About the Execution of LoLA for NeoElection-PT-7
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4803.100 | 133400.00 | 112162.00 | 27.60 | TFTTFFFTTFFFFTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r104-oct2-155272225600233.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is NeoElection-PT-7, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r104-oct2-155272225600233
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 18M
-rw-r--r-- 1 mcc users 265K Feb 12 03:00 CTLCardinality.txt
-rw-r--r-- 1 mcc users 672K Feb 12 03:00 CTLCardinality.xml
-rw-r--r-- 1 mcc users 173K Feb 8 01:45 CTLFireability.txt
-rw-r--r-- 1 mcc users 486K Feb 8 01:45 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 103 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 341 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 152K Feb 5 00:19 LTLCardinality.txt
-rw-r--r-- 1 mcc users 369K Feb 5 00:19 LTLCardinality.xml
-rw-r--r-- 1 mcc users 255K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 652K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 418K Feb 4 07:07 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 1001K Feb 4 07:07 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 335K Feb 1 00:51 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 927K Feb 1 00:51 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 89K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 162K Feb 4 22:21 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_col
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 6 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 13M Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-00
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-01
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-02
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-03
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-04
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-05
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-06
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-07
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-08
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-09
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-10
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-11
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-12
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-13
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-14
FORMULA_NAME NeoElection-PT-7-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1552783869610
info: Time: 3600 - MCC
vrfy: Checking ReachabilityCardinality @ NeoElection-PT-7 @ 3570 seconds
FORMULA NeoElection-PT-7-ReachabilityCardinality-00 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-02 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-03 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-05 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-7-ReachabilityCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 3437
rslt: Output for ReachabilityCardinality @ NeoElection-PT-7
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=ReachabilityCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=tarjan",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--json=ReachabilityCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sun Mar 17 00:51:09 2019
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 216
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 230
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 247
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 266
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 288
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 314
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 346
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 384
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 432
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 494
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 9,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 576
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 10,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 692
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 11,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 865
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 12,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1153
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 13,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1730
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 14,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 3461
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 48
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 15,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
}
],
"exit":
{
"error": null,
"memory": 543248,
"runtime": 109.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "ReachabilityCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "TRUE : FALSE : TRUE : TRUE : FALSE : FALSE : FALSE : TRUE : TRUE : FALSE : FALSE : FALSE : FALSE : TRUE : FALSE : FALSE"
},
"net":
{
"arcs": 81968,
"conflict_clusters": 5048,
"places": 7128,
"places_significant": 1688,
"singleton_clusters": 0,
"transitions": 14112
},
"result":
{
"preliminary_value": "yes no yes yes no no no yes yes no no no no yes no no ",
"value": "yes no yes yes no no no yes yes no no no no yes no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 21240/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 7128
lola: finding significant places
lola: 7128 places, 14112 transitions, 1688 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from ReachabilityCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-masterState_0_F_6 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_4_F_6 + P-masterState_4_F_5 + P-masterState_4_F_4 + P-masterState_4_F_3 + P-masterState_4_F_2 + P-masterState_4_F_1 + P-masterState_4_F_0 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_7_T_0 + P-masterState_7_T_1 + P-masterState_7_T_2 + P-masterState_7_T_3 + P-masterState_7_T_4 + P-masterState_7_T_5 + P-masterState_7_T_6 + P-masterState_7_T_7 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_T_4 + P-masterState_3_T_5 + P-masterState_3_T_6 + P-masterState_3_T_7 + P-masterState_3_F_6 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_7_F_6 + P-masterState_7_F_5 + P-masterState_7_F_4 + P-masterState_7_F_3 + P-masterState_7_F_2 + P-masterState_7_F_1 + P-masterState_7_F_0 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_5_F_0 + P-masterState_5_F_1 + P-masterState_5_F_2 + P-masterState_5_F_3 + P-masterState_5_F_4 + P-masterState_5_F_5 + P-masterState_5_F_6 + P-masterState_5_F_7 + P-masterState_2_F_7 + P-masterState_2_F_6 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_1_F_7 + P-masterState_0_T_7 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_4_T_7 + P-masterState_4_T_6 + P-masterState_4_T_5 + P-masterState_4_T_4 + P-masterState_4_T_3 + P-masterState_4_T_2 + P-masterState_4_T_1 + P-masterState_4_T_0 + P-masterState_5_T_7 + P-masterState_1_T_7 + P-masterState_7_F_7 + P-masterState_3_F_7 + P-masterState_6_T_7 + P-masterState_2_T_7 + P-masterState_4_F_7 + P-masterState_0_F_7)
lola: after: (P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= 7)
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= 7)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_5_6_AskP_0 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_2 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_7 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_4_0_RI_5 + P-poll__networl_4_0_RI_6 + P-poll__networl_4_0_RI_7 + P-poll__networl_4_2_RP_7 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_0 + P-poll__networl_6_1_RP_7 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_6_1_RP_6 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_0 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_2_2_AskP_7 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_5_AskP_4 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_7_5_AskP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_1_4_RI_7 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_4 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_0 + P-poll__networl_5_2_RI_7 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_5 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_0 + P-poll__networl_7_1_RI_7 + P-poll__networl_7_1_RI_6 + P-poll__networl_7_1_RI_5 + P-poll__networl_7_1_RI_4 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_7_1_RI_3 + P-poll__networl_7_1_RI_2 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_6 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_0_3_AI_5 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_0_3_AI_4 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_3 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_2 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_7 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_0 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_0 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_0 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_6 + P-poll__networl_4_7_AskP_0 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_7 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_5_7_RP_0 + P-poll__networl_5_7_RP_1 + P-poll__networl_5_7_RP_2 + P-poll__networl_5_7_RP_3 + P-poll__networl_5_7_RP_4 + P-poll__networl_5_7_RP_5 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_0 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_6_0_AI_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_6_0_AI_6 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_0 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_0 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_3 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_2_7_AskP_2 + P-poll__networl_7_0_AI_0 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_7 + P-poll__networl_2_7_AskP_1 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_6_4_RP_0 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_7 + P-poll__networl_5_1_AI_0 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_7 + P-poll__networl_4_5_RP_0 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_7 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_0_7_RI_7 + P-poll__networl_2_6_RP_0 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_7 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_1_3_AI_7 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RP_0 + P-poll__networl_0_7_RP_1 + P-poll__networl_0_7_RP_2 + P-poll__networl_0_7_RP_3 + P-poll__networl_0_7_RP_4 + P-poll__networl_0_7_RP_5 + P-poll__networl_0_7_RP_6 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_0 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_3 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_2_6_RI_2 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_4 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_0 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_5 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_0 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_5_0_RI_3 + P-poll__networl_5_0_RI_4 + P-poll__networl_5_0_RI_5 + P-poll__networl_5_0_RI_6 + P-poll__networl_5_0_RI_7 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_RI_5 + P-poll__networl_3_1_RI_6 + P-poll__networl_3_1_RI_7 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_0_4_AskP_0 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_7 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_0 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_4_0_RP_0 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_7 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_7 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_1 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_3_4_AI_0 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_7 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_5 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_RP_4 + P-poll__networl_4_7_RP_3 + P-poll__networl_4_7_RP_2 + P-poll__networl_4_7_RP_1 + P-poll__networl_4_7_RP_0 + P-poll__networl_5_3_AI_7 + P-poll__networl_5_3_AI_6 + P-poll__networl_5_3_AI_5 + P-poll__networl_5_3_AI_4 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_3_AI_3 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_5_3_AI_2 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_0 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_3 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_7 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_0 + P-poll__networl_4_6_AskP_7 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_0 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_7_3_AI_0 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_7 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_5_4_AI_0 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_7 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_6 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_3_5_AI_0 + P-poll__networl_3_5_AI_1 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_4 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_7 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_1_6_AI_0 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_3 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_7 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_5_RI_1 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_4 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_2_AskP_0 + P-poll__networl_6_2_AskP_1 + P-poll__networl_6_2_AskP_2 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_7 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_4 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_6 + P-poll__networl_4_6_RI_7 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_5_7_RI_4 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_7_RI_1 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_3 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_7 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_7_6_RI_2 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_1_7_RP_0 + P-poll__networl_1_7_RP_1 + P-poll__networl_1_7_RP_2 + P-poll__networl_1_7_RP_3 + P-poll__networl_1_7_RP_4 + P-poll__networl_1_7_RP_5 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_6_5_AskP_7 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_0 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_6_0_RI_0 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_2 + P-poll__networl_6_0_RI_3 + P-poll__networl_6_0_RI_4 + P-poll__networl_6_0_RI_5 + P-poll__networl_6_0_RI_6 + P-poll__networl_6_0_RI_7 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_1_RI_6 + P-poll__networl_4_1_RI_7 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_0_5_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_5 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_7 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_7 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_6_5_AI_0 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_7 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_5 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_3 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_0 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_5_0_AskP_7 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_5_0_AskP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_7_7_AI_7 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_0 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_4_4_AskP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_2_7_RP_0 + P-poll__networl_2_7_RP_1 + P-poll__networl_2_7_RP_2 + P-poll__networl_2_7_RP_3 + P-poll__networl_2_7_RP_4 + P-poll__networl_2_7_RP_5 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_0_RP_7 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_3 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_1 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_3_6_AskP_0 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_5_AskP_0 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_7 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_7_2_RP_0 + P-poll__networl_7_2_RP_1 + P-poll__networl_7_2_RP_2 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_7 + P-poll__networl_5_3_RP_0 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_4 + P-poll__networl_5_3_RP_5 + P-poll__networl_5_3_RP_6 + P-poll__networl_5_3_RP_7 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_3_4_RP_0 + P-poll__networl_3_4_RP_1 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_4 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_7 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_1_5_RP_0 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_5_RP_7 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_7_0_RI_3 + P-poll__networl_7_0_RI_4 + P-poll__networl_7_0_RI_5 + P-poll__networl_7_0_RI_6 + P-poll__networl_7_0_RI_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_5_1_RI_3 + P-poll__networl_5_1_RI_4 + P-poll__networl_5_1_RI_5 + P-poll__networl_5_1_RI_6 + P-poll__networl_5_1_RI_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_0_2_AskP_7 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_0_2_AskP_6 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_1_1_RI_7 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_3_0_RI_7 + P-poll__networl_3_0_RI_6 + P-poll__networl_3_0_RI_5 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_0 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_7 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_7 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_2_RP_6 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_6 + P-poll__networl_1_0_RP_7 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_0 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_5 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_2 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_0 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_1_6_AskP_0 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_6_AskP_7 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_0 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_2 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_0_4_RI_1 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_0_4_RI_0 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_4 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_0 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_7 + P-poll__networl_6_2_AI_0 + P-poll__networl_6_2_AI_1 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_7 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_5_6_RP_0 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_3 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_7 + P-poll__networl_4_3_AI_0 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_3 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_5 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_7 + P-poll__networl_3_7_RP_0 + P-poll__networl_3_7_RP_1 + P-poll__networl_3_7_RP_2 + P-poll__networl_3_7_RP_3 + P-poll__networl_3_7_RP_4 + P-poll__networl_3_7_RP_5 + P-poll__networl_3_7_RP_6 + P-poll__networl_3_7_RP_7 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_7 + P-poll__networl_0_7_AskP_3 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_0_5_AI_0 + P-poll__networl_0_5_AI_1 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_3 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_7 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_7_3_RI_0 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_7 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_1_RI_7 + P-poll__networl_6_1_RI_6 + P-poll__networl_6_1_RI_5 + P-poll__networl_6_1_RI_4 + P-poll__networl_6_1_RI_3 + P-poll__networl_5_4_RI_0 + P-poll__networl_5_4_RI_1 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_7 + P-poll__networl_6_1_RI_2 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_0 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_5 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_3 