO + P-negotiation_3_6_NONE + P-negotiation_1_7_NONE + P-negotiation_8_1_NONE + P-negotiation_6_2_NONE + P-negotiation_7_6_CO + P-negotiation_3_5_NONE + P-negotiation_3_0_CO + P-negotiation_5_0_NONE + P-negotiation_3_1_NONE + P-negotiation_1_2_CO + P-negotiation_2_6_CO + P-negotiation_0_0_NONE + P-negotiation_6_1_CO + P-negotiation_7_7_NONE + P-negotiation_5_8_NONE + P-negotiation_4_3_CO + P-negotiation_5_7_CO + P-negotiation_1_1_CO + P-negotiation_8_4_NONE + P-negotiation_6_5_NONE + P-negotiation_4_6_NONE + P-negotiation_2_7_NONE + P-negotiation_8_5_NONE + P-negotiation_0_8_NONE + P-negotiation_7_4_CO + P-negotiation_5_3_NONE + P-negotiation_3_4_NONE + P-negotiation_1_5_NONE + P-negotiation_8_8_CO + P-negotiation_0_7_CO + P-negotiation_4_2_CO + P-negotiation_6_0_NONE + P-negotiation_0_3_NONE + P-negotiation_2_4_CO + P-negotiation_1_0_NONE + P-negotiation_3_8_CO + P-negotiation_7_3_CO + P-negotiation_8_2_DONE + P-negotiation_4_1_CO + P-negotiation_4_4_DONE + P-negotiation_2_5_DONE + P-negotiation_8_7_NONE + P-negotiation_6_8_NONE + P-negotiation_5_5_CO + P-negotiation_7_0_DONE + P-negotiation_5_1_DONE + P-negotiation_1_3_DONE + P-negotiation_7_5_NONE + P-negotiation_5_6_NONE + P-negotiation_2_3_CO + P-negotiation_3_7_NONE + P-negotiation_1_8_NONE + P-negotiation_3_7_CO + P-negotiation_7_2_CO + P-negotiation_2_0_DONE + P-negotiation_8_2_NONE + P-negotiation_0_1_DONE + P-negotiation_6_3_NONE + P-negotiation_4_4_NONE + P-negotiation_2_5_NONE + P-negotiation_8_6_CO + P-negotiation_0_6_NONE + P-negotiation_0_5_CO + P-negotiation_4_0_CO + P-negotiation_5_4_CO + P-negotiation_7_0_NONE + P-negotiation_5_1_NONE + P-negotiation_3_2_NONE + P-negotiation_1_3_NONE + P-negotiation_7_8_DONE + P-negotiation_6_8_CO + P-negotiation_2_2_CO)
lola: after: (0 <= 62)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_0_7_8 + P-masterList_0_7_7 + P-masterList_0_7_6 + P-masterList_0_7_5 + P-masterList_0_7_4 + P-masterList_0_7_3 + P-masterList_0_7_2 + P-masterList_0_7_1 + P-masterList_0_7_0 + P-masterList_5_2_0 + P-masterList_5_2_1 + P-masterList_5_2_2 + P-masterList_5_2_3 + P-masterList_5_2_4 + P-masterList_5_2_5 + P-masterList_5_2_6 + P-masterList_5_2_7 + P-masterList_5_2_8 + P-masterList_8_8_8 + P-masterList_8_8_7 + P-masterList_8_8_6 + P-masterList_8_8_5 + P-masterList_8_8_4 + P-masterList_8_8_3 + P-masterList_8_8_2 + P-masterList_8_8_1 + P-masterList_8_8_0 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_3_0 + P-masterList_5_3_1 + P-masterList_5_3_2 + P-masterList_5_3_3 + P-masterList_5_3_4 + P-masterList_5_3_5 + P-masterList_5_3_6 + P-masterList_5_3_7 + P-masterList_5_3_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_5_4_0 + P-masterList_5_4_1 + P-masterList_5_4_2 + P-masterList_5_4_3 + P-masterList_5_4_4 + P-masterList_5_4_5 + P-masterList_5_4_6 + P-masterList_5_4_7 + P-masterList_5_4_8 + P-masterList_4_7_8 + P-masterList_4_7_7 + P-masterList_4_7_6 + P-masterList_4_7_5 + P-masterList_4_7_4 + P-masterList_4_7_3 + P-masterList_4_7_2 + P-masterList_4_7_1 + P-masterList_4_7_0 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_6_8 + P-masterList_0_6_7 + P-masterList_0_6_6 + P-masterList_0_6_5 + P-masterList_0_6_4 + P-masterList_0_6_3 + P-masterList_0_6_2 + P-masterList_0_6_1 + P-masterList_0_6_0 + P-masterList_5_5_0 + P-masterList_5_5_1 + P-masterList_5_5_2 + P-masterList_5_5_3 + P-masterList_5_5_4 + P-masterList_5_5_5 + P-masterList_5_5_6 + P-masterList_5_5_7 + P-masterList_5_5_8 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_8_7_8 + P-masterList_8_7_7 + P-masterList_8_7_6 + P-masterList_8_7_5 + P-masterList_8_7_4 + P-masterList_8_7_3 + P-masterList_8_7_2 + P-masterList_8_7_1 + P-masterList_8_7_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_4_6_8 + P-masterList_4_6_7 + P-masterList_4_6_6 + P-masterList_4_6_5 + P-masterList_4_6_4 + P-masterList_4_6_3 + P-masterList_4_6_2 + P-masterList_4_6_1 + P-masterList_4_6_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_0_5_8 + P-masterList_0_5_7 + P-masterList_0_5_6 + P-masterList_0_5_5 + P-masterList_0_5_4 + P-masterList_0_5_3 + P-masterList_0_5_2 + P-masterList_0_5_1 + P-masterList_0_5_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_8_6_8 + P-masterList_8_6_7 + P-masterList_8_6_6 + P-masterList_8_6_5 + P-masterList_8_6_4 + P-masterList_8_6_3 + P-masterList_8_6_2 + P-masterList_8_6_1 + P-masterList_8_6_0 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_4_5_8 + P-masterList_4_5_7 + P-masterList_4_5_6 + P-masterList_4_5_5 + P-masterList_4_5_4 + P-masterList_4_5_3 + P-masterList_4_5_2 + P-masterList_4_5_1 + P-masterList_4_5_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_2_4_0 + P-masterList_2_4_1 + P-masterList_2_4_2 + P-masterList_2_4_3 + P-masterList_2_4_4 + P-masterList_2_4_5 + P-masterList_2_4_6 + P-masterList_2_4_7 + P-masterList_2_4_8 + P-masterList_0_4_8 + P-masterList_0_4_7 + P-masterList_0_4_6 + P-masterList_0_4_5 + P-masterList_0_4_4 + P-masterList_0_4_3 + P-masterList_0_4_2 + P-masterList_0_4_1 + P-masterList_0_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_2_5_0 + P-masterList_2_5_1 + P-masterList_2_5_2 + P-masterList_2_5_3 + P-masterList_2_5_4 + P-masterList_2_5_5 + P-masterList_2_5_6 + P-masterList_2_5_7 + P-masterList_2_5_8 + P-masterList_8_5_8 + P-masterList_8_5_7 + P-masterList_8_5_6 + P-masterList_8_5_5 + P-masterList_8_5_4 + P-masterList_8_5_3 + P-masterList_8_5_2 + P-masterList_8_5_1 + P-masterList_8_5_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_2_6_0 + P-masterList_2_6_1 + P-masterList_2_6_2 + P-masterList_2_6_3 + P-masterList_2_6_4 + P-masterList_2_6_5 + P-masterList_2_6_6 + P-masterList_2_6_7 + P-masterList_2_6_8 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_4_4_8 + P-masterList_4_4_7 + P-masterList_4_4_6 + P-masterList_4_4_5 + P-masterList_4_4_4 + P-masterList_4_4_3 + P-masterList_4_4_2 + P-masterList_4_4_1 + P-masterList_4_4_0 + P-masterList_2_7_0 + P-masterList_2_7_1 + P-masterList_2_7_2 + P-masterList_2_7_3 + P-masterList_2_7_4 + P-masterList_2_7_5 + P-masterList_2_7_6 + P-masterList_2_7_7 + P-masterList_2_7_8 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_8_4_8 + P-masterList_8_4_7 + P-masterList_8_4_6 + P-masterList_8_4_5 + P-masterList_8_4_4 + P-masterList_8_4_3 + P-masterList_8_4_2 + P-masterList_8_4_1 + P-masterList_8_4_0 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_3_1_4 + P-masterList_3_1_5 + P-masterList_3_1_6 + P-masterList_3_1_7 + P-masterList_3_1_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_4_3_8 + P-masterList_4_3_7 + P-masterList_4_3_6 + P-masterList_4_3_5 + P-masterList_4_3_4 + P-masterList_4_3_3 + P-masterList_4_3_2 + P-masterList_4_3_1 + P-masterList_4_3_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_3_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 + P-masterList_4_2_8 + P-masterList_4_2_7 + P-masterList_4_2_6 + P-masterList_4_2_5 + P-masterList_4_2_4 + P-masterList_4_2_3 + P-masterList_4_2_2 + P-masterList_4_2_1 + P-masterList_4_2_0 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_7_7_0 + P-masterList_7_7_1 + P-masterList_7_7_2 + P-masterList_7_7_3 + P-masterList_7_7_4 + P-masterList_7_7_5 + P-masterList_7_7_6 + P-masterList_7_7_7 + P-masterList_7_7_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_7_8_0 + P-masterList_7_8_1 + P-masterList_7_8_2 + P-masterList_7_8_3 + P-masterList_7_8_4 + P-masterList_7_8_5 + P-masterList_7_8_6 + P-masterList_7_8_7 + P-masterList_7_8_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_8_1_0 + P-masterList_8_1_1 + P-masterList_8_1_2 + P-masterList_8_1_3 + P-masterList_8_1_4 + P-masterList_8_1_5 + P-masterList_8_1_6 + P-masterList_8_1_7 + P-masterList_8_1_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 <= P-masterState_0_F_7 + P-masterState_0_F_6 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_4_F_7 + P-masterState_4_F_6 + P-masterState_4_F_5 + P-masterState_4_F_4 + P-masterState_4_F_3 + P-masterState_4_F_2 + P-masterState_4_F_1 + P-masterState_4_F_0 + P-masterState_8_F_7 + P-masterState_8_F_6 + P-masterState_8_F_5 + P-masterState_8_F_4 + P-masterState_8_F_3 + P-masterState_8_F_2 + P-masterState_8_F_1 + P-masterState_8_F_0 + P-masterState_2_T_7 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_6_T_7 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_7_T_0 + P-masterState_7_T_1 + P-masterState_7_T_2 + P-masterState_7_T_3 + P-masterState_7_T_4 + P-masterState_7_T_5 + P-masterState_7_T_6 + P-masterState_7_T_7 + P-masterState_7_T_8 + P-masterState_3_F_7 + P-masterState_3_F_6 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_T_4 + P-masterState_3_T_5 + P-masterState_3_T_6 + P-masterState_3_T_7 + P-masterState_3_T_8 + P-masterState_7_F_7 + P-masterState_7_F_6 + P-masterState_7_F_5 + P-masterState_7_F_4 + P-masterState_7_F_3 + P-masterState_7_F_2 + P-masterState_7_F_1 + P-masterState_7_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_5_T_7 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_5_F_0 + P-masterState_5_F_1 + P-masterState_5_F_2 + P-masterState_5_F_3 + P-masterState_5_F_4 + P-masterState_5_F_5 + P-masterState_5_F_6 + P-masterState_5_F_7 + P-masterState_5_F_8 + P-masterState_2_F_8 + P-masterState_2_F_7 + P-masterState_2_F_6 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_6_F_8 + P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_0_T_8 + P-masterState_0_T_7 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_1_F_7 + P-masterState_1_F_8 + P-masterState_4_T_8 + P-masterState_4_T_7 + P-masterState_4_T_6 + P-masterState_4_T_5 + P-masterState_4_T_4 + P-masterState_4_T_3 + P-masterState_4_T_2 + P-masterState_4_T_1 + P-masterState_4_T_0 + P-masterState_8_T_8 + P-masterState_8_T_7 + P-masterState_8_T_6 + P-masterState_8_T_5 + P-masterState_8_T_4 + P-masterState_8_T_3 + P-masterState_8_T_2 + P-masterState_8_T_1 + P-masterState_8_T_0 + P-masterState_5_T_8 + P-masterState_1_T_8 + P-masterState_7_F_8 + P-masterState_3_F_8 + P-masterState_6_T_8 + P-masterState_2_T_8 + P-masterState_8_F_8 + P-masterState_4_F_8 + P-masterState_0_F_8)
lola: after: (48 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_3_1_RP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_8 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_8 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_8_4_AnsP_8 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_4_1_AskP_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_5_8_AnnP_0 + P-network_8_1_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_8_4_AskP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_6_8_AnnP_0 + P-network_7_2_RI_0 + P-network_0_8_AskP_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_7_6_AI_0 + P-network_5_7_AI_0 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_6_0_AnsP_8 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_3_8_AI_0 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_8_0_AI_0 + P-network_1_5_AnnP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_0_8_RI_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_7_5_AskP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_8_4_RI_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_8 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_8_7_RI_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_4_8_RP_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_8 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_6_8_RI_0 + P-network_8_2_AnnP_0 + P-network_7_3_AI_0 + P-network_8_6_RP_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_8 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_2_2_AskP_0 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_8_AnnP_0 + P-network_2_1_AskP_0 + P-network_8_1_AnnP_0 + P-network_5_8_RI_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_1_4_AnnP_0 + P-network_2_8_AI_0 + P-network_4_7_AI_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_8 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_8_5_AI_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_5_6_AskP_0 + P-network_3_3_AnnP_0 + P-network_8_3_AI_0 + P-network_2_6_AskP_0 + P-network_8_6_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_0_8_AnsP_0 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_3 + P-network_0_8_AnsP_4 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_8 + P-network_7_7_RP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_7_8_AI_0 + P-network_6_4_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_5_8_RP_0 + P-network_0_2_RP_0 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_4_5_AI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_0_3_AskP_0 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_6_AI_0 + P-network_3_8_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_0_7_AI_0 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_1_0_AnnP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_8 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_8 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_7_5_RI_0 + P-network_6_4_AskP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_7_0_AskP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_5_6_RI_0 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_8_3_AskP_0 + P-network_0_5_RI_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_3_7_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_8_1_RI_0 + P-network_1_8_RI_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_3_7_AskP_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_4_4_AnnP_0 + P-network_1_7_RI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_8_8_AskP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_2_8_AnnP_0 + P-network_7_4_RI_0 + P-network_8_4_RP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_7_1_AI_0 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_3_8_RP_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_8_2_AI_0 + P-network_6_5_RP_0 + P-network_5_2_AI_0 + P-network_4_7_AnnP_0 + P-network_5_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_0_AskP_0 + P-network_8_0_AnnP_0 + P-network_4_8_RI_0 + P-network_6_7_RI_0 + P-network_2_5_AnsP_8 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_3_3_AI_0 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_8_6_RI_0 + P-network_7_3_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_8 + P-network_2_7_RP_0 + P-network_7_8_AnsP_8 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_0 + P-network_1_3_AnnP_0 + P-network_1_4_AI_0 + P-network_1_8_AI_0 + P-network_3_7_AI_0 + P-network_0_8_RP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_8_8_RP_0 + P-network_7_8_AnnP_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_1_8_AskP_0 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_8_2_RI_0 + P-network_2_5_AskP_0 + P-network_8_5_AnnP_0 + P-network_6_3_RI_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_8 + P-network_4_4_RI_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_7_8_AskP_0 + P-network_1_8_AnnP_0 + P-network_6_8_AI_0 + P-network_6_3_AnsP_8 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_2_5_AnnP_0 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_8_7_AI_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_8_5_AskP_0 + P-network_3_7_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_8 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_3_2_AskP_0 + P-network_6_3_AskP_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_8_0_RP_0 + P-network_3_4_AnsP_8 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_7_2_RP_0 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_8_2_AskP_0 + P-network_8_7_AnsP_8 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_5_3_RP_0 + P-network_5_2_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_8 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_6_8_AskP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_4_RP_0 + P-network_3_5_RP_0 + P-network_0_8_AnnP_0 + P-network_4_1_AI_0 + P-network_5_3_AnsP_8 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_8 + P-network_2_1_AI_0 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_4_1_AnnP_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_8_7_AskP_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_0_6_AnnP_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_1_5_RP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_8_3_RI_0 + P-network_0_2_AI_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_2_8_RP_0 + P-network_6_6_AskP_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_1_8_AnsP_0 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_8 + P-network_7_0_RI_0 + P-network_0_5_AnsP_0 + P-network_5_1_RI_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_8_5_RP_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_7_3_AnnP_0 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_4_6_AnnP_0 + P-network_1_3_RI_0 + P-network_3_8_RI_0 + P-network_2_0_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_8_5_AnsP_0 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_8 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_0_8_AI_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_7_8_RP_0 + P-network_8_4_AI_0 + P-network_5_8_AskP_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_8_0_AskP_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_3_1_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_8 + P-network_2_4_AskP_0 + P-network_8_4_AnnP_0 + P-network_8_8_RI_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_5_8_AI_0 + P-network_6_2_AnsP_8 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_4_7_AskP_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_6_0_RP_0 + P-network_4_8_AnsP_0 + P-network_3_6_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_4_1_RP_0 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_4_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_3_RP_0 + P-network_5_1_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_8 + P-network_7_0_RP_0 + P-network_4_8_AskP_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_8_1_AskP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_6_1_AskP_0 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_2_0_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_8_0_RI_0 + P-network_0_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_8_8_AnnP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_2_8_AskP_0 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_8_2_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_3_8_AnsP_8 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_0 + P-network_8_6_AskP_0 + P-network_8_0_AnsP_0 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_8 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_8 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_3_5_AnnP_0 + P-network_0_5_AI_0 + P-network_1_8_RP_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_8_1_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_3_8_AskP_0 + P-network_2_8_RI_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_4_2_AskP_0 + P-network_8_5_RI_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_0_RP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_6_8_RP_0 + P-network_7_4_AI_0 + P-network_8_7_RP_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_3_0_AnnP_0 + P-network_8_6_AI_0 + P-network_2_3_AskP_0 + P-network_8_3_AnnP_0 + P-network_7_8_RI_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_2_8_AnsP_4 + P-network_6_7_AI_0 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_7_6_AskP_0 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_8 + P-network_1_6_AnnP_0 + P-network_4_8_AI_0 + P-network_4_8_AI_1 + P-network_4_8_AI_2 + P-network_4_8_AI_3 + P-network_4_8_AI_4 + P-network_4_8_AI_5 + P-network_4_8_AI_6 + P-network_4_8_AI_7 + P-network_4_8_AI_8 + P-network_1_6_AnnP_1 + P-network_1_6_AnnP_2 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_4 + P-network_1_6_AnnP_5 + P-network_1_6_AnnP_6 + P-network_1_6_AnnP_7 + P-network_1_6_AnnP_8 + P-network_6_7_AI_8 + P-network_6_7_AI_7 + P-network_6_7_AI_6 + P-network_6_7_AI_5 + P-network_7_6_AskP_1 + P-network_7_6_AskP_2 + P-network_7_6_AskP_3 + P-network_7_6_AskP_4 + P-network_7_6_AskP_5 + P-network_7_6_AskP_6 + P-network_7_6_AskP_7 + P-network_7_6_AskP_8 + P-network_6_7_AI_4 + P-network_6_7_AI_3 + P-network_6_7_AI_2 + P-network_6_7_AI_1 + P-network_8_6_AI_8 + P-network_8_6_AI_7 + P-network_8_6_AI_6 + P-network_8_6_AI_5 + P-network_8_6_AI_4 + P-network_8_6_AI_3 + P-network_7_8_RI_1 + P-network_7_8_RI_2 + P-network_7_8_RI_3 + P-network_7_8_RI_4 + P-network_7_8_RI_5 + P-network_7_8_RI_6 + P-network_7_8_RI_7 + P-network_7_8_RI_8 + P-network_8_6_AI_2 + P-network_8_3_AnnP_1 + P-network_8_3_AnnP_2 + P-network_8_3_AnnP_3 + P-network_8_3_AnnP_4 + P-network_8_3_AnnP_5 + P-network_8_3_AnnP_6 + P-network_8_3_AnnP_7 + P-network_8_3_AnnP_8 + P-network_8_6_AI_1 + P-network_2_3_AskP_1 + P-network_2_3_AskP_2 + P-network_2_3_AskP_3 + P-network_2_3_AskP_4 + P-network_2_3_AskP_5 + P-network_2_3_AskP_6 + P-network_2_3_AskP_7 + P-network_2_3_AskP_8 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_0_AnnP_7 + P-network_3_0_AnnP_8 + P-network_5_7_AskP_1 + P-network_5_7_AskP_2 + P-network_5_7_AskP_3 + P-network_5_7_AskP_4 + P-network_5_7_AskP_5 + P-network_5_7_AskP_6 + P-network_5_7_AskP_7 + P-network_5_7_AskP_8 + P-network_8_7_RP_1 + P-network_8_7_RP_2 + P-network_8_7_RP_3 + P-network_8_7_RP_4 + P-network_8_7_RP_5 + P-network_8_7_RP_6 + P-network_8_7_RP_7 + P-network_8_7_RP_8 + P-network_7_4_AI_1 + P-network_7_4_AI_2 + P-network_7_4_AI_3 + P-network_7_4_AI_4 + P-network_7_4_AI_5 + P-network_7_4_AI_6 + P-network_7_4_AI_7 + P-network_7_4_AI_8 + P-network_6_8_RP_1 + P-network_6_8_RP_2 + P-network_6_8_RP_3 + P-network_6_8_RP_4 + P-network_6_8_RP_5 + P-network_6_8_RP_6 + P-network_6_8_RP_7 + P-network_6_8_RP_8 + P-network_1_0_RP_8 + P-network_1_0_RP_7 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_5_5_AI_7 + P-network_5_5_AI_8 + P-network_1_0_RP_6 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_6_4_AnnP_7 + P-network_6_4_AnnP_8 + P-network_1_0_RP_5 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_0_4_AskP_7 + P-network_0_4_AskP_8 + P-network_1_0_RP_4 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_3_6_AI_7 + P-network_3_6_AI_8 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_1_7_AI_1 + P-network_1_7_AI_2 + P-network_1_7_AI_3 + P-network_1_7_AI_4 + P-network_1_7_AI_5 + P-network_1_7_AI_6 + P-network_1_7_AI_7 + P-network_1_7_AI_8 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_1_1_AnnP_7 + P-network_1_1_AnnP_8 + P-network_4_2_AskP_8 + P-network_4_2_AskP_7 + P-network_4_2_AskP_6 + P-network_4_2_AskP_5 + P-network_4_2_AskP_4 + P-network_4_2_AskP_3 + P-network_4_2_AskP_2 + P-network_4_2_AskP_1 + P-network_8_5_RI_1 + P-network_8_5_RI_2 + P-network_8_5_RI_3 + P-network_8_5_RI_4 + P-network_8_5_RI_5 + P-network_8_5_RI_6 + P-network_8_5_RI_7 + P-network_8_5_RI_8 + P-network_7_1_AskP_1 + P-network_7_1_AskP_2 + P-network_7_1_AskP_3 + P-network_7_1_AskP_4 + P-network_7_1_AskP_5 + P-network_7_1_AskP_6 + P-network_7_1_AskP_7 + P-network_7_1_AskP_8 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_6_6_RI_7 + P-network_6_6_RI_8 + P-network_4_7_RI_1 + P-network_4_7_RI_2 + P-network_4_7_RI_3 + P-network_4_7_RI_4 + P-network_4_7_RI_5 + P-network_4_7_RI_6 + P-network_4_7_RI_7 + P-network_4_7_RI_8 + P-network_2_8_RI_1 + P-network_2_8_RI_2 + P-network_2_8_RI_3 + P-network_2_8_RI_4 + P-network_2_8_RI_5 + P-network_2_8_RI_6 + P-network_2_8_RI_7 + P-network_2_8_RI_8 + P-network_3_8_AskP_1 + P-network_3_8_AskP_2 + P-network_3_8_AskP_3 + P-network_3_8_AskP_4 + P-network_3_8_AskP_5 + P-network_3_8_AskP_6 + P-network_3_8_AskP_7 + P-network_3_8_AskP_8 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_4_5_AnnP_7 + P-network_4_5_AnnP_8 + P-network_8_1_AI_1 + P-network_8_1_AI_2 + P-network_8_1_AI_3 + P-network_8_1_AI_4 + P-network_8_1_AI_5 + P-network_8_1_AI_6 + P-network_8_1_AI_7 + P-network_8_1_AI_8 + P-network_7_5_RP_1 + P-network_7_5_RP_2 + P-network_7_5_RP_3 + P-network_7_5_RP_4 + P-network_7_5_RP_5 + P-network_7_5_RP_6 + P-network_7_5_RP_7 + P-network_7_5_RP_8 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_6_2_AI_7 + P-network_6_2_AI_8 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_5_2_AskP_7 + P-network_5_2_AskP_8 + P-network_5_6_RP_1 + P-network_5_6_RP_2 + P-network_5_6_RP_3 + P-network_5_6_RP_4 + P-network_5_6_RP_5 + P-network_5_6_RP_6 + P-network_5_6_RP_7 + P-network_5_6_RP_8 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_3_AI_7 + P-network_4_3_AI_8 + P-network_3_7_RP_1 + P-network_3_7_RP_2 + P-network_3_7_RP_3 + P-network_3_7_RP_4 + P-network_3_7_RP_5 + P-network_3_7_RP_6 + P-network_3_7_RP_7 + P-network_3_7_RP_8 + P-network_3_5_AnnP_8 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_2_4_AI_5 + P-network_2_4_AI_6 + P-network_2_4_AI_7 + P-network_2_4_AI_8 + P-network_3_5_AnnP_7 + P-network_1_8_RP_1 + P-network_1_8_RP_2 + P-network_1_8_RP_3 + P-network_1_8_RP_4 + P-network_1_8_RP_5 + P-network_1_8_RP_6 + P-network_1_8_RP_7 + P-network_1_8_RP_8 + P-network_3_5_AnnP_6 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_0_5_AI_7 + P-network_0_5_AI_8 + P-network_3_5_AnnP_5 + P-network_3_5_AnnP_4 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_1 + P-network_7_3_RI_1 + P-network_7_3_RI_2 + P-network_7_3_RI_3 + P-network_7_3_RI_4 + P-network_7_3_RI_5 + P-network_7_3_RI_6 + P-network_7_3_RI_7 + P-network_7_3_RI_8 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_5_4_RI_7 + P-network_5_4_RI_8 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_2_6_AnnP_7 + P-network_2_6_AnnP_8 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_3_5_RI_7 + P-network_3_5_RI_8 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_1_6_RI_7 + P-network_1_6_RI_8 + P-network_8_6_AskP_1 + P-network_8_6_AskP_2 + P-network_8_6_AskP_3 + P-network_8_6_AskP_4 + P-network_8_6_AskP_5 + P-network_8_6_AskP_6 + P-network_8_6_AskP_7 + P-network_8_6_AskP_8 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_3_3_AskP_7 + P-network_3_3_AskP_8 + P-network_4_0_AnnP_1 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_5 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_7 + P-network_4_0_AnnP_8 + P-network_8_2_RP_1 + P-network_8_2_RP_2 + P-network_8_2_RP_3 + P-network_8_2_RP_4 + P-network_8_2_RP_5 + P-network_8_2_RP_6 + P-network_8_2_RP_7 + P-network_8_2_RP_8 + P-network_2_8_AskP_8 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_6_3_RP_7 + P-network_6_3_RP_8 + P-network_2_8_AskP_7 + P-network_2_8_AskP_6 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_0_AI_7 + P-network_5_0_AI_8 + P-network_2_8_AskP_5 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_4_4_RP_7 + P-network_4_4_RP_8 + P-network_2_8_AskP_4 + P-network_2_8_AskP_3 + P-network_2_8_AskP_2 + P-network_2_8_AskP_1 + P-network_8_8_AnnP_8 + P-network_8_8_AnnP_7 + P-network_8_8_AnnP_6 + P-network_8_8_AnnP_5 + P-network_8_8_AnnP_4 + P-network_8_8_AnnP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_1_AI_7 + P-network_3_1_AI_8 + P-network_8_8_AnnP_2 + P-network_0_7_AnnP_1 + P-network_0_7_AnnP_2 + P-network_0_7_AnnP_3 + P-network_0_7_AnnP_4 + P-network_0_7_AnnP_5 + P-network_0_7_AnnP_6 + P-network_0_7_AnnP_7 + P-network_0_7_AnnP_8 + P-network_8_8_AnnP_1 + P-network_0_1_RI_8 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_2_5_RP_7 + P-network_2_5_RP_8 + P-network_0_1_RI_7 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_1_2_AI_7 + P-network_1_2_AI_8 + P-network_0_1_RI_6 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_0_6_RP_7 + P-network_0_6_RP_8 + P-network_0_1_RI_5 + P-network_6_7_AskP_1 + P-network_6_7_AskP_2 + P-network_6_7_AskP_3 + P-network_6_7_AskP_4 + P-network_6_7_AskP_5 + P-network_6_7_AskP_6 + P-network_6_7_AskP_7 + P-network_6_7_AskP_8 + P-network_0_1_RI_4 + P-network_0_1_RI_3 + P-network_0_1_RI_2 + P-network_0_1_RI_1 + P-network_8_0_RI_1 + P-network_8_0_RI_2 + P-network_8_0_RI_3 + P-network_8_0_RI_4 + P-network_8_0_RI_5 + P-network_8_0_RI_6 + P-network_8_0_RI_7 + P-network_8_0_RI_8 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_6_1_RI_4 + P-network_6_1_RI_5 + P-network_6_1_RI_6 + P-network_6_1_RI_7 + P-network_6_1_RI_8 + P-network_7_4_AnnP_1 + P-network_7_4_AnnP_2 + P-network_7_4_AnnP_3 + P-network_7_4_AnnP_4 + P-network_7_4_AnnP_5 + P-network_7_4_AnnP_6 + P-network_7_4_AnnP_7 + P-network_7_4_AnnP_8 + P-network_1_4_AskP_1 + P-network_1_4_AskP_2 + P-network_1_4_AskP_3 + P-network_1_4_AskP_4 + P-network_1_4_AskP_5 + P-network_1_4_AskP_6 + P-network_1_4_AskP_7 + P-network_1_4_AskP_8 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_4_2_RI_7 + P-network_4_2_RI_8 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_2_3_RI_7 + P-network_2_3_RI_8 + P-network_2_0_RI_8 + P-network_2_0_RI_7 + P-network_2_0_RI_6 + P-network_2_0_RI_5 + P-network_2_0_RI_4 + P-network_2_0_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_6_1_AskP_8 + P-network_6_1_AskP_7 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_0_4_RI_7 + P-network_0_4_RI_8 + P-network_6_1_AskP_6 + P-network_6_1_AskP_5 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_2_1_AnnP_7 + P-network_2_1_AnnP_8 + P-network_6_1_AskP_4 + P-network_6_1_AskP_3 + P-network_6_1_AskP_2 + P-network_6_1_AskP_1 + P-network_8_1_AskP_1 + P-network_8_1_AskP_2 + P-network_8_1_AskP_3 + P-network_8_1_AskP_4 + P-network_8_1_AskP_5 + P-network_8_1_AskP_6 + P-network_8_1_AskP_7 + P-network_8_1_AskP_8 + P-network_4_8_AskP_1 + P-network_4_8_AskP_2 + P-network_4_8_AskP_3 + P-network_4_8_AskP_4 + P-network_4_8_AskP_5 + P-network_4_8_AskP_6 + P-network_4_8_AskP_7 + P-network_4_8_AskP_8 + P-network_7_0_RP_1 + P-network_7_0_RP_2 + P-network_7_0_RP_3 + P-network_7_0_RP_4 + P-network_7_0_RP_5 + P-network_7_0_RP_6 + P-network_7_0_RP_7 + P-network_7_0_RP_8 + P-network_0_1_AnnP_8 + P-network_0_1_AnnP_7 + P-network_0_1_AnnP_6 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_5_1_RP_1 + P-network_5_1_RP_2 + P-network_5_1_RP_3 + P-network_5_1_RP_4 + P-network_5_1_RP_5 + P-network_5_1_RP_6 + P-network_5_1_RP_7 + P-network_5_1_RP_8 + P-network_0_3_RP_8 + P-network_0_3_RP_7 + P-network_0_3_RP_6 + P-network_0_3_RP_5 + P-network_0_3_RP_4 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_5_5_AnnP_7 + P-network_5_5_AnnP_8 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_3_2_RP_4 + P-network_3_2_RP_5 + P-network_3_2_RP_6 + P-network_3_2_RP_7 + P-network_3_2_RP_8 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_1_3_RP_4 + P-network_1_3_RP_5 + P-network_1_3_RP_6 + P-network_1_3_RP_7 + P-network_1_3_RP_8 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_0_AI_4 + P-network_0_0_AI_5 + P-network_0_0_AI_6 + P-network_0_0_AI_7 + P-network_0_0_AI_8 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_0_2_AnnP_7 + P-network_0_2_AnnP_8 + P-network_2_2_RP_8 + P-network_2_2_RP_7 + P-network_2_2_RP_6 + P-network_2_2_RP_5 + P-network_2_2_RP_4 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_2_2_RP_1 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_6_2_AskP_7 + P-network_6_2_AskP_8 + P-network_5_4_AnnP_8 + P-network_5_4_AnnP_7 + P-network_5_4_AnnP_6 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4 + P-network_3_0_RI_5 + P-network_3_0_RI_6 + P-network_3_0_RI_7 + P-network_3_0_RI_8 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_1_1_RI_7 + P-network_1_1_RI_8 + P-network_4_1_RP_8 + P-network_4_1_RP_7 + P-network_4_1_RP_6 + P-network_4_1_RP_5 + P-network_4_1_RP_4 + P-network_4_1_RP_3 + P-network_4_1_RP_2 + P-network_4_1_RP_1 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_6_AnnP_7 + P-network_3_6_AnnP_8 + P-network_6_0_RP_8 + P-network_6_0_RP_7 + P-network_6_0_RP_6 + P-network_6_0_RP_5 + P-network_6_0_RP_4 + P-network_6_0_RP_3 + P-network_6_0_RP_2 + P-network_6_0_RP_1 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_4_3_AskP_7 + P-network_4_3_AskP_8 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_2_0_RP_7 + P-network_2_0_RP_8 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_0_1_RP_7 + P-network_0_1_RP_8 + P-network_4_7_AskP_8 + P-network_4_7_AskP_7 + P-network_4_7_AskP_6 + P-network_4_7_AskP_5 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_5_0_AnnP_7 + P-network_5_0_AnnP_8 + P-network_4_7_AskP_4 + P-network_4_7_AskP_3 + P-network_4_7_AskP_2 + P-network_4_7_AskP_1 + P-network_7_7_AI_1 + P-network_7_7_AI_2 + P-network_7_7_AI_3 + P-network_7_7_AI_4 + P-network_7_7_AI_5 + P-network_7_7_AI_6 + P-network_7_7_AI_7 + P-network_7_7_AI_8 + P-network_5_8_AI_1 + P-network_5_8_AI_2 + P-network_5_8_AI_3 + P-network_5_8_AI_4 + P-network_5_8_AI_5 + P-network_5_8_AI_6 + P-network_5_8_AI_7 + P-network_5_8_AI_8 + P-network_1_7_AnnP_1 + P-network_1_7_AnnP_2 + P-network_1_7_AnnP_3 + P-network_1_7_AnnP_4 + P-network_1_7_AnnP_5 + P-network_1_7_AnnP_6 + P-network_1_7_AnnP_7 + P-network_1_7_AnnP_8 + P-network_7_7_AskP_1 + P-network_7_7_AskP_2 + P-network_7_7_AskP_3 + P-network_7_7_AskP_4 + P-network_7_7_AskP_5 + P-network_7_7_AskP_6 + P-network_7_7_AskP_7 + P-network_7_7_AskP_8 + P-network_8_8_RI_1 + P-network_8_8_RI_2 + P-network_8_8_RI_3 + P-network_8_8_RI_4 + P-network_8_8_RI_5 + P-network_8_8_RI_6 + P-network_8_8_RI_7 + P-network_8_8_RI_8 + P-network_8_4_AnnP_1 + P-network_8_4_AnnP_2 + P-network_8_4_AnnP_3 + P-network_8_4_AnnP_4 + P-network_8_4_AnnP_5 + P-network_8_4_AnnP_6 + P-network_8_4_AnnP_7 + P-network_8_4_AnnP_8 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_4_AskP_7 + P-network_2_4_AskP_8 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_5 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_7 + P-network_3_1_AnnP_8 + P-network_8_0_AskP_8 + P-network_8_0_AskP_7 + P-network_8_0_AskP_6 + P-network_8_0_AskP_5 + P-network_8_0_AskP_4 + P-network_8_0_AskP_3 + P-network_8_0_AskP_2 + P-network_8_0_AskP_1 + P-network_5_8_AskP_1 + P-network_5_8_AskP_2 + P-network_5_8_AskP_3 + P-network_5_8_AskP_4 + P-network_5_8_AskP_5 + P-network_5_8_AskP_6 + P-network_5_8_AskP_7 + P-network_5_8_AskP_8 + P-network_8_4_AI_1 + P-network_8_4_AI_2 + P-network_8_4_AI_3 + P-network_8_4_AI_4 + P-network_8_4_AI_5 + P-network_8_4_AI_6 + P-network_8_4_AI_7 + P-network_8_4_AI_8 + P-network_7_8_RP_1 + P-network_7_8_RP_2 + P-network_7_8_RP_3 + P-network_7_8_RP_4 + P-network_7_8_RP_5 + P-network_7_8_RP_6 + P-network_7_8_RP_7 + P-network_7_8_RP_8 + P-network_6_5_AI_1 + P-network_6_5_AI_2 + P-network_6_5_AI_3 + P-network_6_5_AI_4 + P-network_6_5_AI_5 + P-network_6_5_AI_6 + P-network_6_5_AI_7 + P-network_6_5_AI_8 + P-network_6_5_AnnP_1 + P-network_6_5_AnnP_2 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_7 + P-network_6_5_AnnP_8 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_0_5_AskP_7 + P-network_0_5_AskP_8 + P-network_4_6_AI_1 + P-network_4_6_AI_2 + P-network_4_6_AI_3 + P-network_4_6_AI_4 + P-network_4_6_AI_5 + P-network_4_6_AI_6 + P-network_4_6_AI_7 + P-network_4_6_AI_8 + P-network_2_7_AI_1 + P-network_2_7_AI_2 + P-network_2_7_AI_3 + P-network_2_7_AI_4 + P-network_2_7_AI_5 + P-network_2_7_AI_6 + P-network_2_7_AI_7 + P-network_2_7_AI_8 + P-network_0_8_AI_1 + P-network_0_8_AI_2 + P-network_0_8_AI_3 + P-network_0_8_AI_4 + P-network_0_8_AI_5 + P-network_0_8_AI_6 + P-network_0_8_AI_7 + P-network_0_8_AI_8 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_7 + P-network_1_2_AnnP_8 + P-network_7_2_AskP_1 + P-network_7_2_AskP_2 + P-network_7_2_AskP_3 + P-network_7_2_AskP_4 + P-network_7_2_AskP_5 + P-network_7_2_AskP_6 + P-network_7_2_AskP_7 + P-network_7_2_AskP_8 + P-network_7_6_RI_1 + P-network_7_6_RI_2 + P-network_7_6_RI_3 + P-network_7_6_RI_4 + P-network_7_6_RI_5 + P-network_7_6_RI_6 + P-network_7_6_RI_7 + P-network_7_6_RI_8 + P-network_2_0_AnnP_8 + P-network_2_0_AnnP_7 + P-network_2_0_AnnP_6 + P-network_2_0_AnnP_5 + P-network_2_0_AnnP_4 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_1 + P-network_5_7_RI_1 + P-network_5_7_RI_2 + P-network_5_7_RI_3 + P-network_5_7_RI_4 + P-network_5_7_RI_5 + P-network_5_7_RI_6 + P-network_5_7_RI_7 + P-network_5_7_RI_8 + P-network_1_3_RI_8 + P-network_1_3_RI_7 + P-network_3_8_RI_1 + P-network_3_8_RI_2 + P-network_3_8_RI_3 + P-network_3_8_RI_4 + P-network_3_8_RI_5 + P-network_3_8_RI_6 + P-network_3_8_RI_7 + P-network_3_8_RI_8 + P-network_1_3_RI_6 + P-network_1_3_RI_5 + P-network_1_3_RI_4 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_3_2_RI_8 + P-network_3_2_RI_7 + P-network_3_2_RI_6 + P-network_3_2_RI_5 + P-network_3_2_RI_4 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_4_6_AnnP_7 + P-network_4_6_AnnP_8 + P-network_1_3_AskP_8 + P-network_1_3_AskP_7 + P-network_1_3_AskP_6 + P-network_1_3_AskP_5 + P-network_1_3_AskP_4 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_7_3_AnnP_8 + P-network_7_3_AnnP_7 + P-network_7_3_AnnP_6 + P-network_7_3_AnnP_5 + P-network_7_3_AnnP_4 + P-network_7_3_AnnP_3 + P-network_7_3_AnnP_2 + P-network_7_3_AnnP_1 + P-network_5_1_RI_8 + P-network_5_1_RI_7 + P-network_5_1_RI_6 + P-network_8_5_RP_1 + P-network_8_5_RP_2 + P-network_8_5_RP_3 + P-network_8_5_RP_4 + P-network_8_5_RP_5 + P-network_8_5_RP_6 + P-network_8_5_RP_7 + P-network_8_5_RP_8 + P-network_5_1_RI_5 + P-network_7_2_AI_1 + P-network_7_2_AI_2 + P-network_7_2_AI_3 + P-network_7_2_AI_4 + P-network_7_2_AI_5 + P-network_7_2_AI_6 + P-network_7_2_AI_7 + P-network_7_2_AI_8 + P-network_5_1_RI_4 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_5_3_AskP_7 + P-network_5_3_AskP_8 + P-network_5_1_RI_3 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_6_6_RP_7 + P-network_6_6_RP_8 + P-network_5_1_RI_2 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_5_3_AI_7 + P-network_5_3_AI_8 + P-network_5_1_RI_1 + P-network_7_0_RI_8 + P-network_7_0_RI_7 + P-network_7_0_RI_6 + P-network_7_0_RI_5 + P-network_7_0_RI_4 + P-network_7_0_RI_3 + P-network_7_0_RI_2 + P-network_7_0_RI_1 + P-network_4_7_RP_1 + P-network_4_7_RP_2 + P-network_4_7_RP_3 + P-network_4_7_RP_4 + P-network_4_7_RP_5 + P-network_4_7_RP_6 + P-network_4_7_RP_7 + P-network_4_7_RP_8 + P-network_6_6_AskP_8 + P-network_6_6_AskP_7 + P-network_6_6_AskP_6 + P-network_6_6_AskP_5 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AI_5 + P-network_3_4_AI_6 + P-network_3_4_AI_7 + P-network_3_4_AI_8 + P-network_0_2_AI_8 + P-network_2_8_RP_1 + P-network_2_8_RP_2 + P-network_2_8_RP_3 + P-network_2_8_RP_4 + P-network_2_8_RP_5 + P-network_2_8_RP_6 + P-network_2_8_RP_7 + P-network_2_8_RP_8 + P-network_0_2_AI_7 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_1_5_AI_7 + P-network_1_5_AI_8 + P-network_0_2_AI_6 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_6_0_AnnP_3 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_6_0_AnnP_6 + P-network_6_0_AnnP_7 + P-network_6_0_AnnP_8 + P-network_0_2_AI_5 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_0_0_AskP_7 + P-network_0_0_AskP_8 + P-network_0_2_AI_4 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_1_5_RP_8 + P-network_1_5_RP_7 + P-network_1_5_RP_6 + P-network_1_5_RP_5 + P-network_1_5_RP_4 + P-network_8_3_RI_1 + P-network_8_3_RI_2 + P-network_8_3_RI_3 + P-network_8_3_RI_4 + P-network_8_3_RI_5 + P-network_8_3_RI_6 + P-network_8_3_RI_7 + P-network_8_3_RI_8 + P-network_1_5_RP_3 + P-network_1_5_RP_2 + P-network_1_5_RP_1 + P-network_0_6_AnnP_8 + P-network_0_6_AnnP_7 + P-network_0_6_AnnP_6 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_2 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_6_4_RI_7 + P-network_6_4_RI_8 + P-network_0_6_AnnP_1 + P-network_2_7_AnnP_1 + P-network_2_7_AnnP_2 + P-network_2_7_AnnP_3 + P-network_2_7_AnnP_4 + P-network_2_7_AnnP_5 + P-network_2_7_AnnP_6 + P-network_2_7_AnnP_7 + P-network_2_7_AnnP_8 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_4_5_RI_7 + P-network_4_5_RI_8 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_2_6_RI_7 + P-network_2_6_RI_8 + P-network_8_7_AskP_1 + P-network_8_7_AskP_2 + P-network_8_7_AskP_3 + P-network_8_7_AskP_4 + P-network_8_7_AskP_5 + P-network_8_7_AskP_6 + P-network_8_7_AskP_7 + P-network_8_7_AskP_8 + P-network_0_7_RI_1 + P-network_0_7_RI_2 + P-network_0_7_RI_3 + P-network_0_7_RI_4 + P-network_0_7_RI_5 + P-network_0_7_RI_6 + P-network_0_7_RI_7 + P-network_0_7_RI_8 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_3_4_AskP_7 + P-network_3_4_AskP_8 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_4_1_AnnP_7 + P-network_4_1_AnnP_8 + P-network_2_1_AI_8 + P-network_2_1_AI_7 + P-network_7_3_RP_1 + P-network_7_3_RP_2 + P-network_7_3_RP_3 + P-network_7_3_RP_4 + P-network_7_3_RP_5 + P-network_7_3_RP_6 + P-network_7_3_RP_7 + P-network_7_3_RP_8 + P-network_2_1_AI_6 + P-network_6_0_AI_1 + P-network_6_0_AI_2 + P-network_6_0_AI_3 + P-network_6_0_AI_4 + P-network_6_0_AI_5 + P-network_6_0_AI_6 + P-network_6_0_AI_7 + P-network_6_0_AI_8 + P-network_2_1_AI_5 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_5_4_RP_7 + P-network_5_4_RP_8 + P-network_2_1_AI_4 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_1_AI_1 + P-network_3_4_RP_8 + P-network_3_4_RP_7 + P-network_3_4_RP_6 + P-network_3_4_RP_5 + P-network_3_4_RP_4 + P-network_3_4_RP_3 + P-network_4_1_AI_1 + P-network_4_1_AI_2 + P-network_4_1_AI_3 + P-network_4_1_AI_4 + P-network_4_1_AI_5 + P-network_4_1_AI_6 + P-network_4_1_AI_7 + P-network_4_1_AI_8 + P-network_3_4_RP_2 + P-network_0_8_AnnP_1 + P-network_0_8_AnnP_2 + P-network_0_8_AnnP_3 + P-network_0_8_AnnP_4 + P-network_0_8_AnnP_5 + P-network_0_8_AnnP_6 + P-network_0_8_AnnP_7 + P-network_0_8_AnnP_8 + P-network_3_4_RP_1 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_3_5_RP_7 + P-network_3_5_RP_8 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_2_2_AI_4 + P-network_2_2_AI_5 + P-network_2_2_AI_6 + P-network_2_2_AI_7 + P-network_2_2_AI_8 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_1_6_RP_7 + P-network_1_6_RP_8 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_0_3_AI_4 + P-network_0_3_AI_5 + P-network_0_3_AI_6 + P-network_0_3_AI_7 + P-network_0_3_AI_8 + P-network_6_8_AskP_1 + P-network_6_8_AskP_2 + P-network_6_8_AskP_3 + P-network_6_8_AskP_4 + P-network_6_8_AskP_5 + P-network_6_8_AskP_6 + P-network_6_8_AskP_7 + P-network_6_8_AskP_8 + P-network_4_0_AI_8 + P-network_4_0_AI_7 + P-network_4_0_AI_6 + P-network_4_0_AI_5 + P-network_4_0_AI_4 + P-network_7_1_RI_1 + P-network_7_1_RI_2 + P-network_7_1_RI_3 + P-network_7_1_RI_4 + P-network_7_1_RI_5 + P-network_7_1_RI_6 + P-network_7_1_RI_7 + P-network_7_1_RI_8 + P-network_4_0_AI_3 + P-network_7_5_AnnP_1 + P-network_7_5_AnnP_2 + P-network_7_5_AnnP_3 + P-network_7_5_AnnP_4 + P-network_7_5_AnnP_5 + P-network_7_5_AnnP_6 + P-network_7_5_AnnP_7 + P-network_7_5_AnnP_8 + P-network_4_0_AI_2 + P-network_4_0_AI_1 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_1_5_AskP_7 + P-network_1_5_AskP_8 + P-network_5_3_RP_8 + P-network_5_2_RI_1 + P-network_5_2_RI_2 + P-network_5_2_RI_3 + P-network_5_2_RI_4 + P-network_5_2_RI_5 + P-network_5_2_RI_6 + P-network_5_2_RI_7 + P-network_5_2_RI_8 + P-network_5_3_RP_7 + P-network_5_3_RP_6 + P-network_5_3_RP_5 + P-network_5_3_RP_4 + P-network_5_3_RP_3 + P-network_5_3_RP_2 + P-network_5_3_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_3_3_RI_4 + P-network_3_3_RI_5 + P-network_3_3_RI_6 + P-network_3_3_RI_7 + P-network_3_3_RI_8 + P-network_1_4_RI_1 + P-network_1_4_RI_2 + P-network_1_4_RI_3 + P-network_1_4_RI_4 + P-network_1_4_RI_5 + P-network_1_4_RI_6 + P-network_1_4_RI_7 + P-network_1_4_RI_8 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_6 + P-network_2_2_AnnP_7 + P-network_2_2_AnnP_8 + P-network_7_2_RP_8 + P-network_7_2_RP_7 + P-network_7_2_RP_6 + P-network_7_2_RP_5 + P-network_8_2_AskP_1 + P-network_8_2_AskP_2 + P-network_8_2_AskP_3 + P-network_8_2_AskP_4 + P-network_8_2_AskP_5 + P-network_8_2_AskP_6 + P-network_8_2_AskP_7 + P-network_8_2_AskP_8 + P-network_7_2_RP_4 + P-network_7_2_RP_3 + P-network_7_2_RP_2 + P-network_7_2_RP_1 + P-network_8_0_RP_1 + P-network_8_0_RP_2 + P-network_8_0_RP_3 + P-network_8_0_RP_4 + P-network_8_0_RP_5 + P-network_8_0_RP_6 + P-network_8_0_RP_7 + P-network_8_0_RP_8 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_1_RP_7 + P-network_6_1_RP_8 + P-network_5_6_AnnP_1 + P-network_5_6_AnnP_2 + P-network_5_6_AnnP_3 + P-network_5_6_AnnP_4 + P-network_5_6_AnnP_5 + P-network_5_6_AnnP_6 + P-network_5_6_AnnP_7 + P-network_5_6_AnnP_8 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_4_2_RP_7 + P-network_4_2_RP_8 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_2_3_RP_6 + P-network_2_3_RP_7 + P-network_2_3_RP_8 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_0_AI_7 + P-network_1_0_AI_8 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_0_4_RP_7 + P-network_0_4_RP_8 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_7 + P-network_0_3_AnnP_8 + P-network_3_2_AskP_8 + P-network_3_2_AskP_7 + P-network_3_2_AskP_6 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_6_3_AskP_1 + P-network_6_3_AskP_2 + P-network_6_3_AskP_3 + P-network_6_3_AskP_4 + P-network_6_3_AskP_5 + P-network_6_3_AskP_6 + P-network_6_3_AskP_7 + P-network_6_3_AskP_8 + P-network_3_2_AskP_1 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_4_0_RI_5 + P-network_4_0_RI_6 + P-network_4_0_RI_7 + P-network_4_0_RI_8 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_2_1_RI_7 + P-network_2_1_RI_8 + P-network_7_0_AnnP_1 + P-network_7_0_AnnP_2 + P-network_7_0_AnnP_3 + P-network_7_0_AnnP_4 + P-network_7_0_AnnP_5 + P-network_7_0_AnnP_6 + P-network_7_0_AnnP_7 + P-network_7_0_AnnP_8 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_0_AskP_7 + P-network_1_0_AskP_8 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_0_2_RI_7 + P-network_0_2_RI_8 + P-network_8_5_AskP_8 + P-network_8_5_AskP_7 + P-network_8_5_AskP_6 + P-network_3_7_AnnP_1 + P-network_3_7_AnnP_2 + P-network_3_7_AnnP_3 + P-network_3_7_AnnP_4 + P-network_3_7_AnnP_5 + P-network_3_7_AnnP_6 + P-network_3_7_AnnP_7 + P-network_3_7_AnnP_8 + P-network_8_5_AskP_5 + P-network_8_5_AskP_4 + P-network_8_5_AskP_3 + P-network_8_5_AskP_2 + P-network_8_5_AskP_1 + P-network_0_6_RI_8 + P-network_0_6_RI_7 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_4_4_AskP_7 + P-network_4_4_AskP_8 + P-network_0_6_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_3_0_RP_7 + P-network_3_0_RP_8 + P-network_2_5_RI_8 + P-network_2_5_RI_7 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_2_5_RI_3 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_2_5_AnnP_8 + P-network_2_5_AnnP_7 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_1_1_RP_7 + P-network_1_1_RP_8 + P-network_2_5_AnnP_6 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_5_1_AnnP_7 + P-network_5_1_AnnP_8 + P-network_2_5_AnnP_5 + P-network_8_7_AI_1 + P-network_8_7_AI_2 + P-network_8_7_AI_3 + P-network_8_7_AI_4 + P-network_8_7_AI_5 + P-network_8_7_AI_6 + P-network_8_7_AI_7 + P-network_8_7_AI_8 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_6_8_AI_1 + P-network_6_8_AI_2 + P-network_6_8_AI_3 + P-network_6_8_AI_4 + P-network_6_8_AI_5 + P-network_6_8_AI_6 + P-network_6_8_AI_7 + P-network_6_8_AI_8 + P-network_1_8_AnnP_1 + P-network_1_8_AnnP_2 + P-network_1_8_AnnP_3 + P-network_1_8_AnnP_4 + P-network_1_8_AnnP_5 + P-network_1_8_AnnP_6 + P-network_1_8_AnnP_7 + P-network_1_8_AnnP_8 + P-network_4_4_RI_8 + P-network_4_4_RI_7 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_7_8_AskP_1 + P-network_7_8_AskP_2 + P-network_7_8_AskP_3 + P-network_7_8_AskP_4 + P-network_7_8_AskP_5 + P-network_7_8_AskP_6 + P-network_7_8_AskP_7 + P-network_7_8_AskP_8 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_6_3_RI_8 + P-network_6_3_RI_7 + P-network_6_3_RI_6 + P-network_6_3_RI_5 + P-network_6_3_RI_4 + P-network_6_3_RI_3 + P-network_6_3_RI_2 + P-network_6_3_RI_1 + P-network_8_5_AnnP_1 + P-network_8_5_AnnP_2 + P-network_8_5_AnnP_3 + P-network_8_5_AnnP_4 + P-network_8_5_AnnP_5 + P-network_8_5_AnnP_6 + P-network_8_5_AnnP_7 + P-network_8_5_AnnP_8 + P-network_8_2_RI_8 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_2_5_AskP_7 + P-network_2_5_AskP_8 + P-network_8_2_RI_7 + P-network_8_2_RI_6 + P-network_8_2_RI_5 + P-network_8_2_RI_4 + P-network_8_2_RI_3 + P-network_8_2_RI_2 + P-network_8_2_RI_1 + P-network_1_8_AskP_8 + P-network_1_8_AskP_7 + P-network_1_8_AskP_6 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_3_2_AnnP_7 + P-network_3_2_AnnP_8 + P-network_1_8_AskP_5 + P-network_1_8_AskP_4 + P-network_1_8_AskP_3 + P-network_1_8_AskP_2 + P-network_1_8_AskP_1 + P-network_7_8_AnnP_8 + P-network_7_8_AnnP_7 + P-network_7_8_AnnP_6 + P-network_7_8_AnnP_5 + P-network_7_8_AnnP_4 + P-network_7_8_AnnP_3 + P-network_7_8_AnnP_2 + P-network_7_8_AnnP_1 + P-network_0_8_RP_8 + P-network_8_8_RP_1 + P-network_8_8_RP_2 + P-network_8_8_RP_3 + P-network_8_8_RP_4 + P-network_8_8_RP_5 + P-network_8_8_RP_6 + P-network_8_8_RP_7 + P-network_8_8_RP_8 + P-network_0_8_RP_7 + P-network_7_5_AI_1 + P-network_7_5_AI_2 + P-network_7_5_AI_3 + P-network_7_5_AI_4 + P-network_7_5_AI_5 + P-network_7_5_AI_6 + P-network_7_5_AI_7 + P-network_7_5_AI_8 + P-network_0_8_RP_6 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_6_6_AnnP_7 + P-network_6_6_AnnP_8 + P-network_0_8_RP_5 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_6_AskP_7 + P-network_0_6_AskP_8 + P-network_0_8_RP_4 + P-network_0_8_RP_3 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_5_6_AI_7 + P-network_5_6_AI_8 + P-network_0_8_RP_2 + P-network_0_8_RP_1 + P-network_1_4_AI_8 + P-network_1_4_AI_7 + P-network_1_4_AI_6 + P-network_1_4_AI_5 + P-network_1_4_AI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_3_7_AI_1 + P-network_3_7_AI_2 + P-network_3_7_AI_3 + P-network_3_7_AI_4 + P-network_3_7_AI_5 + P-network_3_7_AI_6 + P-network_3_7_AI_7 + P-network_3_7_AI_8 + P-network_1_4_AI_1 + P-network_1_8_AI_1 + P-network_1_8_AI_2 + P-network_1_8_AI_3 + P-network_1_8_AI_4 + P-network_1_8_AI_5 + P-network_1_8_AI_6 + P-network_1_8_AI_7 + P-network_1_8_AI_8 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_3_AnnP_7 + P-network_1_3_AnnP_8 + P-network_2_7_RP_8 + P-network_2_7_RP_7 + P-network_2_7_RP_6 + P-network_2_7_RP_5 + P-network_2_7_RP_4 + P-network_2_7_RP_3 + P-network_2_7_RP_2 + P-network_2_7_RP_1 + P-network_3_3_AI_8 + P-network_3_3_AI_7 + P-network_7_3_AskP_1 + P-network_7_3_AskP_2 + P-network_7_3_AskP_3 + P-network_7_3_AskP_4 + P-network_7_3_AskP_5 + P-network_7_3_AskP_6 + P-network_7_3_AskP_7 + P-network_7_3_AskP_8 + P-network_3_3_AI_6 + P-network_8_6_RI_1 + P-network_8_6_RI_2 + P-network_8_6_RI_3 + P-network_8_6_RI_4 + P-network_8_6_RI_5 + P-network_8_6_RI_6 + P-network_8_6_RI_7 + P-network_8_6_RI_8 + P-network_3_3_AI_5 + P-network_3_3_AI_4 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_4_6_RP_8 + P-network_4_6_RP_7 + P-network_4_6_RP_6 + P-network_4_6_RP_5 + P-network_4_6_RP_4 + P-network_6_7_RI_1 + P-network_6_7_RI_2 + P-network_6_7_RI_3 + P-network_6_7_RI_4 + P-network_6_7_RI_5 + P-network_6_7_RI_6 + P-network_6_7_RI_7 + P-network_6_7_RI_8 + P-network_4_6_RP_3 + P-network_4_8_RI_1 + P-network_4_8_RI_2 + P-network_4_8_RI_3 + P-network_4_8_RI_4 + P-network_4_8_RI_5 + P-network_4_8_RI_6 + P-network_4_8_RI_7 + P-network_4_8_RI_8 + P-network_4_6_RP_2 + P-network_8_0_AnnP_1 + P-network_8_0_AnnP_2 + P-network_8_0_AnnP_3 + P-network_8_0_AnnP_4 + P-network_8_0_AnnP_5 + P-network_8_0_AnnP_6 + P-network_8_0_AnnP_7 + P-network_8_0_AnnP_8 + P-network_4_6_RP_1 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AskP_4 + P-network_2_0_AskP_5 + P-network_2_0_AskP_6 + P-network_2_0_AskP_7 + P-network_2_0_AskP_8 + P-network_5_1_AskP_8 + P-network_5_1_AskP_7 + P-network_5_1_AskP_6 + P-network_5_1_AskP_5 + P-network_5_1_AskP_4 + P-network_5_1_AskP_3 + P-network_5_1_AskP_2 + P-network_5_1_AskP_1 + P-network_5_2_AI_8 + P-network_5_2_AI_7 + P-network_5_2_AI_6 + P-network_5_2_AI_5 + P-network_5_2_AI_4 + P-network_5_2_AI_3 + P-network_4_7_AnnP_1 + P-network_4_7_AnnP_2 + P-network_4_7_AnnP_3 + P-network_4_7_AnnP_4 + P-network_4_7_AnnP_5 + P-network_4_7_AnnP_6 + P-network_4_7_AnnP_7 + P-network_4_7_AnnP_8 + P-network_5_2_AI_2 + P-network_5_2_AI_1 + P-network_6_5_RP_8 + P-network_6_5_RP_7 + P-network_6_5_RP_6 + P-network_6_5_RP_5 + P-network_6_5_RP_4 + P-network_6_5_RP_3 + P-network_6_5_RP_2 + P-network_6_5_RP_1 + P-network_8_2_AI_1 + P-network_8_2_AI_2 + P-network_8_2_AI_3 + P-network_8_2_AI_4 + P-network_8_2_AI_5 + P-network_8_2_AI_6 + P-network_8_2_AI_7 + P-network_8_2_AI_8 + P-network_5_4_AskP_1 + P-network_5_4_AskP_2 + P-network_5_4_AskP_3 + P-network_5_4_AskP_4 + P-network_5_4_AskP_5 + P-network_5_4_AskP_6 + P-network_5_4_AskP_7 + P-network_5_4_AskP_8 + P-network_7_6_RP_1 + P-network_7_6_RP_2 + P-network_7_6_RP_3 + P-network_7_6_RP_4 + P-network_7_6_RP_5 + P-network_7_6_RP_6 + P-network_7_6_RP_7 + P-network_7_6_RP_8 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_3_AI_7 + P-network_6_3_AI_8 + P-network_7_1_AI_8 + P-network_5_7_RP_1 + P-network_5_7_RP_2 + P-network_5_7_RP_3 + P-network_5_7_RP_4 + P-network_5_7_RP_5 + P-network_5_7_RP_6 + P-network_5_7_RP_7 + P-network_5_7_RP_8 + P-network_7_1_AI_7 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_4_4_AI_7 + P-network_4_4_AI_8 + P-network_7_1_AI_6 + P-network_3_8_RP_1 + P-network_3_8_RP_2 + P-network_3_8_RP_3 + P-network_3_8_RP_4 + P-network_3_8_RP_5 + P-network_3_8_RP_6 + P-network_3_8_RP_7 + P-network_3_8_RP_8 + P-network_7_1_AI_5 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_2_5_AI_3 + P-network_2_5_AI_4 + P-network_2_5_AI_5 + P-network_2_5_AI_6 + P-network_2_5_AI_7 + P-network_2_5_AI_8 + P-network_7_1_AI_4 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_1_AnnP_7 + P-network_6_1_AnnP_8 + P-network_7_1_AI_3 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_0_1_AskP_4 + P-network_0_1_AskP_5 + P-network_0_1_AskP_6 + P-network_0_1_AskP_7 + P-network_0_1_AskP_8 + P-network_7_1_AI_2 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_6_AI_7 + P-network_0_6_AI_8 + P-network_7_1_AI_1 + P-network_8_4_RP_8 + P-network_8_4_RP_7 + P-network_8_4_RP_6 + P-network_8_4_RP_5 + P-network_8_4_RP_4 + P-network_8_4_RP_3 + P-network_8_4_RP_2 + P-network_8_4_RP_1 + P-network_7_4_RI_1 + P-network_7_4_RI_2 + P-network_7_4_RI_3 + P-network_7_4_RI_4 + P-network_7_4_RI_5 + P-network_7_4_RI_6 + P-network_7_4_RI_7 + P-network_7_4_RI_8 + P-network_2_8_AnnP_1 + P-network_2_8_AnnP_2 + P-network_2_8_AnnP_3 + P-network_2_8_AnnP_4 + P-network_2_8_AnnP_5 + P-network_2_8_AnnP_6 + P-network_2_8_AnnP_7 + P-network_2_8_AnnP_8 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_5_5_RI_7 + P-network_5_5_RI_8 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_3_6_RI_7 + P-network_3_6_RI_8 + P-network_8_8_AskP_1 + P-network_8_8_AskP_2 + P-network_8_8_AskP_3 + P-network_8_8_AskP_4 + P-network_8_8_AskP_5 + P-network_8_8_AskP_6 + P-network_8_8_AskP_7 + P-network_8_8_AskP_8 + P-network_4_4_AnnP_8 + P-network_4_4_AnnP_7 + P-network_4_4_AnnP_6 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_4 + P-network_4_4_AnnP_3 + P-network_1_7_RI_1 + P-network_1_7_RI_2 + P-network_1_7_RI_3 + P-network_1_7_RI_4 + P-network_1_7_RI_5 + P-network_1_7_RI_6 + P-network_1_7_RI_7 + P-network_1_7_RI_8 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_1 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_3_5_AskP_7 + P-network_3_5_AskP_8 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_4_2_AnnP_7 + P-network_4_2_AnnP_8 + P-network_8_3_RP_1 + P-network_8_3_RP_2 + P-network_8_3_RP_3 + P-network_8_3_RP_4 + P-network_8_3_RP_5 + P-network_8_3_RP_6 + P-network_8_3_RP_7 + P-network_8_3_RP_8 + P-network_7_0_AI_1 + P-network_7_0_AI_2 + P-network_7_0_AI_3 + P-network_7_0_AI_4 + P-network_7_0_AI_5 + P-network_7_0_AI_6 + P-network_7_0_AI_7 + P-network_7_0_AI_8 + P-network_6_4_RP_1 + P-network_6_4_RP_2 + P-network_6_4_RP_3 + P-network_6_4_RP_4 + P-network_6_4_RP_5 + P-network_6_4_RP_6 + P-network_6_4_RP_7 + P-network_6_4_RP_8 + P-network_3_7_AskP_8 + P-network_3_7_AskP_7 + P-network_3_7_AskP_6 + P-network_3_7_AskP_5 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_5_1_AI_6 + P-network_5_1_AI_7 + P-network_5_1_AI_8 + P-network_3_7_AskP_4 + P-network_4_5_RP_1 + P-network_4_5_RP_2 + P-network_4_5_RP_3 + P-network_4_5_RP_4 + P-network_4_5_RP_5 + P-network_4_5_RP_6 + P-network_4_5_RP_7 + P-network_4_5_RP_8 + P-network_3_7_AskP_3 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_2_AI_7 + P-network_3_2_AI_8 + P-network_3_7_AskP_2 + P-network_3_7_AskP_1 + P-network_2_6_RP_1 + P-network_2_6_RP_2 + P-network_2_6_RP_3 + P-network_2_6_RP_4 + P-network_2_6_RP_5 + P-network_2_6_RP_6 + P-network_2_6_RP_7 + P-network_2_6_RP_8 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_1_3_AI_7 + P-network_1_3_AI_8 + P-network_1_8_RI_8 + P-network_1_8_RI_7 + P-network_0_7_RP_1 + P-network_0_7_RP_2 + P-network_0_7_RP_3 + P-network_0_7_RP_4 + P-network_0_7_RP_5 + P-network_0_7_RP_6 + P-network_0_7_RP_7 + P-network_0_7_RP_8 + P-network_1_8_RI_6 + P-network_1_8_RI_5 + P-network_1_8_RI_4 + P-network_1_8_RI_3 + P-network_1_8_RI_2 + P-network_1_8_RI_1 + P-network_3_7_RI_8 + P-network_3_7_RI_7 + P-network_3_7_RI_6 + P-network_8_1_RI_1 + P-network_8_1_RI_2 + P-network_8_1_RI_3 + P-network_8_1_RI_4 + P-network_8_1_RI_5 + P-network_8_1_RI_6 + P-network_8_1_RI_7 + P-network_8_1_RI_8 + P-network_3_7_RI_5 + P-network_7_6_AnnP_1 + P-network_7_6_AnnP_2 + P-network_7_6_AnnP_3 + P-network_7_6_AnnP_4 + P-network_7_6_AnnP_5 + P-network_7_6_AnnP_6 + P-network_7_6_AnnP_7 + P-network_7_6_AnnP_8 + P-network_3_7_RI_4 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_1_6_AskP_7 + P-network_1_6_AskP_8 + P-network_3_7_RI_3 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_6_2_RI_7 + P-network_6_2_RI_8 + P-network_3_7_RI_2 + P-network_3_7_RI_1 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_4_3_RI_7 + P-network_4_3_RI_8 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_2_4_RI_7 + P-network_2_4_RI_8 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_2_3_AnnP_7 + P-network_2_3_AnnP_8 + P-network_5_6_RI_8 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_0_5_RI_7 + P-network_0_5_RI_8 + P-network_5_6_RI_7 + P-network_8_3_AskP_1 + P-network_8_3_AskP_2 + P-network_8_3_AskP_3 + P-network_8_3_AskP_4 + P-network_8_3_AskP_5 + P-network_8_3_AskP_6 + P-network_8_3_AskP_7 + P-network_8_3_AskP_8 + P-network_5_6_RI_6 + P-network_5_6_RI_5 + P-network_5_6_RI_4 + P-network_5_6_RI_3 + P-network_5_6_RI_2 + P-network_5_6_RI_1 + P-network_7_0_AskP_8 + P-network_7_0_AskP_7 + P-network_7_0_AskP_6 + P-network_7_0_AskP_5 + P-network_7_0_AskP_4 + P-network_7_0_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_3_0_AskP_7 + P-network_3_0_AskP_8 + P-network_7_0_AskP_2 + P-network_7_0_AskP_1 + P-network_7_1_RP_1 + P-network_7_1_RP_2 + P-network_7_1_RP_3 + P-network_7_1_RP_4 + P-network_7_1_RP_5 + P-network_7_1_RP_6 + P-network_7_1_RP_7 + P-network_7_1_RP_8 + P-network_5_7_AnnP_1 + P-network_5_7_AnnP_2 + P-network_5_7_AnnP_3 + P-network_5_7_AnnP_4 + P-network_5_7_AnnP_5 + P-network_5_7_AnnP_6 + P-network_5_7_AnnP_7 + P-network_5_7_AnnP_8 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_5_2_RP_7 + P-network_5_2_RP_8 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_3_RP_6 + P-network_3_3_RP_7 + P-network_3_3_RP_8 + P-network_7_5_RI_8 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_0_AI_7 + P-network_2_0_AI_8 + P-network_7_5_RI_7 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_1_4_RP_7 + P-network_1_4_RP_8 + P-network_7_5_RI_6 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_0_1_AI_7 + P-network_0_1_AI_8 + P-network_7_5_RI_5 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_0_4_AnnP_7 + P-network_0_4_AnnP_8 + P-network_7_5_RI_4 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_6_4_AskP_7 + P-network_6_4_AskP_8 + P-network_7_5_RI_3 + P-network_7_5_RI_2 + P-network_7_5_RI_1 + P-network_1_0_AnnP_8 + P-network_1_0_AnnP_7 + P-network_1_0_AnnP_6 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_3 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_5_0_RI_4 + P-network_5_0_RI_5 + P-network_5_0_RI_6 + P-network_5_0_RI_7 + P-network_5_0_RI_8 + P-network_1_0_AnnP_2 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_3_1_RI_5 + P-network_3_1_RI_6 + P-network_3_1_RI_7 + P-network_3_1_RI_8 + P-network_1_0_AnnP_1 + P-network_7_1_AnnP_1 + P-network_7_1_AnnP_2 + P-network_7_1_AnnP_3 + P-network_7_1_AnnP_4 + P-network_7_1_AnnP_5 + P-network_7_1_AnnP_6 + P-network_7_1_AnnP_7 + P-network_7_1_AnnP_8 + P-network_0_7_AI_8 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_1_1_AskP_7 + P-network_1_1_AskP_8 + P-network_0_7_AI_7 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_1_2_RI_7 + P-network_1_2_RI_8 + P-network_0_7_AI_6 + P-network_0_7_AI_5 + P-network_0_7_AI_4 + P-network_0_7_AI_3 + P-network_0_7_AI_2 + P-network_0_7_AI_1 + P-network_2_6_AI_8 + P-network_2_6_AI_7 + P-network_2_6_AI_6 + P-network_3_8_AnnP_1 + P-network_3_8_AnnP_2 + P-network_3_8_AnnP_3 + P-network_3_8_AnnP_4 + P-network_3_8_AnnP_5 + P-network_3_8_AnnP_6 + P-network_3_8_AnnP_7 + P-network_3_8_AnnP_8 + P-network_2_6_AI_5 + P-network_2_6_AI_4 + P-network_2_6_AI_3 + P-network_2_6_AI_2 + P-network_2_6_AI_1 + P-network_0_3_AskP_8 + P-network_0_3_AskP_7 + P-network_0_3_AskP_6 + P-network_0_3_AskP_5 + P-network_0_3_AskP_4 + P-network_0_3_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_6_3_AnnP_8 + P-network_6_3_AnnP_7 + P-network_6_3_AnnP_6 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_3 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_1 + P-network_4_5_AI_8 + P-network_4_5_AI_7 + P-network_4_5_AI_6 + P-network_4_5_AskP_1 + P-network_4_5_AskP_2 + P-network_4_5_AskP_3 + P-network_4_5_AskP_4 + P-network_4_5_AskP_5 + P-network_4_5_AskP_6 + P-network_4_5_AskP_7 + P-network_4_5_AskP_8 + P-network_4_5_AI_5 + P-network_4_0_RP_1 + P-network_4_0_RP_2 + P-network_4_0_RP_3 + P-network_4_0_RP_4 + P-network_4_0_RP_5 + P-network_4_0_RP_6 + P-network_4_0_RP_7 + P-network_4_0_RP_8 + P-network_4_5_AI_4 + P-network_4_5_AI_3 + P-network_4_5_AI_2 + P-network_4_5_AI_1 + P-network_5_8_RP_8 + P-network_5_8_RP_7 + P-network_5_8_RP_6 + P-network_5_8_RP_5 + P-network_5_8_RP_4 + P-network_5_8_RP_3 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_2_1_RP_4 + P-network_2_1_RP_5 + P-network_2_1_RP_6 + P-network_2_1_RP_7 + P-network_2_1_RP_8 + P-network_5_8_RP_2 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AnnP_7 + P-network_5_2_AnnP_8 + P-network_5_8_RP_1 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_0_2_RP_4 + P-network_0_2_RP_5 + P-network_0_2_RP_6 + P-network_0_2_RP_7 + P-network_0_2_RP_8 + P-network_6_4_AI_8 + P-network_6_4_AI_7 + P-network_6_4_AI_6 + P-network_6_4_AI_5 + P-network_6_4_AI_4 + P-network_6_4_AI_3 + P-network_6_4_AI_2 + P-network_6_4_AI_1 + P-network_7_7_RP_8 + P-network_7_8_AI_1 + P-network_7_8_AI_2 + P-network_7_8_AI_3 + P-network_7_8_AI_4 + P-network_7_8_AI_5 + P-network_7_8_AI_6 + P-network_7_8_AI_7 + P-network_7_8_AI_8 + P-network_7_7_RP_7 + P-network_7_7_RP_6 + P-network_7_7_RP_5 + P-network_7_7_RP_4 + P-network_7_7_RP_3 + P-network_7_7_RP_2 + P-network_7_7_RP_1 + P-network_8_3_AI_8 + P-network_8_3_AI_7 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_0_0_RI_7 + P-network_0_0_RI_8 + P-network_8_3_AI_6 + P-network_8_6_AnnP_1 + P-network_8_6_AnnP_2 + P-network_8_6_AnnP_3 + P-network_8_6_AnnP_4 + P-network_8_6_AnnP_5 + P-network_8_6_AnnP_6 + P-network_8_6_AnnP_7 + P-network_8_6_AnnP_8 + P-network_8_3_AI_5 + P-network_2_6_AskP_1 + P-network_2_6_AskP_2 + P-network_2_6_AskP_3 + P-network_2_6_AskP_4 + P-network_2_6_AskP_5 + P-network_2_6_AskP_6 + P-network_2_6_AskP_7 + P-network_2_6_AskP_8 + P-network_8_3_AI_4 + P-network_8_3_AI_3 + P-network_8_3_AI_2 + P-network_8_3_AI_1 + P-network_5_6_AskP_8 + P-network_5_6_AskP_7 + P-network_5_6_AskP_6 + P-network_5_6_AskP_5 + P-network_5_6_AskP_4 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_3_3_AnnP_7 + P-network_3_3_AnnP_8 + P-network_5_6_AskP_3 + P-network_5_6_AskP_2 + P-network_5_6_AskP_1 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_4_0_AskP_7 + P-network_4_0_AskP_8 + P-network_8_5_AI_1 + P-network_8_5_AI_2 + P-network_8_5_AI_3 + P-network_8_5_AI_4 + P-network_8_5_AI_5 + P-network_8_5_AI_6 + P-network_8_5_AI_7 + P-network_8_5_AI_8 + P-network_6_7_AnnP_1 + P-network_6_7_AnnP_2 + P-network_6_7_AnnP_3 + P-network_6_7_AnnP_4 + P-network_6_7_AnnP_5 + P-network_6_7_AnnP_6 + P-network_6_7_AnnP_7 + P-network_6_7_AnnP_8 + P-network_0_7_AskP_1 + P-network_0_7_AskP_2 + P-network_0_7_AskP_3 + P-network_0_7_AskP_4 + P-network_0_7_AskP_5 + P-network_0_7_AskP_6 + P-network_0_7_AskP_7 + P-network_0_7_AskP_8 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_6_AI_7 + P-network_6_6_AI_8 + P-network_4_7_AI_1 + P-network_4_7_AI_2 + P-network_4_7_AI_3 + P-network_4_7_AI_4 + P-network_4_7_AI_5 + P-network_4_7_AI_6 + P-network_4_7_AI_7 + P-network_4_7_AI_8 + P-network_2_8_AI_1 + P-network_2_8_AI_2 + P-network_2_8_AI_3 + P-network_2_8_AI_4 + P-network_2_8_AI_5 + P-network_2_8_AI_6 + P-network_2_8_AI_7 + P-network_2_8_AI_8 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_1_4_AnnP_7 + P-network_1_4_AnnP_8 + P-network_7_4_AskP_1 + P-network_7_4_AskP_2 + P-network_7_4_AskP_3 + P-network_7_4_AskP_4 + P-network_7_4_AskP_5 + P-network_7_4_AskP_6 + P-network_7_4_AskP_7 + P-network_7_4_AskP_8 + P-network_7_7_RI_1 + P-network_7_7_RI_2 + P-network_7_7_RI_3 + P-network_7_7_RI_4 + P-network_7_7_RI_5 + P-network_7_7_RI_6 + P-network_7_7_RI_7 + P-network_7_7_RI_8 + P-network_5_8_RI_1 + P-network_5_8_RI_2 + P-network_5_8_RI_3 + P-network_5_8_RI_4 + P-network_5_8_RI_5 + P-network_5_8_RI_6 + P-network_5_8_RI_7 + P-network_5_8_RI_8 + P-network_8_1_AnnP_1 + P-network_8_1_AnnP_2 + P-network_8_1_AnnP_3 + P-network_8_1_AnnP_4 + P-network_8_1_AnnP_5 + P-network_8_1_AnnP_6 + P-network_8_1_AnnP_7 + P-network_8_1_AnnP_8 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_1_AskP_7 + P-network_2_1_AskP_8 + P-network_4_8_AnnP_1 + P-network_4_8_AnnP_2 + P-network_4_8_AnnP_3 + P-network_4_8_AnnP_4 + P-network_4_8_AnnP_5 + P-network_4_8_AnnP_6 + P-network_4_8_AnnP_7 + P-network_4_8_AnnP_8 + P-network_2_2_AskP_8 + P-network_2_2_AskP_7 + P-network_2_2_AskP_6 + P-network_2_2_AskP_5 + P-network_2_2_AskP_4 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_8_2_AnnP_8 + P-network_8_2_AnnP_7 + P-network_8_2_AnnP_6 + P-network_8_2_AnnP_5 + P-network_8_2_AnnP_4 + P-network_8_2_AnnP_3 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_5_5_AskP_7 + P-network_5_5_AskP_8 + P-network_8_2_AnnP_2 + P-network_8_6_RP_1 + P-network_8_6_RP_2 + P-network_8_6_RP_3 + P-network_8_6_RP_4 + P-network_8_6_RP_5 + P-network_8_6_RP_6 + P-network_8_6_RP_7 + P-network_8_6_RP_8 + P-network_8_2_AnnP_1 + P-network_7_3_AI_1 + P-network_7_3_AI_2 + P-network_7_3_AI_3 + P-network_7_3_AI_4 + P-network_7_3_AI_5 + P-network_7_3_AI_6 + P-network_7_3_AI_7 + P-network_7_3_AI_8 + P-network_6_8_RI_8 + P-network_6_8_RI_7 + P-network_6_8_RI_6 + P-network_6_8_RI_5 + P-network_6_8_RI_4 + P-network_6_8_RI_3 + P-network_6_8_RI_2 + P-network_6_8_RI_1 + P-network_8_7_RI_8 + P-network_6_7_RP_1 + P-network_6_7_RP_2 + P-network_6_7_RP_3 + P-network_6_7_RP_4 + P-network_6_7_RP_5 + P-network_6_7_RP_6 + P-network_6_7_RP_7 + P-network_6_7_RP_8 + P-network_8_7_RI_7 + P-network_5_4_AI_1 + P-network_5_4_AI_2 + P-network_5_4_AI_3 + P-network_5_4_AI_4 + P-network_5_4_AI_5 + P-network_5_4_AI_6 + P-network_5_4_AI_7 + P-network_5_4_AI_8 + P-network_8_7_RI_6 + P-network_4_8_RP_1 + P-network_4_8_RP_2 + P-network_4_8_RP_3 + P-network_4_8_RP_4 + P-network_4_8_RP_5 + P-network_4_8_RP_6 + P-network_4_8_RP_7 + P-network_4_8_RP_8 + P-network_8_7_RI_5 + P-network_3_5_AI_1 + P-network_3_5_AI_2 + P-network_3_5_AI_3 + P-network_3_5_AI_4 + P-network_3_5_AI_5 + P-network_3_5_AI_6 + P-network_3_5_AI_7 + P-network_3_5_AI_8 + P-network_8_7_RI_4 + P-network_6_2_AnnP_1 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_3 + P-network_6_2_AnnP_4 + P-network_6_2_AnnP_5 + P-network_6_2_AnnP_6 + P-network_6_2_AnnP_7 + P-network_6_2_AnnP_8 + P-network_8_7_RI_3 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_0_2_AskP_7 + P-network_0_2_AskP_8 + P-network_8_7_RI_2 + P-network_1_6_AI_1 + P-network_1_6_AI_2 + P-network_1_6_AI_3 + P-network_1_6_AI_4 + P-network_1_6_AI_5 + P-network_1_6_AI_6 + P-network_1_6_AI_7 + P-network_1_6_AI_8 + P-network_8_7_RI_1 + P-network_8_4_RI_1 + P-network_8_4_RI_2 + P-network_8_4_RI_3 + P-network_8_4_RI_4 + P-network_8_4_RI_5 + P-network_8_4_RI_6 + P-network_8_4_RI_7 + P-network_8_4_RI_8 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_6_5_RI_7 + P-network_6_5_RI_8 + P-network_7_5_AskP_8 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_4_6_RI_7 + P-network_4_6_RI_8 + P-network_7_5_AskP_7 + P-network_7_5_AskP_6 + P-network_7_5_AskP_5 + P-network_7_5_AskP_4 + P-network_7_5_AskP_3 + P-network_7_5_AskP_2 + P-network_7_5_AskP_1 + P-network_2_7_RI_1 + P-network_2_7_RI_2 + P-network_2_7_RI_3 + P-network_2_7_RI_4 + P-network_2_7_RI_5 + P-network_2_7_RI_6 + P-network_2_7_RI_7 + P-network_2_7_RI_8 + P-network_0_8_RI_1 + P-network_0_8_RI_2 + P-network_0_8_RI_3 + P-network_0_8_RI_4 + P-network_0_8_RI_5 + P-network_0_8_RI_6 + P-network_0_8_RI_7 + P-network_0_8_RI_8 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_3_6_AskP_7 + P-network_3_6_AskP_8 + P-network_1_5_AnnP_8 + P-network_1_5_AnnP_7 + P-network_1_5_AnnP_6 + P-network_1_5_AnnP_5 + P-network_1_5_AnnP_4 + P-network_4_3_AnnP_1 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_7 + P-network_4_3_AnnP_8 + P-network_1_5_AnnP_3 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_1 + P-network_3_8_AI_8 + P-network_3_8_AI_7 + P-network_3_8_AI_6 + P-network_3_8_AI_5 + P-network_3_8_AI_4 + P-network_3_8_AI_3 + P-network_8_0_AI_1 + P-network_8_0_AI_2 + P-network_8_0_AI_3 + P-network_8_0_AI_4 + P-network_8_0_AI_5 + P-network_8_0_AI_6 + P-network_8_0_AI_7 + P-network_8_0_AI_8 + P-network_3_8_AI_2 + P-network_7_4_RP_1 + P-network_7_4_RP_2 + P-network_7_4_RP_3 + P-network_7_4_RP_4 + P-network_7_4_RP_5 + P-network_7_4_RP_6 + P-network_7_4_RP_7 + P-network_7_4_RP_8 + P-network_3_8_AI_1 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_6_1_AI_3 + P-network_6_1_AI_4 + P-network_6_1_AI_5 + P-network_6_1_AI_6 + P-network_6_1_AI_7 + P-network_6_1_AI_8 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_5_RP_7 + P-network_5_5_RP_8 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_4_2_AI_7 + P-network_4_2_AI_8 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_5_0_AskP_7 + P-network_5_0_AskP_8 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_3_6_RP_7 + P-network_3_6_RP_8 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_3_AI_7 + P-network_2_3_AI_8 + P-network_5_7_AI_8 + P-network_5_7_AI_7 + P-network_5_7_AI_6 + P-network_5_7_AI_5 + P-network_5_7_AI_4 + P-network_5_7_AI_3 + P-network_1_7_RP_1 + P-network_1_7_RP_2 + P-network_1_7_RP_3 + P-network_1_7_RP_4 + P-network_1_7_RP_5 + P-network_1_7_RP_6 + P-network_1_7_RP_7 + P-network_1_7_RP_8 + P-network_5_7_AI_2 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_0_4_AI_5 + P-network_0_4_AI_6 + P-network_0_4_AI_7 + P-network_0_4_AI_8 + P-network_5_7_AI_1 + P-network_7_6_AI_8 + P-network_7_6_AI_7 + P-network_7_6_AI_6 + P-network_7_6_AI_5 + P-network_7_6_AI_4 + P-network_7_6_AI_3 + P-network_7_6_AI_2 + P-network_7_6_AI_1 + P-network_0_8_AskP_8 + P-network_0_8_AskP_7 + P-network_0_8_AskP_6 + P-network_0_8_AskP_5 + P-network_0_8_AskP_4 + P-network_0_8_AskP_3 + P-network_0_8_AskP_2 + P-network_7_7_AnnP_1 + P-network_7_7_AnnP_2 + P-network_7_7_AnnP_3 + P-network_7_7_AnnP_4 + P-network_7_7_AnnP_5 + P-network_7_7_AnnP_6 + P-network_7_7_AnnP_7 + P-network_7_7_AnnP_8 + P-network_0_8_AskP_1 + P-network_1_7_AskP_1 + P-network_1_7_AskP_2 + P-network_1_7_AskP_3 + P-network_1_7_AskP_4 + P-network_1_7_AskP_5 + P-network_1_7_AskP_6 + P-network_1_7_AskP_7 + P-network_1_7_AskP_8 + P-network_6_8_AnnP_8 + P-network_7_2_RI_1 + P-network_7_2_RI_2 + P-network_7_2_RI_3 + P-network_7_2_RI_4 + P-network_7_2_RI_5 + P-network_7_2_RI_6 + P-network_7_2_RI_7 + P-network_7_2_RI_8 + P-network_6_8_AnnP_7 + P-network_6_8_AnnP_6 + P-network_6_8_AnnP_5 + P-network_6_8_AnnP_4 + P-network_6_8_AnnP_3 + P-network_6_8_AnnP_2 + P-network_6_8_AnnP_1 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_5_3_RI_7 + P-network_5_3_RI_8 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_3_4_RI_7 + P-network_3_4_RI_8 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_2_4_AnnP_7 + P-network_2_4_AnnP_8 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_1_5_RI_7 + P-network_1_5_RI_8 + P-network_8_4_AskP_1 + P-network_8_4_AskP_2 + P-network_8_4_AskP_3 + P-network_8_4_AskP_4 + P-network_8_4_AskP_5 + P-network_8_4_AskP_6 + P-network_8_4_AskP_7 + P-network_8_4_AskP_8 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_1_AskP_7 + P-network_3_1_AskP_8 + P-network_8_1_RP_1 + P-network_8_1_RP_2 + P-network_8_1_RP_3 + P-network_8_1_RP_4 + P-network_8_1_RP_5 + P-network_8_1_RP_6 + P-network_8_1_RP_7 + P-network_8_1_RP_8 + P-network_5_8_AnnP_1 + P-network_5_8_AnnP_2 + P-network_5_8_AnnP_3 + P-network_5_8_AnnP_4 + P-network_5_8_AnnP_5 + P-network_5_8_AnnP_6 + P-network_5_8_AnnP_7 + P-network_5_8_AnnP_8 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_6_2_RP_7 + P-network_6_2_RP_8 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_4_3_RP_7 + P-network_4_3_RP_8 + P-network_0_0_RP_8 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_3_0_AI_4 + P-network_3_0_AI_5 + P-network_3_0_AI_6 + P-network_3_0_AI_7 + P-network_3_0_AI_8 + P-network_0_0_RP_7 + P-network_2_4_RP_1 + P-network_2_4_RP_2 + P-network_2_4_RP_3 + P-network_2_4_RP_4 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_7 + P-network_2_4_RP_8 + P-network_0_0_RP_6 + P-network_0_0_RP_5 + P-network_0_0_RP_4 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_0_0_RP_1 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_1_AI_4 + P-network_1_1_AI_5 + P-network_1_1_AI_6 + P-network_1_1_AI_7 + P-network_1_1_AI_8 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_0_5_AnnP_7 + P-network_0_5_AnnP_8 + P-network_0_5_RP_1 + P-network_0_5_RP_2 + P-network_0_5_RP_3 + P-network_0_5_RP_4 + P-network_0_5_RP_5 + P-network_0_5_RP_6 + P-network_0_5_RP_7 + P-network_0_5_RP_8 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_6_5_AskP_7 + P-network_6_5_AskP_8 + P-network_4_1_AskP_8 + P-network_4_1_AskP_7 + P-network_4_1_AskP_6 + P-network_4_1_AskP_5 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_4_1_AskP_1 + P-network_6_0_RI_1 + P-network_6_0_RI_2 + P-network_6_0_RI_3 + P-network_6_0_RI_4 + P-network_6_0_RI_5 + P-network_6_0_RI_6 + P-network_6_0_RI_7 + P-network_6_0_RI_8 + P-network_4_1_RI_1 + P-network_4_1_RI_2 + P-network_4_1_RI_3 + P-network_4_1_RI_4 + P-network_4_1_RI_5 + P-network_4_1_RI_6 + P-network_4_1_RI_7 + P-network_4_1_RI_8 + P-network_7_2_AnnP_1 + P-network_7_2_AnnP_2 + P-network_7_2_AnnP_3 + P-network_7_2_AnnP_4 + P-network_7_2_AnnP_5 + P-network_7_2_AnnP_6 + P-network_7_2_AnnP_7 + P-network_7_2_AnnP_8 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_1_2_AskP_7 + P-network_1_2_AskP_8 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_2_2_RI_4 + P-network_2_2_RI_5 + P-network_2_2_RI_6 + P-network_2_2_RI_7 + P-network_2_2_RI_8 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_0_3_RI_4 + P-network_0_3_RI_5 + P-network_0_3_RI_6 + P-network_0_3_RI_7 + P-network_0_3_RI_8 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_4_6_AskP_7 + P-network_4_6_AskP_8 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_5_0_RP_7 + P-network_5_0_RP_8 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_3_1_RP_7 + P-network_3_1_RP_8 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_5_3_AnnP_7 + P-network_5_3_AnnP_8 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_1_2_RP_7 + P-network_1_2_RP_8 + P-network_3_4_AnnP_8 + P-network_3_4_AnnP_7 + P-network_3_4_AnnP_6 + P-network_3_4_AnnP_5 