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_2 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_0 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_2_5_RP_7 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_0_AI_7 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_0 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 <= P-network_2_7_AskP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_3_1_RP_0 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_4_1_AskP_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_7_6_AI_0 + P-network_7_2_RI_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_5_7_AI_0 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_1_5_AnnP_0 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_7_5_AskP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_7_4_AnsP_7 + P-network_2_2_AskP_0 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_7_3_AI_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_2_1_AskP_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_7 + P-network_5_6_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_7_7_RP_0 + P-network_1_4_AnnP_0 + P-network_4_7_AI_0 + P-network_6_4_AI_0 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AI_0 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_6_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_6_AskP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_2_6_AI_0 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_0_7_AI_0 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_1_0_AnnP_0 + P-network_0_2_RP_0 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_7_5_RI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_7_0_AskP_0 + P-network_5_6_RI_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_6_4_AskP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_7_RI_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_7_AskP_0 + P-network_3_5_AnsP_0 + P-network_0_5_RI_0 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_4_4_AnnP_0 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_7_1_AI_0 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_1_7_RI_0 + P-network_6_5_RP_0 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_5_2_AI_0 + P-network_2_0_AnsP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_7_4_RI_0 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_5_1_AskP_0 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_4_6_RP_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_3_3_AI_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_2_7_RP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_1_4_AI_0 + P-network_6_3_RI_0 + P-network_4_7_AnnP_0 + P-network_2_0_AskP_0 + P-network_6_7_RI_0 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_4_4_RI_0 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_7_3_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_7_AI_0 + P-network_2_5_AnnP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_2_5_AskP_0 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_7_2_RP_0 + P-network_3_7_AnnP_0 + P-network_5_3_RP_0 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_3_AskP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_3_4_RP_0 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_2_1_AI_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_0_6_AnnP_0 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_1_5_RP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_0_2_AI_0 + P-network_5_2_RI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_6_6_AskP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_5_RP_0 + P-network_4_1_AI_0 + P-network_7_0_RI_0 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_7_3_AnnP_0 + P-network_4_1_AnnP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_1_3_RI_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_2_0_AnnP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_4_6_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_4_7_AskP_0 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_6_0_RP_0 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_4_1_RP_0 + P-network_3_1_AnnP_0 + P-network_2_4_AskP_0 + P-network_5_4_AnnP_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_0_3_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_3_6_AnnP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_6_1_AskP_0 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_7 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_2_0_RI_0 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_1_RI_0 + P-network_5_1_RP_0 + P-network_7_0_RP_0 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_3_5_AnnP_0 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_0_5_AI_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_4_2_AskP_0 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_1_0_RP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_6_7_AI_0 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_6_AnnP_0 + P-network_7_6_AskP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_7_4_AI_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_2_3_AskP_0 + P-network_3_0_AnnP_0 + P-network_2_3_AskP_7 + P-network_2_3_AskP_6 + P-network_2_3_AskP_5 + P-network_2_3_AskP_4 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_0_AnnP_7 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_5_7_AskP_1 + P-network_5_7_AskP_2 + P-network_5_7_AskP_3 + P-network_5_7_AskP_4 + P-network_5_7_AskP_5 + P-network_5_7_AskP_6 + P-network_5_7_AskP_7 + P-network_7_6_AskP_7 + P-network_7_6_AskP_6 + P-network_7_4_AI_1 + P-network_7_4_AI_2 + P-network_7_4_AI_3 + P-network_7_4_AI_4 + P-network_7_4_AI_5 + P-network_7_4_AI_6 + P-network_7_4_AI_7 + P-network_7_6_AskP_5 + P-network_7_6_AskP_4 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_5_5_AI_7 + P-network_7_6_AskP_3 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_6_4_AnnP_7 + P-network_7_6_AskP_2 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_0_4_AskP_7 + P-network_7_6_AskP_1 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_3_6_AI_7 + P-network_1_6_AnnP_7 + P-network_1_6_AnnP_6 + P-network_1_6_AnnP_5 + P-network_1_6_AnnP_4 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_2 + P-network_1_6_AnnP_1 + P-network_1_7_AI_1 + P-network_1_7_AI_2 + P-network_1_7_AI_3 + P-network_1_7_AI_4 + P-network_1_7_AI_5 + P-network_1_7_AI_6 + P-network_1_7_AI_7 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_1_1_AnnP_7 + P-network_6_7_AI_7 + P-network_6_7_AI_6 + P-network_6_7_AI_5 + P-network_7_1_AskP_1 + P-network_7_1_AskP_2 + P-network_7_1_AskP_3 + P-network_7_1_AskP_4 + P-network_7_1_AskP_5 + P-network_7_1_AskP_6 + P-network_7_1_AskP_7 + P-network_6_7_AI_4 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_6_6_RI_7 + P-network_6_7_AI_3 + P-network_6_7_AI_2 + P-network_6_7_AI_1 + P-network_4_7_RI_1 + P-network_4_7_RI_2 + P-network_4_7_RI_3 + P-network_4_7_RI_4 + P-network_4_7_RI_5 + P-network_4_7_RI_6 + P-network_4_7_RI_7 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_4_5_AnnP_7 + P-network_1_0_RP_7 + P-network_1_0_RP_6 + P-network_1_0_RP_5 + P-network_7_5_RP_1 + P-network_7_5_RP_2 + P-network_7_5_RP_3 + P-network_7_5_RP_4 + P-network_7_5_RP_5 + P-network_7_5_RP_6 + P-network_7_5_RP_7 + P-network_1_0_RP_4 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_6_2_AI_7 + P-network_1_0_RP_3 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_5_2_AskP_7 + P-network_1_0_RP_2 + P-network_5_6_RP_1 + P-network_5_6_RP_2 + P-network_5_6_RP_3 + P-network_5_6_RP_4 + P-network_5_6_RP_5 + P-network_5_6_RP_6 + P-network_5_6_RP_7 + P-network_1_0_RP_1 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_3_AI_7 + P-network_4_2_AskP_7 + P-network_4_2_AskP_6 + P-network_4_2_AskP_5 + P-network_4_2_AskP_4 + P-network_4_2_AskP_3 + P-network_4_2_AskP_2 + P-network_4_2_AskP_1 + P-network_3_7_RP_1 + P-network_3_7_RP_2 + P-network_3_7_RP_3 + P-network_3_7_RP_4 + P-network_3_7_RP_5 + P-network_3_7_RP_6 + P-network_3_7_RP_7 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_2_4_AI_5 + P-network_2_4_AI_6 + P-network_2_4_AI_7 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_0_5_AI_7 + P-network_7_3_RI_1 + P-network_7_3_RI_2 + P-network_7_3_RI_3 + P-network_7_3_RI_4 + P-network_7_3_RI_5 + P-network_7_3_RI_6 + P-network_7_3_RI_7 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_5_4_RI_7 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_2_6_AnnP_7 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_3_5_RI_7 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_1_6_RI_7 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_3_3_AskP_7 + P-network_4_0_AnnP_1 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_5 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_7 + P-network_3_5_AnnP_7 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_6_3_RP_7 + P-network_3_5_AnnP_6 + P-network_3_5_AnnP_5 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_0_AI_7 + P-network_3_5_AnnP_4 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_4_4_RP_7 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_1 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_1_AI_7 + P-network_0_7_AnnP_1 + P-network_0_7_AnnP_2 + P-network_0_7_AnnP_3 + P-network_0_7_AnnP_4 + P-network_0_7_AnnP_5 + P-network_0_7_AnnP_6 + P-network_0_7_AnnP_7 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_2_5_RP_7 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_1_2_AI_7 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_0_6_RP_7 + P-network_6_7_AskP_1 + P-network_6_7_AskP_2 + P-network_6_7_AskP_3 + P-network_6_7_AskP_4 + P-network_6_7_AskP_5 + P-network_6_7_AskP_6 + P-network_6_7_AskP_7 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_6_1_RI_4 + P-network_6_1_RI_5 + P-network_6_1_RI_6 + P-network_6_1_RI_7 + P-network_7_4_AnnP_1 + P-network_7_4_AnnP_2 + P-network_7_4_AnnP_3 + P-network_7_4_AnnP_4 + P-network_7_4_AnnP_5 + P-network_7_4_AnnP_6 + P-network_7_4_AnnP_7 + P-network_1_4_AskP_1 + P-network_1_4_AskP_2 + P-network_1_4_AskP_3 + P-network_1_4_AskP_4 + P-network_1_4_AskP_5 + P-network_1_4_AskP_6 + P-network_1_4_AskP_7 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_4_2_RI_7 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_2_3_RI_7 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_0_4_RI_7 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_2_1_AnnP_7 + P-network_7_0_RP_1 + P-network_7_0_RP_2 + P-network_7_0_RP_3 + P-network_7_0_RP_4 + P-network_7_0_RP_5 + P-network_7_0_RP_6 + P-network_7_0_RP_7 + P-network_5_1_RP_1 + P-network_5_1_RP_2 + P-network_5_1_RP_3 + P-network_5_1_RP_4 + P-network_5_1_RP_5 + P-network_5_1_RP_6 + P-network_5_1_RP_7 + P-network_0_1_RI_7 + P-network_0_1_RI_6 + P-network_0_1_RI_5 + P-network_0_1_RI_4 + P-network_0_1_RI_3 + P-network_0_1_RI_2 + P-network_0_1_RI_1 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_5_5_AnnP_7 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_3_2_RP_4 + P-network_3_2_RP_5 + P-network_3_2_RP_6 + P-network_3_2_RP_7 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_1_3_RP_4 + P-network_1_3_RP_5 + P-network_1_3_RP_6 + P-network_1_3_RP_7 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_0_AI_4 + P-network_0_0_AI_5 + P-network_0_0_AI_6 + P-network_0_0_AI_7 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_0_2_AnnP_7 + P-network_2_0_RI_7 + P-network_2_0_RI_6 + P-network_2_0_RI_5 + P-network_2_0_RI_4 + P-network_2_0_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_6_1_AskP_7 + P-network_6_1_AskP_6 + P-network_6_1_AskP_5 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_6_2_AskP_7 + P-network_6_1_AskP_4 + P-network_6_1_AskP_3 + P-network_6_1_AskP_2 + P-network_6_1_AskP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4 + P-network_3_0_RI_5 + P-network_3_0_RI_6 + P-network_3_0_RI_7 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_1_1_RI_7 + P-network_0_1_AnnP_7 + P-network_0_1_AnnP_6 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_6_AnnP_7 + P-network_0_3_RP_7 + P-network_0_3_RP_6 + P-network_0_3_RP_5 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_4_3_AskP_7 + P-network_0_3_RP_4 + P-network_0_3_RP_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_2_0_RP_7 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_0_1_RP_7 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_5_0_AnnP_7 + P-network_7_7_AI_1 + P-network_7_7_AI_2 + P-network_7_7_AI_3 + P-network_7_7_AI_4 + P-network_7_7_AI_5 + P-network_7_7_AI_6 + P-network_7_7_AI_7 + P-network_2_2_RP_7 + P-network_2_2_RP_6 + P-network_2_2_RP_5 + P-network_2_2_RP_4 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_2_2_RP_1 + P-network_5_4_AnnP_7 + P-network_1_7_AnnP_1 + P-network_1_7_AnnP_2 + P-network_1_7_AnnP_3 + P-network_1_7_AnnP_4 + P-network_1_7_AnnP_5 + P-network_1_7_AnnP_6 + P-network_1_7_AnnP_7 + P-network_5_4_AnnP_6 + P-network_7_7_AskP_1 + P-network_7_7_AskP_2 + P-network_7_7_AskP_3 + P-network_7_7_AskP_4 + P-network_7_7_AskP_5 + P-network_7_7_AskP_6 + P-network_7_7_AskP_7 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_1 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_4_AskP_7 + P-network_4_1_RP_7 + P-network_4_1_RP_6 + P-network_4_1_RP_5 + P-network_4_1_RP_4 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_5 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_7 + P-network_4_1_RP_3 + P-network_4_1_RP_2 + P-network_4_1_RP_1 + P-network_6_0_RP_7 + P-network_6_0_RP_6 + P-network_6_0_RP_5 + P-network_6_0_RP_4 + P-network_6_0_RP_3 + P-network_6_0_RP_2 + P-network_6_0_RP_1 + P-network_6_5_AI_1 + P-network_6_5_AI_2 + P-network_6_5_AI_3 + P-network_6_5_AI_4 + P-network_6_5_AI_5 + P-network_6_5_AI_6 + P-network_6_5_AI_7 + P-network_6_5_AnnP_1 + P-network_6_5_AnnP_2 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_7 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_0_5_AskP_7 + P-network_4_6_AI_1 + P-network_4_6_AI_2 + P-network_4_6_AI_3 + P-network_4_6_AI_4 + P-network_4_6_AI_5 + P-network_4_6_AI_6 + P-network_4_6_AI_7 + P-network_4_7_AskP_7 + P-network_4_7_AskP_6 + P-network_4_7_AskP_5 + P-network_4_7_AskP_4 + P-network_2_7_AI_1 + P-network_2_7_AI_2 + P-network_2_7_AI_3 + P-network_2_7_AI_4 + P-network_2_7_AI_5 + P-network_2_7_AI_6 + P-network_2_7_AI_7 + P-network_4_7_AskP_3 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_7 + P-network_4_7_AskP_2 + P-network_4_7_AskP_1 + P-network_7_2_AskP_1 + P-network_7_2_AskP_2 + P-network_7_2_AskP_3 + P-network_7_2_AskP_4 + P-network_7_2_AskP_5 + P-network_7_2_AskP_6 + P-network_7_2_AskP_7 + P-network_7_6_RI_1 + P-network_7_6_RI_2 + P-network_7_6_RI_3 + P-network_7_6_RI_4 + P-network_7_6_RI_5 + P-network_7_6_RI_6 + P-network_7_6_RI_7 + P-network_5_7_RI_1 + P-network_5_7_RI_2 + P-network_5_7_RI_3 + P-network_5_7_RI_4 + P-network_5_7_RI_5 + P-network_5_7_RI_6 + P-network_5_7_RI_7 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_4_6_AnnP_7 + P-network_7_2_AI_1 + P-network_7_2_AI_2 + P-network_7_2_AI_3 + P-network_7_2_AI_4 + P-network_7_2_AI_5 + P-network_7_2_AI_6 + P-network_7_2_AI_7 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_5_3_AskP_7 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_6_6_RP_7 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_5_3_AI_7 + P-network_4_7_RP_1 + P-network_4_7_RP_2 + P-network_4_7_RP_3 + P-network_4_7_RP_4 + P-network_4_7_RP_5 + P-network_4_7_RP_6 + P-network_4_7_RP_7 + P-network_2_0_AnnP_7 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AI_5 + P-network_3_4_AI_6 + P-network_3_4_AI_7 + P-network_2_0_AnnP_6 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_1_5_AI_7 + P-network_2_0_AnnP_5 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_6_0_AnnP_3 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_6_0_AnnP_6 + P-network_6_0_AnnP_7 + P-network_2_0_AnnP_4 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_0_0_AskP_7 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_1 + P-network_1_3_RI_7 + P-network_1_3_RI_6 + P-network_1_3_RI_5 + P-network_1_3_RI_4 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_6_4_RI_7 + P-network_1_3_RI_1 + P-network_2_7_AnnP_1 + P-network_2_7_AnnP_2 + P-network_2_7_AnnP_3 + P-network_2_7_AnnP_4 + P-network_2_7_AnnP_5 + P-network_2_7_AnnP_6 + P-network_2_7_AnnP_7 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_4_5_RI_7 + P-network_3_2_RI_7 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_2_6_RI_7 + P-network_3_2_RI_6 + P-network_3_2_RI_5 + P-network_0_7_RI_1 + P-network_0_7_RI_2 + P-network_0_7_RI_3 + P-network_0_7_RI_4 + P-network_0_7_RI_5 + P-network_0_7_RI_6 + P-network_0_7_RI_7 + P-network_3_2_RI_4 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_3_4_AskP_7 + P-network_3_2_RI_1 + P-network_1_3_AskP_7 + P-network_1_3_AskP_6 + P-network_1_3_AskP_5 + P-network_1_3_AskP_4 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_7_3_AnnP_7 + P-network_7_3_AnnP_6 + P-network_7_3_AnnP_5 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_4_1_AnnP_7 + P-network_7_3_AnnP_4 + P-network_7_3_AnnP_3 + P-network_7_3_AnnP_2 + P-network_7_3_AnnP_1 + P-network_5_1_RI_7 + P-network_5_1_RI_6 + P-network_5_1_RI_5 + P-network_5_1_RI_4 + P-network_7_3_RP_1 + P-network_7_3_RP_2 + P-network_7_3_RP_3 + P-network_7_3_RP_4 + P-network_7_3_RP_5 + P-network_7_3_RP_6 + P-network_7_3_RP_7 + P-network_5_1_RI_3 + P-network_6_0_AI_1 + P-network_6_0_AI_2 + P-network_6_0_AI_3 + P-network_6_0_AI_4 + P-network_6_0_AI_5 + P-network_6_0_AI_6 + P-network_6_0_AI_7 + P-network_5_1_RI_2 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_5_4_RP_7 + P-network_5_1_RI_1 + P-network_7_0_RI_7 + P-network_7_0_RI_6 + P-network_7_0_RI_5 + P-network_7_0_RI_4 + P-network_7_0_RI_3 + P-network_7_0_RI_2 + P-network_7_0_RI_1 + P-network_4_1_AI_1 + P-network_4_1_AI_2 + P-network_4_1_AI_3 + P-network_4_1_AI_4 + P-network_4_1_AI_5 + P-network_4_1_AI_6 + P-network_4_1_AI_7 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_3_5_RP_7 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_2_2_AI_4 + P-network_2_2_AI_5 + P-network_2_2_AI_6 + P-network_2_2_AI_7 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_1_6_RP_7 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_0_3_AI_4 + P-network_0_3_AI_5 + P-network_0_3_AI_6 + P-network_0_3_AI_7 + P-network_6_6_AskP_7 + P-network_6_6_AskP_6 + P-network_6_6_AskP_5 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_7_1_RI_1 + P-network_7_1_RI_2 + P-network_7_1_RI_3 + P-network_7_1_RI_4 + P-network_7_1_RI_5 + P-network_7_1_RI_6 + P-network_7_1_RI_7 + P-network_0_2_AI_7 + P-network_7_5_AnnP_1 + P-network_7_5_AnnP_2 + P-network_7_5_AnnP_3 + P-network_7_5_AnnP_4 + P-network_7_5_AnnP_5 + P-network_7_5_AnnP_6 + P-network_7_5_AnnP_7 + P-network_0_2_AI_6 + P-network_0_2_AI_5 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_1_5_AskP_7 + P-network_0_2_AI_4 + P-network_5_2_RI_1 + P-network_5_2_RI_2 + P-network_5_2_RI_3 + P-network_5_2_RI_4 + P-network_5_2_RI_5 + P-network_5_2_RI_6 + P-network_5_2_RI_7 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_1_5_RP_7 + P-network_1_5_RP_6 + P-network_1_5_RP_5 + P-network_1_5_RP_4 + P-network_1_5_RP_3 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_3_3_RI_4 + P-network_3_3_RI_5 + P-network_3_3_RI_6 + P-network_3_3_RI_7 + P-network_1_5_RP_2 + P-network_1_4_RI_1 + P-network_1_4_RI_2 + P-network_1_4_RI_3 + P-network_1_4_RI_4 + P-network_1_4_RI_5 + P-network_1_4_RI_6 + P-network_1_4_RI_7 + P-network_1_5_RP_1 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_6 + P-network_2_2_AnnP_7 + P-network_0_6_AnnP_7 + P-network_0_6_AnnP_6 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_2 + P-network_0_6_AnnP_1 + P-network_2_1_AI_7 + P-network_2_1_AI_6 + P-network_2_1_AI_5 + P-network_2_1_AI_4 + P-network_2_1_AI_3 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_1_RP_7 + P-network_2_1_AI_2 + P-network_5_6_AnnP_1 + P-network_5_6_AnnP_2 + P-network_5_6_AnnP_3 + P-network_5_6_AnnP_4 + P-network_5_6_AnnP_5 + P-network_5_6_AnnP_6 + P-network_5_6_AnnP_7 + P-network_2_1_AI_1 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_4_2_RP_7 + P-network_3_4_RP_7 + P-network_3_4_RP_6 + P-network_3_4_RP_5 + P-network_3_4_RP_4 + P-network_3_4_RP_3 + P-network_3_4_RP_2 + P-network_3_4_RP_1 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_2_3_RP_6 + P-network_2_3_RP_7 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_0_AI_7 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_0_4_RP_7 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_7 + P-network_6_3_AskP_1 + P-network_6_3_AskP_2 + P-network_6_3_AskP_3 + P-network_6_3_AskP_4 + P-network_6_3_AskP_5 + P-network_6_3_AskP_6 + P-network_6_3_AskP_7 + P-network_4_0_AI_7 + P-network_4_0_AI_6 + P-network_4_0_AI_5 + P-network_4_0_AI_4 + P-network_4_0_AI_3 + P-network_4_0_AI_2 + P-network_4_0_AI_1 + P-network_5_3_RP_7 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_4_0_RI_5 + P-network_4_0_RI_6 + P-network_4_0_RI_7 + P-network_5_3_RP_6 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_2_1_RI_7 + P-network_5_3_RP_5 + P-network_7_0_AnnP_1 + P-network_7_0_AnnP_2 + P-network_7_0_AnnP_3 + P-network_7_0_AnnP_4 + P-network_7_0_AnnP_5 + P-network_7_0_AnnP_6 + P-network_7_0_AnnP_7 + P-network_5_3_RP_4 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_0_AskP_7 + P-network_5_3_RP_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_0_2_RI_7 + P-network_5_3_RP_2 + P-network_5_3_RP_1 + P-network_3_7_AnnP_1 + P-network_3_7_AnnP_2 + P-network_3_7_AnnP_3 + P-network_3_7_AnnP_4 + P-network_3_7_AnnP_5 + P-network_3_7_AnnP_6 + P-network_3_7_AnnP_7 + P-network_7_2_RP_7 + P-network_7_2_RP_6 + P-network_7_2_RP_5 + P-network_7_2_RP_4 + P-network_7_2_RP_3 + P-network_7_2_RP_2 + P-network_7_2_RP_1 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_4_4_AskP_7 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_3_0_RP_7 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_1_1_RP_7 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_5_1_AnnP_7 + P-network_3_2_AskP_7 + P-network_3_2_AskP_6 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_2_5_AskP_7 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_3_2_AnnP_7 + P-network_0_6_RI_7 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_0_6_RI_1 + P-network_2_5_RI_7 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_2_5_RI_3 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_2_5_AnnP_7 + P-network_7_5_AI_1 + P-network_7_5_AI_2 + P-network_7_5_AI_3 + P-network_7_5_AI_4 + P-network_7_5_AI_5 + P-network_7_5_AI_6 + P-network_7_5_AI_7 + P-network_2_5_AnnP_6 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_6_6_AnnP_7 + P-network_2_5_AnnP_5 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_6_AskP_7 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_5_6_AI_7 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_3_7_AI_1 + P-network_3_7_AI_2 + P-network_3_7_AI_3 + P-network_3_7_AI_4 + P-network_3_7_AI_5 + P-network_3_7_AI_6 + P-network_3_7_AI_7 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_3_AnnP_7 + P-network_7_3_AskP_1 + P-network_7_3_AskP_2 + P-network_7_3_AskP_3 + P-network_7_3_AskP_4 + P-network_7_3_AskP_5 + P-network_7_3_AskP_6 + P-network_7_3_AskP_7 + P-network_4_4_RI_7 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_6_3_RI_7 + P-network_6_7_RI_1 + P-network_6_7_RI_2 + P-network_6_7_RI_3 + P-network_6_7_RI_4 + P-network_6_7_RI_5 + P-network_6_7_RI_6 + P-network_6_7_RI_7 + P-network_6_3_RI_6 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AskP_4 + P-network_2_0_AskP_5 + P-network_2_0_AskP_6 + P-network_2_0_AskP_7 + P-network_6_3_RI_5 + P-network_6_3_RI_4 + P-network_6_3_RI_3 + P-network_6_3_RI_2 + P-network_6_3_RI_1 + P-network_4_7_AnnP_1 + P-network_4_7_AnnP_2 + P-network_4_7_AnnP_3 + P-network_4_7_AnnP_4 + P-network_4_7_AnnP_5 + P-network_4_7_AnnP_6 + P-network_4_7_AnnP_7 + P-network_1_4_AI_7 + P-network_1_4_AI_6 + P-network_1_4_AI_5 + P-network_1_4_AI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_1_4_AI_1 + P-network_5_4_AskP_1 + P-network_5_4_AskP_2 + P-network_5_4_AskP_3 + P-network_5_4_AskP_4 + P-network_5_4_AskP_5 + P-network_5_4_AskP_6 + P-network_5_4_AskP_7 + P-network_7_6_RP_1 + P-network_7_6_RP_2 + P-network_7_6_RP_3 + P-network_7_6_RP_4 + P-network_7_6_RP_5 + P-network_7_6_RP_6 + P-network_7_6_RP_7 + P-network_2_7_RP_7 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_3_AI_7 + P-network_2_7_RP_6 + P-network_2_7_RP_5 + P-network_2_7_RP_4 + P-network_2_7_RP_3 + P-network_2_7_RP_2 + P-network_2_7_RP_1 + P-network_3_3_AI_7 + P-network_3_3_AI_6 + P-network_3_3_AI_5 + P-network_3_3_AI_4 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_4_6_RP_7 + P-network_4_6_RP_6 + P-network_4_6_RP_5 + P-network_5_7_RP_1 + P-network_5_7_RP_2 + P-network_5_7_RP_3 + P-network_5_7_RP_4 + P-network_5_7_RP_5 + P-network_5_7_RP_6 + P-network_5_7_RP_7 + P-network_4_6_RP_4 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_4_4_AI_7 + P-network_4_6_RP_3 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_2_5_AI_3 + P-network_2_5_AI_4 + P-network_2_5_AI_5 + P-network_2_5_AI_6 + P-network_2_5_AI_7 + P-network_4_6_RP_2 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_1_AnnP_7 + P-network_4_6_RP_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_0_1_AskP_4 + P-network_0_1_AskP_5 + P-network_0_1_AskP_6 + P-network_0_1_AskP_7 + P-network_5_1_AskP_7 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_6_AI_7 + P-network_5_1_AskP_6 + P-network_5_1_AskP_5 + P-network_5_1_AskP_4 + P-network_5_1_AskP_3 + P-network_5_1_AskP_2 + P-network_5_1_AskP_1 + P-network_5_2_AI_7 + P-network_5_2_AI_6 + P-network_5_2_AI_5 + P-network_7_4_RI_1 + P-network_7_4_RI_2 + P-network_7_4_RI_3 + P-network_7_4_RI_4 + P-network_7_4_RI_5 + P-network_7_4_RI_6 + P-network_7_4_RI_7 + P-network_5_2_AI_4 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_5_5_RI_7 + P-network_5_2_AI_3 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_3_6_RI_7 + P-network_5_2_AI_2 + P-network_5_2_AI_1 + P-network_6_5_RP_7 + P-network_6_5_RP_6 + P-network_6_5_RP_5 + P-network_6_5_RP_4 + P-network_6_5_RP_3 + P-network_6_5_RP_2 + P-network_6_5_RP_1 + P-network_1_7_RI_1 + P-network_1_7_RI_2 + P-network_1_7_RI_3 + P-network_1_7_RI_4 + P-network_1_7_RI_5 + P-network_1_7_RI_6 + P-network_1_7_RI_7 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_3_5_AskP_7 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_4_2_AnnP_7 + P-network_7_1_AI_7 + P-network_7_1_AI_6 + P-network_7_1_AI_5 + P-network_7_1_AI_4 + P-network_7_1_AI_3 + P-network_7_0_AI_1 + P-network_7_0_AI_2 + P-network_7_0_AI_3 + P-network_7_0_AI_4 + P-network_7_0_AI_5 + P-network_7_0_AI_6 + P-network_7_0_AI_7 + P-network_7_1_AI_2 + P-network_6_4_RP_1 + P-network_6_4_RP_2 + P-network_6_4_RP_3 + P-network_6_4_RP_4 + P-network_6_4_RP_5 + P-network_6_4_RP_6 + P-network_6_4_RP_7 + P-network_7_1_AI_1 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_5_1_AI_6 + P-network_5_1_AI_7 + P-network_4_4_AnnP_7 + P-network_4_5_RP_1 + P-network_4_5_RP_2 + P-network_4_5_RP_3 + P-network_4_5_RP_4 + P-network_4_5_RP_5 + P-network_4_5_RP_6 + P-network_4_5_RP_7 + P-network_4_4_AnnP_6 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_2_AI_7 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_4 + P-network_2_6_RP_1 + P-network_2_6_RP_2 + P-network_2_6_RP_3 + P-network_2_6_RP_4 + P-network_2_6_RP_5 + P-network_2_6_RP_6 + P-network_2_6_RP_7 + P-network_4_4_AnnP_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_1_3_AI_7 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_1 + P-network_0_7_RP_1 + P-network_0_7_RP_2 + P-network_0_7_RP_3 + P-network_0_7_RP_4 + P-network_0_7_RP_5 + P-network_0_7_RP_6 + P-network_0_7_RP_7 + P-network_7_6_AnnP_1 + P-network_7_6_AnnP_2 + P-network_7_6_AnnP_3 + P-network_7_6_AnnP_4 + P-network_7_6_AnnP_5 + P-network_7_6_AnnP_6 + P-network_7_6_AnnP_7 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_1_6_AskP_7 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_6_2_RI_7 + P-network_3_7_AskP_7 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_4_3_RI_7 + P-network_3_7_AskP_6 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_2_4_RI_7 + P-network_3_7_AskP_5 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_2_3_AnnP_7 + P-network_3_7_AskP_4 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_0_5_RI_7 + P-network_3_7_AskP_3 + P-network_3_7_AskP_2 + P-network_3_7_AskP_1 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_3_0_AskP_7 + P-network_3_7_RI_7 + P-network_7_1_RP_1 + P-network_7_1_RP_2 + P-network_7_1_RP_3 + P-network_7_1_RP_4 + P-network_7_1_RP_5 + P-network_7_1_RP_6 + P-network_7_1_RP_7 + P-network_3_7_RI_6 + P-network_5_7_AnnP_1 + P-network_5_7_AnnP_2 + P-network_5_7_AnnP_3 + P-network_5_7_AnnP_4 + P-network_5_7_AnnP_5 + P-network_5_7_AnnP_6 + P-network_5_7_AnnP_7 + P-network_3_7_RI_5 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_5_2_RP_7 + P-network_3_7_RI_4 + P-network_3_7_RI_3 + P-network_3_7_RI_2 + P-network_3_7_RI_1 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_3_RP_6 + P-network_3_3_RP_7 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_0_AI_7 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_1_4_RP_7 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_0_1_AI_7 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_0_4_AnnP_7 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_6_4_AskP_7 + P-network_5_6_RI_7 + P-network_5_6_RI_6 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_5_0_RI_4 + P-network_5_0_RI_5 + P-network_5_0_RI_6 + P-network_5_0_RI_7 + P-network_5_6_RI_5 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_3_1_RI_5 + P-network_3_1_RI_6 + P-network_3_1_RI_7 + P-network_5_6_RI_4 + P-network_7_1_AnnP_1 + P-network_7_1_AnnP_2 + P-network_7_1_AnnP_3 + P-network_7_1_AnnP_4 + P-network_7_1_AnnP_5 + P-network_7_1_AnnP_6 + P-network_7_1_AnnP_7 + P-network_5_6_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_1_1_AskP_7 + P-network_5_6_RI_2 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_1_2_RI_7 + P-network_5_6_RI_1 + P-network_7_0_AskP_7 + P-network_7_0_AskP_6 + P-network_7_0_AskP_5 + P-network_7_0_AskP_4 + P-network_7_0_AskP_3 + P-network_7_0_AskP_2 + P-network_7_0_AskP_1 + P-network_7_5_RI_7 + P-network_7_5_RI_6 + P-network_7_5_RI_5 + P-network_7_5_RI_4 + P-network_4_5_AskP_1 + P-network_4_5_AskP_2 + P-network_4_5_AskP_3 + P-network_4_5_AskP_4 + P-network_4_5_AskP_5 + P-network_4_5_AskP_6 + P-network_4_5_AskP_7 + P-network_7_5_RI_3 + P-network_4_0_RP_1 + P-network_4_0_RP_2 + P-network_4_0_RP_3 + P-network_4_0_RP_4 + P-network_4_0_RP_5 + P-network_4_0_RP_6 + P-network_4_0_RP_7 + P-network_7_5_RI_2 + P-network_7_5_RI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_2_1_RP_4 + P-network_2_1_RP_5 + P-network_2_1_RP_6 + P-network_2_1_RP_7 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AnnP_7 + P-network_1_0_AnnP_7 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_0_2_RP_4 + P-network_0_2_RP_5 + P-network_0_2_RP_6 + P-network_0_2_RP_7 + P-network_1_0_AnnP_6 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_7_AI_7 + P-network_0_7_AI_6 + P-network_0_7_AI_5 + P-network_0_7_AI_4 + P-network_0_7_AI_3 + P-network_0_7_AI_2 + P-network_0_7_AI_1 + P-network_2_6_AI_7 + P-network_2_6_AI_6 + P-network_2_6_AI_5 + P-network_2_6_AI_4 + P-network_2_6_AI_3 + P-network_2_6_AI_2 + P-network_2_6_AI_1 + P-network_0_3_AskP_7 + P-network_0_3_AskP_6 + P-network_0_3_AskP_5 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_0_0_RI_7 + P-network_0_3_AskP_4 + P-network_2_6_AskP_1 + P-network_2_6_AskP_2 + P-network_2_6_AskP_3 + P-network_2_6_AskP_4 + P-network_2_6_AskP_5 + P-network_2_6_AskP_6 + P-network_2_6_AskP_7 + P-network_0_3_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_6_3_AnnP_7 + P-network_6_3_AnnP_6 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_3_3_AnnP_7 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_1 + P-network_4_5_AI_7 + P-network_4_5_AI_6 + P-network_4_5_AI_5 + P-network_4_5_AI_4 + P-network_4_5_AI_3 + P-network_4_5_AI_2 + P-network_4_5_AI_1 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_4_0_AskP_7 + P-network_6_7_AnnP_1 + P-network_6_7_AnnP_2 + P-network_6_7_AnnP_3 + P-network_6_7_AnnP_4 + P-network_6_7_AnnP_5 + P-network_6_7_AnnP_6 + P-network_6_7_AnnP_7 + P-network_0_7_AskP_1 + P-network_0_7_AskP_2 + P-network_0_7_AskP_3 + P-network_0_7_AskP_4 + P-network_0_7_AskP_5 + P-network_0_7_AskP_6 + P-network_0_7_AskP_7 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_6_AI_7 + P-network_6_4_AI_7 + P-network_6_4_AI_6 + P-network_6_4_AI_5 + P-network_6_4_AI_4 + P-network_6_4_AI_3 + P-network_6_4_AI_2 + P-network_6_4_AI_1 + P-network_7_7_RP_7 + P-network_7_7_RP_6 + P-network_7_7_RP_5 + P-network_7_7_RP_4 + P-network_7_7_RP_3 + P-network_7_7_RP_2 + P-network_4_7_AI_1 + P-network_4_7_AI_2 + P-network_4_7_AI_3 + P-network_4_7_AI_4 + P-network_4_7_AI_5 + P-network_4_7_AI_6 + P-network_4_7_AI_7 + P-network_7_7_RP_1 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_1_4_AnnP_7 + P-network_7_4_AskP_1 + P-network_7_4_AskP_2 + P-network_7_4_AskP_3 + P-network_7_4_AskP_4 + P-network_7_4_AskP_5 + P-network_7_4_AskP_6 + P-network_7_4_AskP_7 + P-network_5_6_AskP_7 + P-network_5_6_AskP_6 + P-network_5_6_AskP_5 + P-network_5_6_AskP_4 + P-network_5_6_AskP_3 + P-network_5_6_AskP_2 + P-network_5_6_AskP_1 + P-network_7_7_RI_1 + P-network_7_7_RI_2 + P-network_7_7_RI_3 + P-network_7_7_RI_4 + P-network_7_7_RI_5 + P-network_7_7_RI_6 + P-network_7_7_RI_7 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_1_AskP_7 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_5_5_AskP_7 + P-network_7_3_AI_1 + P-network_7_3_AI_2 + P-network_7_3_AI_3 + P-network_7_3_AI_4 + P-network_7_3_AI_5 + P-network_7_3_AI_6 + P-network_7_3_AI_7 + P-network_6_7_RP_1 + P-network_6_7_RP_2 + P-network_6_7_RP_3 + P-network_6_7_RP_4 + P-network_6_7_RP_5 + P-network_6_7_RP_6 + P-network_6_7_RP_7 + P-network_5_4_AI_1 + P-network_5_4_AI_2 + P-network_5_4_AI_3 + P-network_5_4_AI_4 + P-network_5_4_AI_5 + P-network_5_4_AI_6 + P-network_5_4_AI_7 + P-network_3_5_AI_1 + P-network_3_5_AI_2 + P-network_3_5_AI_3 + P-network_3_5_AI_4 + P-network_3_5_AI_5 + P-network_3_5_AI_6 + P-network_3_5_AI_7 + P-network_6_2_AnnP_1 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_3 + P-network_6_2_AnnP_4 + P-network_6_2_AnnP_5 + P-network_6_2_AnnP_6 + P-network_6_2_AnnP_7 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_0_2_AskP_7 + P-network_1_6_AI_1 + P-network_1_6_AI_2 + P-network_1_6_AI_3 + P-network_1_6_AI_4 + P-network_1_6_AI_5 + P-network_1_6_AI_6 + P-network_1_6_AI_7 + P-network_2_2_AskP_7 + P-network_2_2_AskP_6 + P-network_2_2_AskP_5 + P-network_2_2_AskP_4 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_6_5_RI_7 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_4_6_RI_7 + P-network_2_7_RI_1 + P-network_2_7_RI_2 + P-network_2_7_RI_3 + P-network_2_7_RI_4 + P-network_2_7_RI_5 + P-network_2_7_RI_6 + P-network_2_7_RI_7 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_3_6_AskP_7 + P-network_7_5_AskP_7 + P-network_7_5_AskP_6 + P-network_7_5_AskP_5 + P-network_7_5_AskP_4 + P-network_7_5_AskP_3 + P-network_7_5_AskP_2 + P-network_4_3_AnnP_1 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_7 + P-network_7_5_AskP_1 + P-network_7_4_RP_1 + P-network_7_4_RP_2 + P-network_7_4_RP_3 + P-network_7_4_RP_4 + P-network_7_4_RP_5 + P-network_7_4_RP_6 + P-network_7_4_RP_7 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_6_1_AI_3 + P-network_6_1_AI_4 + P-network_6_1_AI_5 + P-network_6_1_AI_6 + P-network_6_1_AI_7 + P-network_1_5_AnnP_7 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_5_RP_7 + P-network_1_5_AnnP_6 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_4_2_AI_7 + P-network_1_5_AnnP_5 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_5_0_AskP_7 + P-network_1_5_AnnP_4 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_3_6_RP_7 + P-network_1_5_AnnP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_3_AI_7 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_1 + P-network_1_7_RP_1 + P-network_1_7_RP_2 + P-network_1_7_RP_3 + P-network_1_7_RP_4 + P-network_1_7_RP_5 + P-network_1_7_RP_6 + P-network_1_7_RP_7 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_0_4_AI_5 + P-network_0_4_AI_6 + P-network_0_4_AI_7 + P-network_5_7_AI_7 + P-network_5_7_AI_6 + P-network_5_7_AI_5 + P-network_5_7_AI_4 + P-network_5_7_AI_3 + P-network_5_7_AI_2 + P-network_5_7_AI_1 + P-network_7_7_AnnP_1 + P-network_7_7_AnnP_2 + P-network_7_7_AnnP_3 + P-network_7_7_AnnP_4 + P-network_7_7_AnnP_5 + P-network_7_7_AnnP_6 + P-network_7_7_AnnP_7 + P-network_7_6_AI_7 + P-network_1_7_AskP_1 + P-network_1_7_AskP_2 + P-network_1_7_AskP_3 + P-network_1_7_AskP_4 + P-network_1_7_AskP_5 + P-network_1_7_AskP_6 + P-network_1_7_AskP_7 + P-network_7_6_AI_6 + P-network_7_2_RI_1 + P-network_7_2_RI_2 + P-network_7_2_RI_3 + P-network_7_2_RI_4 + P-network_7_2_RI_5 + P-network_7_2_RI_6 + P-network_7_2_RI_7 + P-network_7_6_AI_5 + P-network_7_6_AI_4 + P-network_7_6_AI_3 + P-network_7_6_AI_2 + P-network_7_6_AI_1 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_5_3_RI_7 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_3_4_RI_7 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_2_4_AnnP_7 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_1_5_RI_7 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_1_AskP_7 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_6_2_RP_7 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_4_3_RP_7 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_3_0_AI_4 + P-network_3_0_AI_5 + P-network_3_0_AI_6 + P-network_3_0_AI_7 + P-network_0_0_RP_7 + P-network_2_4_RP_1 + P-network_2_4_RP_2 + P-network_2_4_RP_3 + P-network_2_4_RP_4 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_7 + P-network_0_0_RP_6 + P-network_0_0_RP_5 + P-network_0_0_RP_4 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_0_0_RP_1 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_1_AI_4 + P-network_1_1_AI_5 + P-network_1_1_AI_6 + P-network_1_1_AI_7 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_0_5_AnnP_7 + P-network_0_5_RP_1 + P-network_0_5_RP_2 + P-network_0_5_RP_3 + P-network_0_5_RP_4 + P-network_0_5_RP_5 + P-network_0_5_RP_6 + P-network_0_5_RP_7 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_6_5_AskP_7 + P-network_4_1_AskP_7 + P-network_4_1_AskP_6 + P-network_4_1_AskP_5 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_4_1_AskP_1 + P-network_6_0_RI_1 + P-network_6_0_RI_2 + P-network_6_0_RI_3 + P-network_6_0_RI_4 + P-network_6_0_RI_5 + P-network_6_0_RI_6 + P-network_6_0_RI_7 + P-network_4_1_RI_1 + P-network_4_1_RI_2 + P-network_4_1_RI_3 + P-network_4_1_RI_4 + P-network_4_1_RI_5 + P-network_4_1_RI_6 + P-network_4_1_RI_7 + P-network_7_2_AnnP_1 + P-network_7_2_AnnP_2 + P-network_7_2_AnnP_3 + P-network_7_2_AnnP_4 + P-network_7_2_AnnP_5 + P-network_7_2_AnnP_6 + P-network_7_2_AnnP_7 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_1_2_AskP_7 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_2_2_RI_4 + P-network_2_2_RI_5 + P-network_2_2_RI_6 + P-network_2_2_RI_7 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_0_3_RI_4 + P-network_0_3_RI_5 + P-network_0_3_RI_6 + P-network_0_3_RI_7 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_4_6_AskP_7 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_5_0_RP_7 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_3_1_RP_7 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_5_3_AnnP_7 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_1_2_RP_7 + P-network_3_4_AnnP_7 + P-network_3_4_AnnP_6 + P-network_3_4_AnnP_5 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_5 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_7 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_6_0_AskP_1 + P-network_6_0_AskP_2 + P-network_6_0_AskP_3 + P-network_6_0_AskP_4 + P-network_6_0_AskP_5 + P-network_6_0_AskP_6 + P-network_6_0_AskP_7 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_0_RI_7 + P-network_2_7_AskP_1 + P-network_2_7_AskP_2 + P-network_2_7_AskP_3 + P-network_2_7_AskP_4 + P-network_2_7_AskP_5 + P-network_2_7_AskP_6 + P-network_2_7_AskP_7)