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_5 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_7 + P-network_0_0_AnnP_8 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_8_8_AI_1 + P-network_8_8_AI_2 + P-network_8_8_AI_3 + P-network_8_8_AI_4 + P-network_8_8_AI_5 + P-network_8_8_AI_6 + P-network_8_8_AI_7 + P-network_8_8_AI_8 + P-network_6_0_AskP_1 + P-network_6_0_AskP_2 + P-network_6_0_AskP_3 + P-network_6_0_AskP_4 + P-network_6_0_AskP_5 + P-network_6_0_AskP_6 + P-network_6_0_AskP_7 + P-network_6_0_AskP_8 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_0_RI_7 + P-network_1_0_RI_8 + P-network_8_7_AnnP_1 + P-network_8_7_AnnP_2 + P-network_8_7_AnnP_3 + P-network_8_7_AnnP_4 + P-network_8_7_AnnP_5 + P-network_8_7_AnnP_6 + P-network_8_7_AnnP_7 + P-network_8_7_AnnP_8 + P-network_2_7_AskP_1 + P-network_2_7_AskP_2 + P-network_2_7_AskP_3 + P-network_2_7_AskP_4 + P-network_2_7_AskP_5 + P-network_2_7_AskP_6 + P-network_2_7_AskP_7 + P-network_2_7_AskP_8 <= P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_0_7_8 + P-masterList_0_7_7 + P-masterList_0_7_6 + P-masterList_0_7_5 + P-masterList_0_7_4 + P-masterList_0_7_3 + P-masterList_0_7_2 + P-masterList_0_7_1 + P-masterList_0_7_0 + P-masterList_5_2_0 + P-masterList_5_2_1 + P-masterList_5_2_2 + P-masterList_5_2_3 + P-masterList_5_2_4 + P-masterList_5_2_5 + P-masterList_5_2_6 + P-masterList_5_2_7 + P-masterList_5_2_8 + P-masterList_8_8_8 + P-masterList_8_8_7 + P-masterList_8_8_6 + P-masterList_8_8_5 + P-masterList_8_8_4 + P-masterList_8_8_3 + P-masterList_8_8_2 + P-masterList_8_8_1 + P-masterList_8_8_0 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_3_0 + P-masterList_5_3_1 + P-masterList_5_3_2 + P-masterList_5_3_3 + P-masterList_5_3_4 + P-masterList_5_3_5 + P-masterList_5_3_6 + P-masterList_5_3_7 + P-masterList_5_3_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_5_4_0 + P-masterList_5_4_1 + P-masterList_5_4_2 + P-masterList_5_4_3 + P-masterList_5_4_4 + P-masterList_5_4_5 + P-masterList_5_4_6 + P-masterList_5_4_7 + P-masterList_5_4_8 + P-masterList_4_7_8 + P-masterList_4_7_7 + P-masterList_4_7_6 + P-masterList_4_7_5 + P-masterList_4_7_4 + P-masterList_4_7_3 + P-masterList_4_7_2 + P-masterList_4_7_1 + P-masterList_4_7_0 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_6_8 + P-masterList_0_6_7 + P-masterList_0_6_6 + P-masterList_0_6_5 + P-masterList_0_6_4 + P-masterList_0_6_3 + P-masterList_0_6_2 + P-masterList_0_6_1 + P-masterList_0_6_0 + P-masterList_5_5_0 + P-masterList_5_5_1 + P-masterList_5_5_2 + P-masterList_5_5_3 + P-masterList_5_5_4 + P-masterList_5_5_5 + P-masterList_5_5_6 + P-masterList_5_5_7 + P-masterList_5_5_8 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_8_7_8 + P-masterList_8_7_7 + P-masterList_8_7_6 + P-masterList_8_7_5 + P-masterList_8_7_4 + P-masterList_8_7_3 + P-masterList_8_7_2 + P-masterList_8_7_1 + P-masterList_8_7_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_4_6_8 + P-masterList_4_6_7 + P-masterList_4_6_6 + P-masterList_4_6_5 + P-masterList_4_6_4 + P-masterList_4_6_3 + P-masterList_4_6_2 + P-masterList_4_6_1 + P-masterList_4_6_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_0_5_8 + P-masterList_0_5_7 + P-masterList_0_5_6 + P-masterList_0_5_5 + P-masterList_0_5_4 + P-masterList_0_5_3 + P-masterList_0_5_2 + P-masterList_0_5_1 + P-masterList_0_5_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_8_6_8 + P-masterList_8_6_7 + P-masterList_8_6_6 + P-masterList_8_6_5 + P-masterList_8_6_4 + P-masterList_8_6_3 + P-masterList_8_6_2 + P-masterList_8_6_1 + P-masterList_8_6_0 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_4_5_8 + P-masterList_4_5_7 + P-masterList_4_5_6 + P-masterList_4_5_5 + P-masterList_4_5_4 + P-masterList_4_5_3 + P-masterList_4_5_2 + P-masterList_4_5_1 + P-masterList_4_5_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_2_4_0 + P-masterList_2_4_1 + P-masterList_2_4_2 + P-masterList_2_4_3 + P-masterList_2_4_4 + P-masterList_2_4_5 + P-masterList_2_4_6 + P-masterList_2_4_7 + P-masterList_2_4_8 + P-masterList_0_4_8 + P-masterList_0_4_7 + P-masterList_0_4_6 + P-masterList_0_4_5 + P-masterList_0_4_4 + P-masterList_0_4_3 + P-masterList_0_4_2 + P-masterList_0_4_1 + P-masterList_0_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_2_5_0 + P-masterList_2_5_1 + P-masterList_2_5_2 + P-masterList_2_5_3 + P-masterList_2_5_4 + P-masterList_2_5_5 + P-masterList_2_5_6 + P-masterList_2_5_7 + P-masterList_2_5_8 + P-masterList_8_5_8 + P-masterList_8_5_7 + P-masterList_8_5_6 + P-masterList_8_5_5 + P-masterList_8_5_4 + P-masterList_8_5_3 + P-masterList_8_5_2 + P-masterList_8_5_1 + P-masterList_8_5_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_2_6_0 + P-masterList_2_6_1 + P-masterList_2_6_2 + P-masterList_2_6_3 + P-masterList_2_6_4 + P-masterList_2_6_5 + P-masterList_2_6_6 + P-masterList_2_6_7 + P-masterList_2_6_8 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_4_4_8 + P-masterList_4_4_7 + P-masterList_4_4_6 + P-masterList_4_4_5 + P-masterList_4_4_4 + P-masterList_4_4_3 + P-masterList_4_4_2 + P-masterList_4_4_1 + P-masterList_4_4_0 + P-masterList_2_7_0 + P-masterList_2_7_1 + P-masterList_2_7_2 + P-masterList_2_7_3 + P-masterList_2_7_4 + P-masterList_2_7_5 + P-masterList_2_7_6 + P-masterList_2_7_7 + P-masterList_2_7_8 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_8_4_8 + P-masterList_8_4_7 + P-masterList_8_4_6 + P-masterList_8_4_5 + P-masterList_8_4_4 + P-masterList_8_4_3 + P-masterList_8_4_2 + P-masterList_8_4_1 + P-masterList_8_4_0 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_3_1_4 + P-masterList_3_1_5 + P-masterList_3_1_6 + P-masterList_3_1_7 + P-masterList_3_1_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_4_3_8 + P-masterList_4_3_7 + P-masterList_4_3_6 + P-masterList_4_3_5 + P-masterList_4_3_4 + P-masterList_4_3_3 + P-masterList_4_3_2 + P-masterList_4_3_1 + P-masterList_4_3_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_3_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 + P-masterList_4_2_8 + P-masterList_4_2_7 + P-masterList_4_2_6 + P-masterList_4_2_5 + P-masterList_4_2_4 + P-masterList_4_2_3 + P-masterList_4_2_2 + P-masterList_4_2_1 + P-masterList_4_2_0 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_7_7_0 + P-masterList_7_7_1 + P-masterList_7_7_2 + P-masterList_7_7_3 + P-masterList_7_7_4 + P-masterList_7_7_5 + P-masterList_7_7_6 + P-masterList_7_7_7 + P-masterList_7_7_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_7_8_0 + P-masterList_7_8_1 + P-masterList_7_8_2 + P-masterList_7_8_3 + P-masterList_7_8_4 + P-masterList_7_8_5 + P-masterList_7_8_6 + P-masterList_7_8_7 + P-masterList_7_8_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_8_1_0 + P-masterList_8_1_1 + P-masterList_8_1_2 + P-masterList_8_1_3 + P-masterList_8_1_4 + P-masterList_8_1_5 + P-masterList_8_1_6 + P-masterList_8_1_7 + P-masterList_8_1_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8)
lola: after: (P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_3_1_RP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_8 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_8 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_8_4_AnsP_8 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_4_1_AskP_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_5_8_AnnP_0 + P-network_8_1_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_8_4_AskP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_6_8_AnnP_0 + P-network_7_2_RI_0 + P-network_0_8_AskP_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_7_6_AI_0 + P-network_5_7_AI_0 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_6_0_AnsP_8 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_3_8_AI_0 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_8_0_AI_0 + P-network_1_5_AnnP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_0_8_RI_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_7_5_AskP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_8_4_RI_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_8 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_8_7_RI_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_4_8_RP_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_8 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_6_8_RI_0 + P-network_8_2_AnnP_0 + P-network_7_3_AI_0 + P-network_8_6_RP_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_8 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_2_2_AskP_0 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_8_AnnP_0 + P-network_2_1_AskP_0 + P-network_8_1_AnnP_0 + P-network_5_8_RI_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_1_4_AnnP_0 + P-network_2_8_AI_0 + P-network_4_7_AI_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_8 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_8_5_AI_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_5_6_AskP_0 + P-network_3_3_AnnP_0 + P-network_8_3_AI_0 + P-network_2_6_AskP_0 + P-network_8_6_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_0_8_AnsP_0 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_3 + P-network_0_8_AnsP_4 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_8 + P-network_7_7_RP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_7_8_AI_0 + P-network_6_4_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_5_8_RP_0 + P-network_0_2_RP_0 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_4_5_AI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_0_3_AskP_0 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_6_AI_0 + P-network_3_8_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_0_7_AI_0 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_1_0_AnnP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_8 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_8 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_7_5_RI_0 + P-network_6_4_AskP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_7_0_AskP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_5_6_RI_0 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_8_3_AskP_0 + P-network_0_5_RI_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_3_7_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_8_1_RI_0 + P-network_1_8_RI_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_3_7_AskP_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_4_4_AnnP_0 + P-network_1_7_RI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_8_8_AskP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_2_8_AnnP_0 + P-network_7_4_RI_0 + P-network_8_4_RP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_7_1_AI_0 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_3_8_RP_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_8_2_AI_0 + P-network_6_5_RP_0 + P-network_5_2_AI_0 + P-network_4_7_AnnP_0 + P-network_5_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_0_AskP_0 + P-network_8_0_AnnP_0 + P-network_4_8_RI_0 + P-network_6_7_RI_0 + P-network_2_5_AnsP_8 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_3_3_AI_0 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_8_6_RI_0 + P-network_7_3_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_8 + P-network_2_7_RP_0 + P-network_7_8_AnsP_8 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_0 + P-network_1_3_AnnP_0 + P-network_1_4_AI_0 + P-network_1_8_AI_0 + P-network_3_7_AI_0 + P-network_0_8_RP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_8_8_RP_0 + P-network_7_8_AnnP_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_1_8_AskP_0 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_8_2_RI_0 + P-network_2_5_AskP_0 + P-network_8_5_AnnP_0 + P-network_6_3_RI_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_8 + P-network_4_4_RI_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_7_8_AskP_0 + P-network_1_8_AnnP_0 + P-network_6_8_AI_0 + P-network_6_3_AnsP_8 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_2_5_AnnP_0 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_8_7_AI_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_8_5_AskP_0 + P-network_3_7_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_8 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_3_2_AskP_0 + P-network_6_3_AskP_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_8_0_RP_0 + P-network_3_4_AnsP_8 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_7_2_RP_0 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_8_2_AskP_0 + P-network_8_7_AnsP_8 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_5_3_RP_0 + P-network_5_2_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_8 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_6_8_AskP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_4_RP_0 + P-network_3_5_RP_0 + P-network_0_8_AnnP_0 + P-network_4_1_AI_0 + P-network_5_3_AnsP_8 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_8 + P-network_2_1_AI_0 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_4_1_AnnP_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_8_7_AskP_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_0_6_AnnP_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_1_5_RP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_8_3_RI_0 + P-network_0_2_AI_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_2_8_RP_0 + P-network_6_6_AskP_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_1_8_AnsP_0 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_8 + P-network_7_0_RI_0 + P-network_0_5_AnsP_0 + P-network_5_1_RI_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_8_5_RP_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_7_3_AnnP_0 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_4_6_AnnP_0 + P-network_1_3_RI_0 + P-network_3_8_RI_0 + P-network_2_0_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_8_5_AnsP_0 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_8 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_0_8_AI_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_7_8_RP_0 + P-network_8_4_AI_0 + P-network_5_8_AskP_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_8_0_AskP_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_3_1_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_8 + P-network_2_4_AskP_0 + P-network_8_4_AnnP_0 + P-network_8_8_RI_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_5_8_AI_0 + P-network_6_2_AnsP_8 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_4_7_AskP_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_6_0_RP_0 + P-network_4_8_AnsP_0 + P-network_3_6_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_4_1_RP_0 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_4_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_3_RP_0 + P-network_5_1_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_8 + P-network_7_0_RP_0 + P-network_4_8_AskP_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_8_1_AskP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_6_1_AskP_0 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_2_0_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_8_0_RI_0 + P-network_0_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_8_8_AnnP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_2_8_AskP_0 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_8_2_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_3_8_AnsP_8 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_0 + P-network_8_6_AskP_0 + P-network_8_0_AnsP_0 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_8 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_8 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_3_5_AnnP_0 + P-network_0_5_AI_0 + P-network_1_8_RP_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_8_1_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_3_8_AskP_0 + P-network_2_8_RI_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_4_2_AskP_0 + P-network_8_5_RI_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_0_RP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_6_8_RP_0 + P-network_7_4_AI_0 + P-network_8_7_RP_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_3_0_AnnP_0 + P-network_8_6_AI_0 + P-network_2_3_AskP_0 + P-network_8_3_AnnP_0 + P-network_7_8_RI_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_2_8_AnsP_4 + P-network_6_7_AI_0 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_7_6_AskP_0 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_8 + P-network_1_6_AnnP_0 + P-network_4_8_AI_0 <= 56)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_0_7_8 + P-masterList_0_7_7 + P-masterList_0_7_6 + P-masterList_0_7_5 + P-masterList_0_7_4 + P-masterList_0_7_3 + P-masterList_0_7_2 + P-masterList_0_7_1 + P-masterList_0_7_0 + P-masterList_5_2_0 + P-masterList_5_2_1 + P-masterList_5_2_2 + P-masterList_5_2_3 + P-masterList_5_2_4 + P-masterList_5_2_5 + P-masterList_5_2_6 + P-masterList_5_2_7 + P-masterList_5_2_8 + P-masterList_8_8_8 + P-masterList_8_8_7 + P-masterList_8_8_6 + P-masterList_8_8_5 + P-masterList_8_8_4 + P-masterList_8_8_3 + P-masterList_8_8_2 + P-masterList_8_8_1 + P-masterList_8_8_0 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_3_0 + P-masterList_5_3_1 + P-masterList_5_3_2 + P-masterList_5_3_3 + P-masterList_5_3_4 + P-masterList_5_3_5 + P-masterList_5_3_6 + P-masterList_5_3_7 + P-masterList_5_3_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_5_4_0 + P-masterList_5_4_1 + P-masterList_5_4_2 + P-masterList_5_4_3 + P-masterList_5_4_4 + P-masterList_5_4_5 + P-masterList_5_4_6 + P-masterList_5_4_7 + P-masterList_5_4_8 + P-masterList_4_7_8 + P-masterList_4_7_7 + P-masterList_4_7_6 + P-masterList_4_7_5 + P-masterList_4_7_4 + P-masterList_4_7_3 + P-masterList_4_7_2 + P-masterList_4_7_1 + P-masterList_4_7_0 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_6_8 + P-masterList_0_6_7 + P-masterList_0_6_6 + P-masterList_0_6_5 + P-masterList_0_6_4 + P-masterList_0_6_3 + P-masterList_0_6_2 + P-masterList_0_6_1 + P-masterList_0_6_0 + P-masterList_5_5_0 + P-masterList_5_5_1 + P-masterList_5_5_2 + P-masterList_5_5_3 + P-masterList_5_5_4 + P-masterList_5_5_5 + P-masterList_5_5_6 + P-masterList_5_5_7 + P-masterList_5_5_8 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_8_7_8 + P-masterList_8_7_7 + P-masterList_8_7_6 + P-masterList_8_7_5 + P-masterList_8_7_4 + P-masterList_8_7_3 + P-masterList_8_7_2 + P-masterList_8_7_1 + P-masterList_8_7_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_4_6_8 + P-masterList_4_6_7 + P-masterList_4_6_6 + P-masterList_4_6_5 + P-masterList_4_6_4 + P-masterList_4_6_3 + P-masterList_4_6_2 + P-masterList_4_6_1 + P-masterList_4_6_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_0_5_8 + P-masterList_0_5_7 + P-masterList_0_5_6 + P-masterList_0_5_5 + P-masterList_0_5_4 + P-masterList_0_5_3 + P-masterList_0_5_2 + P-masterList_0_5_1 + P-masterList_0_5_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_8_6_8 + P-masterList_8_6_7 + P-masterList_8_6_6 + P-masterList_8_6_5 + P-masterList_8_6_4 + P-masterList_8_6_3 + P-masterList_8_6_2 + P-masterList_8_6_1 + P-masterList_8_6_0 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_4_5_8 + P-masterList_4_5_7 + P-masterList_4_5_6 + P-masterList_4_5_5 + P-masterList_4_5_4 + P-masterList_4_5_3 + P-masterList_4_5_2 + P-masterList_4_5_1 + P-masterList_4_5_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_2_4_0 + P-masterList_2_4_1 + P-masterList_2_4_2 + P-masterList_2_4_3 + P-masterList_2_4_4 + P-masterList_2_4_5 + P-masterList_2_4_6 + P-masterList_2_4_7 + P-masterList_2_4_8 + P-masterList_0_4_8 + P-masterList_0_4_7 + P-masterList_0_4_6 + P-masterList_0_4_5 + P-masterList_0_4_4 + P-masterList_0_4_3 + P-masterList_0_4_2 + P-masterList_0_4_1 + P-masterList_0_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_2_5_0 + P-masterList_2_5_1 + P-masterList_2_5_2 + P-masterList_2_5_3 + P-masterList_2_5_4 + P-masterList_2_5_5 + P-masterList_2_5_6 + P-masterList_2_5_7 + P-masterList_2_5_8 + P-masterList_8_5_8 + P-masterList_8_5_7 + P-masterList_8_5_6 + P-masterList_8_5_5 + P-masterList_8_5_4 + P-masterList_8_5_3 + P-masterList_8_5_2 + P-masterList_8_5_1 + P-masterList_8_5_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_2_6_0 + P-masterList_2_6_1 + P-masterList_2_6_2 + P-masterList_2_6_3 + P-masterList_2_6_4 + P-masterList_2_6_5 + P-masterList_2_6_6 + P-masterList_2_6_7 + P-masterList_2_6_8 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_4_4_8 + P-masterList_4_4_7 + P-masterList_4_4_6 + P-masterList_4_4_5 + P-masterList_4_4_4 + P-masterList_4_4_3 + P-masterList_4_4_2 + P-masterList_4_4_1 + P-masterList_4_4_0 + P-masterList_2_7_0 + P-masterList_2_7_1 + P-masterList_2_7_2 + P-masterList_2_7_3 + P-masterList_2_7_4 + P-masterList_2_7_5 + P-masterList_2_7_6 + P-masterList_2_7_7 + P-masterList_2_7_8 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_8_4_8 + P-masterList_8_4_7 + P-masterList_8_4_6 + P-masterList_8_4_5 + P-masterList_8_4_4 + P-masterList_8_4_3 + P-masterList_8_4_2 + P-masterList_8_4_1 + P-masterList_8_4_0 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_3_1_4 + P-masterList_3_1_5 + P-masterList_3_1_6 + P-masterList_3_1_7 + P-masterList_3_1_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_4_3_8 + P-masterList_4_3_7 + P-masterList_4_3_6 + P-masterList_4_3_5 + P-masterList_4_3_4 + P-masterList_4_3_3 + P-masterList_4_3_2 + P-masterList_4_3_1 + P-masterList_4_3_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_3_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 + P-masterList_4_2_8 + P-masterList_4_2_7 + P-masterList_4_2_6 + P-masterList_4_2_5 + P-masterList_4_2_4 + P-masterList_4_2_3 + P-masterList_4_2_2 + P-masterList_4_2_1 + P-masterList_4_2_0 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_7_7_0 + P-masterList_7_7_1 + P-masterList_7_7_2 + P-masterList_7_7_3 + P-masterList_7_7_4 + P-masterList_7_7_5 + P-masterList_7_7_6 + P-masterList_7_7_7 + P-masterList_7_7_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_7_8_0 + P-masterList_7_8_1 + P-masterList_7_8_2 + P-masterList_7_8_3 + P-masterList_7_8_4 + P-masterList_7_8_5 + P-masterList_7_8_6 + P-masterList_7_8_7 + P-masterList_7_8_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_8_1_0 + P-masterList_8_1_1 + P-masterList_8_1_2 + P-masterList_8_1_3 + P-masterList_8_1_4 + P-masterList_8_1_5 + P-masterList_8_1_6 + P-masterList_8_1_7 + P-masterList_8_1_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8)
lola: after: (56 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8)
lola: place invariant simplifies atomic proposition
lola: before: (P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8 <= P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_8 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_2_AskP_0 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_7 + P-poll__networl_2_2_AskP_8 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_4_2_RP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_5_AskP_4 + P-poll__networl_5_6_AskP_0 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_2 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_8 + P-poll__networl_7_5_AskP_3 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_7_5_AskP_0 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_4_0_RI_5 + P-poll__networl_4_0_RI_6 + P-poll__networl_4_0_RI_7 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_4_RI_8 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_2 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_3_3_RI_8 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_5_2_RI_8 + P-poll__networl_5_2_RI_7 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_0 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_0_8_AskP_8 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_1 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_0_8_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_7_1_RI_8 + P-poll__networl_7_1_RI_7 + P-poll__networl_7_1_RI_6 + P-poll__networl_7_1_RI_5 + P-poll__networl_7_1_RI_4 + P-poll__networl_7_1_RI_3 + P-poll__networl_7_1_RI_2 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_5 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_0_3_AI_4 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_1_6_RP_8 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_0 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_4_1_AskP_8 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_0 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_3_5_RP_8 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_0 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_5 + P-poll__networl_8_8_RP_0 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_3 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_4_1_AI_4 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_2 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_0 + P-poll__networl_5_4_RP_8 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_2 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_0 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_6_0_AI_8 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_0 + P-poll__networl_7_3_RP_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_0 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_2_7_AskP_8 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_4 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_4_7_AskP_0 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_2_7_AskP_3 + P-poll__networl_5_7_RP_0 + P-poll__networl_5_7_RP_1 + P-poll__networl_5_7_RP_2 + P-poll__networl_5_7_RP_3 + P-poll__networl_5_7_RP_4 + P-poll__networl_5_7_RP_5 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_0 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_3_8_RP_0 + P-poll__networl_3_8_RP_1 + P-poll__networl_3_8_RP_2 + P-poll__networl_3_8_RP_3 + P-poll__networl_3_8_RP_4 + P-poll__networl_3_8_RP_5 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_7_RI_8 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_2_6_RI_8 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_4 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_0 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_6_0_AskP_8 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_0 + P-poll__networl_4_5_RI_8 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_4_5_RI_7 + P-poll__networl_8_3_RP_0 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_3 + P-poll__networl_8_3_RP_4 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_8 + P-poll__networl_7_0_AI_0 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_8 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_0 + P-poll__networl_6_4_RP_0 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_8 + P-poll__networl_5_1_AI_0 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_8 + P-poll__networl_4_5_RP_0 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_8 + P-poll__networl_6_4_RI_8 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_6 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_4 + P-poll__networl_2_6_RP_0 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_1_3_AI_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_2 + P-poll__networl_0_7_RP_0 + P-poll__networl_0_7_RP_1 + P-poll__networl_0_7_RP_2 + P-poll__networl_0_7_RP_3 + P-poll__networl_0_7_RP_4 + P-poll__networl_0_7_RP_5 + P-poll__networl_0_7_RP_6 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_8 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_8_1_RI_3 + P-poll__networl_8_1_RI_4 + P-poll__networl_8_1_RI_5 + P-poll__networl_8_1_RI_6 + P-poll__networl_8_1_RI_7 + P-poll__networl_8_1_RI_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_8_3_RI_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_6 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_1_5_AI_8 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_0 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_5 + P-poll__networl_2_8_RP_4 + P-poll__networl_2_8_RP_3 + P-poll__networl_2_8_RP_2 + P-poll__networl_2_8_RP_1 + P-poll__networl_2_8_RP_0 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_1 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_3_4_AI_0 + P-poll__networl_4_7_RP_8 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_5 + P-poll__networl_4_7_RP_4 + P-poll__networl_4_7_RP_3 + P-poll__networl_4_7_RP_2 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_4_7_RP_1 + P-poll__networl_4_7_RP_0 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_5_0_RI_3 + P-poll__networl_5_0_RI_4 + P-poll__networl_5_0_RI_5 + P-poll__networl_5_0_RI_6 + P-poll__networl_5_0_RI_7 + P-poll__networl_5_0_RI_8 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_3_AI_7 + P-poll__networl_5_3_AI_6 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_RI_5 + P-poll__networl_3_1_RI_6 + P-poll__networl_3_1_RI_7 + P-poll__networl_3_1_RI_8 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_0_4_AskP_0 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_7 + P-poll__networl_0_4_AskP_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_5_3_AI_4 + P-poll__networl_5_3_AI_3 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_5_3_AI_2 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_0 + P-poll__networl_6_6_RP_8 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_1 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_6_6_RP_0 + P-poll__networl_4_6_AskP_8 + P-poll__networl_4_6_AskP_7 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_0 + P-poll__networl_8_5_RP_8 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_6 + P-poll__networl_3_8_AskP_0 + P-poll__networl_3_8_AskP_1 + P-poll__networl_3_8_AskP_2 + P-poll__networl_3_8_AskP_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_3_8_AskP_5 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_8 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_4 + P-poll__networl_4_0_RP_0 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_8 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_2 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_8 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_8_AI_0 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_8 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_3_8_RI_2 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_1_2_AskP_8 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_8_1_AskP_0 + P-poll__networl_8_1_AskP_1 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_5 + P-poll__networl_8_1_AskP_6 + P-poll__networl_8_1_AskP_7 + P-poll__networl_8_1_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_7_6_RI_2 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_7_3_AI_0 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_7 + P-poll__networl_7_3_AI_8 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_5_4_AI_0 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_8 + P-poll__networl_6_5_AskP_8 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_3 + P-poll__networl_4_8_RP_0 + P-poll__networl_4_8_RP_1 + P-poll__networl_4_8_RP_2 + P-poll__networl_4_8_RP_3 + P-poll__networl_4_8_RP_4 + P-poll__networl_4_8_RP_5 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_3_5_AI_0 + P-poll__networl_3_5_AI_1 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_4 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_7 + P-poll__networl_3_5_AI_8 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_0 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_0_8_AI_3 + P-poll__networl_1_6_AI_0 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_3 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_8 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_8_4_RI_0 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_8 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_5_RI_1 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_4 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_6_2_AskP_1 + P-poll__networl_6_2_AskP_2 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_7 + P-poll__networl_6_2_AskP_8 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_2_7_AI_8 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_4 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_6 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_8 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_7_RI_1 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_3 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_8 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_6 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_8 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_0_AI_8 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_7_8_RP_8 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_0 + P-poll__networl_8_4_AI_8 + P-poll__networl_8_4_AI_7 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_1_7_RP_0 + P-poll__networl_1_7_RP_1 + P-poll__networl_1_7_RP_2 + P-poll__networl_1_7_RP_3 + P-poll__networl_1_7_RP_4 + P-poll__networl_1_7_RP_5 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_6_0_RI_0 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_2 + P-poll__networl_6_0_RI_3 + P-poll__networl_6_0_RI_4 + P-poll__networl_6_0_RI_5 + P-poll__networl_6_0_RI_6 + P-poll__networl_6_0_RI_7 + P-poll__networl_6_0_RI_8 + P-poll__networl_4_1_RI_0 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_1_RI_6 + P-poll__networl_4_1_RI_7 + P-poll__networl_4_1_RI_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_0_5_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_5 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_8 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_8 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_8_4_AskP_0 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_8 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_8_8_RI_8 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_3 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_0 + P-poll__networl_1_7_AskP_8 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_0 + P-poll__networl_7_7_AnnP_8 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_8_7_AskP_1 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_6 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_8 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_5_8_AI_7 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_7_7_AI_8 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_5_8_RP_0 + P-poll__networl_5_8_RP_1 + P-poll__networl_5_8_RP_2 + P-poll__networl_5_8_RP_3 + P-poll__networl_5_8_RP_4 + P-poll__networl_5_8_RP_5 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_2_0_RP_8 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_3_6_AskP_8 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_4_4_AskP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_2_7_RP_0 + P-poll__networl_2_7_RP_1 + P-poll__networl_2_7_RP_2 + P-poll__networl_2_7_RP_3 + P-poll__networl_2_7_RP_4 + P-poll__networl_2_7_RP_5 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_0_8_RP_0 + P-poll__networl_0_8_RP_1 + P-poll__networl_0_8_RP_2 + P-poll__networl_0_8_RP_3 + P-poll__networl_0_8_RP_4 + P-poll__networl_0_8_RP_5 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_8_AskP_0 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_5 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_2_5_AskP_0 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_8 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_7_2_RP_1 + P-poll__networl_7_2_RP_2 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_8 + P-poll__networl_5_3_RP_0 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_4 + P-poll__networl_5_3_RP_5 + P-poll__networl_5_3_RP_6 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_8 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_3_4_RP_0 + P-poll__networl_3_4_RP_1 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_4 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_1_5_RP_0 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_5_RP_7 + P-poll__networl_1_5_RP_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_7_0_RI_3 + P-poll__networl_7_0_RI_4 + P-poll__networl_7_0_RI_5 + P-poll__networl_7_0_RI_6 + P-poll__networl_7_0_RI_7 + P-poll__networl_7_0_RI_8 + P-poll__networl_0_2_AskP_8 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_5_1_RI_3 + P-poll__networl_5_1_RI_4 + P-poll__networl_5_1_RI_5 + P-poll__networl_5_1_RI_6 + P-poll__networl_5_1_RI_7 + P-poll__networl_5_1_RI_8 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_3_0_RI_8 + P-poll__networl_3_0_RI_7 + P-poll__networl_3_0_RI_6 + P-poll__networl_3_0_RI_5 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_0_RI_4 + P-poll__networl_3_0_RI_3 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_2 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_5_5_AskP_1 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_5_5_AskP_0 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_8 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_6 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_3_2_RP_7 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_0 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_5_1_RP_8 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_1 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_6 + P-poll__networl_1_0_RP_7 + P-poll__networl_1_0_RP_8 + P-poll__networl_7_0_RP_8 + P-poll__networl_7_0_RP_7 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_4 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_7_0_RP_3 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_0 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_2_1_AskP_8 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_0 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_1_6_AskP_0 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_7_4_AskP_8 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_6 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_3 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_0 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_0_4_RI_8 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_3 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_0_4_RI_2 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_0 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_2_3_RI_8 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_4_2_RI_8 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_1 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_RI_0 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_8_1_AI_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_2 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_8 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_8 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_0_7_AskP_3 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_2_AI_0 + P-poll__networl_6_2_AI_1 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_5_6_RP_0 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_3 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_8 + P-poll__networl_4_3_AI_0 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_3 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_5 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_3_7_RP_1 + P-poll__networl_3_7_RP_2 + P-poll__networl_3_7_RP_3 + P-poll__networl_3_7_RP_4 + P-poll__networl_3_7_RP_5 + P-poll__networl_3_7_RP_6 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_8 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_8 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_1_RI_8 + P-poll__networl_6_1_RI_7 + P-poll__networl_6_1_RI_6 + P-poll__networl_1_8_RP_0 + P-poll__networl_1_8_RP_1 + P-poll__networl_1_8_RP_2 + P-poll__networl_1_8_RP_3 + P-poll__networl_1_8_RP_4 + P-poll__networl_1_8_RP_5 + P-poll__networl_1_8_RP_6 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_0_5_AI_1 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_3 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_8 + P-poll__networl_6_1_RI_5 + P-poll__networl_7_3_RI_0 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_8 + P-poll__networl_6_1_RI_4 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_6_1_RI_2 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_0 + P-poll__networl_8_0_RI_8 + P-poll__networl_8_0_RI_7 + P-poll__networl_8_0_RI_6 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_4_RI_0 + P-poll__networl_5_4_RI_1 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_8 + P-poll__networl_8_0_RI_4 + P-poll__networl_8_0_RI_3 + P-poll__networl_8_0_RI_2 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_0 + P-poll__networl_0_6_RP_8 + P-poll__networl_0_6_RP_7 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_5 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_4_0_AskP_8 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_4 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_0 + P-poll__networl_1_2_AI_8 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_2_5_RP_8 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_0 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8)
lola: after: (0 <= P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_8 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_8)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-stage_3_PRIM + P-stage_7_SEC + P-stage_2_PRIM + P-stage_5_SEC + P-stage_3_SEC + P-stage_7_PRIM + P-stage_1_NEG + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_SEC + P-stage_4_SEC + P-stage_8_SEC + P-stage_8_NEG + P-stage_4_NEG + P-stage_1_PRIM + P-stage_0_NEG + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_NEG + P-stage_2_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_6_SEC + P-stage_2_SEC + P-stage_8_PRIM + P-stage_7_NEG + P-stage_3_NEG)
lola: after: (0 <= 7)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_0_7_8 + P-masterList_0_7_7 + P-masterList_0_7_6 + P-masterList_0_7_5 + P-masterList_0_7_4 + P-masterList_0_7_3 + P-masterList_0_7_2 + P-masterList_0_7_1 + P-masterList_0_7_0 + P-masterList_5_2_0 + P-masterList_5_2_1 + P-masterList_5_2_2 + P-masterList_5_2_3 + P-masterList_5_2_4 + P-masterList_5_2_5 + P-masterList_5_2_6 + P-masterList_5_2_7 + P-masterList_5_2_8 + P-masterList_8_8_8 + P-masterList_8_8_7 + P-masterList_8_8_6 + P-masterList_8_8_5 + P-masterList_8_8_4 + P-masterList_8_8_3 + P-masterList_8_8_2 + P-masterList_8_8_1 + P-masterList_8_8_0 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_3_0 + P-masterList_5_3_1 + P-masterList_5_3_2 + P-masterList_5_3_3 + P-masterList_5_3_4 + P-masterList_5_3_5 + P-masterList_5_3_6 + P-masterList_5_3_7 + P-masterList_5_3_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_5_4_0 + P-masterList_5_4_1 + P-masterList_5_4_2 + P-masterList_5_4_3 + P-masterList_5_4_4 + P-masterList_5_4_5 + P-masterList_5_4_6 + P-masterList_5_4_7 + P-masterList_5_4_8 + P-masterList_4_7_8 + P-masterList_4_7_7 + P-masterList_4_7_6 + P-masterList_4_7_5 + P-masterList_4_7_4 + P-masterList_4_7_3 + P-masterList_4_7_2 + P-masterList_4_7_1 + P-masterList_4_7_0 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_6_8 + P-masterList_0_6_7 + P-masterList_0_6_6 + P-masterList_0_6_5 + P-masterList_0_6_4 + P-masterList_0_6_3 + P-masterList_0_6_2 + P-masterList_0_6_1 + P-masterList_0_6_0 + P-masterList_5_5_0 + P-masterList_5_5_1 + P-masterList_5_5_2 + P-masterList_5_5_3 + P-masterList_5_5_4 + P-masterList_5_5_5 + P-masterList_5_5_6 + P-masterList_5_5_7 + P-masterList_5_5_8 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_8_7_8 + P-masterList_8_7_7 + P-masterList_8_7_6 + P-masterList_8_7_5 + P-masterList_8_7_4 + P-masterList_8_7_3 + P-masterList_8_7_2 + P-masterList_8_7_1 + P-masterList_8_7_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_4_6_8 + P-masterList_4_6_7 + P-masterList_4_6_6 + P-masterList_4_6_5 + P-masterList_4_6_4 + P-masterList_4_6_3 + P-masterList_4_6_2 + P-masterList_4_6_1 + P-masterList_4_6_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_0_5_8 + P-masterList_0_5_7 + P-masterList_0_5_6 + P-masterList_0_5_5 + P-masterList_0_5_4 + P-masterList_0_5_3 + P-masterList_0_5_2 + P-masterList_0_5_1 + P-masterList_0_5_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_8_6_8 + P-masterList_8_6_7 + P-masterList_8_6_6 + P-masterList_8_6_5 + P-masterList_8_6_4 + P-masterList_8_6_3 + P-masterList_8_6_2 + P-masterList_8_6_1 + P-masterList_8_6_0 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_4_5_8 + P-masterList_4_5_7 + P-masterList_4_5_6 + P-masterList_4_5_5 + P-masterList_4_5_4 + P-masterList_4_5_3 + P-masterList_4_5_2 + P-masterList_4_5_1 + P-masterList_4_5_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_2_4_0 + P-masterList_2_4_1 + P-masterList_2_4_2 + P-masterList_2_4_3 + P-masterList_2_4_4 + P-masterList_2_4_5 + P-masterList_2_4_6 + P-masterList_2_4_7 + P-masterList_2_4_8 + P-masterList_0_4_8 + P-masterList_0_4_7 + P-masterList_0_4_6 + P-masterList_0_4_5 + P-masterList_0_4_4 + P-masterList_0_4_3 + P-masterList_0_4_2 + P-masterList_0_4_1 + P-masterList_0_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_2_5_0 + P-masterList_2_5_1 + P-masterList_2_5_2 + P-masterList_2_5_3 + P-masterList_2_5_4 + P-masterList_2_5_5 + P-masterList_2_5_6 + P-masterList_2_5_7 + P-masterList_2_5_8 + P-masterList_8_5_8 + P-masterList_8_5_7 + P-masterList_8_5_6 + P-masterList_8_5_5 + P-masterList_8_5_4 + P-masterList_8_5_3 + P-masterList_8_5_2 + P-masterList_8_5_1 + P-masterList_8_5_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_2_6_0 + P-masterList_2_6_1 + P-masterList_2_6_2 + P-masterList_2_6_3 + P-masterList_2_6_4 + P-masterList_2_6_5 + P-masterList_2_6_6 + P-masterList_2_6_7 + P-masterList_2_6_8 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_4_4_8 + P-masterList_4_4_7 + P-masterList_4_4_6 + P-masterList_4_4_5 + P-masterList_4_4_4 + P-masterList_4_4_3 + P-masterList_4_4_2 + P-masterList_4_4_1 + P-masterList_4_4_0 + P-masterList_2_7_0 + P-masterList_2_7_1 + P-masterList_2_7_2 + P-masterList_2_7_3 + P-masterList_2_7_4 + P-masterList_2_7_5 + P-masterList_2_7_6 + P-masterList_2_7_7 + P-masterList_2_7_8 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_8_4_8 + P-masterList_8_4_7 + P-masterList_8_4_6 + P-masterList_8_4_5 + P-masterList_8_4_4 + P-masterList_8_4_3 + P-masterList_8_4_2 + P-masterList_8_4_1 + P-masterList_8_4_0 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_3_1_4 + P-masterList_3_1_5 + P-masterList_3_1_6 + P-masterList_3_1_7 + P-masterList_3_1_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_4_3_8 + P-masterList_4_3_7 + P-masterList_4_3_6 + P-masterList_4_3_5 + P-masterList_4_3_4 + P-masterList_4_3_3 + P-masterList_4_3_2 + P-masterList_4_3_1 + P-masterList_4_3_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_3_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 + P-masterList_4_2_8 + P-masterList_4_2_7 + P-masterList_4_2_6 + P-masterList_4_2_5 + P-masterList_4_2_4 + P-masterList_4_2_3 + P-masterList_4_2_2 + P-masterList_4_2_1 + P-masterList_4_2_0 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_7_7_0 + P-masterList_7_7_1 + P-masterList_7_7_2 + P-masterList_7_7_3 + P-masterList_7_7_4 + P-masterList_7_7_5 + P-masterList_7_7_6 + P-masterList_7_7_7 + P-masterList_7_7_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_7_8_0 + P-masterList_7_8_1 + P-masterList_7_8_2 + P-masterList_7_8_3 + P-masterList_7_8_4 + P-masterList_7_8_5 + P-masterList_7_8_6 + P-masterList_7_8_7 + P-masterList_7_8_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_8_1_0 + P-masterList_8_1_1 + P-masterList_8_1_2 + P-masterList_8_1_3 + P-masterList_8_1_4 + P-masterList_8_1_5 + P-masterList_8_1_6 + P-masterList_8_1_7 + P-masterList_8_1_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 <= P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)
lola: after: (56 <= P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_5_2_AnsP_8 <= P-network_6_2_AI_5)
lola: after: (P-poll__networl_5_2_AnsP_8 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-network_7_3_AskP_1)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-network_7_8_AnnP_1)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_1_6_AnnP_2)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_8_1_AskP_1)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_0_4_RP_4 <= P-network_4_8_AI_6)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-network_1_6_AskP_7)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-poll__networl_1_6_AI_0)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-sendAnnPs__broadcasting_1_7 <= P-network_1_2_AskP_3)
lola: after: (P-sendAnnPs__broadcasting_1_7 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-poll__networl_8_6_AnnP_4)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_4_RP_6 <= P-poll__networl_0_6_AnsP_5)
lola: after: (0 <= P-poll__networl_0_6_AnsP_5)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_7_7_AnsP_1 <= P-masterList_2_3_5)
lola: after: (P-network_7_7_AnsP_1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_7_3_AnnP_4 <= P-poll__networl_8_6_AskP_8)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-network_2_7_AI_4)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-poll__networl_4_1_RI_8)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_6_2_AnnP_6 <= P-poll__networl_3_5_RP_8)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_1_6_RP_1)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_3_4_RI_5)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-masterList_5_4_1)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_4_1_RI_1 <= P-poll__networl_5_0_RP_0)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_8_2_AskP_6)
lola: after: (1 <= 0)