lola: after: (P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 <= P-network_2_7_AskP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_3_1_RP_0 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_4_1_AskP_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_7_6_AI_0 + P-network_7_2_RI_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_5_7_AI_0 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_1_5_AnnP_0 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_7_5_AskP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_7_4_AnsP_7 + P-network_2_2_AskP_0 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_7_3_AI_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_2_1_AskP_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_7 + P-network_5_6_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_7_7_RP_0 + P-network_1_4_AnnP_0 + P-network_4_7_AI_0 + P-network_6_4_AI_0 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AI_0 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_6_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_6_AskP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_2_6_AI_0 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_0_7_AI_0 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_1_0_AnnP_0 + P-network_0_2_RP_0 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_7_5_RI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_7_0_AskP_0 + P-network_5_6_RI_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_6_4_AskP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_7_RI_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_7_AskP_0 + P-network_3_5_AnsP_0 + P-network_0_5_RI_0 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_4_4_AnnP_0 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_7_1_AI_0 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_1_7_RI_0 + P-network_6_5_RP_0 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_5_2_AI_0 + P-network_2_0_AnsP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_7_4_RI_0 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_5_1_AskP_0 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_4_6_RP_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_3_3_AI_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_2_7_RP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_1_4_AI_0 + P-network_6_3_RI_0 + P-network_4_7_AnnP_0 + P-network_2_0_AskP_0 + P-network_6_7_RI_0 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_4_4_RI_0 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_7_3_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_7_AI_0 + P-network_2_5_AnnP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_2_5_AskP_0 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_7_2_RP_0 + P-network_3_7_AnnP_0 + P-network_5_3_RP_0 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_3_AskP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_3_4_RP_0 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_2_1_AI_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_0_6_AnnP_0 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_1_5_RP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_0_2_AI_0 + P-network_5_2_RI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_6_6_AskP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_5_RP_0 + P-network_4_1_AI_0 + P-network_7_0_RI_0 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_7_3_AnnP_0 + P-network_4_1_AnnP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_1_3_RI_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_2_0_AnnP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_4_6_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_4_7_AskP_0 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_6_0_RP_0 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_4_1_RP_0 + P-network_3_1_AnnP_0 + P-network_2_4_AskP_0 + P-network_5_4_AnnP_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_0_3_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_3_6_AnnP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_6_1_AskP_0 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_7 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_2_0_RI_0 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_1_RI_0 + P-network_5_1_RP_0 + P-network_7_0_RP_0 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_3_5_AnnP_0 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_0_5_AI_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_4_2_AskP_0 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_1_0_RP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_6_7_AI_0 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_6_AnnP_0 + P-network_7_6_AskP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_7_4_AI_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_2_3_AskP_0 + P-network_3_0_AnnP_0)
lola: LP says that atomic proposition is always true: (P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 <= P-network_2_7_AskP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_3_1_RP_0 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_4_1_AskP_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_7_6_AI_0 + P-network_7_2_RI_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_5_7_AI_0 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_1_5_AnnP_0 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_7_5_AskP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_7_4_AnsP_7 + P-network_2_2_AskP_0 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_7_3_AI_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_2_1_AskP_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_7 + P-network_5_6_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_7_7_RP_0 + P-network_1_4_AnnP_0 + P-network_4_7_AI_0 + P-network_6_4_AI_0 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AI_0 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_6_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_6_AskP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_2_6_AI_0 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_0_7_AI_0 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_1_0_AnnP_0 + P-network_0_2_RP_0 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_7_5_RI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_7_0_AskP_0 + P-network_5_6_RI_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_6_4_AskP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_7_RI_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_7_AskP_0 + P-network_3_5_AnsP_0 + P-network_0_5_RI_0 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_4_4_AnnP_0 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_7_1_AI_0 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_1_7_RI_0 + P-network_6_5_RP_0 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_5_2_AI_0 + P-network_2_0_AnsP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_7_4_RI_0 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_5_1_AskP_0 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_4_6_RP_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_3_3_AI_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_2_7_RP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_1_4_AI_0 + P-network_6_3_RI_0 + P-network_4_7_AnnP_0 + P-network_2_0_AskP_0 + P-network_6_7_RI_0 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_4_4_RI_0 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_7_3_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_7_AI_0 + P-network_2_5_AnnP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_2_5_AskP_0 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_7_2_RP_0 + P-network_3_7_AnnP_0 + P-network_5_3_RP_0 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_3_AskP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_3_4_RP_0 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_2_1_AI_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_0_6_AnnP_0 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_1_5_RP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_0_2_AI_0 + P-network_5_2_RI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_6_6_AskP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_5_RP_0 + P-network_4_1_AI_0 + P-network_7_0_RI_0 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_7_3_AnnP_0 + P-network_4_1_AnnP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_1_3_RI_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_2_0_AnnP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_4_6_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_4_7_AskP_0 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_6_0_RP_0 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_4_1_RP_0 + P-network_3_1_AnnP_0 + P-network_2_4_AskP_0 + P-network_5_4_AnnP_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_0_3_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_3_6_AnnP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_6_1_AskP_0 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_7 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_2_0_RI_0 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_1_RI_0 + P-network_5_1_RP_0 + P-network_7_0_RP_0 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_3_5_AnnP_0 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_0_5_AI_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_4_2_AskP_0 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_1_0_RP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_6_7_AI_0 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_6_AnnP_0 + P-network_7_6_AskP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_7_4_AI_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_2_3_AskP_0 + P-network_3_0_AnnP_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_5_6_AskP_0 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_2 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_7 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_4_0_RI_5 + P-poll__networl_4_0_RI_6 + P-poll__networl_4_0_RI_7 + P-poll__networl_4_2_RP_7 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_0 + P-poll__networl_6_1_RP_7 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_6_1_RP_6 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_0 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_2_2_AskP_7 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_5_AskP_4 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_7_5_AskP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_1_4_RI_7 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_4 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_0 + P-poll__networl_5_2_RI_7 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_5 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_0 + P-poll__networl_7_1_RI_7 + P-poll__networl_7_1_RI_6 + P-poll__networl_7_1_RI_5 + P-poll__networl_7_1_RI_4 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_7_1_RI_3 + P-poll__networl_7_1_RI_2 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_6 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_0_3_AI_5 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_0_3_AI_4 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_3 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_2 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_7 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_0 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_0 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_0 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_6 + P-poll__networl_4_7_AskP_0 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_7 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_5_7_RP_0 + P-poll__networl_5_7_RP_1 + P-poll__networl_5_7_RP_2 + P-poll__networl_5_7_RP_3 + P-poll__networl_5_7_RP_4 + P-poll__networl_5_7_RP_5 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_0 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_6_0_AI_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_6_0_AI_6 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_0 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_0 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_3 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_2_7_AskP_2 + P-poll__networl_7_0_AI_0 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_7 + P-poll__networl_2_7_AskP_1 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_6_4_RP_0 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_7 + P-poll__networl_5_1_AI_0 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_7 + P-poll__networl_4_5_RP_0 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_7 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_0_7_RI_7 + P-poll__networl_2_6_RP_0 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_7 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_1_3_AI_7 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RP_0 + P-poll__networl_0_7_RP_1 + P-poll__networl_0_7_RP_2 + P-poll__networl_0_7_RP_3 + P-poll__networl_0_7_RP_4 + P-poll__networl_0_7_RP_5 + P-poll__networl_0_7_RP_6 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_0 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_3 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_2_6_RI_2 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_4 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_0 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_5 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_0 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_5_0_RI_3 + P-poll__networl_5_0_RI_4 + P-poll__networl_5_0_RI_5 + P-poll__networl_5_0_RI_6 + P-poll__networl_5_0_RI_7 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_RI_5 + P-poll__networl_3_1_RI_6 + P-poll__networl_3_1_RI_7 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_0_4_AskP_0 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_7 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_0 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_4_0_RP_0 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_7 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_7 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_1 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_3_4_AI_0 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_7 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_5 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_RP_4 + P-poll__networl_4_7_RP_3 + P-poll__networl_4_7_RP_2 + P-poll__networl_4_7_RP_1 + P-poll__networl_4_7_RP_0 + P-poll__networl_5_3_AI_7 + P-poll__networl_5_3_AI_6 + P-poll__networl_5_3_AI_5 + P-poll__networl_5_3_AI_4 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_3_AI_3 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_5_3_AI_2 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_0 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_3 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_7 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_0 + P-poll__networl_4_6_AskP_7 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_0 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_7_3_AI_0 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_7 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_5_4_AI_0 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_7 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_6 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_3_5_AI_0 + P-poll__networl_3_5_AI_1 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_4 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_7 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_1_6_AI_0 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_3 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_7 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_5_RI_1 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_4 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_2_AskP_0 + P-poll__networl_6_2_AskP_1 + P-poll__networl_6_2_AskP_2 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_7 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_4 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_6 + P-poll__networl_4_6_RI_7 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_5_7_RI_4 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_7_RI_1 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_3 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_7 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_7_6_RI_2 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_1_7_RP_0 + P-poll__networl_1_7_RP_1 + P-poll__networl_1_7_RP_2 + P-poll__networl_1_7_RP_3 + P-poll__networl_1_7_RP_4 + P-poll__networl_1_7_RP_5 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_6_5_AskP_7 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_0 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_6_0_RI_0 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_2 + P-poll__networl_6_0_RI_3 + P-poll__networl_6_0_RI_4 + P-poll__networl_6_0_RI_5 + P-poll__networl_6_0_RI_6 + P-poll__networl_6_0_RI_7 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_1_RI_6 + P-poll__networl_4_1_RI_7 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_0_5_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_5 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_7 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_7 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_6_5_AI_0 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_7 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_5 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_3 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_0 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_5_0_AskP_7 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_5_0_AskP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_7_7_AI_7 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_0 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_4_4_AskP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_2_7_RP_0 + P-poll__networl_2_7_RP_1 + P-poll__networl_2_7_RP_2 + P-poll__networl_2_7_RP_3 + P-poll__networl_2_7_RP_4 + P-poll__networl_2_7_RP_5 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_0_RP_7 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_3 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_1 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_3_6_AskP_0 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_5_AskP_0 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_7 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_7_2_RP_0 + P-poll__networl_7_2_RP_1 + P-poll__networl_7_2_RP_2 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_7 + P-poll__networl_5_3_RP_0 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_4 + P-poll__networl_5_3_RP_5 + P-poll__networl_5_3_RP_6 + P-poll__networl_5_3_RP_7 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_3_4_RP_0 + P-poll__networl_3_4_RP_1 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_4 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_7 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_1_5_RP_0 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_5_RP_7 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_7_0_RI_3 + P-poll__networl_7_0_RI_4 + P-poll__networl_7_0_RI_5 + P-poll__networl_7_0_RI_6 + P-poll__networl_7_0_RI_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_5_1_RI_3 + P-poll__networl_5_1_RI_4 + P-poll__networl_5_1_RI_5 + P-poll__networl_5_1_RI_6 + P-poll__networl_5_1_RI_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_0_2_AskP_7 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_0_2_AskP_6 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_1_1_RI_7 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_3_0_RI_7 + P-poll__networl_3_0_RI_6 + P-poll__networl_3_0_RI_5 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_0 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_7 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_7 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_2_RP_6 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_6 + P-poll__networl_1_0_RP_7 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_0 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_5 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_2 