lola: (E (((56 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8) U ())) OR A (F ((1 <= P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)))) : (A (G ((63 <= 0))) OR A (G (E (G ((P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 <= P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)))))) : E ((((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)) U ())) : NOT(E (G (E (X ((3 <= P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)))))) : NOT(((E (G ((P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_3_1_RP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_8 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_8 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_8_4_AnsP_8 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_4_1_AskP_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_5_8_AnnP_0 + P-network_8_1_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_8_4_AskP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_6_8_AnnP_0 + P-network_7_2_RI_0 + P-network_0_8_AskP_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_7_6_AI_0 + P-network_5_7_AI_0 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_6_0_AnsP_8 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_3_8_AI_0 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_8_0_AI_0 + P-network_1_5_AnnP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_0_8_RI_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_7_5_AskP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_8_4_RI_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_8 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_8_7_RI_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_4_8_RP_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_8 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_6_8_RI_0 + P-network_8_2_AnnP_0 + P-network_7_3_AI_0 + P-network_8_6_RP_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_8 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_2_2_AskP_0 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_8_AnnP_0 + P-network_2_1_AskP_0 + P-network_8_1_AnnP_0 + P-network_5_8_RI_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_1_4_AnnP_0 + P-network_2_8_AI_0 + P-network_4_7_AI_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_8 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_8_5_AI_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_5_6_AskP_0 + P-network_3_3_AnnP_0 + P-network_8_3_AI_0 + P-network_2_6_AskP_0 + P-network_8_6_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_0_8_AnsP_0 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_3 + P-network_0_8_AnsP_4 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_8 + P-network_7_7_RP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_7_8_AI_0 + P-network_6_4_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_5_8_RP_0 + P-network_0_2_RP_0 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_4_5_AI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_0_3_AskP_0 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_6_AI_0 + P-network_3_8_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_0_7_AI_0 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_1_0_AnnP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_8 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_8 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_7_5_RI_0 + P-network_6_4_AskP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_7_0_AskP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_5_6_RI_0 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_8_3_AskP_0 + P-network_0_5_RI_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_3_7_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_8_1_RI_0 + P-network_1_8_RI_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_3_7_AskP_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_4_4_AnnP_0 + P-network_1_7_RI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_8_8_AskP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_2_8_AnnP_0 + P-network_7_4_RI_0 + P-network_8_4_RP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_7_1_AI_0 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_3_8_RP_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_8_2_AI_0 + P-network_6_5_RP_0 + P-network_5_2_AI_0 + P-network_4_7_AnnP_0 + P-network_5_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_0_AskP_0 + P-network_8_0_AnnP_0 + P-network_4_8_RI_0 + P-network_6_7_RI_0 + P-network_2_5_AnsP_8 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_3_3_AI_0 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_8_6_RI_0 + P-network_7_3_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_8 + P-network_2_7_RP_0 + P-network_7_8_AnsP_8 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_0 + P-network_1_3_AnnP_0 + P-network_1_4_AI_0 + P-network_1_8_AI_0 + P-network_3_7_AI_0 + P-network_0_8_RP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_8_8_RP_0 + P-network_7_8_AnnP_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_1_8_AskP_0 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_8_2_RI_0 + P-network_2_5_AskP_0 + P-network_8_5_AnnP_0 + P-network_6_3_RI_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_8 + P-network_4_4_RI_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_7_8_AskP_0 + P-network_1_8_AnnP_0 + P-network_6_8_AI_0 + P-network_6_3_AnsP_8 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_2_5_AnnP_0 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_8_7_AI_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_8_5_AskP_0 + P-network_3_7_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_8 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_3_2_AskP_0 + P-network_6_3_AskP_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_8_0_RP_0 + P-network_3_4_AnsP_8 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_7_2_RP_0 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_8_2_AskP_0 + P-network_8_7_AnsP_8 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_5_3_RP_0 + P-network_5_2_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_8 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_6_8_AskP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_4_RP_0 + P-network_3_5_RP_0 + P-network_0_8_AnnP_0 + P-network_4_1_AI_0 + P-network_5_3_AnsP_8 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_8 + P-network_2_1_AI_0 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_4_1_AnnP_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_8_7_AskP_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_0_6_AnnP_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_1_5_RP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_8_3_RI_0 + P-network_0_2_AI_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_2_8_RP_0 + P-network_6_6_AskP_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_1_8_AnsP_0 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_8 + P-network_7_0_RI_0 + P-network_0_5_AnsP_0 + P-network_5_1_RI_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_8_5_RP_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_7_3_AnnP_0 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_4_6_AnnP_0 + P-network_1_3_RI_0 + P-network_3_8_RI_0 + P-network_2_0_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_8_5_AnsP_0 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_8 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_0_8_AI_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_7_8_RP_0 + P-network_8_4_AI_0 + P-network_5_8_AskP_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_8_0_AskP_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_3_1_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_8 + P-network_2_4_AskP_0 + P-network_8_4_AnnP_0 + P-network_8_8_RI_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_5_8_AI_0 + P-network_6_2_AnsP_8 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_4_7_AskP_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_6_0_RP_0 + P-network_4_8_AnsP_0 + P-network_3_6_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_4_1_RP_0 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_4_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_3_RP_0 + P-network_5_1_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_8 + P-network_7_0_RP_0 + P-network_4_8_AskP_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_8_1_AskP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_6_1_AskP_0 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_2_0_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_8_0_RI_0 + P-network_0_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_8_8_AnnP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_2_8_AskP_0 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_8_2_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_3_8_AnsP_8 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_0 + P-network_8_6_AskP_0 + P-network_8_0_AnsP_0 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_8 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_8 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_3_5_AnnP_0 + P-network_0_5_AI_0 + P-network_1_8_RP_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_8_1_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_3_8_AskP_0 + P-network_2_8_RI_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_4_2_AskP_0 + P-network_8_5_RI_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_0_RP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_6_8_RP_0 + P-network_7_4_AI_0 + P-network_8_7_RP_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_3_0_AnnP_0 + P-network_8_6_AI_0 + P-network_2_3_AskP_0 + P-network_8_3_AnnP_0 + P-network_7_8_RI_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_2_8_AnsP_4 + P-network_6_7_AI_0 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_7_6_AskP_0 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_8 + P-network_1_6_AnnP_0 + P-network_4_8_AI_0 <= 56))) OR A (G ((56 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8)))) OR A (G (((1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)))))) : A (G (E (G ((0 <= 0))))) : A (G ((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0))) : NOT(A ((() U (1 <= P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)))) : A (G ((A (X ((P-poll__networl_5_2_AnsP_8 <= 0))) AND ()))) : (E (F (())) AND (() OR E (G (((P-sendAnnPs__broadcasting_1_7 <= 0)))))) : E (F ((3 <= 0))) : NOT((NOT(E (G ((0 <= P-poll__networl_0_6_AnsP_5)))) AND (P-network_7_7_AnsP_1 <= 0))) : E (((0 <= 0) U (2 <= 0))) : A (G (())) : (E (F (E (G ((1 <= 0))))) AND E (G (((P-poll__networl_5_7_AnsP_8 <= 2) OR (P-network_1_1_AnnP_0 <= 2))))) : A (G (()))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:458
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:326
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:326
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:254
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:326
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:318
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: rewrite Frontend/Parser/formula_rewrite.k:398
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 212 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 227 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 243 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 262 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 283 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 309 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 340 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 378 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 425 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 74 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 486 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (A (G ((P-poll__networl_5_2_AnsP_8 <= 0)))))
lola: ========================================
lola: SUBTASK
lola: checking invariance from all successors
lola: rewrite Frontend/Parser/formula_rewrite.k:624
lola: rewrite Frontend/Parser/formula_rewrite.k:753
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (1 <= P-poll__networl_5_2_AnsP_8)
lola: processed formula length: 33
lola: 77 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EXEF)
lola: state space: using reachability graph (EXef version) (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: Planning: workflow for reachability check: stateequation (--findpath=off)
lola: built state equation task
lola: RUNNING
lola: SUBRESULT
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:711
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: result: yes
lola: produced by: state space /EXEF
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (1 <= P-poll__networl_5_2_AnsP_8)
lola: state equation task get result unparse finished id 0
lola: The predicate is invariant from successors.
lola: 8 markings, 7 edges
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: ========================================
lola: subprocess 10 will run for 567 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (A (X ((P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8 <= 2)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:812
lola: rewrite Frontend/Parser/formula_rewrite.k:811
lola: processed formula: AF(AX((P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8 <= 2)))
lola: processed formula length: 183
lola: 76 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 91750 markings, 150844 edges, 18350 markings/sec, 0 secs
lola: 183202 markings, 307323 edges, 18290 markings/sec, 5 secs
lola: 268643 markings, 459182 edges, 17088 markings/sec, 10 secs
lola: 360641 markings, 613298 edges, 18400 markings/sec, 15 secs
lola: 449586 markings, 773039 edges, 17789 markings/sec, 20 secs
lola: 538423 markings, 924181 edges, 17767 markings/sec, 25 secs
lola: 617831 markings, 1084874 edges, 15882 markings/sec, 30 secs
lola: 695848 markings, 1235886 edges, 15603 markings/sec, 35 secs
lola: 774218 markings, 1384409 edges, 15674 markings/sec, 40 secs
lola: 851113 markings, 1540640 edges, 15379 markings/sec, 45 secs
lola: 928102 markings, 1688468 edges, 15398 markings/sec, 50 secs
lola: 1005783 markings, 1844479 edges, 15536 markings/sec, 55 secs
lola: 1079696 markings, 1988880 edges, 14783 markings/sec, 60 secs
lola: 1157599 markings, 2142961 edges, 15581 markings/sec, 65 secs
lola: 1230587 markings, 2288316 edges, 14598 markings/sec, 70 secs
lola: 1300186 markings, 2442678 edges, 13920 markings/sec, 75 secs
lola: 1362122 markings, 2588565 edges, 12387 markings/sec, 80 secs
lola: 1445357 markings, 2744500 edges, 16647 markings/sec, 85 secs
lola: 1526168 markings, 2912332 edges, 16162 markings/sec, 90 secs
lola: 1610335 markings, 3070777 edges, 16833 markings/sec, 95 secs
lola: 1692577 markings, 3236701 edges, 16448 markings/sec, 100 secs
lola: 1773317 markings, 3395829 edges, 16148 markings/sec, 105 secs
lola: 1862767 markings, 3567583 edges, 17890 markings/sec, 110 secs
lola: 1941220 markings, 3726732 edges, 15691 markings/sec, 115 secs
lola: 2009430 markings, 3892204 edges, 13642 markings/sec, 120 secs
lola: 2087591 markings, 4049366 edges, 15632 markings/sec, 125 secs
lola: 2174567 markings, 4198469 edges, 17395 markings/sec, 130 secs
lola: 2267649 markings, 4356170 edges, 18616 markings/sec, 135 secs
lola: 2355764 markings, 4511993 edges, 17623 markings/sec, 140 secs
lola: 2445707 markings, 4663150 edges, 17989 markings/sec, 145 secs
lola: 2534619 markings, 4819759 edges, 17782 markings/sec, 150 secs
lola: 2618617 markings, 4964378 edges, 16800 markings/sec, 155 secs
lola: 2692467 markings, 5118040 edges, 14770 markings/sec, 160 secs
lola: 2767832 markings, 5262556 edges, 15073 markings/sec, 165 secs
lola: 2844174 markings, 5407427 edges, 15268 markings/sec, 170 secs
lola: 2919128 markings, 5560520 edges, 14991 markings/sec, 175 secs
lola: 2996033 markings, 5706530 edges, 15381 markings/sec, 180 secs
lola: 3072389 markings, 5861374 edges, 15271 markings/sec, 185 secs
lola: 3148819 markings, 6008370 edges, 15286 markings/sec, 190 secs
lola: 3226672 markings, 6164653 edges, 15571 markings/sec, 195 secs
lola: 3301348 markings, 6311407 edges, 14935 markings/sec, 200 secs
lola: 3371345 markings, 6466306 edges, 13999 markings/sec, 205 secs
lola: 3434978 markings, 6616781 edges, 12727 markings/sec, 210 secs
lola: 3519921 markings, 6776265 edges, 16989 markings/sec, 215 secs
lola: 3601804 markings, 6945932 edges, 16377 markings/sec, 220 secs
lola: 3688222 markings, 7108772 edges, 17284 markings/sec, 225 secs
lola: 3775404 markings, 7282393 edges, 17436 markings/sec, 230 secs
lola: 3857836 markings, 7446887 edges, 16486 markings/sec, 235 secs
lola: 3947814 markings, 7620372 edges, 17996 markings/sec, 240 secs
lola: 4031419 markings, 7789816 edges, 16721 markings/sec, 245 secs
lola: 4093812 markings, 7955734 edges, 12479 markings/sec, 250 secs
lola: 4185751 markings, 8115965 edges, 18388 markings/sec, 255 secs
lola: 4271003 markings, 8268134 edges, 17050 markings/sec, 260 secs
lola: 4363202 markings, 8423491 edges, 18440 markings/sec, 265 secs
lola: 4451370 markings, 8580776 edges, 17634 markings/sec, 270 secs
lola: 4538477 markings, 8729094 edges, 17421 markings/sec, 275 secs
lola: 4632648 markings, 8887685 edges, 18834 markings/sec, 280 secs
lola: 4719109 markings, 9041522 edges, 17292 markings/sec, 285 secs
lola: 4783778 markings, 9195726 edges, 12934 markings/sec, 290 secs
lola: 4870413 markings, 9342888 edges, 17327 markings/sec, 295 secs
lola: 4941650 markings, 9487404 edges, 14247 markings/sec, 300 secs
lola: 5021576 markings, 9640386 edges, 15985 markings/sec, 305 secs
lola: 5092494 markings, 9785266 edges, 14184 markings/sec, 310 secs
lola: 5172367 markings, 9937467 edges, 15975 markings/sec, 315 secs
lola: 5244383 markings, 10084463 edges, 14403 markings/sec, 320 secs
lola: 5324307 markings, 10238279 edges, 15985 markings/sec, 325 secs
lola: 5397460 markings, 10386793 edges, 14631 markings/sec, 330 secs
lola: 5460751 markings, 10540713 edges, 12658 markings/sec, 335 secs
lola: 5530068 markings, 10687937 edges, 13863 markings/sec, 340 secs
lola: 5616203 markings, 10851731 edges, 17227 markings/sec, 345 secs
lola: 5703448 markings, 11024529 edges, 17449 markings/sec, 350 secs
lola: 5785575 markings, 11189031 edges, 16425 markings/sec, 355 secs
lola: 5875060 markings, 11360840 edges, 17897 markings/sec, 360 secs
lola: 5958018 markings, 11529591 edges, 16592 markings/sec, 365 secs
lola: 6044962 markings, 11696639 edges, 17389 markings/sec, 370 secs
lola: 6125541 markings, 11867775 edges, 16116 markings/sec, 375 secs
lola: 6191200 markings, 12030904 edges, 13132 markings/sec, 380 secs
lola: 6282638 markings, 12186370 edges, 18288 markings/sec, 385 secs
lola: 6370542 markings, 12344578 edges, 17581 markings/sec, 390 secs
lola: 6459406 markings, 12494345 edges, 17773 markings/sec, 395 secs
lola: 6552345 markings, 12651001 edges, 18588 markings/sec, 400 secs
lola: 6636979 markings, 12801712 edges, 16927 markings/sec, 405 secs
lola: 6727349 markings, 12953497 edges, 18074 markings/sec, 410 secs
lola: 6811697 markings, 13108396 edges, 16870 markings/sec, 415 secs
lola: 6875034 markings, 13254354 edges, 12667 markings/sec, 420 secs
lola: 6956223 markings, 13396875 edges, 16238 markings/sec, 425 secs
lola: 7026094 markings, 13538944 edges, 13974 markings/sec, 430 secs
lola: 7102422 markings, 13685927 edges, 15266 markings/sec, 435 secs
lola: 7172767 markings, 13828132 edges, 14069 markings/sec, 440 secs
lola: 7249128 markings, 13974809 edges, 15272 markings/sec, 445 secs
lola: 7319021 markings, 14116309 edges, 13979 markings/sec, 450 secs
lola: 7396765 markings, 14265729 edges, 15549 markings/sec, 455 secs
lola: 7468303 markings, 14410940 edges, 14308 markings/sec, 460 secs
lola: 7531134 markings, 14562469 edges, 12566 markings/sec, 465 secs
lola: 7597316 markings, 14706751 edges, 13236 markings/sec, 470 secs
lola: 7682876 markings, 14867357 edges, 17112 markings/sec, 475 secs
lola: 7766859 markings, 15036227 edges, 16797 markings/sec, 480 secs
lola: 7847648 markings, 15195708 edges, 16158 markings/sec, 485 secs
lola: 7936710 markings, 15366508 edges, 17812 markings/sec, 490 secs
lola: 8016290 markings, 15529091 edges, 15916 markings/sec, 495 secs
lola: 8103061 markings, 15695694 edges, 17354 markings/sec, 500 secs
lola: 8185105 markings, 15862973 edges, 16409 markings/sec, 505 secs
lola: 8244569 markings, 16023073 edges, 11893 markings/sec, 510 secs
lola: 8318551 markings, 16180084 edges, 14796 markings/sec, 515 secs
lola: 8374171 markings, 16330325 edges, 11124 markings/sec, 520 secs
lola: 8430156 markings, 16487268 edges, 11197 markings/sec, 525 secs
lola: 8488177 markings, 16640254 edges, 11604 markings/sec, 530 secs
lola: 8541567 markings, 16789086 edges, 10678 markings/sec, 535 secs
lola: 8599503 markings, 16948295 edges, 11587 markings/sec, 540 secs
lola: 8656627 markings, 17099078 edges, 11425 markings/sec, 545 secs
lola: 8711703 markings, 17252954 edges, 11015 markings/sec, 550 secs
lola: 8770713 markings, 17409125 edges, 11802 markings/sec, 555 secs
lola: 8825242 markings, 17558705 edges, 10906 markings/sec, 560 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown unknown no unknown unknown yes unknown unknown yes no no yes no yes no yes
lola: memory consumption: 3782860 KB
lola: time consumption: 731 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown unknown no unknown unknown yes unknown unknown yes no no yes no yes no yes
lola: memory consumption: 3793604 KB
lola: time consumption: 734 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 563 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0)))
lola: processed formula length: 201
lola: 76 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to CTLCardinality-11-0.sara
lola: state equation: calling and running sara
sara: try reading problem file CTLCardinality-11-0.sara.
lola: sara is running 0 secs || 12444 markings, 34305 edges, 2489 markings/sec, 0 secs
lola: sara is running 5 secs || 24779 markings, 75721 edges, 2467 markings/sec, 5 secs
lola: sara is running 10 secs || 37397 markings, 119581 edges, 2524 markings/sec, 10 secs
lola: sara is running 15 secs || 49577 markings, 158249 edges, 2436 markings/sec, 15 secs
lola: sara is running 20 secs || 62031 markings, 201330 edges, 2491 markings/sec, 20 secs
lola: sara is running 25 secs || 74286 markings, 244621 edges, 2451 markings/sec, 25 secs
lola: sara is running 30 secs || 86307 markings, 289808 edges, 2404 markings/sec, 30 secs
lola: sara is running 35 secs || 97421 markings, 335138 edges, 2223 markings/sec, 35 secs
lola: sara is running 40 secs || 109220 markings, 384634 edges, 2360 markings/sec, 40 secs
lola: sara is running 45 secs || 120539 markings, 433970 edges, 2264 markings/sec, 45 secs
lola: sara is running 50 secs || 134028 markings, 490964 edges, 2698 markings/sec, 50 secs
lola: sara is running 55 secs || 145968 markings, 541426 edges, 2388 markings/sec, 55 secs
lola: sara is running 60 secs || 158193 markings, 588286 edges, 2445 markings/sec, 60 secs
lola: sara is running 65 secs || 170224 markings, 633992 edges, 2406 markings/sec, 65 secs
lola: sara is running 70 secs || 181279 markings, 671077 edges, 2211 markings/sec, 70 secs
lola: sara is running 75 secs || 192796 markings, 707833 edges, 2303 markings/sec, 75 secs
sara: place or transition ordering is non-deterministic
lola: sara is running 80 secs || 205069 markings, 749608 edges, 2455 markings/sec, 80 secs
lola: sara is running 85 secs || 218017 markings, 792305 edges, 2590 markings/sec, 85 secs
lola: sara is running 90 secs || 230439 markings, 839472 edges, 2484 markings/sec, 90 secs
lola: sara is running 95 secs || 242415 markings, 884137 edges, 2395 markings/sec, 95 secs
lola: sara is running 100 secs || 255244 markings, 928509 edges, 2566 markings/sec, 100 secs
lola: sara is running 105 secs || 267924 markings, 974985 edges, 2536 markings/sec, 105 secs
lola: state equation: solution impossible
lola: SUBRESULT
lola: result: yes
lola: produced by: state equation
lola: The predicate is invariant.
lola: ========================================
lola: subprocess 12 will run for 675 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 <= P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: A (G ((P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 <= P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7... (shortened)
lola: processed formula length: 422
lola: 76 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8 + 1 <= P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is invariant.
lola: 256 markings, 1024 edges
lola: ========================================
lola: subprocess 13 will run for 900 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((1 <= P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:584
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:787
lola: processed formula: (P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= 0)
lola: processed formula length: 184
lola: 77 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: Planning: workflow for reachability check: stateequation (--findpath=off)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:700
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (1 <= P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 81 markings, 80 edges
lola: ========================================
lola: subprocess 14 will run for 1351 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= 0)))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation
lola: rewrite Frontend/Parser/formula_rewrite.k:583
lola: processed formula: E (G ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= 0)))
lola: processed formula length: 192
lola: 75 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: Planning: workflow for reachability check: stateequation (--findpath=off)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:788
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (1 <= P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate is not possibly preserved.