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_0 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_1_6_AskP_0 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_6_AskP_7 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_0 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_2 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_0_4_RI_1 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_0_4_RI_0 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_4 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_0 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_7 + P-poll__networl_6_2_AI_0 + P-poll__networl_6_2_AI_1 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_7 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_5_6_RP_0 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_3 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_7 + P-poll__networl_4_3_AI_0 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_3 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_5 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_7 + P-poll__networl_3_7_RP_0 + P-poll__networl_3_7_RP_1 + P-poll__networl_3_7_RP_2 + P-poll__networl_3_7_RP_3 + P-poll__networl_3_7_RP_4 + P-poll__networl_3_7_RP_5 + P-poll__networl_3_7_RP_6 + P-poll__networl_3_7_RP_7 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_7 + P-poll__networl_0_7_AskP_3 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_0_5_AI_0 + P-poll__networl_0_5_AI_1 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_3 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_7 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_7_3_RI_0 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_7 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_1_RI_7 + P-poll__networl_6_1_RI_6 + P-poll__networl_6_1_RI_5 + P-poll__networl_6_1_RI_4 + P-poll__networl_6_1_RI_3 + P-poll__networl_5_4_RI_0 + P-poll__networl_5_4_RI_1 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_7 + P-poll__networl_6_1_RI_2 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_0 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_5 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_3 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_2 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_0 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_2_5_RP_7 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_0_AI_7 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_0 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 <= P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_5_2_0 + P-masterList_5_2_1 + P-masterList_5_2_2 + P-masterList_5_2_3 + P-masterList_5_2_4 + P-masterList_5_2_5 + P-masterList_5_2_6 + P-masterList_5_2_7 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_0_7_7 + P-masterList_0_7_6 + P-masterList_0_7_5 + P-masterList_0_7_4 + P-masterList_0_7_3 + P-masterList_0_7_2 + P-masterList_0_7_1 + P-masterList_0_7_0 + P-masterList_5_3_0 + P-masterList_5_3_1 + P-masterList_5_3_2 + P-masterList_5_3_3 + P-masterList_5_3_4 + P-masterList_5_3_5 + P-masterList_5_3_6 + P-masterList_5_3_7 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_5_4_0 + P-masterList_5_4_1 + P-masterList_5_4_2 + P-masterList_5_4_3 + P-masterList_5_4_4 + P-masterList_5_4_5 + P-masterList_5_4_6 + P-masterList_5_4_7 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_4_7_7 + P-masterList_4_7_6 + P-masterList_4_7_5 + P-masterList_4_7_4 + P-masterList_4_7_3 + P-masterList_4_7_2 + P-masterList_4_7_1 + P-masterList_5_5_0 + P-masterList_5_5_1 + P-masterList_5_5_2 + P-masterList_5_5_3 + P-masterList_5_5_4 + P-masterList_5_5_5 + P-masterList_5_5_6 + P-masterList_5_5_7 + P-masterList_4_7_0 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_0_6_7 + P-masterList_0_6_6 + P-masterList_0_6_5 + P-masterList_0_6_4 + P-masterList_0_6_3 + P-masterList_0_6_2 + P-masterList_0_6_1 + P-masterList_0_6_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_4_6_7 + P-masterList_4_6_6 + P-masterList_4_6_5 + P-masterList_4_6_4 + P-masterList_4_6_3 + P-masterList_4_6_2 + P-masterList_4_6_1 + P-masterList_4_6_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_0_5_7 + P-masterList_0_5_6 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_0_5_5 + P-masterList_0_5_4 + P-masterList_0_5_3 + P-masterList_0_5_2 + P-masterList_0_5_1 + P-masterList_0_5_0 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_2_4_0 + P-masterList_2_4_1 + P-masterList_2_4_2 + P-masterList_2_4_3 + P-masterList_2_4_4 + P-masterList_2_4_5 + P-masterList_2_4_6 + P-masterList_2_4_7 + P-masterList_4_5_7 + P-masterList_4_5_6 + P-masterList_4_5_5 + P-masterList_4_5_4 + P-masterList_4_5_3 + P-masterList_4_5_2 + P-masterList_4_5_1 + P-masterList_4_5_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_2_5_0 + P-masterList_2_5_1 + P-masterList_2_5_2 + P-masterList_2_5_3 + P-masterList_2_5_4 + P-masterList_2_5_5 + P-masterList_2_5_6 + P-masterList_2_5_7 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_0_4_7 + P-masterList_0_4_6 + P-masterList_0_4_5 + P-masterList_0_4_4 + P-masterList_0_4_3 + P-masterList_0_4_2 + P-masterList_0_4_1 + P-masterList_0_4_0 + P-masterList_2_6_0 + P-masterList_2_6_1 + P-masterList_2_6_2 + P-masterList_2_6_3 + P-masterList_2_6_4 + P-masterList_2_6_5 + P-masterList_2_6_6 + P-masterList_2_6_7 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_2_7_0 + P-masterList_2_7_1 + P-masterList_2_7_2 + P-masterList_2_7_3 + P-masterList_2_7_4 + P-masterList_2_7_5 + P-masterList_2_7_6 + P-masterList_2_7_7 + P-masterList_4_4_7 + P-masterList_4_4_6 + P-masterList_4_4_5 + P-masterList_4_4_4 + P-masterList_4_4_3 + P-masterList_4_4_2 + P-masterList_4_4_1 + P-masterList_4_4_0 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_0_3_0 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_3_1_4 + P-masterList_3_1_5 + P-masterList_3_1_6 + P-masterList_3_1_7 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_4_3_7 + P-masterList_4_3_6 + P-masterList_4_3_5 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_4_3_4 + P-masterList_4_3_3 + P-masterList_4_3_2 + P-masterList_4_3_1 + P-masterList_4_3_0 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_4_2_7 + P-masterList_4_2_6 + P-masterList_4_2_5 + P-masterList_4_2_4 + P-masterList_4_2_3 + P-masterList_4_2_2 + P-masterList_4_2_1 + P-masterList_4_2_0 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_7_7_0 + P-masterList_7_7_1 + P-masterList_7_7_2 + P-masterList_7_7_3 + P-masterList_7_7_4 + P-masterList_7_7_5 + P-masterList_7_7_6 + P-masterList_7_7_7 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7)
lola: after: (P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 <= 42)
lola: LP says that atomic proposition is always true: (P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 <= 42)
lola: place invariant simplifies atomic proposition
lola: before: (P-stage_3_PRIM + P-stage_7_SEC + P-stage_3_SEC + P-stage_2_PRIM + P-stage_5_SEC + P-stage_7_PRIM + P-stage_1_NEG + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_SEC + P-stage_4_SEC + P-stage_4_NEG + P-stage_0_NEG + P-stage_1_PRIM + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_NEG + P-stage_2_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_6_SEC + P-stage_2_SEC + P-stage_7_NEG + P-stage_3_NEG <= P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7)
lola: after: (7 <= P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7)
lola: LP says that atomic proposition is always false: (7 <= P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7)
lola: place invariant simplifies atomic proposition
lola: before: (P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 <= P-negotiation_2_0_NONE + P-negotiation_3_6_CO + P-negotiation_0_1_NONE + P-negotiation_6_6_DONE + P-negotiation_7_1_CO + P-negotiation_4_7_DONE + P-negotiation_0_4_CO + P-negotiation_3_2_DONE + P-negotiation_7_3_DONE + P-negotiation_5_4_DONE + P-negotiation_3_5_DONE + P-negotiation_1_6_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_0_6_CO + P-negotiation_3_7_DONE + P-negotiation_5_6_DONE + P-negotiation_7_5_DONE + P-negotiation_6_7_CO + P-negotiation_1_0_CO + P-negotiation_5_6_CO + P-negotiation_2_2_NONE + P-negotiation_4_1_NONE + P-negotiation_6_1_DONE + P-negotiation_2_1_CO + P-negotiation_4_2_DONE + P-negotiation_7_2_NONE + P-negotiation_1_0_DONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_6_6_NONE + P-negotiation_6_0_CO + P-negotiation_4_7_NONE + P-negotiation_2_5_CO + P-negotiation_0_3_DONE + P-negotiation_2_2_DONE + P-negotiation_4_1_DONE + P-negotiation_3_5_CO + P-negotiation_6_0_DONE + P-negotiation_7_0_CO + P-negotiation_1_5_DONE + P-negotiation_3_4_DONE + P-negotiation_5_3_DONE + P-negotiation_7_2_DONE + P-negotiation_7_5_CO + P-negotiation_3_0_DONE + P-negotiation_1_1_DONE + P-negotiation_7_3_NONE + P-negotiation_2_7_DONE + P-negotiation_4_6_DONE + P-negotiation_6_5_DONE + P-negotiation_5_4_NONE + P-negotiation_0_3_CO + P-negotiation_1_6_NONE + P-negotiation_7_7_DONE + P-negotiation_1_2_NONE + P-negotiation_4_4_CO + P-negotiation_0_5_NONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_0_0_DONE + P-negotiation_6_2_CO + P-negotiation_1_7_CO + P-negotiation_2_7_CO + P-negotiation_5_2_CO + P-negotiation_1_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_1_2_DONE + P-negotiation_3_1_DONE + P-negotiation_5_0_DONE + P-negotiation_0_5_DONE + P-negotiation_2_4_DONE + P-negotiation_6_1_NONE + P-negotiation_4_3_DONE + P-negotiation_3_1_CO + P-negotiation_6_2_DONE + P-negotiation_4_2_NONE + P-negotiation_7_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_3_CO + P-negotiation_1_7_DONE + P-negotiation_3_6_DONE + P-negotiation_5_5_DONE + P-negotiation_7_4_DONE + P-negotiation_2_0_CO + P-negotiation_0_0_CO + P-negotiation_6_7_DONE + P-negotiation_4_6_CO + P-negotiation_4_0_NONE + P-negotiation_3_2_CO + P-negotiation_3_4_CO + P-negotiation_1_4_NONE + P-negotiation_5_0_CO + P-negotiation_3_0_NONE + P-negotiation_1_5_CO + P-negotiation_0_7_NONE + P-negotiation_2_6_NONE + P-negotiation_4_5_NONE + P-negotiation_6_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_1_NONE + P-negotiation_7_6_DONE + P-negotiation_5_7_DONE + P-negotiation_0_1_CO + P-negotiation_3_3_CO + P-negotiation_5_7_NONE + P-negotiation_7_6_NONE + P-negotiation_1_4_DONE + P-negotiation_3_3_DONE + P-negotiation_5_2_DONE + P-negotiation_7_1_DONE + P-negotiation_0_2_CO + P-negotiation_6_5_CO + P-negotiation_0_7_DONE + P-negotiation_2_6_DONE + P-negotiation_4_5_DONE + P-negotiation_5_1_CO + P-negotiation_6_4_DONE + P-negotiation_1_6_CO + P-negotiation_4_7_CO + P-negotiation_6_4_CO + P-negotiation_7_1_NONE + P-negotiation_5_2_NONE + P-negotiation_3_3_NONE + P-negotiation_2_1_NONE + P-negotiation_0_2_NONE + P-negotiation_1_4_CO + P-negotiation_0_4_NONE + P-negotiation_6_6_CO + P-negotiation_6_7_NONE + P-negotiation_4_5_CO + P-negotiation_3_6_NONE + P-negotiation_1_7_NONE + P-negotiation_6_2_NONE + P-negotiation_7_6_CO + P-negotiation_3_0_CO + P-negotiation_5_0_NONE + P-negotiation_3_1_NONE + P-negotiation_1_2_CO + P-negotiation_3_5_NONE + P-negotiation_2_6_CO + P-negotiation_0_0_NONE + P-negotiation_6_1_CO + P-negotiation_7_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_7_CO + P-negotiation_1_1_CO + P-negotiation_6_5_NONE + P-negotiation_4_6_NONE + P-negotiation_2_7_NONE + P-negotiation_7_4_CO + P-negotiation_5_3_NONE + P-negotiation_3_4_NONE + P-negotiation_1_5_NONE + P-negotiation_0_7_CO + P-negotiation_4_2_CO + P-negotiation_6_0_NONE + P-negotiation_0_3_NONE + P-negotiation_2_4_CO + P-negotiation_1_0_NONE + P-negotiation_7_3_CO + P-negotiation_6_3_DONE + P-negotiation_4_1_CO + P-negotiation_4_4_DONE + P-negotiation_2_5_DONE + P-negotiation_5_5_CO + P-negotiation_7_0_DONE + P-negotiation_5_1_DONE + P-negotiation_1_3_DONE + P-negotiation_7_5_NONE + P-negotiation_5_6_NONE + P-negotiation_2_3_CO + P-negotiation_3_7_NONE + P-negotiation_3_7_CO + P-negotiation_7_2_CO + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_6_3_NONE + P-negotiation_4_4_NONE + P-negotiation_2_5_NONE + P-negotiation_0_6_NONE + P-negotiation_0_5_CO + P-negotiation_4_0_CO + P-negotiation_5_4_CO + P-negotiation_7_0_NONE + P-negotiation_5_1_NONE + P-negotiation_3_2_NONE + P-negotiation_1_3_NONE + P-negotiation_2_2_CO)
lola: after: (P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 <= 49)
lola: LP says that atomic proposition is always true: (P-electionInit_0 + P-electionInit_1 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 <= 49)
lola: place invariant simplifies atomic proposition
lola: before: (P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3 + P-crashed_4 + P-crashed_5 + P-crashed_6 + P-crashed_7 <= P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola: after: (0 <= P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 + P-electedSecondary_5 + P-electedSecondary_6 + P-electedSecondary_7 <= P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-negotiation_2_0_NONE + P-negotiation_3_6_CO + P-negotiation_0_1_NONE + P-negotiation_6_6_DONE + P-negotiation_7_1_CO + P-negotiation_4_7_DONE + P-negotiation_0_4_CO + P-negotiation_3_2_DONE + P-negotiation_7_3_DONE + P-negotiation_5_4_DONE + P-negotiation_3_5_DONE + P-negotiation_1_6_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_0_6_CO + P-negotiation_3_7_DONE + P-negotiation_5_6_DONE + P-negotiation_7_5_DONE + P-negotiation_6_7_CO + P-negotiation_1_0_CO + P-negotiation_5_6_CO + P-negotiation_2_2_NONE + P-negotiation_4_1_NONE + P-negotiation_6_1_DONE + P-negotiation_2_1_CO + P-negotiation_4_2_DONE + P-negotiation_7_2_NONE + P-negotiation_1_0_DONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_6_6_NONE + P-negotiation_6_0_CO + P-negotiation_4_7_NONE + P-negotiation_2_5_CO + P-negotiation_0_3_DONE + P-negotiation_2_2_DONE + P-negotiation_4_1_DONE + P-negotiation_3_5_CO + P-negotiation_6_0_DONE + P-negotiation_7_0_CO + P-negotiation_1_5_DONE + P-negotiation_3_4_DONE + P-negotiation_5_3_DONE + P-negotiation_7_2_DONE + P-negotiation_7_5_CO + P-negotiation_3_0_DONE + P-negotiation_1_1_DONE + P-negotiation_7_3_NONE + P-negotiation_2_7_DONE + P-negotiation_4_6_DONE + P-negotiation_6_5_DONE + P-negotiation_5_4_NONE + P-negotiation_0_3_CO + P-negotiation_1_6_NONE + P-negotiation_7_7_DONE + P-negotiation_1_2_NONE + P-negotiation_4_4_CO + P-negotiation_0_5_NONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_0_0_DONE + P-negotiation_6_2_CO + P-negotiation_1_7_CO + P-negotiation_2_7_CO + P-negotiation_5_2_CO + P-negotiation_1_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_1_2_DONE + P-negotiation_3_1_DONE + P-negotiation_5_0_DONE + P-negotiation_0_5_DONE + P-negotiation_2_4_DONE + P-negotiation_6_1_NONE + P-negotiation_4_3_DONE + P-negotiation_3_1_CO + P-negotiation_6_2_DONE + P-negotiation_4_2_NONE + P-negotiation_7_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_3_CO + P-negotiation_1_7_DONE + P-negotiation_3_6_DONE + P-negotiation_5_5_DONE + P-negotiation_7_4_DONE + P-negotiation_2_0_CO + P-negotiation_0_0_CO + P-negotiation_6_7_DONE + P-negotiation_4_6_CO + P-negotiation_4_0_NONE + P-negotiation_3_2_CO + P-negotiation_3_4_CO + P-negotiation_1_4_NONE + P-negotiation_5_0_CO + P-negotiation_3_0_NONE + P-negotiation_1_5_CO + P-negotiation_0_7_NONE + P-negotiation_2_6_NONE + P-negotiation_4_5_NONE + P-negotiation_6_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_1_NONE + P-negotiation_7_6_DONE + P-negotiation_5_7_DONE + P-negotiation_0_1_CO + P-negotiation_3_3_CO + P-negotiation_5_7_NONE + P-negotiation_7_6_NONE + P-negotiation_1_4_DONE + P-negotiation_3_3_DONE + P-negotiation_5_2_DONE + P-negotiation_7_1_DONE + P-negotiation_0_2_CO + P-negotiation_6_5_CO + P-negotiation_0_7_DONE + P-negotiation_2_6_DONE + P-negotiation_4_5_DONE + P-negotiation_5_1_CO + P-negotiation_6_4_DONE + P-negotiation_1_6_CO + P-negotiation_4_7_CO + P-negotiation_6_4_CO + P-negotiation_7_1_NONE + P-negotiation_5_2_NONE + P-negotiation_3_3_NONE + P-negotiation_2_1_NONE + P-negotiation_0_2_NONE + P-negotiation_1_4_CO + P-negotiation_0_4_NONE + P-negotiation_6_6_CO + P-negotiation_6_7_NONE + P-negotiation_4_5_CO + P-negotiation_3_6_NONE + P-negotiation_1_7_NONE + P-negotiation_6_2_NONE + P-negotiation_7_6_CO + P-negotiation_3_0_CO + P-negotiation_5_0_NONE + P-negotiation_3_1_NONE + P-negotiation_1_2_CO + P-negotiation_3_5_NONE + P-negotiation_2_6_CO + P-negotiation_0_0_NONE + P-negotiation_6_1_CO + P-negotiation_7_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_7_CO + P-negotiation_1_1_CO + P-negotiation_6_5_NONE + P-negotiation_4_6_NONE + P-negotiation_2_7_NONE + P-negotiation_7_4_CO + P-negotiation_5_3_NONE + P-negotiation_3_4_NONE + P-negotiation_1_5_NONE + P-negotiation_0_7_CO + P-negotiation_4_2_CO + P-negotiation_6_0_NONE + P-negotiation_0_3_NONE + P-negotiation_2_4_CO + P-negotiation_1_0_NONE + P-negotiation_7_3_CO + P-negotiation_6_3_DONE + P-negotiation_4_1_CO + P-negotiation_4_4_DONE + P-negotiation_2_5_DONE + P-negotiation_5_5_CO + P-negotiation_7_0_DONE + P-negotiation_5_1_DONE + P-negotiation_1_3_DONE + P-negotiation_7_5_NONE + P-negotiation_5_6_NONE + P-negotiation_2_3_CO + P-negotiation_3_7_NONE + P-negotiation_3_7_CO + P-negotiation_7_2_CO + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_6_3_NONE + P-negotiation_4_4_NONE + P-negotiation_2_5_NONE + P-negotiation_0_6_NONE + P-negotiation_0_5_CO + P-negotiation_4_0_CO + P-negotiation_5_4_CO + P-negotiation_7_0_NONE + P-negotiation_5_1_NONE + P-negotiation_3_2_NONE + P-negotiation_1_3_NONE + P-negotiation_2_2_CO)
lola: after: (0 <= 47)
lola: place invariant simplifies atomic proposition
lola: before: (P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 <= P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7)
lola: after: (0 <= P-poll__waitingMessage_6 + P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_7)