lola: 81 markings, 80 edges
lola: ========================================
lola: subprocess 15 will run for 2702 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (A (F ((57 <= P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 15 will run for 2702 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F (((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0))))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:711
lola: processed formula: E (F (((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0))))
lola: processed formula length: 203
lola: 75 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:711
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: ((P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0))
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: 0 markings, 0 edges
lola: ========================================
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 17 will run for 1 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((57 <= P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:584
lola: rewrite Frontend/Parser/formula_rewrite.k:749
lola: rewrite Frontend/Parser/formula_rewrite.k:788
lola: processed formula: (P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_... (shortened)
lola: processed formula length: 25601
lola: 77 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: Planning: workflow for reachability check: stateequation (--findpath=off)
lola: built state equation task
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:700
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: (57 <= P-network_2_7_AskP_0 + P-network_8_7_AnnP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_8_8_AI_0 + P-network_6_5_AnsP_8 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_3_1_RP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_8 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_8 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_8_4_AnsP_8 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_4_1_AskP_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_5_8_AnnP_0 + P-network_8_1_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_8_4_AskP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_6_8_AnnP_0 + P-network_7_2_RI_0 + P-network_0_8_AskP_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_7_6_AI_0 + P-network_5_7_AI_0 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_6_0_AnsP_8 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_3_8_AI_0 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_8_0_AI_0 + P-network_1_5_AnnP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_0_8_RI_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_7_5_AskP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_8_4_RI_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_8 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_8_7_RI_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_4_8_RP_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_8 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_6_8_RI_0 + P-network_8_2_AnnP_0 + P-network_7_3_AI_0 + P-network_8_6_RP_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_8 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_2_2_AskP_0 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_8_AnnP_0 + P-network_2_1_AskP_0 + P-network_8_1_AnnP_0 + P-network_5_8_RI_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_1_4_AnnP_0 + P-network_2_8_AI_0 + P-network_4_7_AI_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_8 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_8_5_AI_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_5_6_AskP_0 + P-network_3_3_AnnP_0 + P-network_8_3_AI_0 + P-network_2_6_AskP_0 + P-network_8_6_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_0_8_AnsP_0 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_3 + P-network_0_8_AnsP_4 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_8 + P-network_7_7_RP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_7_8_AI_0 + P-network_6_4_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_5_8_RP_0 + P-network_0_2_RP_0 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_4_5_AI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_0_3_AskP_0 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_6_AI_0 + P-network_3_8_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_0_7_AI_0 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_1_0_AnnP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_8 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_8 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_7_5_RI_0 + P-network_6_4_AskP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_7_0_AskP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_5_6_RI_0 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_8_3_AskP_0 + P-network_0_5_RI_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_3_7_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_8_1_RI_0 + P-network_1_8_RI_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_3_7_AskP_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_4_4_AnnP_0 + P-network_1_7_RI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_8_8_AskP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_2_8_AnnP_0 + P-network_7_4_RI_0 + P-network_8_4_RP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_7_1_AI_0 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_3_8_RP_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_8_2_AI_0 + P-network_6_5_RP_0 + P-network_5_2_AI_0 + P-network_4_7_AnnP_0 + P-network_5_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_0_AskP_0 + P-network_8_0_AnnP_0 + P-network_4_8_RI_0 + P-network_6_7_RI_0 + P-network_2_5_AnsP_8 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_3_3_AI_0 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_8_6_RI_0 + P-network_7_3_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_8 + P-network_2_7_RP_0 + P-network_7_8_AnsP_8 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_0 + P-network_1_3_AnnP_0 + P-network_1_4_AI_0 + P-network_1_8_AI_0 + P-network_3_7_AI_0 + P-network_0_8_RP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_8_8_RP_0 + P-network_7_8_AnnP_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_1_8_AskP_0 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_8_2_RI_0 + P-network_2_5_AskP_0 + P-network_8_5_AnnP_0 + P-network_6_3_RI_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_8 + P-network_4_4_RI_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_7_8_AskP_0 + P-network_1_8_AnnP_0 + P-network_6_8_AI_0 + P-network_6_3_AnsP_8 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_2_5_AnnP_0 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_8_7_AI_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_8_5_AskP_0 + P-network_3_7_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_8 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_3_2_AskP_0 + P-network_6_3_AskP_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_8_0_RP_0 + P-network_3_4_AnsP_8 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_7_2_RP_0 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_8_2_AskP_0 + P-network_8_7_AnsP_8 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_5_3_RP_0 + P-network_5_2_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_8 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_6_8_AskP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_4_RP_0 + P-network_3_5_RP_0 + P-network_0_8_AnnP_0 + P-network_4_1_AI_0 + P-network_5_3_AnsP_8 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_8 + P-network_2_1_AI_0 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_4_1_AnnP_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_8_7_AskP_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_0_6_AnnP_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_1_5_RP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_8_3_RI_0 + P-network_0_2_AI_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_2_8_RP_0 + P-network_6_6_AskP_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_1_8_AnsP_0 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_8 + P-network_7_0_RI_0 + P-network_0_5_AnsP_0 + P-network_5_1_RI_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_8_5_RP_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_7_3_AnnP_0 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_4_6_AnnP_0 + P-network_1_3_RI_0 + P-network_3_8_RI_0 + P-network_2_0_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_8_5_AnsP_0 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_8 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_0_8_AI_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_7_8_RP_0 + P-network_8_4_AI_0 + P-network_5_8_AskP_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_8_0_AskP_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_3_1_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_8 + P-network_2_4_AskP_0 + P-network_8_4_AnnP_0 + P-network_8_8_RI_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_5_8_AI_0 + P-network_6_2_AnsP_8 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_4_7_AskP_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_6_0_RP_0 + P-network_4_8_AnsP_0 + P-network_3_6_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_4_1_RP_0 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_4_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_3_RP_0 + P-network_5_1_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_8 + P-network_7_0_RP_0 + P-network_4_8_AskP_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_8_1_AskP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_6_1_AskP_0 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_2_0_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_8_0_RI_0 + P-network_0_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_8_8_AnnP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_2_8_AskP_0 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_8_2_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_3_8_AnsP_8 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_0 + P-network_8_6_AskP_0 + P-network_8_0_AnsP_0 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_8 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_8 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_3_5_AnnP_0 + P-network_0_5_AI_0 + P-network_1_8_RP_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_8_1_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_3_8_AskP_0 + P-network_2_8_RI_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_4_2_AskP_0 + P-network_8_5_RI_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_0_RP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_6_8_RP_0 + P-network_7_4_AI_0 + P-network_8_7_RP_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_3_0_AnnP_0 + P-network_8_6_AI_0 + P-network_2_3_AskP_0 + P-network_8_3_AnnP_0 + P-network_7_8_RI_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_2_8_AnsP_4 + P-network_6_7_AI_0 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_7_6_AskP_0 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_8 + P-network_1_6_AnnP_0 + P-network_4_8_AI_0)
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 753 markings, 752 edges
lola: ========================================
lola: SUBRESULT
lola: result: no
lola: The Boolean predicate is false.
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A (F (A (X ((P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8 <= 2)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:812
lola: rewrite Frontend/Parser/formula_rewrite.k:811
lola: processed formula: AF(AX((P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8 <= 2)))
lola: processed formula length: 183
lola: 76 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 90245 markings, 147928 edges, 18049 markings/sec, 0 secs
lola: 181780 markings, 305290 edges, 18307 markings/sec, 5 secs
lola: 267169 markings, 456546 edges, 17078 markings/sec, 10 secs
lola: 358927 markings, 610312 edges, 18352 markings/sec, 15 secs
lola: 445268 markings, 766726 edges, 17268 markings/sec, 20 secs
lola: 535209 markings, 915799 edges, 17988 markings/sec, 25 secs
lola: 613461 markings, 1074304 edges, 15650 markings/sec, 30 secs
lola: 688465 markings, 1223859 edges, 15001 markings/sec, 35 secs
lola: 766926 markings, 1369884 edges, 15692 markings/sec, 40 secs
lola: 841706 markings, 1524118 edges, 14956 markings/sec, 45 secs
lola: 918954 markings, 1670181 edges, 15450 markings/sec, 50 secs
lola: 993769 markings, 1823369 edges, 14963 markings/sec, 55 secs
lola: 1070910 markings, 1969711 edges, 15428 markings/sec, 60 secs
lola: 1146696 markings, 2123936 edges, 15157 markings/sec, 65 secs
lola: 1222862 markings, 2269728 edges, 15233 markings/sec, 70 secs
lola: 1293730 markings, 2425151 edges, 14174 markings/sec, 75 secs
lola: 1353647 markings, 2573217 edges, 11983 markings/sec, 80 secs
lola: 1437738 markings, 2729366 edges, 16818 markings/sec, 85 secs
lola: 1520141 markings, 2897194 edges, 16481 markings/sec, 90 secs
lola: 1605791 markings, 3061324 edges, 17130 markings/sec, 95 secs
lola: 1689421 markings, 3231618 edges, 16726 markings/sec, 100 secs
lola: 1772440 markings, 3393191 edges, 16604 markings/sec, 105 secs
lola: 1861405 markings, 3565197 edges, 17793 markings/sec, 110 secs
lola: 1942259 markings, 3728999 edges, 16171 markings/sec, 115 secs
lola: 2011142 markings, 3896886 edges, 13777 markings/sec, 120 secs
lola: 2091801 markings, 4056005 edges, 16132 markings/sec, 125 secs
lola: 2177760 markings, 4204174 edges, 17192 markings/sec, 130 secs
lola: 2270600 markings, 4360509 edges, 18568 markings/sec, 135 secs
lola: 2356845 markings, 4513915 edges, 17249 markings/sec, 140 secs
lola: 2446083 markings, 4663785 edges, 17848 markings/sec, 145 secs
lola: 2535345 markings, 4820875 edges, 17852 markings/sec, 150 secs
lola: 2621613 markings, 4969936 edges, 17254 markings/sec, 155 secs
lola: 2697103 markings, 5129648 edges, 15098 markings/sec, 160 secs
lola: 2777412 markings, 5279293 edges, 16062 markings/sec, 165 secs
lola: 2851734 markings, 5422380 edges, 14864 markings/sec, 170 secs
lola: 2927725 markings, 5575357 edges, 15198 markings/sec, 175 secs
lola: 3002598 markings, 5720284 edges, 14975 markings/sec, 180 secs
lola: 3079350 markings, 5873935 edges, 15350 markings/sec, 185 secs
lola: 3152946 markings, 6018528 edges, 14719 markings/sec, 190 secs
lola: 3231437 markings, 6172649 edges, 15698 markings/sec, 195 secs
lola: 3303774 markings, 6317174 edges, 14467 markings/sec, 200 secs
lola: 3373345 markings, 6472060 edges, 13914 markings/sec, 205 secs
lola: 3436323 markings, 6619538 edges, 12596 markings/sec, 210 secs
lola: 3520421 markings, 6777265 edges, 16820 markings/sec, 215 secs
lola: 3602007 markings, 6946387 edges, 16317 markings/sec, 220 secs
lola: 3687876 markings, 7108103 edges, 17174 markings/sec, 225 secs
lola: 3772898 markings, 7278327 edges, 17004 markings/sec, 230 secs
lola: 3854103 markings, 7439096 edges, 16241 markings/sec, 235 secs
lola: 3942801 markings, 7610240 edges, 17740 markings/sec, 240 secs
lola: 4023988 markings, 7774842 edges, 16237 markings/sec, 245 secs
lola: 4089221 markings, 7940355 edges, 13047 markings/sec, 250 secs
lola: 4173739 markings, 8097819 edges, 16904 markings/sec, 255 secs
lola: 4259533 markings, 8247981 edges, 17159 markings/sec, 260 secs
lola: 4351131 markings, 8402057 edges, 18320 markings/sec, 265 secs
lola: 4436821 markings, 8557286 edges, 17138 markings/sec, 270 secs
lola: 4527027 markings, 8705920 edges, 18041 markings/sec, 275 secs
lola: 4617238 markings, 8862614 edges, 18042 markings/sec, 280 secs
lola: 4703179 markings, 9013153 edges, 17188 markings/sec, 285 secs
lola: 4774491 markings, 9169248 edges, 14262 markings/sec, 290 secs
lola: 4855667 markings, 9317337 edges, 16235 markings/sec, 295 secs
lola: 4929265 markings, 9462033 edges, 14720 markings/sec, 300 secs
lola: 5007685 markings, 9615936 edges, 15684 markings/sec, 305 secs
lola: 5079820 markings, 9760057 edges, 14427 markings/sec, 310 secs
lola: 5159203 markings, 9914146 edges, 15877 markings/sec, 315 secs
lola: 5231372 markings, 10058717 edges, 14434 markings/sec, 320 secs
lola: 5311035 markings, 10213157 edges, 15933 markings/sec, 325 secs
lola: 5383366 markings, 10358266 edges, 14466 markings/sec, 330 secs
lola: 5450619 markings, 10512766 edges, 13451 markings/sec, 335 secs
lola: 5515415 markings, 10658696 edges, 12959 markings/sec, 340 secs
lola: 5599606 markings, 10818291 edges, 16838 markings/sec, 345 secs
lola: 5680139 markings, 10983443 edges, 16107 markings/sec, 350 secs
lola: 5762723 markings, 11140578 edges, 16517 markings/sec, 355 secs
lola: 5845878 markings, 11306669 edges, 16631 markings/sec, 360 secs
lola: 5926143 markings, 11465755 edges, 16053 markings/sec, 365 secs
lola: 6014623 markings, 11636088 edges, 17696 markings/sec, 370 secs
lola: 6092882 markings, 11795366 edges, 15652 markings/sec, 375 secs
lola: 6157683 markings, 11956335 edges, 12960 markings/sec, 380 secs
lola: 6235556 markings, 12109314 edges, 15575 markings/sec, 385 secs
lola: 6320020 markings, 12254526 edges, 16893 markings/sec, 390 secs
lola: 6409924 markings, 12406164 edges, 17981 markings/sec, 395 secs
lola: 6492638 markings, 12553160 edges, 16543 markings/sec, 400 secs
lola: 6582541 markings, 12704055 edges, 17981 markings/sec, 405 secs
lola: 6669043 markings, 12859007 edges, 17300 markings/sec, 410 secs
lola: 6755637 markings, 13006107 edges, 17319 markings/sec, 415 secs
lola: 6833324 markings, 13162612 edges, 15537 markings/sec, 420 secs
lola: 6906817 markings, 13307858 edges, 14699 markings/sec, 425 secs
lola: 6983890 markings, 13451528 edges, 15415 markings/sec, 430 secs
lola: 7057771 markings, 13604439 edges, 14776 markings/sec, 435 secs
lola: 7133402 markings, 13746730 edges, 15126 markings/sec, 440 secs
lola: 7204792 markings, 13894921 edges, 14278 markings/sec, 445 secs
lola: 7280957 markings, 14037499 edges, 15233 markings/sec, 450 secs
lola: 7355157 markings, 14190523 edges, 14840 markings/sec, 455 secs
lola: 7432254 markings, 14336278 edges, 15419 markings/sec, 460 secs
lola: 7503980 markings, 14487400 edges, 14345 markings/sec, 465 secs
lola: 7560041 markings, 14635438 edges, 11212 markings/sec, 470 secs
lola: 7642708 markings, 14787154 edges, 16533 markings/sec, 475 secs
lola: 7721257 markings, 14946946 edges, 15710 markings/sec, 480 secs
lola: 7805159 markings, 15108022 edges, 16780 markings/sec, 485 secs
lola: 7886593 markings, 15273752 edges, 16287 markings/sec, 490 secs
lola: 7970382 markings, 15434119 edges, 16758 markings/sec, 495 secs
lola: 8051076 markings, 15599402 edges, 16139 markings/sec, 500 secs
lola: 8135603 markings, 15761139 edges, 16905 markings/sec, 505 secs
lola: 8210358 markings, 15929515 edges, 14951 markings/sec, 510 secs
lola: 8279505 markings, 16087284 edges, 13829 markings/sec, 515 secs
lola: 8340495 markings, 16238009 edges, 12198 markings/sec, 520 secs
lola: 8393295 markings, 16385457 edges, 10560 markings/sec, 525 secs
lola: 8450260 markings, 16542513 edges, 11393 markings/sec, 530 secs
lola: 8506734 markings, 16690935 edges, 11295 markings/sec, 535 secs
lola: 8561359 markings, 16843626 edges, 10925 markings/sec, 540 secs
lola: 8619133 markings, 16997754 edges, 11555 markings/sec, 545 secs
lola: 8674605 markings, 17148305 edges, 11094 markings/sec, 550 secs
lola: 8731182 markings, 17309546 edges, 11315 markings/sec, 555 secs
lola: 8790422 markings, 17462598 edges, 11848 markings/sec, 560 secs
lola: 8844633 markings, 17614968 edges, 10842 markings/sec, 565 secs
lola: 8897536 markings, 17773162 edges, 10581 markings/sec, 570 secs
lola: 8942156 markings, 17923883 edges, 8924 markings/sec, 575 secs
lola: 9009816 markings, 18073686 edges, 13532 markings/sec, 580 secs
lola: 9089467 markings, 18219880 edges, 15930 markings/sec, 585 secs
lola: 9176890 markings, 18374533 edges, 17485 markings/sec, 590 secs
lola: 9257911 markings, 18524618 edges, 16204 markings/sec, 595 secs
lola: 9343941 markings, 18675208 edges, 17206 markings/sec, 600 secs
lola: 9425082 markings, 18830013 edges, 16228 markings/sec, 605 secs
lola: 9511071 markings, 18977586 edges, 17198 markings/sec, 610 secs
lola: 9588038 markings, 19133831 edges, 15393 markings/sec, 615 secs
lola: 9655707 markings, 19283202 edges, 13534 markings/sec, 620 secs
lola: 9735903 markings, 19427080 edges, 16039 markings/sec, 625 secs
lola: 9807033 markings, 19568115 edges, 14226 markings/sec, 630 secs
lola: 9873183 markings, 19709031 edges, 13230 markings/sec, 635 secs
lola: 9949378 markings, 19864557 edges, 15239 markings/sec, 640 secs
lola: 10025090 markings, 20010468 edges, 15142 markings/sec, 645 secs
lola: 10097529 markings, 20152628 edges, 14488 markings/sec, 650 secs
lola: 10162540 markings, 20292287 edges, 13002 markings/sec, 655 secs
lola: 10239045 markings, 20447149 edges, 15301 markings/sec, 660 secs
lola: 10314974 markings, 20595482 edges, 15186 markings/sec, 665 secs
lola: 10388210 markings, 20738676 edges, 14647 markings/sec, 670 secs
lola: 10454838 markings, 20879019 edges, 13326 markings/sec, 675 secs
lola: 10529040 markings, 21031887 edges, 14840 markings/sec, 680 secs
lola: 10604226 markings, 21180491 edges, 15037 markings/sec, 685 secs
lola: 10678177 markings, 21322306 edges, 14790 markings/sec, 690 secs
lola: 10746883 markings, 21463698 edges, 13741 markings/sec, 695 secs
lola: 10819415 markings, 21616284 edges, 14506 markings/sec, 700 secs
lola: 10882464 markings, 21767828 edges, 12610 markings/sec, 705 secs
lola: 10934860 markings, 21913677 edges, 10479 markings/sec, 710 secs
lola: 10997645 markings, 22058630 edges, 12557 markings/sec, 715 secs
lola: 11073758 markings, 22205302 edges, 15223 markings/sec, 720 secs
lola: 11162054 markings, 22370029 edges, 17659 markings/sec, 725 secs
lola: 11240417 markings, 22531347 edges, 15673 markings/sec, 730 secs
lola: 11323711 markings, 22705496 edges, 16659 markings/sec, 735 secs
lola: 11410203 markings, 22873936 edges, 17298 markings/sec, 740 secs
lola: 11492366 markings, 23036844 edges, 16433 markings/sec, 745 secs
lola: 11569997 markings, 23200782 edges, 15526 markings/sec, 750 secs
lola: 11654743 markings, 23377254 edges, 16949 markings/sec, 755 secs
lola: 11742976 markings, 23542332 edges, 17647 markings/sec, 760 secs
lola: 11822747 markings, 23702640 edges, 15954 markings/sec, 765 secs
lola: 11903623 markings, 23873697 edges, 16175 markings/sec, 770 secs
lola: 11990363 markings, 24045181 edges, 17348 markings/sec, 775 secs
lola: 12074067 markings, 24207357 edges, 16741 markings/sec, 780 secs
lola: 12149983 markings, 24367938 edges, 15183 markings/sec, 785 secs
lola: 12233868 markings, 24544991 edges, 16777 markings/sec, 790 secs
lola: 12295049 markings, 24709216 edges, 12236 markings/sec, 795 secs
lola: 12355915 markings, 24871329 edges, 12173 markings/sec, 800 secs
lola: 12440197 markings, 25035227 edges, 16856 markings/sec, 805 secs
lola: 12529517 markings, 25186085 edges, 17864 markings/sec, 810 secs
lola: 12615210 markings, 25337719 edges, 17139 markings/sec, 815 secs
lola: 12691614 markings, 25484415 edges, 15281 markings/sec, 820 secs
lola: 12765897 markings, 25631433 edges, 14857 markings/sec, 825 secs
lola: 12834972 markings, 25777237 edges, 13815 markings/sec, 830 secs
lola: 12919350 markings, 25941778 edges, 16876 markings/sec, 835 secs
lola: 13002993 markings, 26104882 edges, 16729 markings/sec, 840 secs
lola: 13082864 markings, 26256876 edges, 15974 markings/sec, 845 secs
lola: 13171185 markings, 26406268 edges, 17664 markings/sec, 850 secs
lola: 13248672 markings, 26553513 edges, 15497 markings/sec, 855 secs
lola: 13323704 markings, 26700270 edges, 15006 markings/sec, 860 secs
lola: 13397987 markings, 26846895 edges, 14857 markings/sec, 865 secs
lola: 13470842 markings, 26999464 edges, 14571 markings/sec, 870 secs
lola: 13554438 markings, 27162883 edges, 16719 markings/sec, 875 secs
lola: 13633095 markings, 27323038 edges, 15731 markings/sec, 880 secs
lola: 13721376 markings, 27472386 edges, 17656 markings/sec, 885 secs
lola: 13803920 markings, 27622614 edges, 16509 markings/sec, 890 secs
lola: 13880346 markings, 27767808 edges, 15285 markings/sec, 895 secs
lola: 13954661 markings, 27914065 edges, 14863 markings/sec, 900 secs
lola: 14022557 markings, 28057660 edges, 13579 markings/sec, 905 secs
lola: 14106129 markings, 28220821 edges, 16714 markings/sec, 910 secs
lola: 14189835 markings, 28384634 edges, 16741 markings/sec, 915 secs
lola: 14271230 markings, 28537998 edges, 16279 markings/sec, 920 secs
lola: 14359791 markings, 28688618 edges, 17712 markings/sec, 925 secs
lola: 14437076 markings, 28836215 edges, 15457 markings/sec, 930 secs
lola: 14512610 markings, 28983453 edges, 15107 markings/sec, 935 secs
lola: 14586689 markings, 29131781 edges, 14816 markings/sec, 940 secs
lola: 14662503 markings, 29287020 edges, 15163 markings/sec, 945 secs
lola: 14746420 markings, 29450919 edges, 16783 markings/sec, 950 secs
lola: 14819564 markings, 29610427 edges, 14629 markings/sec, 955 secs
lola: 14875089 markings, 29760156 edges, 11105 markings/sec, 960 secs
lola: 14930802 markings, 29911698 edges, 11143 markings/sec, 965 secs
lola: 14985331 markings, 30064272 edges, 10906 markings/sec, 970 secs
lola: 15055038 markings, 30214722 edges, 13941 markings/sec, 975 secs
lola: 15139967 markings, 30366170 edges, 16986 markings/sec, 980 secs
lola: 15216828 markings, 30514109 edges, 15372 markings/sec, 985 secs