lola: LP says that atomic proposition is always false: (1 <= P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-negotiation_2_0_NONE + P-negotiation_3_6_CO + P-negotiation_0_1_NONE + P-negotiation_6_6_DONE + P-negotiation_7_1_CO + P-negotiation_4_7_DONE + P-negotiation_0_4_CO + P-negotiation_3_2_DONE + P-negotiation_7_3_DONE + P-negotiation_5_4_DONE + P-negotiation_3_5_DONE + P-negotiation_1_6_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_0_6_CO + P-negotiation_3_7_DONE + P-negotiation_5_6_DONE + P-negotiation_7_5_DONE + P-negotiation_6_7_CO + P-negotiation_1_0_CO + P-negotiation_5_6_CO + P-negotiation_2_2_NONE + P-negotiation_4_1_NONE + P-negotiation_6_1_DONE + P-negotiation_2_1_CO + P-negotiation_4_2_DONE + P-negotiation_7_2_NONE + P-negotiation_1_0_DONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_6_6_NONE + P-negotiation_6_0_CO + P-negotiation_4_7_NONE + P-negotiation_2_5_CO + P-negotiation_0_3_DONE + P-negotiation_2_2_DONE + P-negotiation_4_1_DONE + P-negotiation_3_5_CO + P-negotiation_6_0_DONE + P-negotiation_7_0_CO + P-negotiation_1_5_DONE + P-negotiation_3_4_DONE + P-negotiation_5_3_DONE + P-negotiation_7_2_DONE + P-negotiation_7_5_CO + P-negotiation_3_0_DONE + P-negotiation_1_1_DONE + P-negotiation_7_3_NONE + P-negotiation_2_7_DONE + P-negotiation_4_6_DONE + P-negotiation_6_5_DONE + P-negotiation_5_4_NONE + P-negotiation_0_3_CO + P-negotiation_1_6_NONE + P-negotiation_7_7_DONE + P-negotiation_1_2_NONE + P-negotiation_4_4_CO + P-negotiation_0_5_NONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_0_0_DONE + P-negotiation_6_2_CO + P-negotiation_1_7_CO + P-negotiation_2_7_CO + P-negotiation_5_2_CO + P-negotiation_1_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_1_2_DONE + P-negotiation_3_1_DONE + P-negotiation_5_0_DONE + P-negotiation_0_5_DONE + P-negotiation_2_4_DONE + P-negotiation_6_1_NONE + P-negotiation_4_3_DONE + P-negotiation_3_1_CO + P-negotiation_6_2_DONE + P-negotiation_4_2_NONE + P-negotiation_7_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_3_CO + P-negotiation_1_7_DONE + P-negotiation_3_6_DONE + P-negotiation_5_5_DONE + P-negotiation_7_4_DONE + P-negotiation_2_0_CO + P-negotiation_0_0_CO + P-negotiation_6_7_DONE + P-negotiation_4_6_CO + P-negotiation_4_0_NONE + P-negotiation_3_2_CO + P-negotiation_3_4_CO + P-negotiation_1_4_NONE + P-negotiation_5_0_CO + P-negotiation_3_0_NONE + P-negotiation_1_5_CO + P-negotiation_0_7_NONE + P-negotiation_2_6_NONE + P-negotiation_4_5_NONE + P-negotiation_6_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_1_NONE + P-negotiation_7_6_DONE + P-negotiation_5_7_DONE + P-negotiation_0_1_CO + P-negotiation_3_3_CO + P-negotiation_5_7_NONE + P-negotiation_7_6_NONE + P-negotiation_1_4_DONE + P-negotiation_3_3_DONE + P-negotiation_5_2_DONE + P-negotiation_7_1_DONE + P-negotiation_0_2_CO + P-negotiation_6_5_CO + P-negotiation_0_7_DONE + P-negotiation_2_6_DONE + P-negotiation_4_5_DONE + P-negotiation_5_1_CO + P-negotiation_6_4_DONE + P-negotiation_1_6_CO + P-negotiation_4_7_CO + P-negotiation_6_4_CO + P-negotiation_7_1_NONE + P-negotiation_5_2_NONE + P-negotiation_3_3_NONE + P-negotiation_2_1_NONE + P-negotiation_0_2_NONE + P-negotiation_1_4_CO + P-negotiation_0_4_NONE + P-negotiation_6_6_CO + P-negotiation_6_7_NONE + P-negotiation_4_5_CO + P-negotiation_3_6_NONE + P-negotiation_1_7_NONE + P-negotiation_6_2_NONE + P-negotiation_7_6_CO + P-negotiation_3_0_CO + P-negotiation_5_0_NONE + P-negotiation_3_1_NONE + P-negotiation_1_2_CO + P-negotiation_3_5_NONE + P-negotiation_2_6_CO + P-negotiation_0_0_NONE + P-negotiation_6_1_CO + P-negotiation_7_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_7_CO + P-negotiation_1_1_CO + P-negotiation_6_5_NONE + P-negotiation_4_6_NONE + P-negotiation_2_7_NONE + P-negotiation_7_4_CO + P-negotiation_5_3_NONE + P-negotiation_3_4_NONE + P-negotiation_1_5_NONE + P-negotiation_0_7_CO + P-negotiation_4_2_CO + P-negotiation_6_0_NONE + P-negotiation_0_3_NONE + P-negotiation_2_4_CO + P-negotiation_1_0_NONE + P-negotiation_7_3_CO + P-negotiation_6_3_DONE + P-negotiation_4_1_CO + P-negotiation_4_4_DONE + P-negotiation_2_5_DONE + P-negotiation_5_5_CO + P-negotiation_7_0_DONE + P-negotiation_5_1_DONE + P-negotiation_1_3_DONE + P-negotiation_7_5_NONE + P-negotiation_5_6_NONE + P-negotiation_2_3_CO + P-negotiation_3_7_NONE + P-negotiation_3_7_CO + P-negotiation_7_2_CO + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_6_3_NONE + P-negotiation_4_4_NONE + P-negotiation_2_5_NONE + P-negotiation_0_6_NONE + P-negotiation_0_5_CO + P-negotiation_4_0_CO + P-negotiation_5_4_CO + P-negotiation_7_0_NONE + P-negotiation_5_1_NONE + P-negotiation_3_2_NONE + P-negotiation_1_3_NONE + P-negotiation_2_2_CO)
lola: after: (0 <= 46)
lola: place invariant simplifies atomic proposition
lola: before: (P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-stage_3_PRIM + P-stage_7_SEC + P-stage_3_SEC + P-stage_2_PRIM + P-stage_5_SEC + P-stage_7_PRIM + P-stage_1_NEG + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_SEC + P-stage_4_SEC + P-stage_4_NEG + P-stage_0_NEG + P-stage_1_PRIM + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_NEG + P-stage_2_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_6_SEC + P-stage_2_SEC + P-stage_7_NEG + P-stage_3_NEG)
lola: after: (0 <= 7)
lola: place invariant simplifies atomic proposition
lola: before: (P-negotiation_2_0_NONE + P-negotiation_3_6_CO + P-negotiation_0_1_NONE + P-negotiation_6_6_DONE + P-negotiation_7_1_CO + P-negotiation_4_7_DONE + P-negotiation_0_4_CO + P-negotiation_3_2_DONE + P-negotiation_7_3_DONE + P-negotiation_5_4_DONE + P-negotiation_3_5_DONE + P-negotiation_1_6_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_0_6_CO + P-negotiation_3_7_DONE + P-negotiation_5_6_DONE + P-negotiation_7_5_DONE + P-negotiation_6_7_CO + P-negotiation_1_0_CO + P-negotiation_5_6_CO + P-negotiation_2_2_NONE + P-negotiation_4_1_NONE + P-negotiation_6_1_DONE + P-negotiation_2_1_CO + P-negotiation_4_2_DONE + P-negotiation_7_2_NONE + P-negotiation_1_0_DONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_6_6_NONE + P-negotiation_6_0_CO + P-negotiation_4_7_NONE + P-negotiation_2_5_CO + P-negotiation_0_3_DONE + P-negotiation_2_2_DONE + P-negotiation_4_1_DONE + P-negotiation_3_5_CO + P-negotiation_6_0_DONE + P-negotiation_7_0_CO + P-negotiation_1_5_DONE + P-negotiation_3_4_DONE + P-negotiation_5_3_DONE + P-negotiation_7_2_DONE + P-negotiation_7_5_CO + P-negotiation_3_0_DONE + P-negotiation_1_1_DONE + P-negotiation_7_3_NONE + P-negotiation_2_7_DONE + P-negotiation_4_6_DONE + P-negotiation_6_5_DONE + P-negotiation_5_4_NONE + P-negotiation_0_3_CO + P-negotiation_1_6_NONE + P-negotiation_7_7_DONE + P-negotiation_1_2_NONE + P-negotiation_4_4_CO + P-negotiation_0_5_NONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_0_0_DONE + P-negotiation_6_2_CO + P-negotiation_1_7_CO + P-negotiation_2_7_CO + P-negotiation_5_2_CO + P-negotiation_1_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_1_2_DONE + P-negotiation_3_1_DONE + P-negotiation_5_0_DONE + P-negotiation_0_5_DONE + P-negotiation_2_4_DONE + P-negotiation_6_1_NONE + P-negotiation_4_3_DONE + P-negotiation_3_1_CO + P-negotiation_6_2_DONE + P-negotiation_4_2_NONE + P-negotiation_7_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_3_CO + P-negotiation_1_7_DONE + P-negotiation_3_6_DONE + P-negotiation_5_5_DONE + P-negotiation_7_4_DONE + P-negotiation_2_0_CO + P-negotiation_0_0_CO + P-negotiation_6_7_DONE + P-negotiation_4_6_CO + P-negotiation_4_0_NONE + P-negotiation_3_2_CO + P-negotiation_3_4_CO + P-negotiation_1_4_NONE + P-negotiation_5_0_CO + P-negotiation_3_0_NONE + P-negotiation_1_5_CO + P-negotiation_0_7_NONE + P-negotiation_2_6_NONE + P-negotiation_4_5_NONE + P-negotiation_6_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_1_NONE + P-negotiation_7_6_DONE + P-negotiation_5_7_DONE + P-negotiation_0_1_CO + P-negotiation_3_3_CO + P-negotiation_5_7_NONE + P-negotiation_7_6_NONE + P-negotiation_1_4_DONE + P-negotiation_3_3_DONE + P-negotiation_5_2_DONE + P-negotiation_7_1_DONE + P-negotiation_0_2_CO + P-negotiation_6_5_CO + P-negotiation_0_7_DONE + P-negotiation_2_6_DONE + P-negotiation_4_5_DONE + P-negotiation_5_1_CO + P-negotiation_6_4_DONE + P-negotiation_1_6_CO + P-negotiation_4_7_CO + P-negotiation_6_4_CO + P-negotiation_7_1_NONE + P-negotiation_5_2_NONE + P-negotiation_3_3_NONE + P-negotiation_2_1_NONE + P-negotiation_0_2_NONE + P-negotiation_1_4_CO + P-negotiation_0_4_NONE + P-negotiation_6_6_CO + P-negotiation_6_7_NONE + P-negotiation_4_5_CO + P-negotiation_3_6_NONE + P-negotiation_1_7_NONE + P-negotiation_6_2_NONE + P-negotiation_7_6_CO + P-negotiation_3_0_CO + P-negotiation_5_0_NONE + P-negotiation_3_1_NONE + P-negotiation_1_2_CO + P-negotiation_3_5_NONE + P-negotiation_2_6_CO + P-negotiation_0_0_NONE + P-negotiation_6_1_CO + P-negotiation_7_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_7_CO + P-negotiation_1_1_CO + P-negotiation_6_5_NONE + P-negotiation_4_6_NONE + P-negotiation_2_7_NONE + P-negotiation_7_4_CO + P-negotiation_5_3_NONE + P-negotiation_3_4_NONE + P-negotiation_1_5_NONE + P-negotiation_0_7_CO + P-negotiation_4_2_CO + P-negotiation_6_0_NONE + P-negotiation_0_3_NONE + P-negotiation_2_4_CO + P-negotiation_1_0_NONE + P-negotiation_7_3_CO + P-negotiation_6_3_DONE + P-negotiation_4_1_CO + P-negotiation_4_4_DONE + P-negotiation_2_5_DONE + P-negotiation_5_5_CO + P-negotiation_7_0_DONE + P-negotiation_5_1_DONE + P-negotiation_1_3_DONE + P-negotiation_7_5_NONE + P-negotiation_5_6_NONE + P-negotiation_2_3_CO + P-negotiation_3_7_NONE + P-negotiation_3_7_CO + P-negotiation_7_2_CO + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_6_3_NONE + P-negotiation_4_4_NONE + P-negotiation_2_5_NONE + P-negotiation_0_6_NONE + P-negotiation_0_5_CO + P-negotiation_4_0_CO + P-negotiation_5_4_CO + P-negotiation_7_0_NONE + P-negotiation_5_1_NONE + P-negotiation_3_2_NONE + P-negotiation_1_3_NONE + P-negotiation_2_2_CO <= P-stage_3_PRIM + P-stage_7_SEC + P-stage_3_SEC + P-stage_2_PRIM + P-stage_5_SEC + P-stage_7_PRIM + P-stage_1_NEG + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_SEC + P-stage_4_SEC + P-stage_4_NEG + P-stage_0_NEG + P-stage_1_PRIM + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_NEG + P-stage_2_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_6_SEC + P-stage_2_SEC + P-stage_7_NEG + P-stage_3_NEG)
lola: after: (42 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3 + P-crashed_4 + P-crashed_5 + P-crashed_6 + P-crashed_7)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3 + P-crashed_4 + P-crashed_5 + P-crashed_6 + P-crashed_7)
lola: after: (P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0)
lola: LP says that atomic proposition is always true: (P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3 + P-crashed_4 + P-crashed_5 + P-crashed_6 + P-crashed_7)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_6 + P-startNeg__broadcasting_1_7 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_2_5 + P-startNeg__broadcasting_2_6 + P-startNeg__broadcasting_2_7 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_3_5 + P-startNeg__broadcasting_3_6 + P-startNeg__broadcasting_3_7 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_4_5 + P-startNeg__broadcasting_4_6 + P-startNeg__broadcasting_4_7 + P-startNeg__broadcasting_5_1 + P-startNeg__broadcasting_5_2 + P-startNeg__broadcasting_5_3 + P-startNeg__broadcasting_5_4 + P-startNeg__broadcasting_5_5 + P-startNeg__broadcasting_5_6 + P-startNeg__broadcasting_5_7 + P-startNeg__broadcasting_6_1 + P-startNeg__broadcasting_6_2 + P-startNeg__broadcasting_6_3 + P-startNeg__broadcasting_6_4 + P-startNeg__broadcasting_6_5 + P-startNeg__broadcasting_6_6 + P-startNeg__broadcasting_6_7 + P-startNeg__broadcasting_7_1 + P-startNeg__broadcasting_7_2 + P-startNeg__broadcasting_7_3 + P-startNeg__broadcasting_7_4 + P-startNeg__broadcasting_7_5 + P-startNeg__broadcasting_7_6 + P-startNeg__broadcasting_7_7 + P-startNeg__broadcasting_0_6 + P-startNeg__broadcasting_0_7 <= P-network_2_7_AskP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_3_1_RP_0 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_4_1_AskP_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_7_6_AI_0 + P-network_7_2_RI_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_5_7_AI_0 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_1_5_AnnP_0 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_7_5_AskP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_7_4_AnsP_7 + P-network_2_2_AskP_0 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_7_3_AI_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_2_1_AskP_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_7 + P-network_5_6_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_7_7_RP_0 + P-network_1_4_AnnP_0 + P-network_4_7_AI_0 + P-network_6_4_AI_0 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AI_0 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_6_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_6_AskP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_2_6_AI_0 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_0_7_AI_0 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_1_0_AnnP_0 + P-network_0_2_RP_0 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_7_5_RI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_7_0_AskP_0 + P-network_5_6_RI_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_6_4_AskP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_7_RI_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_7_AskP_0 + P-network_3_5_AnsP_0 + P-network_0_5_RI_0 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_4_4_AnnP_0 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_7_1_AI_0 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_1_7_RI_0 + P-network_6_5_RP_0 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_5_2_AI_0 + P-network_2_0_AnsP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_7_4_RI_0 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_5_1_AskP_0 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_4_6_RP_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_3_3_AI_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_2_7_RP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_1_4_AI_0 + P-network_6_3_RI_0 + P-network_4_7_AnnP_0 + P-network_2_0_AskP_0 + P-network_6_7_RI_0 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_4_4_RI_0 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_7_3_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_7_AI_0 + P-network_2_5_AnnP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_2_5_AskP_0 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_7_2_RP_0 + P-network_3_7_AnnP_0 + P-network_5_3_RP_0 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_3_AskP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_3_4_RP_0 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_2_1_AI_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_0_6_AnnP_0 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_1_5_RP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_0_2_AI_0 + P-network_5_2_RI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_6_6_AskP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_5_RP_0 + P-network_4_1_AI_0 + P-network_7_0_RI_0 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_7_3_AnnP_0 + P-network_4_1_AnnP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_1_3_RI_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_2_0_AnnP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_4_6_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_4_7_AskP_0 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_6_0_RP_0 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_4_1_RP_0 + P-network_3_1_AnnP_0 + P-network_2_4_AskP_0 + P-network_5_4_AnnP_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_0_3_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_3_6_AnnP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_6_1_AskP_0 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_7 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_2_0_RI_0 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_1_RI_0 + P-network_5_1_RP_0 + P-network_7_0_RP_0 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_3_5_AnnP_0 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_0_5_AI_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_4_2_AskP_0 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_1_0_RP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_6_7_AI_0 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_6_AnnP_0 + P-network_7_6_AskP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_7_4_AI_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_2_3_AskP_0 + P-network_3_0_AnnP_0 + P-network_2_3_AskP_7 + P-network_2_3_AskP_6 + P-network_2_3_AskP_5 + P-network_2_3_AskP_4 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_0_AnnP_7 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_5_7_AskP_1 + P-network_5_7_AskP_2 + P-network_5_7_AskP_3 + P-network_5_7_AskP_4 + P-network_5_7_AskP_5 + P-network_5_7_AskP_6 + P-network_5_7_AskP_7 + P-network_7_6_AskP_7 + P-network_7_6_AskP_6 + P-network_7_4_AI_1 + P-network_7_4_AI_2 + P-network_7_4_AI_3 + P-network_7_4_AI_4 + P-network_7_4_AI_5 + P-network_7_4_AI_6 + P-network_7_4_AI_7 + P-network_7_6_AskP_5 + P-network_7_6_AskP_4 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_5_5_AI_7 + P-network_7_6_AskP_3 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_6_4_AnnP_7 + P-network_7_6_AskP_2 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_0_4_AskP_7 + P-network_7_6_AskP_1 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_3_6_AI_7 + P-network_1_6_AnnP_7 + P-network_1_6_AnnP_6 + P-network_1_6_AnnP_5 + P-network_1_6_AnnP_4 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_2 + P-network_1_6_AnnP_1 + P-network_1_7_AI_1 + P-network_1_7_AI_2 + P-network_1_7_AI_3 + P-network_1_7_AI_4 + P-network_1_7_AI_5 + P-network_1_7_AI_6 + P-network_1_7_AI_7 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_1_1_AnnP_7 + P-network_6_7_AI_7 + P-network_6_7_AI_6 + P-network_6_7_AI_5 + P-network_7_1_AskP_1 + P-network_7_1_AskP_2 + P-network_7_1_AskP_3 + P-network_7_1_AskP_4 + P-network_7_1_AskP_5 + P-network_7_1_AskP_6 + P-network_7_1_AskP_7 + P-network_6_7_AI_4 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_6_6_RI_7 + P-network_6_7_AI_3 + P-network_6_7_AI_2 + P-network_6_7_AI_1 + P-network_4_7_RI_1 + P-network_4_7_RI_2 + P-network_4_7_RI_3 + P-network_4_7_RI_4 + P-network_4_7_RI_5 + P-network_4_7_RI_6 + P-network_4_7_RI_7 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_4_5_AnnP_7 + P-network_1_0_RP_7 + P-network_1_0_RP_6 + P-network_1_0_RP_5 + P-network_7_5_RP_1 + P-network_7_5_RP_2 + P-network_7_5_RP_3 + P-network_7_5_RP_4 + P-network_7_5_RP_5 + P-network_7_5_RP_6 + P-network_7_5_RP_7 + P-network_1_0_RP_4 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_6_2_AI_7 + P-network_1_0_RP_3 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_5_2_AskP_7 + P-network_1_0_RP_2 + P-network_5_6_RP_1 + P-network_5_6_RP_2 + P-network_5_6_RP_3 + P-network_5_6_RP_4 + P-network_5_6_RP_5 + P-network_5_6_RP_6 + P-network_5_6_RP_7 + P-network_1_0_RP_1 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_3_AI_7 + P-network_4_2_AskP_7 + P-network_4_2_AskP_6 + P-network_4_2_AskP_5 + P-network_4_2_AskP_4 + P-network_4_2_AskP_3 + P-network_4_2_AskP_2 + P-network_4_2_AskP_1 + P-network_3_7_RP_1 + P-network_3_7_RP_2 + P-network_3_7_RP_3 + P-network_3_7_RP_4 + P-network_3_7_RP_5 + P-network_3_7_RP_6 + P-network_3_7_RP_7 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_2_4_AI_5 + P-network_2_4_AI_6 + P-network_2_4_AI_7 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_0_5_AI_7 + P-network_7_3_RI_1 + P-network_7_3_RI_2 + P-network_7_3_RI_3 + P-network_7_3_RI_4 + P-network_7_3_RI_5 + P-network_7_3_RI_6 + P-network_7_3_RI_7 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_5_4_RI_7 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_2_6_AnnP_7 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_3_5_RI_7 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_1_6_RI_7 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_3_3_AskP_7 + P-network_4_0_AnnP_1 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_5 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_7 + P-network_3_5_AnnP_7 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_6_3_RP_7 + P-network_3_5_AnnP_6 + P-network_3_5_AnnP_5 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_0_AI_7 + P-network_3_5_AnnP_4 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_4_4_RP_7 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_1 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_1_AI_7 + P-network_0_7_AnnP_1 + P-network_0_7_AnnP_2 + P-network_0_7_AnnP_3 + P-network_0_7_AnnP_4 + P-network_0_7_AnnP_5 + P-network_0_7_AnnP_6 + P-network_0_7_AnnP_7 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_2_5_RP_7 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_1_2_AI_7 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_0_6_RP_7 + P-network_6_7_AskP_1 + P-network_6_7_AskP_2 + P-network_6_7_AskP_3 + P-network_6_7_AskP_4 + P-network_6_7_AskP_5 + P-network_6_7_AskP_6 + P-network_6_7_AskP_7 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_6_1_RI_4 + P-network_6_1_RI_5 + P-network_6_1_RI_6 + P-network_6_1_RI_7 + P-network_7_4_AnnP_1 + P-network_7_4_AnnP_2 + P-network_7_4_AnnP_3 + P-network_7_4_AnnP_4 + P-network_7_4_AnnP_5 + P-network_7_4_AnnP_6 + P-network_7_4_AnnP_7 + P-network_1_4_AskP_1 + P-network_1_4_AskP_2 + P-network_1_4_AskP_3 + P-network_1_4_AskP_4 + P-network_1_4_AskP_5 + P-network_1_4_AskP_6 + P-network_1_4_AskP_7 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_4_2_RI_7 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_2_3_RI_7 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_0_4_RI_7 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_2_1_AnnP_7 + P-network_7_0_RP_1 + P-network_7_0_RP_2 + P-network_7_0_RP_3 + P-network_7_0_RP_4 + P-network_7_0_RP_5 + P-network_7_0_RP_6 + P-network_7_0_RP_7 + P-network_5_1_RP_1 + P-network_5_1_RP_2 + P-network_5_1_RP_3 + P-network_5_1_RP_4 + P-network_5_1_RP_5 + P-network_5_1_RP_6 + P-network_5_1_RP_7 + P-network_0_1_RI_7 + P-network_0_1_RI_6 + P-network_0_1_RI_5 + P-network_0_1_RI_4 + P-network_0_1_RI_3 + P-network_0_1_RI_2 + P-network_0_1_RI_1 