lola: 15295664 markings, 30660763 edges, 15767 markings/sec, 990 secs
lola: 15365282 markings, 30801527 edges, 13924 markings/sec, 995 secs
lola: 15435279 markings, 30949195 edges, 13999 markings/sec, 1000 secs
lola: 15510064 markings, 31105176 edges, 14957 markings/sec, 1005 secs
lola: 15589392 markings, 31250645 edges, 15866 markings/sec, 1010 secs
lola: 15658164 markings, 31391041 edges, 13754 markings/sec, 1015 secs
lola: 15727898 markings, 31538279 edges, 13947 markings/sec, 1020 secs
lola: 15801868 markings, 31694358 edges, 14794 markings/sec, 1025 secs
lola: 15882513 markings, 31839553 edges, 16129 markings/sec, 1030 secs
lola: 15950967 markings, 31980257 edges, 13691 markings/sec, 1035 secs
lola: 16019862 markings, 32126598 edges, 13779 markings/sec, 1040 secs
lola: 16093721 markings, 32283446 edges, 14772 markings/sec, 1045 secs
lola: 16174089 markings, 32427357 edges, 16074 markings/sec, 1050 secs
lola: 16243418 markings, 32568900 edges, 13866 markings/sec, 1055 secs
lola: 16312094 markings, 32715444 edges, 13735 markings/sec, 1060 secs
lola: 16386796 markings, 32873786 edges, 14940 markings/sec, 1065 secs
lola: 16441628 markings, 33022408 edges, 10966 markings/sec, 1070 secs
lola: 16493212 markings, 33169326 edges, 10317 markings/sec, 1075 secs
lola: 16569684 markings, 33312919 edges, 15294 markings/sec, 1080 secs
lola: 16636943 markings, 33453767 edges, 13452 markings/sec, 1085 secs
lola: 16703103 markings, 33591784 edges, 13232 markings/sec, 1090 secs
lola: 16766915 markings, 33733075 edges, 12762 markings/sec, 1095 secs
lola: 16838792 markings, 33884192 edges, 14375 markings/sec, 1100 secs
lola: 16913373 markings, 34042075 edges, 14916 markings/sec, 1105 secs
lola: 16982887 markings, 34197874 edges, 13903 markings/sec, 1110 secs
lola: 17056798 markings, 34342948 edges, 14782 markings/sec, 1115 secs
lola: 17127883 markings, 34484034 edges, 14217 markings/sec, 1120 secs
lola: 17201006 markings, 34627851 edges, 14625 markings/sec, 1125 secs
lola: 17274459 markings, 34773805 edges, 14691 markings/sec, 1130 secs
lola: 17339320 markings, 34920757 edges, 12972 markings/sec, 1135 secs
lola: 17413686 markings, 35069413 edges, 14873 markings/sec, 1140 secs
lola: 17498562 markings, 35232891 edges, 16975 markings/sec, 1145 secs
lola: 17574606 markings, 35393630 edges, 15209 markings/sec, 1150 secs
lola: 17661689 markings, 35571993 edges, 17417 markings/sec, 1155 secs
lola: 17750012 markings, 35737765 edges, 17665 markings/sec, 1160 secs
lola: 17829186 markings, 35898965 edges, 15835 markings/sec, 1165 secs
lola: 17908134 markings, 36065873 edges, 15790 markings/sec, 1170 secs
lola: 17993572 markings, 36240678 edges, 17088 markings/sec, 1175 secs
lola: 18081597 markings, 36405836 edges, 17605 markings/sec, 1180 secs
lola: 18159247 markings, 36568910 edges, 15530 markings/sec, 1185 secs
lola: 18244353 markings, 36743806 edges, 17021 markings/sec, 1190 secs
lola: 18331167 markings, 36911711 edges, 17363 markings/sec, 1195 secs
lola: 18411608 markings, 37071786 edges, 16088 markings/sec, 1200 secs
lola: 18489630 markings, 37236451 edges, 15604 markings/sec, 1205 secs
lola: 18570486 markings, 37411121 edges, 16171 markings/sec, 1210 secs
lola: 18628823 markings, 37575028 edges, 11667 markings/sec, 1215 secs
lola: 18696084 markings, 37737320 edges, 13452 markings/sec, 1220 secs
lola: 18778203 markings, 37898720 edges, 16424 markings/sec, 1225 secs
lola: 18853394 markings, 38056273 edges, 15038 markings/sec, 1230 secs
lola: 18927519 markings, 38211488 edges, 14825 markings/sec, 1235 secs
lola: 19002569 markings, 38379253 edges, 15010 markings/sec, 1240 secs
lola: 19088915 markings, 38559028 edges, 17269 markings/sec, 1245 secs
lola: 19169526 markings, 38734296 edges, 16122 markings/sec, 1250 secs
lola: 19252747 markings, 38900381 edges, 16644 markings/sec, 1255 secs
lola: 19335281 markings, 39065078 edges, 16507 markings/sec, 1260 secs
lola: 19417580 markings, 39229717 edges, 16460 markings/sec, 1265 secs
lola: 19498532 markings, 39394454 edges, 16190 markings/sec, 1270 secs
lola: 19572378 markings, 39552618 edges, 14769 markings/sec, 1275 secs
lola: 19661205 markings, 39703700 edges, 17765 markings/sec, 1280 secs
lola: 19743200 markings, 39855939 edges, 16399 markings/sec, 1285 secs
lola: 19819626 markings, 40002145 edges, 15285 markings/sec, 1290 secs
lola: 19896365 markings, 40150748 edges, 15348 markings/sec, 1295 secs
lola: 19968450 markings, 40301957 edges, 14417 markings/sec, 1300 secs
lola: 20053098 markings, 40467067 edges, 16930 markings/sec, 1305 secs
lola: 20130397 markings, 40631587 edges, 15460 markings/sec, 1310 secs
lola: 20218723 markings, 40783342 edges, 17665 markings/sec, 1315 secs
lola: 20308280 markings, 40935697 edges, 17911 markings/sec, 1320 secs
lola: 20383418 markings, 41084985 edges, 15028 markings/sec, 1325 secs
lola: 20458989 markings, 41231601 edges, 15114 markings/sec, 1330 secs
lola: 20529051 markings, 41380683 edges, 14012 markings/sec, 1335 secs
lola: 20612129 markings, 41540868 edges, 16616 markings/sec, 1340 secs
lola: 20696861 markings, 41706134 edges, 16946 markings/sec, 1345 secs
lola: 20777876 markings, 41864792 edges, 16203 markings/sec, 1350 secs
lola: 20866901 markings, 42016638 edges, 17805 markings/sec, 1355 secs
lola: 20948065 markings, 42166816 edges, 16233 markings/sec, 1360 secs
lola: 21023496 markings, 42315232 edges, 15086 markings/sec, 1365 secs
lola: 21099657 markings, 42463606 edges, 15232 markings/sec, 1370 secs
lola: 21173671 markings, 42619263 edges, 14803 markings/sec, 1375 secs
lola: 21258384 markings, 42784644 edges, 16943 markings/sec, 1380 secs
lola: 21337176 markings, 42945742 edges, 15758 markings/sec, 1385 secs
lola: 21425835 markings, 43095542 edges, 17732 markings/sec, 1390 secs
lola: 21507817 markings, 43243843 edges, 16396 markings/sec, 1395 secs
lola: 21584626 markings, 43390601 edges, 15362 markings/sec, 1400 secs
lola: 21658227 markings, 43535670 edges, 14720 markings/sec, 1405 secs
lola: 21726608 markings, 43680166 edges, 13676 markings/sec, 1410 secs
lola: 21810391 markings, 43843781 edges, 16757 markings/sec, 1415 secs
lola: 21894363 markings, 44007635 edges, 16794 markings/sec, 1420 secs
lola: 21955259 markings, 44160086 edges, 12179 markings/sec, 1425 secs
lola: 22011404 markings, 44311914 edges, 11229 markings/sec, 1430 secs
lola: 22068145 markings, 44463769 edges, 11348 markings/sec, 1435 secs
lola: 22119026 markings, 44613831 edges, 10176 markings/sec, 1440 secs
lola: 22201664 markings, 44761719 edges, 16528 markings/sec, 1445 secs
lola: 22285171 markings, 44910685 edges, 16701 markings/sec, 1450 secs
lola: 22357243 markings, 45054527 edges, 14414 markings/sec, 1455 secs
lola: 22429605 markings, 45198914 edges, 14472 markings/sec, 1460 secs
lola: 22500985 markings, 45342094 edges, 14276 markings/sec, 1465 secs
lola: 22571377 markings, 45485606 edges, 14078 markings/sec, 1470 secs
lola: 22643033 markings, 45626160 edges, 14331 markings/sec, 1475 secs
lola: 22703750 markings, 45770169 edges, 12143 markings/sec, 1480 secs
lola: 22784775 markings, 45929686 edges, 16205 markings/sec, 1485 secs
lola: 22866921 markings, 46093457 edges, 16429 markings/sec, 1490 secs
lola: 22949275 markings, 46257410 edges, 16471 markings/sec, 1495 secs
lola: 23031574 markings, 46421147 edges, 16460 markings/sec, 1500 secs
lola: 23102329 markings, 46584836 edges, 14151 markings/sec, 1505 secs
lola: 23178767 markings, 46732742 edges, 15288 markings/sec, 1510 secs
lola: 23257348 markings, 46884101 edges, 15716 markings/sec, 1515 secs
lola: 23335052 markings, 47035955 edges, 15541 markings/sec, 1520 secs
lola: 23409357 markings, 47185925 edges, 14861 markings/sec, 1525 secs
lola: 23485749 markings, 47334187 edges, 15278 markings/sec, 1530 secs
lola: 23548360 markings, 47484973 edges, 12522 markings/sec, 1535 secs
lola: 23627704 markings, 47630457 edges, 15869 markings/sec, 1540 secs
lola: 23702762 markings, 47776284 edges, 15012 markings/sec, 1545 secs
lola: 23769178 markings, 47918778 edges, 13283 markings/sec, 1550 secs
lola: 23845832 markings, 48077538 edges, 15331 markings/sec, 1555 secs
lola: 23923569 markings, 48226396 edges, 15547 markings/sec, 1560 secs
lola: 23997963 markings, 48371047 edges, 14879 markings/sec, 1565 secs
lola: 24063318 markings, 48511666 edges, 13071 markings/sec, 1570 secs
lola: 24139206 markings, 48667888 edges, 15178 markings/sec, 1575 secs
lola: 24215899 markings, 48815551 edges, 15339 markings/sec, 1580 secs
lola: 24289486 markings, 48958263 edges, 14717 markings/sec, 1585 secs
lola: 24355520 markings, 49099476 edges, 13207 markings/sec, 1590 secs
lola: 24430634 markings, 49254902 edges, 15023 markings/sec, 1595 secs
lola: 24507033 markings, 49403358 edges, 15280 markings/sec, 1600 secs
lola: 24581777 markings, 49546760 edges, 14949 markings/sec, 1605 secs
lola: 24649025 markings, 49688144 edges, 13450 markings/sec, 1610 secs
lola: 24722552 markings, 49842144 edges, 14705 markings/sec, 1615 secs
lola: 24784400 markings, 49993647 edges, 12370 markings/sec, 1620 secs
lola: 24835975 markings, 50141124 edges, 10315 markings/sec, 1625 secs
lola: 24902220 markings, 50285557 edges, 13249 markings/sec, 1630 secs
lola: 24973614 markings, 50426650 edges, 14279 markings/sec, 1635 secs
lola: 25039517 markings, 50565472 edges, 13181 markings/sec, 1640 secs
lola: 25105317 markings, 50701636 edges, 13160 markings/sec, 1645 secs
lola: 25169520 markings, 50845356 edges, 12841 markings/sec, 1650 secs
lola: 25245464 markings, 51004007 edges, 15189 markings/sec, 1655 secs
lola: 25320140 markings, 51162471 edges, 14935 markings/sec, 1660 secs
lola: 25389837 markings, 51309807 edges, 13939 markings/sec, 1665 secs
lola: 25462804 markings, 51454455 edges, 14593 markings/sec, 1670 secs
lola: 25534735 markings, 51598807 edges, 14386 markings/sec, 1675 secs
lola: 25606133 markings, 51743444 edges, 14280 markings/sec, 1680 secs
lola: 25678400 markings, 51887400 edges, 14453 markings/sec, 1685 secs
lola: 25739526 markings, 52031170 edges, 12225 markings/sec, 1690 secs
lola: 25806842 markings, 52169719 edges, 13463 markings/sec, 1695 secs
lola: 25873626 markings, 52310044 edges, 13357 markings/sec, 1700 secs
lola: 25935133 markings, 52449893 edges, 12301 markings/sec, 1705 secs
lola: 25999236 markings, 52590028 edges, 12821 markings/sec, 1710 secs
lola: 26066402 markings, 52730033 edges, 13433 markings/sec, 1715 secs
lola: 26141693 markings, 52888489 edges, 15058 markings/sec, 1720 secs
lola: 26217158 markings, 53046020 edges, 15093 markings/sec, 1725 secs
lola: 26283809 markings, 53200148 edges, 13330 markings/sec, 1730 secs
lola: 26358188 markings, 53359625 edges, 14876 markings/sec, 1735 secs
lola: 26431003 markings, 53503221 edges, 14563 markings/sec, 1740 secs
lola: 26503139 markings, 53646650 edges, 14427 markings/sec, 1745 secs
lola: 26576644 markings, 53792016 edges, 14701 markings/sec, 1750 secs
lola: 26650038 markings, 53937430 edges, 14679 markings/sec, 1755 secs
lola: 26715786 markings, 54083976 edges, 13150 markings/sec, 1760 secs
lola: 26780222 markings, 54223942 edges, 12887 markings/sec, 1765 secs
lola: 26848936 markings, 54368756 edges, 13743 markings/sec, 1770 secs
lola: 26919230 markings, 54514804 edges, 14059 markings/sec, 1775 secs
lola: 27001293 markings, 54671162 edges, 16413 markings/sec, 1780 secs
lola: 27081161 markings, 54830424 edges, 15974 markings/sec, 1785 secs
lola: 27158246 markings, 54991769 edges, 15417 markings/sec, 1790 secs
lola: 27240576 markings, 55164411 edges, 16466 markings/sec, 1795 secs
lola: 27327856 markings, 55325852 edges, 17456 markings/sec, 1800 secs
lola: 27402908 markings, 55480569 edges, 15010 markings/sec, 1805 secs
lola: 27482454 markings, 55647229 edges, 15909 markings/sec, 1810 secs
lola: 27568084 markings, 55815682 edges, 17126 markings/sec, 1815 secs
lola: 27650519 markings, 55975302 edges, 16487 markings/sec, 1820 secs
lola: 27723702 markings, 56130802 edges, 14637 markings/sec, 1825 secs
lola: 27807472 markings, 56303989 edges, 16754 markings/sec, 1830 secs
lola: 27893539 markings, 56467839 edges, 17213 markings/sec, 1835 secs
lola: 27972637 markings, 56626563 edges, 15820 markings/sec, 1840 secs
lola: 28050207 markings, 56787987 edges, 15514 markings/sec, 1845 secs
lola: 28128920 markings, 56959456 edges, 15743 markings/sec, 1850 secs
lola: 28185880 markings, 57119960 edges, 11392 markings/sec, 1855 secs
lola: 28251643 markings, 57279433 edges, 13153 markings/sec, 1860 secs
lola: 28332664 markings, 57438386 edges, 16204 markings/sec, 1865 secs
lola: 28404922 markings, 57591509 edges, 14452 markings/sec, 1870 secs
lola: 28478336 markings, 57743384 edges, 14683 markings/sec, 1875 secs
lola: 28551008 markings, 57905458 edges, 14534 markings/sec, 1880 secs
lola: 28635196 markings, 58081058 edges, 16838 markings/sec, 1885 secs
lola: 28713424 markings, 58255800 edges, 15646 markings/sec, 1890 secs
lola: 28794952 markings, 58417428 edges, 16306 markings/sec, 1895 secs
lola: 28875563 markings, 58577639 edges, 16122 markings/sec, 1900 secs
lola: 28956121 markings, 58737844 edges, 16112 markings/sec, 1905 secs
lola: 29036959 markings, 58898176 edges, 16168 markings/sec, 1910 secs
lola: 29104006 markings, 59055199 edges, 13409 markings/sec, 1915 secs
lola: 29177510 markings, 59206369 edges, 14701 markings/sec, 1920 secs
lola: 29253217 markings, 59363567 edges, 15141 markings/sec, 1925 secs
lola: 29321272 markings, 59519220 edges, 13611 markings/sec, 1930 secs
lola: 29395437 markings, 59678964 edges, 14833 markings/sec, 1935 secs
lola: 29477448 markings, 59850715 edges, 16402 markings/sec, 1940 secs
lola: 29563384 markings, 60029798 edges, 17187 markings/sec, 1945 secs
lola: 29639919 markings, 60203647 edges, 15307 markings/sec, 1950 secs
lola: 29723931 markings, 60383877 edges, 16802 markings/sec, 1955 secs
lola: 29804231 markings, 60545475 edges, 16060 markings/sec, 1960 secs
lola: 29885488 markings, 60706877 edges, 16251 markings/sec, 1965 secs
lola: 29966620 markings, 60867956 edges, 16226 markings/sec, 1970 secs
lola: 30047384 markings, 61028979 edges, 16153 markings/sec, 1975 secs
lola: 30116758 markings, 61190986 edges, 13875 markings/sec, 1980 secs
lola: 30190486 markings, 61344813 edges, 14746 markings/sec, 1985 secs
lola: 30271025 markings, 61512842 edges, 16108 markings/sec, 1990 secs
lola: 30346603 markings, 61666496 edges, 15116 markings/sec, 1995 secs
lola: 30424087 markings, 61816043 edges, 15497 markings/sec, 2000 secs
lola: 30496110 markings, 61967479 edges, 14405 markings/sec, 2005 secs
lola: 30564763 markings, 62113737 edges, 13731 markings/sec, 2010 secs
lola: 30631621 markings, 62262034 edges, 13372 markings/sec, 2015 secs
lola: 30693773 markings, 62409238 edges, 12430 markings/sec, 2020 secs
lola: 30767474 markings, 62568473 edges, 14740 markings/sec, 2025 secs
lola: 30842196 markings, 62731936 edges, 14944 markings/sec, 2030 secs
lola: 30911112 markings, 62890475 edges, 13783 markings/sec, 2035 secs
lola: 30987892 markings, 63040544 edges, 15356 markings/sec, 2040 secs
lola: 31065356 markings, 63191267 edges, 15493 markings/sec, 2045 secs
lola: 31131909 markings, 63339672 edges, 13311 markings/sec, 2050 secs
lola: 31200027 markings, 63487708 edges, 13624 markings/sec, 2055 secs
lola: 31266277 markings, 63635762 edges, 13250 markings/sec, 2060 secs
lola: 31332268 markings, 63789226 edges, 13198 markings/sec, 2065 secs
lola: 31405633 markings, 63949772 edges, 14673 markings/sec, 2070 secs
lola: 31475007 markings, 64112700 edges, 13875 markings/sec, 2075 secs
lola: 31551607 markings, 64263706 edges, 15320 markings/sec, 2080 secs
lola: 31629126 markings, 64414054 edges, 15504 markings/sec, 2085 secs
lola: 31699110 markings, 64563097 edges, 13997 markings/sec, 2090 secs
lola: 31765254 markings, 64709431 edges, 13229 markings/sec, 2095 secs
lola: 31833106 markings, 64856770 edges, 13570 markings/sec, 2100 secs
lola: 31896095 markings, 65005315 edges, 12598 markings/sec, 2105 secs
lola: 31969176 markings, 65167335 edges, 14616 markings/sec, 2110 secs
lola: 32042912 markings, 65328017 edges, 14747 markings/sec, 2115 secs
lola: 32112233 markings, 65483277 edges, 13864 markings/sec, 2120 secs
lola: 32189975 markings, 65633160 edges, 15548 markings/sec, 2125 secs
lola: 32262723 markings, 65784084 edges, 14550 markings/sec, 2130 secs
lola: 32330907 markings, 65930112 edges, 13637 markings/sec, 2135 secs
lola: 32396816 markings, 66075127 edges, 13182 markings/sec, 2140 secs
lola: 32460349 markings, 66222994 edges, 12707 markings/sec, 2145 secs
lola: 32531150 markings, 66378755 edges, 14160 markings/sec, 2150 secs
lola: 32603941 markings, 66539978 edges, 14558 markings/sec, 2155 secs
lola: 32672054 markings, 66700052 edges, 13623 markings/sec, 2160 secs
lola: 32725263 markings, 66851967 edges, 10642 markings/sec, 2165 secs
lola: 32776995 markings, 67003294 edges, 10346 markings/sec, 2170 secs
lola: 32828376 markings, 67154692 edges, 10276 markings/sec, 2175 secs
lola: 32876792 markings, 67306356 edges, 9683 markings/sec, 2180 secs
lola: 32950378 markings, 67454953 edges, 14717 markings/sec, 2185 secs
lola: 33024704 markings, 67604281 edges, 14865 markings/sec, 2190 secs
lola: 33091745 markings, 67752067 edges, 13408 markings/sec, 2195 secs
lola: 33154418 markings, 67896781 edges, 12535 markings/sec, 2200 secs
lola: 33219057 markings, 68038779 edges, 12928 markings/sec, 2205 secs
lola: 33285283 markings, 68184487 edges, 13245 markings/sec, 2210 secs
lola: 33351359 markings, 68332107 edges, 13215 markings/sec, 2215 secs
lola: 33413704 markings, 68477978 edges, 12469 markings/sec, 2220 secs
lola: 33471126 markings, 68623682 edges, 11484 markings/sec, 2225 secs
lola: 33545916 markings, 68789980 edges, 14958 markings/sec, 2230 secs
lola: 33619392 markings, 68953703 edges, 14695 markings/sec, 2235 secs
lola: 33692994 markings, 69117637 edges, 14720 markings/sec, 2240 secs
lola: 33767967 markings, 69283150 edges, 14995 markings/sec, 2245 secs
lola: 33830306 markings, 69446812 edges, 12468 markings/sec, 2250 secs
lola: 33899724 markings, 69598509 edges, 13884 markings/sec, 2255 secs
lola: 33964038 markings, 69748818 edges, 12863 markings/sec, 2260 secs
lola: 34028443 markings, 69892914 edges, 12881 markings/sec, 2265 secs
lola: 34095786 markings, 70042972 edges, 13469 markings/sec, 2270 secs
lola: 34159136 markings, 70191969 edges, 12670 markings/sec, 2275 secs
lola: 34223698 markings, 70336159 edges, 12912 markings/sec, 2280 secs
lola: 34281912 markings, 70490070 edges, 11643 markings/sec, 2285 secs
lola: 34347273 markings, 70637671 edges, 13072 markings/sec, 2290 secs
lola: 34411888 markings, 70785932 edges, 12923 markings/sec, 2295 secs
lola: 34477627 markings, 70931608 edges, 13148 markings/sec, 2300 secs
lola: 34543769 markings, 71077402 edges, 13228 markings/sec, 2305 secs
lola: 34610679 markings, 71226253 edges, 13382 markings/sec, 2310 secs
lola: 34671458 markings, 71374153 edges, 12156 markings/sec, 2315 secs
lola: 34729915 markings, 71518979 edges, 11691 markings/sec, 2320 secs
lola: 34790316 markings, 71660540 edges, 12080 markings/sec, 2325 secs
lola: 34853402 markings, 71809665 edges, 12617 markings/sec, 2330 secs
lola: 34917334 markings, 71956307 edges, 12786 markings/sec, 2335 secs
lola: 34989277 markings, 72119716 edges, 14389 markings/sec, 2340 secs
lola: 35061871 markings, 72282221 edges, 14519 markings/sec, 2345 secs
lola: 35134189 markings, 72443197 edges, 14464 markings/sec, 2350 secs
lola: 35206306 markings, 72603885 edges, 14423 markings/sec, 2355 secs
lola: 35268427 markings, 72767563 edges, 12424 markings/sec, 2360 secs
lola: 35337148 markings, 72922368 edges, 13744 markings/sec, 2365 secs
lola: 35407861 markings, 73091027 edges, 14143 markings/sec, 2370 secs
lola: 35473266 markings, 73247854 edges, 13081 markings/sec, 2375 secs
lola: 35530898 markings, 73392711 edges, 11526 markings/sec, 2380 secs
lola: 35589255 markings, 73543392 edges, 11671 markings/sec, 2385 secs
lola: 35645017 markings, 73688719 edges, 11152 markings/sec, 2390 secs
lola: 35703823 markings, 73837310 edges, 11761 markings/sec, 2395 secs
lola: 35759697 markings, 73985071 edges, 11175 markings/sec, 2400 secs
lola: 35817317 markings, 74130448 edges, 11524 markings/sec, 2405 secs
lola: 35871717 markings, 74280489 edges, 10880 markings/sec, 2410 secs
lola: 35921026 markings, 74427180 edges, 9862 markings/sec, 2415 secs
lola: 35974484 markings, 74568399 edges, 10692 markings/sec, 2420 secs
lola: 36029344 markings, 74716541 edges, 10972 markings/sec, 2425 secs
lola: 36097185 markings, 74868338 edges, 13568 markings/sec, 2430 secs
lola: 36179427 markings, 75015179 edges, 16448 markings/sec, 2435 secs
lola: 36252363 markings, 75159809 edges, 14587 markings/sec, 2440 secs
lola: 36321325 markings, 75303970 edges, 13792 markings/sec, 2445 secs
lola: 36401200 markings, 75461428 edges, 15975 markings/sec, 2450 secs
lola: 36478537 markings, 75616746 edges, 15467 markings/sec, 2455 secs
lola: 36563091 markings, 75763526 edges, 16911 markings/sec, 2460 secs
lola: 36635706 markings, 75907940 edges, 14523 markings/sec, 2465 secs
lola: 36706879 markings, 76053475 edges, 14235 markings/sec, 2470 secs
lola: 36784254 markings, 76208618 edges, 15475 markings/sec, 2475 secs
lola: 36860799 markings, 76365436 edges, 15309 markings/sec, 2480 secs
lola: 36945315 markings, 76512314 edges, 16903 markings/sec, 2485 secs
lola: 37020024 markings, 76657477 edges, 14942 markings/sec, 2490 secs
lola: 37092281 markings, 76801744 edges, 14451 markings/sec, 2495 secs
lola: 37165905 markings, 76954711 edges, 14725 markings/sec, 2500 secs
lola: 37242241 markings, 77113890 edges, 15267 markings/sec, 2505 secs
lola: 37326779 markings, 77261036 edges, 16908 markings/sec, 2510 secs
lola: 37403187 markings, 77406796 edges, 15282 markings/sec, 2515 secs
lola: 37476671 markings, 77551644 edges, 14697 markings/sec, 2520 secs
lola: 37549624 markings, 77703198 edges, 14591 markings/sec, 2525 secs
lola: 37627737 markings, 77863193 edges, 15623 markings/sec, 2530 secs
lola: 37685701 markings, 78012947 edges, 11593 markings/sec, 2535 secs
lola: 37740264 markings, 78161945 edges, 10913 markings/sec, 2540 secs
lola: 37800093 markings, 78309064 edges, 11966 markings/sec, 2545 secs
lola: 37880129 markings, 78454191 edges, 16007 markings/sec, 2550 secs
lola: 37951451 markings, 78598220 edges, 14264 markings/sec, 2555 secs
lola: 38022774 markings, 78744004 edges, 14265 markings/sec, 2560 secs
lola: 38086455 markings, 78885380 edges, 12736 markings/sec, 2565 secs
lola: 38150166 markings, 79028514 edges, 12742 markings/sec, 2570 secs
lola: 38214534 markings, 79177887 edges, 12874 markings/sec, 2575 secs
lola: 38283544 markings, 79334641 edges, 13802 markings/sec, 2580 secs
lola: 38352661 markings, 79480760 edges, 13823 markings/sec, 2585 secs
lola: 38421768 markings, 79625404 edges, 13821 markings/sec, 2590 secs
lola: 38486439 markings, 79766618 edges, 12934 markings/sec, 2595 secs
lola: 38548518 markings, 79908492 edges, 12416 markings/sec, 2600 secs
lola: 38614257 markings, 80058877 edges, 13148 markings/sec, 2605 secs
lola: 38681952 markings, 80214734 edges, 13539 markings/sec, 2610 secs
lola: 38752763 markings, 80361318 edges, 14162 markings/sec, 2615 secs
lola: 38821674 markings, 80505423 edges, 13782 markings/sec, 2620 secs
lola: 38886400 markings, 80647605 edges, 12945 markings/sec, 2625 secs
lola: 38946921 markings, 80788567 edges, 12104 markings/sec, 2630 secs
lola: 39014507 markings, 80941147 edges, 13517 markings/sec, 2635 secs
lola: 39080495 markings, 81095930 edges, 13198 markings/sec, 2640 secs
lola: 39154102 markings, 81242521 edges, 14721 markings/sec, 2645 secs
lola: 39222594 markings, 81386896 edges, 13698 markings/sec, 2650 secs
lola: 39287170 markings, 81529553 edges, 12915 markings/sec, 2655 secs
lola: 39346584 markings, 81671267 edges, 11883 markings/sec, 2660 secs
lola: 39416692 markings, 81825934 edges, 14022 markings/sec, 2665 secs
lola: 39482278 markings, 81980694 edges, 13117 markings/sec, 2670 secs
lola: 39532314 markings, 82126479 edges, 10007 markings/sec, 2675 secs
lola: 39581772 markings, 82273232 edges, 9892 markings/sec, 2680 secs
lola: 39631947 markings, 82416683 edges, 10035 markings/sec, 2685 secs
lola: 39701244 markings, 82561162 edges, 13859 markings/sec, 2690 secs
lola: 39769451 markings, 82706769 edges, 13641 markings/sec, 2695 secs
lola: time limit reached - aborting
lola:
preliminary result: yes yes no unknown no yes yes no yes no no yes no yes no yes
lola:
preliminary result: yes yes no unknown no yes yes no yes no no yes no yes no yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes yes no unknown no yes yes no yes no no yes no yes no yes
lola: memory consumption: 11704932 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: RESULT
lola:
SUMMARY: yes yes no unknown no yes yes no yes no no yes no yes no yes
lola:
preliminary result: yes yes no unknown no yes yes no yes no no yes no yes no yes
lola: memory consumption: 1345392 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
rslt: finished
BK_STOP 1552787657579
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-8"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is NeoElection-PT-8, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r104-oct2-155272225600238"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-8.tgz
mv NeoElection-PT-8 execution
cd execution
if [ "CTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "CTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;