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_5_5_AnnP_7 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_3_2_RP_4 + P-network_3_2_RP_5 + P-network_3_2_RP_6 + P-network_3_2_RP_7 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_1_3_RP_4 + P-network_1_3_RP_5 + P-network_1_3_RP_6 + P-network_1_3_RP_7 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_0_AI_4 + P-network_0_0_AI_5 + P-network_0_0_AI_6 + P-network_0_0_AI_7 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_0_2_AnnP_7 + P-network_2_0_RI_7 + P-network_2_0_RI_6 + P-network_2_0_RI_5 + P-network_2_0_RI_4 + P-network_2_0_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_6_1_AskP_7 + P-network_6_1_AskP_6 + P-network_6_1_AskP_5 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_6_2_AskP_7 + P-network_6_1_AskP_4 + P-network_6_1_AskP_3 + P-network_6_1_AskP_2 + P-network_6_1_AskP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4 + P-network_3_0_RI_5 + P-network_3_0_RI_6 + P-network_3_0_RI_7 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_1_1_RI_7 + P-network_0_1_AnnP_7 + P-network_0_1_AnnP_6 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_6_AnnP_7 + P-network_0_3_RP_7 + P-network_0_3_RP_6 + P-network_0_3_RP_5 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_4_3_AskP_7 + P-network_0_3_RP_4 + P-network_0_3_RP_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_2_0_RP_7 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_0_1_RP_7 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_5_0_AnnP_7 + P-network_7_7_AI_1 + P-network_7_7_AI_2 + P-network_7_7_AI_3 + P-network_7_7_AI_4 + P-network_7_7_AI_5 + P-network_7_7_AI_6 + P-network_7_7_AI_7 + P-network_2_2_RP_7 + P-network_2_2_RP_6 + P-network_2_2_RP_5 + P-network_2_2_RP_4 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_2_2_RP_1 + P-network_5_4_AnnP_7 + P-network_1_7_AnnP_1 + P-network_1_7_AnnP_2 + P-network_1_7_AnnP_3 + P-network_1_7_AnnP_4 + P-network_1_7_AnnP_5 + P-network_1_7_AnnP_6 + P-network_1_7_AnnP_7 + P-network_5_4_AnnP_6 + P-network_7_7_AskP_1 + P-network_7_7_AskP_2 + P-network_7_7_AskP_3 + P-network_7_7_AskP_4 + P-network_7_7_AskP_5 + P-network_7_7_AskP_6 + P-network_7_7_AskP_7 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_1 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_4_AskP_7 + P-network_4_1_RP_7 + P-network_4_1_RP_6 + P-network_4_1_RP_5 + P-network_4_1_RP_4 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_5 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_7 + P-network_4_1_RP_3 + P-network_4_1_RP_2 + P-network_4_1_RP_1 + P-network_6_0_RP_7 + P-network_6_0_RP_6 + P-network_6_0_RP_5 + P-network_6_0_RP_4 + P-network_6_0_RP_3 + P-network_6_0_RP_2 + P-network_6_0_RP_1 + P-network_6_5_AI_1 + P-network_6_5_AI_2 + P-network_6_5_AI_3 + P-network_6_5_AI_4 + P-network_6_5_AI_5 + P-network_6_5_AI_6 + P-network_6_5_AI_7 + P-network_6_5_AnnP_1 + P-network_6_5_AnnP_2 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_7 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_0_5_AskP_7 + P-network_4_6_AI_1 + P-network_4_6_AI_2 + P-network_4_6_AI_3 + P-network_4_6_AI_4 + P-network_4_6_AI_5 + P-network_4_6_AI_6 + P-network_4_6_AI_7 + P-network_4_7_AskP_7 + P-network_4_7_AskP_6 + P-network_4_7_AskP_5 + P-network_4_7_AskP_4 + P-network_2_7_AI_1 + P-network_2_7_AI_2 + P-network_2_7_AI_3 + P-network_2_7_AI_4 + P-network_2_7_AI_5 + P-network_2_7_AI_6 + P-network_2_7_AI_7 + P-network_4_7_AskP_3 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_7 + P-network_4_7_AskP_2 + P-network_4_7_AskP_1 + P-network_7_2_AskP_1 + P-network_7_2_AskP_2 + P-network_7_2_AskP_3 + P-network_7_2_AskP_4 + P-network_7_2_AskP_5 + P-network_7_2_AskP_6 + P-network_7_2_AskP_7 + P-network_7_6_RI_1 + P-network_7_6_RI_2 + P-network_7_6_RI_3 + P-network_7_6_RI_4 + P-network_7_6_RI_5 + P-network_7_6_RI_6 + P-network_7_6_RI_7 + P-network_5_7_RI_1 + P-network_5_7_RI_2 + P-network_5_7_RI_3 + P-network_5_7_RI_4 + P-network_5_7_RI_5 + P-network_5_7_RI_6 + P-network_5_7_RI_7 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_4_6_AnnP_7 + P-network_7_2_AI_1 + P-network_7_2_AI_2 + P-network_7_2_AI_3 + P-network_7_2_AI_4 + P-network_7_2_AI_5 + P-network_7_2_AI_6 + P-network_7_2_AI_7 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_5_3_AskP_7 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_6_6_RP_7 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_5_3_AI_7 + P-network_4_7_RP_1 + P-network_4_7_RP_2 + P-network_4_7_RP_3 + P-network_4_7_RP_4 + P-network_4_7_RP_5 + P-network_4_7_RP_6 + P-network_4_7_RP_7 + P-network_2_0_AnnP_7 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AI_5 + P-network_3_4_AI_6 + P-network_3_4_AI_7 + P-network_2_0_AnnP_6 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_1_5_AI_7 + P-network_2_0_AnnP_5 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_6_0_AnnP_3 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_6_0_AnnP_6 + P-network_6_0_AnnP_7 + P-network_2_0_AnnP_4 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_0_0_AskP_7 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_1 + P-network_1_3_RI_7 + P-network_1_3_RI_6 + P-network_1_3_RI_5 + P-network_1_3_RI_4 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_6_4_RI_7 + P-network_1_3_RI_1 + P-network_2_7_AnnP_1 + P-network_2_7_AnnP_2 + P-network_2_7_AnnP_3 + P-network_2_7_AnnP_4 + P-network_2_7_AnnP_5 + P-network_2_7_AnnP_6 + P-network_2_7_AnnP_7 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_4_5_RI_7 + P-network_3_2_RI_7 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_2_6_RI_7 + P-network_3_2_RI_6 + P-network_3_2_RI_5 + P-network_0_7_RI_1 + P-network_0_7_RI_2 + P-network_0_7_RI_3 + P-network_0_7_RI_4 + P-network_0_7_RI_5 + P-network_0_7_RI_6 + P-network_0_7_RI_7 + P-network_3_2_RI_4 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_3_4_AskP_7 + P-network_3_2_RI_1 + P-network_1_3_AskP_7 + P-network_1_3_AskP_6 + P-network_1_3_AskP_5 + P-network_1_3_AskP_4 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_7_3_AnnP_7 + P-network_7_3_AnnP_6 + P-network_7_3_AnnP_5 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_4_1_AnnP_7 + P-network_7_3_AnnP_4 + P-network_7_3_AnnP_3 + P-network_7_3_AnnP_2 + P-network_7_3_AnnP_1 + P-network_5_1_RI_7 + P-network_5_1_RI_6 + P-network_5_1_RI_5 + P-network_5_1_RI_4 + P-network_7_3_RP_1 + P-network_7_3_RP_2 + P-network_7_3_RP_3 + P-network_7_3_RP_4 + P-network_7_3_RP_5 + P-network_7_3_RP_6 + P-network_7_3_RP_7 + P-network_5_1_RI_3 + P-network_6_0_AI_1 + P-network_6_0_AI_2 + P-network_6_0_AI_3 + P-network_6_0_AI_4 + P-network_6_0_AI_5 + P-network_6_0_AI_6 + P-network_6_0_AI_7 + P-network_5_1_RI_2 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_5_4_RP_7 + P-network_5_1_RI_1 + P-network_7_0_RI_7 + P-network_7_0_RI_6 + P-network_7_0_RI_5 + P-network_7_0_RI_4 + P-network_7_0_RI_3 + P-network_7_0_RI_2 + P-network_7_0_RI_1 + P-network_4_1_AI_1 + P-network_4_1_AI_2 + P-network_4_1_AI_3 + P-network_4_1_AI_4 + P-network_4_1_AI_5 + P-network_4_1_AI_6 + P-network_4_1_AI_7 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_3_5_RP_7 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_2_2_AI_4 + P-network_2_2_AI_5 + P-network_2_2_AI_6 + P-network_2_2_AI_7 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_1_6_RP_7 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_0_3_AI_4 + P-network_0_3_AI_5 + P-network_0_3_AI_6 + P-network_0_3_AI_7 + P-network_6_6_AskP_7 + P-network_6_6_AskP_6 + P-network_6_6_AskP_5 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_7_1_RI_1 + P-network_7_1_RI_2 + P-network_7_1_RI_3 + P-network_7_1_RI_4 + P-network_7_1_RI_5 + P-network_7_1_RI_6 + P-network_7_1_RI_7 + P-network_0_2_AI_7 + P-network_7_5_AnnP_1 + P-network_7_5_AnnP_2 + P-network_7_5_AnnP_3 + P-network_7_5_AnnP_4 + P-network_7_5_AnnP_5 + P-network_7_5_AnnP_6 + P-network_7_5_AnnP_7 + P-network_0_2_AI_6 + P-network_0_2_AI_5 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_1_5_AskP_7 + P-network_0_2_AI_4 + P-network_5_2_RI_1 + P-network_5_2_RI_2 + P-network_5_2_RI_3 + P-network_5_2_RI_4 + P-network_5_2_RI_5 + P-network_5_2_RI_6 + P-network_5_2_RI_7 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_1_5_RP_7 + P-network_1_5_RP_6 + P-network_1_5_RP_5 + P-network_1_5_RP_4 + P-network_1_5_RP_3 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_3_3_RI_4 + P-network_3_3_RI_5 + P-network_3_3_RI_6 + P-network_3_3_RI_7 + P-network_1_5_RP_2 + P-network_1_4_RI_1 + P-network_1_4_RI_2 + P-network_1_4_RI_3 + P-network_1_4_RI_4 + P-network_1_4_RI_5 + P-network_1_4_RI_6 + P-network_1_4_RI_7 + P-network_1_5_RP_1 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_6 + P-network_2_2_AnnP_7 + P-network_0_6_AnnP_7 + P-network_0_6_AnnP_6 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_2 + P-network_0_6_AnnP_1 + P-network_2_1_AI_7 + P-network_2_1_AI_6 + P-network_2_1_AI_5 + P-network_2_1_AI_4 + P-network_2_1_AI_3 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_1_RP_7 + P-network_2_1_AI_2 + P-network_5_6_AnnP_1 + P-network_5_6_AnnP_2 + P-network_5_6_AnnP_3 + P-network_5_6_AnnP_4 + P-network_5_6_AnnP_5 + P-network_5_6_AnnP_6 + P-network_5_6_AnnP_7 + P-network_2_1_AI_1 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_4_2_RP_7 + P-network_3_4_RP_7 + P-network_3_4_RP_6 + P-network_3_4_RP_5 + P-network_3_4_RP_4 + P-network_3_4_RP_3 + P-network_3_4_RP_2 + P-network_3_4_RP_1 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_2_3_RP_6 + P-network_2_3_RP_7 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_0_AI_7 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_0_4_RP_7 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_7 + P-network_6_3_AskP_1 + P-network_6_3_AskP_2 + P-network_6_3_AskP_3 + P-network_6_3_AskP_4 + P-network_6_3_AskP_5 + P-network_6_3_AskP_6 + P-network_6_3_AskP_7 + P-network_4_0_AI_7 + P-network_4_0_AI_6 + P-network_4_0_AI_5 + P-network_4_0_AI_4 + P-network_4_0_AI_3 + P-network_4_0_AI_2 + P-network_4_0_AI_1 + P-network_5_3_RP_7 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_4_0_RI_5 + P-network_4_0_RI_6 + P-network_4_0_RI_7 + P-network_5_3_RP_6 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_2_1_RI_7 + P-network_5_3_RP_5 + P-network_7_0_AnnP_1 + P-network_7_0_AnnP_2 + P-network_7_0_AnnP_3 + P-network_7_0_AnnP_4 + P-network_7_0_AnnP_5 + P-network_7_0_AnnP_6 + P-network_7_0_AnnP_7 + P-network_5_3_RP_4 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_0_AskP_7 + P-network_5_3_RP_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_0_2_RI_7 + P-network_5_3_RP_2 + P-network_5_3_RP_1 + P-network_3_7_AnnP_1 + P-network_3_7_AnnP_2 + P-network_3_7_AnnP_3 + P-network_3_7_AnnP_4 + P-network_3_7_AnnP_5 + P-network_3_7_AnnP_6 + P-network_3_7_AnnP_7 + P-network_7_2_RP_7 + P-network_7_2_RP_6 + P-network_7_2_RP_5 + P-network_7_2_RP_4 + P-network_7_2_RP_3 + P-network_7_2_RP_2 + P-network_7_2_RP_1 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_4_4_AskP_7 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_3_0_RP_7 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_1_1_RP_7 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_5_1_AnnP_7 + P-network_3_2_AskP_7 + P-network_3_2_AskP_6 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_2_5_AskP_7 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_3_2_AnnP_7 + P-network_0_6_RI_7 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_0_6_RI_1 + P-network_2_5_RI_7 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_2_5_RI_3 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_2_5_AnnP_7 + P-network_7_5_AI_1 + P-network_7_5_AI_2 + P-network_7_5_AI_3 + P-network_7_5_AI_4 + P-network_7_5_AI_5 + P-network_7_5_AI_6 + P-network_7_5_AI_7 + P-network_2_5_AnnP_6 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_6_6_AnnP_7 + P-network_2_5_AnnP_5 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_6_AskP_7 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_5_6_AI_7 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_3_7_AI_1 + P-network_3_7_AI_2 + P-network_3_7_AI_3 + P-network_3_7_AI_4 + P-network_3_7_AI_5 + P-network_3_7_AI_6 + P-network_3_7_AI_7 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_3_AnnP_7 + P-network_7_3_AskP_1 + P-network_7_3_AskP_2 + P-network_7_3_AskP_3 + P-network_7_3_AskP_4 + P-network_7_3_AskP_5 + P-network_7_3_AskP_6 + P-network_7_3_AskP_7 + P-network_4_4_RI_7 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_6_3_RI_7 + P-network_6_7_RI_1 + P-network_6_7_RI_2 + P-network_6_7_RI_3 + P-network_6_7_RI_4 + P-network_6_7_RI_5 + P-network_6_7_RI_6 + P-network_6_7_RI_7 + P-network_6_3_RI_6 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AskP_4 + P-network_2_0_AskP_5 + P-network_2_0_AskP_6 + P-network_2_0_AskP_7 + P-network_6_3_RI_5 + P-network_6_3_RI_4 + P-network_6_3_RI_3 + P-network_6_3_RI_2 + P-network_6_3_RI_1 + P-network_4_7_AnnP_1 + P-network_4_7_AnnP_2 + P-network_4_7_AnnP_3 + P-network_4_7_AnnP_4 + P-network_4_7_AnnP_5 + P-network_4_7_AnnP_6 + P-network_4_7_AnnP_7 + P-network_1_4_AI_7 + P-network_1_4_AI_6 + P-network_1_4_AI_5 + P-network_1_4_AI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_1_4_AI_1 + P-network_5_4_AskP_1 + P-network_5_4_AskP_2 + P-network_5_4_AskP_3 + P-network_5_4_AskP_4 + P-network_5_4_AskP_5 + P-network_5_4_AskP_6 + P-network_5_4_AskP_7 + P-network_7_6_RP_1 + P-network_7_6_RP_2 + P-network_7_6_RP_3 + P-network_7_6_RP_4 + P-network_7_6_RP_5 + P-network_7_6_RP_6 + P-network_7_6_RP_7 + P-network_2_7_RP_7 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_3_AI_7 + P-network_2_7_RP_6 + P-network_2_7_RP_5 + P-network_2_7_RP_4 + P-network_2_7_RP_3 + P-network_2_7_RP_2 + P-network_2_7_RP_1 + P-network_3_3_AI_7 + P-network_3_3_AI_6 + P-network_3_3_AI_5 + P-network_3_3_AI_4 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_4_6_RP_7 + P-network_4_6_RP_6 + P-network_4_6_RP_5 + P-network_5_7_RP_1 + P-network_5_7_RP_2 + P-network_5_7_RP_3 + P-network_5_7_RP_4 + P-network_5_7_RP_5 + P-network_5_7_RP_6 + P-network_5_7_RP_7 + P-network_4_6_RP_4 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_4_4_AI_7 + P-network_4_6_RP_3 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_2_5_AI_3 + P-network_2_5_AI_4 + P-network_2_5_AI_5 + P-network_2_5_AI_6 + P-network_2_5_AI_7 + P-network_4_6_RP_2 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_1_AnnP_7 + P-network_4_6_RP_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_0_1_AskP_4 + P-network_0_1_AskP_5 + P-network_0_1_AskP_6 + P-network_0_1_AskP_7 + P-network_5_1_AskP_7 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_6_AI_7 + P-network_5_1_AskP_6 + P-network_5_1_AskP_5 + P-network_5_1_AskP_4 + P-network_5_1_AskP_3 + P-network_5_1_AskP_2 + P-network_5_1_AskP_1 + P-network_5_2_AI_7 + P-network_5_2_AI_6 + P-network_5_2_AI_5 + P-network_7_4_RI_1 + P-network_7_4_RI_2 + P-network_7_4_RI_3 + P-network_7_4_RI_4 + P-network_7_4_RI_5 + P-network_7_4_RI_6 + P-network_7_4_RI_7 + P-network_5_2_AI_4 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_5_5_RI_7 + P-network_5_2_AI_3 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_3_6_RI_7 + P-network_5_2_AI_2 + P-network_5_2_AI_1 + P-network_6_5_RP_7 + P-network_6_5_RP_6 + P-network_6_5_RP_5 + P-network_6_5_RP_4 + P-network_6_5_RP_3 + P-network_6_5_RP_2 + P-network_6_5_RP_1 + P-network_1_7_RI_1 + P-network_1_7_RI_2 + P-network_1_7_RI_3 + P-network_1_7_RI_4 + P-network_1_7_RI_5 + P-network_1_7_RI_6 + P-network_1_7_RI_7 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_3_5_AskP_7 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_4_2_AnnP_7 + P-network_7_1_AI_7 + P-network_7_1_AI_6 + P-network_7_1_AI_5 + P-network_7_1_AI_4 + P-network_7_1_AI_3 + P-network_7_0_AI_1 + P-network_7_0_AI_2 + P-network_7_0_AI_3 + P-network_7_0_AI_4 + P-network_7_0_AI_5 + P-network_7_0_AI_6 + P-network_7_0_AI_7 + P-network_7_1_AI_2 + P-network_6_4_RP_1 + P-network_6_4_RP_2 + P-network_6_4_RP_3 + P-network_6_4_RP_4 + P-network_6_4_RP_5 + P-network_6_4_RP_6 + P-network_6_4_RP_7 + P-network_7_1_AI_1 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_5_1_AI_6 + P-network_5_1_AI_7 + P-network_4_4_AnnP_7 + P-network_4_5_RP_1 + P-network_4_5_RP_2 + P-network_4_5_RP_3 + P-network_4_5_RP_4 + P-network_4_5_RP_5 + P-network_4_5_RP_6 + P-network_4_5_RP_7 + P-network_4_4_AnnP_6 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_2_AI_7 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_4 + P-network_2_6_RP_1 + P-network_2_6_RP_2 + P-network_2_6_RP_3 + P-network_2_6_RP_4 + P-network_2_6_RP_5 + P-network_2_6_RP_6 + P-network_2_6_RP_7 + P-network_4_4_AnnP_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_1_3_AI_7 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_1 + P-network_0_7_RP_1 + P-network_0_7_RP_2 + P-network_0_7_RP_3 + P-network_0_7_RP_4 + P-network_0_7_RP_5 + P-network_0_7_RP_6 + P-network_0_7_RP_7 + P-network_7_6_AnnP_1 + P-network_7_6_AnnP_2 + P-network_7_6_AnnP_3 + P-network_7_6_AnnP_4 + P-network_7_6_AnnP_5 + P-network_7_6_AnnP_6 + P-network_7_6_AnnP_7 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_1_6_AskP_7 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_6_2_RI_7 + P-network_3_7_AskP_7 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_4_3_RI_7 + P-network_3_7_AskP_6 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_2_4_RI_7 + P-network_3_7_AskP_5 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_2_3_AnnP_7 + P-network_3_7_AskP_4 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_0_5_RI_7 + P-network_3_7_AskP_3 + P-network_3_7_AskP_2 + P-network_3_7_AskP_1 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_3_0_AskP_7 + P-network_3_7_RI_7 + P-network_7_1_RP_1 + P-network_7_1_RP_2 + P-network_7_1_RP_3 + P-network_7_1_RP_4 + P-network_7_1_RP_5 + P-network_7_1_RP_6 + P-network_7_1_RP_7 + P-network_3_7_RI_6 + P-network_5_7_AnnP_1 + P-network_5_7_AnnP_2 + P-network_5_7_AnnP_3 + P-network_5_7_AnnP_4 + P-network_5_7_AnnP_5 + P-network_5_7_AnnP_6 + P-network_5_7_AnnP_7 + P-network_3_7_RI_5 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_5_2_RP_7 + P-network_3_7_RI_4 + P-network_3_7_RI_3 + P-network_3_7_RI_2 + P-network_3_7_RI_1 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_3_RP_6 + P-network_3_3_RP_7 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_0_AI_7 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_1_4_RP_7 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_0_1_AI_7 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_0_4_AnnP_7 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_6_4_AskP_7 + P-network_5_6_RI_7 + P-network_5_6_RI_6 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_5_0_RI_4 + P-network_5_0_RI_5 + P-network_5_0_RI_6 + P-network_5_0_RI_7 + P-network_5_6_RI_5 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_3_1_RI_5 + P-network_3_1_RI_6 + P-network_3_1_RI_7 + P-network_5_6_RI_4 + P-network_7_1_AnnP_1 + P-network_7_1_AnnP_2 + P-network_7_1_AnnP_3 + P-network_7_1_AnnP_4 + P-network_7_1_AnnP_5 + P-network_7_1_AnnP_6 + P-network_7_1_AnnP_7 + P-network_5_6_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_1_1_AskP_7 + P-network_5_6_RI_2 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_1_2_RI_7 + P-network_5_6_RI_1 + P-network_7_0_AskP_7 + P-network_7_0_AskP_6 + P-network_7_0_AskP_5 + P-network_7_0_AskP_4 + P-network_7_0_AskP_3 + P-network_7_0_AskP_2 + P-network_7_0_AskP_1 + P-network_7_5_RI_7 + P-network_7_5_RI_6 + P-network_7_5_RI_5 + P-network_7_5_RI_4 + P-network_4_5_AskP_1 + P-network_4_5_AskP_2 + P-network_4_5_AskP_3 + P-network_4_5_AskP_4 + P-network_4_5_AskP_5 + P-network_4_5_AskP_6 + P-network_4_5_AskP_7 + P-network_7_5_RI_3 + P-network_4_0_RP_1 + P-network_4_0_RP_2 + P-network_4_0_RP_3 + P-network_4_0_RP_4 + P-network_4_0_RP_5 + P-network_4_0_RP_6 + P-network_4_0_RP_7 + P-network_7_5_RI_2 + P-network_7_5_RI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_2_1_RP_4 + P-network_2_1_RP_5 + P-network_2_1_RP_6 + P-network_2_1_RP_7 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AnnP_7 + P-network_1_0_AnnP_7 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_0_2_RP_4 + P-network_0_2_RP_5 + P-network_0_2_RP_6 + P-network_0_2_RP_7 + P-network_1_0_AnnP_6 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_7_AI_7 + P-network_0_7_AI_6 + P-network_0_7_AI_5 + P-network_0_7_AI_4 + P-network_0_7_AI_3 + P-network_0_7_AI_2 + P-network_0_7_AI_1 + P-network_2_6_AI_7 + P-network_2_6_AI_6 + P-network_2_6_AI_5 + P-network_2_6_AI_4 + P-network_2_6_AI_3 + P-network_2_6_AI_2 + P-network_2_6_AI_1 + P-network_0_3_AskP_7 + P-network_0_3_AskP_6 + P-network_0_3_AskP_5 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_0_0_RI_7 + P-network_0_3_AskP_4 + P-network_2_6_AskP_1 + P-network_2_6_AskP_2 + P-network_2_6_AskP_3 + P-network_2_6_AskP_4 + P-network_2_6_AskP_5 + P-network_2_6_AskP_6 + P-network_2_6_AskP_7 + P-network_0_3_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_6_3_AnnP_7 + P-network_6_3_AnnP_6 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_3_3_AnnP_7 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_1 + P-network_4_5_AI_7 + P-network_4_5_AI_6 + P-network_4_5_AI_5 + P-network_4_5_AI_4 + P-network_4_5_AI_3 + P-network_4_5_AI_2 + P-network_4_5_AI_1 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_4_0_AskP_7 + P-network_6_7_AnnP_1 + P-network_6_7_AnnP_2 + P-network_6_7_AnnP_3 + P-network_6_7_AnnP_4 + P-network_6_7_AnnP_5 + P-network_6_7_AnnP_6 + P-network_6_7_AnnP_7 + P-network_0_7_AskP_1 + P-network_0_7_AskP_2 + P-network_0_7_AskP_3 + P-network_0_7_AskP_4 + P-network_0_7_AskP_5 + P-network_0_7_AskP_6 + P-network_0_7_AskP_7 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_6_AI_7 + P-network_6_4_AI_7 + P-network_6_4_AI_6 + P-network_6_4_AI_5 + P-network_6_4_AI_4 + P-network_6_4_AI_3 + P-network_6_4_AI_2 + P-network_6_4_AI_1 + P-network_7_7_RP_7 + P-network_7_7_RP_6 + P-network_7_7_RP_5 + P-network_7_7_RP_4 + P-network_7_7_RP_3 + P-network_7_7_RP_2 + P-network_4_7_AI_1 + P-network_4_7_AI_2 + P-network_4_7_AI_3 + P-network_4_7_AI_4 + P-network_4_7_AI_5 + P-network_4_7_AI_6 + P-network_4_7_AI_7 + P-network_7_7_RP_1 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_1_4_AnnP_7 + P-network_7_4_AskP_1 + P-network_7_4_AskP_2 + P-network_7_4_AskP_3 + P-network_7_4_AskP_4 + P-network_7_4_AskP_5 + P-network_7_4_AskP_6 + P-network_7_4_AskP_7 + P-network_5_6_AskP_7 + P-network_5_6_AskP_6 + P-network_5_6_AskP_5 + P-network_5_6_AskP_4 + P-network_5_6_AskP_3 + P-network_5_6_AskP_2 + P-network_5_6_AskP_1 + P-network_7_7_RI_1 + P-network_7_7_RI_2 + P-network_7_7_RI_3 + P-network_7_7_RI_4 + P-network_7_7_RI_5 + P-network_7_7_RI_6 + P-network_7_7_RI_7 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_1_AskP_7 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_5_5_AskP_7 + P-network_7_3_AI_1 + P-network_7_3_AI_2 + P-network_7_3_AI_3 + P-network_7_3_AI_4 + P-network_7_3_AI_5 + P-network_7_3_AI_6 + P-network_7_3_AI_7 + P-network_6_7_RP_1 + P-network_6_7_RP_2 + P-network_6_7_RP_3 + P-network_6_7_RP_4 + P-network_6_7_RP_5 + P-network_6_7_RP_6 + P-network_6_7_RP_7 + P-network_5_4_AI_1 + P-network_5_4_AI_2 + P-network_5_4_AI_3 + P-network_5_4_AI_4 + P-network_5_4_AI_5 + P-network_5_4_AI_6 + P-network_5_4_AI_7 + P-network_3_5_AI_1 + P-network_3_5_AI_2 + P-network_3_5_AI_3 + P-network_3_5_AI_4 + P-network_3_5_AI_5 + P-network_3_5_AI_6 + P-network_3_5_AI_7 + P-network_6_2_AnnP_1 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_3 + P-network_6_2_AnnP_4 + P-network_6_2_AnnP_5 + P-network_6_2_AnnP_6 + P-network_6_2_AnnP_7 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_0_2_AskP_7 + P-network_1_6_AI_1 + P-network_1_6_AI_2 + P-network_1_6_AI_3 + P-network_1_6_AI_4 + P-network_1_6_AI_5 + P-network_1_6_AI_6 + P-network_1_6_AI_7 + P-network_2_2_AskP_7 + P-network_2_2_AskP_6 + P-network_2_2_AskP_5 + P-network_2_2_AskP_4 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_6_5_RI_7 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_4_6_RI_7 + P-network_2_7_RI_1 + P-network_2_7_RI_2 + P-network_2_7_RI_3 + P-network_2_7_RI_4 + P-network_2_7_RI_5 + P-network_2_7_RI_6 + P-network_2_7_RI_7 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_3_6_AskP_7 + P-network_7_5_AskP_7 + P-network_7_5_AskP_6 + P-network_7_5_AskP_5 + P-network_7_5_AskP_4 + P-network_7_5_AskP_3 + P-network_7_5_AskP_2 + P-network_4_3_AnnP_1 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_7 + P-network_7_5_AskP_1 + P-network_7_4_RP_1 + P-network_7_4_RP_2 + P-network_7_4_RP_3 + P-network_7_4_RP_4 + P-network_7_4_RP_5 + P-network_7_4_RP_6 + P-network_7_4_RP_7 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_6_1_AI_3 + P-network_6_1_AI_4 + P-network_6_1_AI_5 + P-network_6_1_AI_6 + P-network_6_1_AI_7 + P-network_1_5_AnnP_7 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_5_RP_7 + P-network_1_5_AnnP_6 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_4_2_AI_7 + P-network_1_5_AnnP_5 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_5_0_AskP_7 + P-network_1_5_AnnP_4 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_3_6_RP_7 + P-network_1_5_AnnP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_3_AI_7 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_1 + P-network_1_7_RP_1 + P-network_1_7_RP_2 + P-network_1_7_RP_3 + P-network_1_7_RP_4 + P-network_1_7_RP_5 + P-network_1_7_RP_6 + P-network_1_7_RP_7 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_0_4_AI_5 + P-network_0_4_AI_6 + P-network_0_4_AI_7 + P-network_5_7_AI_7 + P-network_5_7_AI_6 + P-network_5_7_AI_5 + P-network_5_7_AI_4 + P-network_5_7_AI_3 + P-network_5_7_AI_2 + P-network_5_7_AI_1 + P-network_7_7_AnnP_1 + P-network_7_7_AnnP_2 + P-network_7_7_AnnP_3 + P-network_7_7_AnnP_4 + P-network_7_7_AnnP_5 + P-network_7_7_AnnP_6 + P-network_7_7_AnnP_7 + P-network_7_6_AI_7 + P-network_1_7_AskP_1 + P-network_1_7_AskP_2 + P-network_1_7_AskP_3 + P-network_1_7_AskP_4 + P-network_1_7_AskP_5 + P-network_1_7_AskP_6 + P-network_1_7_AskP_7 + P-network_7_6_AI_6 + P-network_7_2_RI_1 + P-network_7_2_RI_2 + P-network_7_2_RI_3 + P-network_7_2_RI_4 + P-network_7_2_RI_5 + P-network_7_2_RI_6 + P-network_7_2_RI_7 + P-network_7_6_AI_5 + P-network_7_6_AI_4 + P-network_7_6_AI_3 + P-network_7_6_AI_2 + P-network_7_6_AI_1 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_5_3_RI_7 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_3_4_RI_7 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_2_4_AnnP_7 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_1_5_RI_7 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_1_AskP_7 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_6_2_RP_7 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_4_3_RP_7 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_3_0_AI_4 + P-network_3_0_AI_5 + P-network_3_0_AI_6 + P-network_3_0_AI_7 + P-network_0_0_RP_7 + P-network_2_4_RP_1 + P-network_2_4_RP_2 + P-network_2_4_RP_3 + P-network_2_4_RP_4 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_7 + P-network_0_0_RP_6 + P-network_0_0_RP_5 + P-network_0_0_RP_4 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_0_0_RP_1 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_1_AI_4 + P-network_1_1_AI_5 + P-network_1_1_AI_6 + P-network_1_1_AI_7 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_0_5_AnnP_7 + P-network_0_5_RP_1 + P-network_0_5_RP_2 + P-network_0_5_RP_3 + P-network_0_5_RP_4 + P-network_0_5_RP_5 + P-network_0_5_RP_6 + P-network_0_5_RP_7 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_6_5_AskP_7 + P-network_4_1_AskP_7 + P-network_4_1_AskP_6 + P-network_4_1_AskP_5 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_4_1_AskP_1 + P-network_6_0_RI_1 + P-network_6_0_RI_2 + P-network_6_0_RI_3 + P-network_6_0_RI_4 + P-network_6_0_RI_5 + P-network_6_0_RI_6 + P-network_6_0_RI_7 + P-network_4_1_RI_1 + P-network_4_1_RI_2 + P-network_4_1_RI_3 + P-network_4_1_RI_4 + P-network_4_1_RI_5 + P-network_4_1_RI_6 + P-network_4_1_RI_7 + P-network_7_2_AnnP_1 + P-network_7_2_AnnP_2 + P-network_7_2_AnnP_3 + P-network_7_2_AnnP_4 + P-network_7_2_AnnP_5 + P-network_7_2_AnnP_6 + P-network_7_2_AnnP_7 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_1_2_AskP_7 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_2_2_RI_4 + P-network_2_2_RI_5 + P-network_2_2_RI_6 + P-network_2_2_RI_7 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_0_3_RI_4 + P-network_0_3_RI_5 + P-network_0_3_RI_6 + P-network_0_3_RI_7 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_4_6_AskP_7 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_5_0_RP_7 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_3_1_RP_7 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_5_3_AnnP_7 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_1_2_RP_7 + P-network_3_4_AnnP_7 + P-network_3_4_AnnP_6 + P-network_3_4_AnnP_5 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_5 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_7 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_6_0_AskP_1 + P-network_6_0_AskP_2 + P-network_6_0_AskP_3 + P-network_6_0_AskP_4 + P-network_6_0_AskP_5 + P-network_6_0_AskP_6 + P-network_6_0_AskP_7 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_0_RI_7 + P-network_2_7_AskP_1 + P-network_2_7_AskP_2 + P-network_2_7_AskP_3 + P-network_2_7_AskP_4 + P-network_2_7_AskP_5 + P-network_2_7_AskP_6 + P-network_2_7_AskP_7)
lola: after: (P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_6 + P-startNeg__broadcasting_1_7 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_2_5 + P-startNeg__broadcasting_2_6 + P-startNeg__broadcasting_2_7 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_3_5 + P-startNeg__broadcasting_3_6 + P-startNeg__broadcasting_3_7 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_4_5 + P-startNeg__broadcasting_4_6 + P-startNeg__broadcasting_4_7 + P-startNeg__broadcasting_5_1 + P-startNeg__broadcasting_5_2 + P-startNeg__broadcasting_5_3 + P-startNeg__broadcasting_5_4 + P-startNeg__broadcasting_5_5 + P-startNeg__broadcasting_5_6 + P-startNeg__broadcasting_5_7 + P-startNeg__broadcasting_6_1 + P-startNeg__broadcasting_6_2 + P-startNeg__broadcasting_6_3 + P-startNeg__broadcasting_6_4 + P-startNeg__broadcasting_6_5 + P-startNeg__broadcasting_6_6 + P-startNeg__broadcasting_6_7 + P-startNeg__broadcasting_7_1 + P-startNeg__broadcasting_7_2 + P-startNeg__broadcasting_7_3 + P-startNeg__broadcasting_7_4 + P-startNeg__broadcasting_7_5 + P-startNeg__broadcasting_7_6 + P-startNeg__broadcasting_7_7 + P-startNeg__broadcasting_0_6 + P-startNeg__broadcasting_0_7 <= P-network_2_7_AskP_0 + P-network_1_0_RI_0 + P-network_1_2_AnsP_7 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_6_0_AskP_0 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_2 + P-network_3_4_AnnP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_0 + P-network_0_0_AnnP_0 + P-network_1_2_RP_0 + P-network_5_3_AnnP_0 + P-network_4_6_AnsP_0 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_7 + P-network_3_1_RP_0 + P-network_5_0_RP_0 + P-network_4_6_AskP_0 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_7_2_AnnP_0 + P-network_4_1_RI_0 + P-network_4_1_AskP_0 + P-network_6_0_RI_0 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_6_5_AskP_0 + P-network_0_5_RP_0 + P-network_0_5_AnnP_0 + P-network_1_1_AI_0 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_0_0_RP_0 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_2_4_RP_0 + P-network_3_0_AI_0 + P-network_4_3_RP_0 + P-network_6_2_RP_0 + P-network_3_1_AskP_0 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_1_5_RI_0 + P-network_2_4_AnnP_0 + P-network_3_4_RI_0 + P-network_5_3_RI_0 + P-network_7_6_AI_0 + P-network_7_2_RI_0 + P-network_1_7_AskP_0 + P-network_7_7_AnnP_0 + P-network_5_7_AI_0 + P-network_6_0_AnsP_0 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_7 + P-network_0_4_AI_0 + P-network_1_7_RP_0 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_1_5_AnnP_0 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_3_6_RP_0 + P-network_5_0_AskP_0 + P-network_4_2_AI_0 + P-network_5_5_RP_0 + P-network_6_1_AI_0 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_7_4_RP_0 + P-network_7_5_AskP_0 + P-network_4_3_AnnP_0 + P-network_3_6_AskP_0 + P-network_2_7_RI_0 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_7_AnsP_0 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_7 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_4_6_RI_0 + P-network_6_5_RI_0 + P-network_7_4_AnsP_7 + P-network_2_2_AskP_0 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_1_6_AI_0 + P-network_0_2_AskP_0 + P-network_6_2_AnnP_0 + P-network_3_5_AI_0 + P-network_5_4_AI_0 + P-network_6_7_RP_0 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_0 + P-network_7_3_AI_0 + P-network_5_5_AskP_0 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_0 + P-network_4_1_AnsP_0 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_7 + P-network_2_1_AskP_0 + P-network_7_7_RI_0 + P-network_2_6_AnsP_7 + P-network_5_6_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_7_4_AskP_0 + P-network_7_7_RP_0 + P-network_1_4_AnnP_0 + P-network_4_7_AI_0 + P-network_6_4_AI_0 + P-network_6_6_AI_0 + P-network_0_7_AskP_0 + P-network_6_7_AnnP_0 + P-network_4_0_AskP_0 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AI_0 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_6_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_6_AskP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_2_6_AI_0 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_0_7_AI_0 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_1_0_AnnP_0 + P-network_0_2_RP_0 + P-network_7_5_AnsP_0 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_7 + P-network_5_2_AnnP_0 + P-network_2_1_RP_0 + P-network_7_5_RI_0 + P-network_4_0_RP_0 + P-network_4_5_AskP_0 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_7_0_AskP_0 + P-network_5_6_RI_0 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_7_1_AnnP_0 + P-network_3_1_RI_0 + P-network_5_0_RI_0 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_0 + P-network_6_4_AskP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_0_4_AnnP_0 + P-network_0_1_AI_0 + P-network_1_4_RP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_7_RI_0 + P-network_5_2_RP_0 + P-network_5_7_AnnP_0 + P-network_7_1_RP_0 + P-network_3_0_AskP_0 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_3_7_AskP_0 + P-network_3_5_AnsP_0 + P-network_0_5_RI_0 + P-network_2_3_AnnP_0 + P-network_2_4_RI_0 + P-network_4_3_RI_0 + P-network_6_2_RI_0 + P-network_1_6_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RP_0 + P-network_0_1_AnsP_7 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_4_4_AnnP_0 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_2_6_RP_0 + P-network_3_2_AI_0 + P-network_4_5_RP_0 + P-network_5_1_AI_0 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_7_1_AI_0 + P-network_5_4_AnsP_0 + P-network_6_4_RP_0 + P-network_7_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_5_AskP_0 + P-network_1_7_RI_0 + P-network_6_5_RP_0 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_5_2_AI_0 + P-network_2_0_AnsP_0 + P-network_3_6_RI_0 + P-network_5_5_RI_0 + P-network_7_4_RI_0 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_5_1_AskP_0 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_6_AI_0 + P-network_4_6_RP_0 + P-network_0_1_AskP_0 + P-network_6_1_AnnP_0 + P-network_2_5_AI_0 + P-network_4_4_AI_0 + P-network_5_7_RP_0 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_3_3_AI_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_7 + P-network_2_7_RP_0 + P-network_6_3_AI_0 + P-network_7_6_RP_0 + P-network_5_4_AskP_0 + P-network_1_4_AI_0 + P-network_6_3_RI_0 + P-network_4_7_AnnP_0 + P-network_2_0_AskP_0 + P-network_6_7_RI_0 + P-network_7_0_AnsP_0 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_7 + P-network_4_4_RI_0 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_0 + P-network_7_3_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_7_AI_0 + P-network_2_5_AnnP_0 + P-network_5_6_AI_0 + P-network_0_6_AskP_0 + P-network_6_6_AnnP_0 + P-network_7_5_AI_0 + P-network_2_5_RI_0 + P-network_0_6_RI_0 + P-network_3_7_AnsP_0 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_3 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_7 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_2_5_AskP_0 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_1_AnnP_0 + P-network_1_1_RP_0 + P-network_3_0_RP_0 + P-network_4_4_AskP_0 + P-network_7_2_RP_0 + P-network_3_7_AnnP_0 + P-network_5_3_RP_0 + P-network_0_2_RI_0 + P-network_1_0_AskP_0 + P-network_7_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_0_RI_0 + P-network_4_0_AI_0 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_3_AskP_0 + P-network_0_3_AnnP_0 + P-network_0_4_RP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_3_4_RP_0 + P-network_5_1_AnsP_0 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_7 + P-network_2_1_AI_0 + P-network_4_2_RP_0 + P-network_5_6_AnnP_0 + P-network_6_1_RP_0 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_6 + P-network_0_6_AnnP_0 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_0 + P-network_1_5_RP_0 + P-network_2_2_AnnP_0 + P-network_1_4_RI_0 + P-network_3_3_RI_0 + P-network_0_2_AI_0 + P-network_5_2_RI_0 + P-network_1_5_AskP_0 + P-network_7_5_AnnP_0 + P-network_6_6_AskP_0 + P-network_7_1_RI_0 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_1_6_RP_0 + P-network_2_2_AI_0 + P-network_3_5_RP_0 + P-network_4_1_AI_0 + P-network_7_0_RI_0 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_1 + P-network_5_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_4_RP_0 + P-network_6_0_AI_0 + P-network_7_3_RP_0 + P-network_7_3_AnnP_0 + P-network_4_1_AnnP_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_3_4_AskP_0 + P-network_0_7_RI_0 + P-network_2_6_RI_0 + P-network_4_5_RI_0 + P-network_1_3_RI_0 + P-network_2_7_AnnP_0 + P-network_6_4_RI_0 + P-network_7_2_AnsP_7 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_2_0_AnnP_0 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_0_AskP_0 + P-network_6_0_AnnP_0 + P-network_1_5_AI_0 + P-network_3_4_AI_0 + P-network_4_7_RP_0 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_5_3_AI_0 + P-network_6_6_RP_0 + P-network_5_3_AskP_0 + P-network_7_2_AI_0 + P-network_4_6_AnnP_0 + P-network_5_7_RI_0 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_7 + P-network_2_4_AnsP_0 + P-network_7_6_RI_0 + P-network_7_2_AskP_0 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_4_7_AskP_0 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_1_2_AnnP_0 + P-network_2_7_AI_0 + P-network_4_6_AI_0 + P-network_0_5_AskP_0 + P-network_6_5_AnnP_0 + P-network_6_5_AI_0 + P-network_6_0_RP_0 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_4_1_RP_0 + P-network_3_1_AnnP_0 + P-network_2_4_AskP_0 + P-network_5_4_AnnP_0 + P-network_7_7_AskP_0 + P-network_1_7_AnnP_0 + P-network_2_2_RP_0 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_0 + P-network_7_7_AI_0 + P-network_5_0_AnnP_0 + P-network_0_1_RP_0 + P-network_0_3_RP_0 + P-network_2_0_RP_0 + P-network_4_3_AskP_0 + P-network_3_6_AnnP_0 + P-network_0_1_AnnP_0 + P-network_6_6_AnsP_0 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_7 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_6_1_AskP_0 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_6_2_AskP_0 + P-network_6_7_AnsP_7 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_2_0_RI_0 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_5_5_AnnP_0 + P-network_0_1_RI_0 + P-network_5_1_RP_0 + P-network_7_0_RP_0 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_4_RI_0 + P-network_2_3_RI_0 + P-network_4_2_RI_0 + P-network_1_4_AskP_0 + P-network_7_4_AnnP_0 + P-network_6_1_RI_0 + P-network_6_7_AskP_0 + P-network_0_6_RP_0 + P-network_1_2_AI_0 + P-network_2_5_RP_0 + P-network_0_7_AnnP_0 + P-network_3_1_AI_0 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_3_5_AnnP_0 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_4_RP_0 + P-network_5_0_AI_0 + P-network_6_3_RP_0 + P-network_4_0_AnnP_0 + P-network_3_3_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_1_6_RI_0 + P-network_3_5_RI_0 + P-network_2_6_AnnP_0 + P-network_5_4_RI_0 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_0 + P-network_7_3_RI_0 + P-network_0_5_AI_0 + P-network_2_4_AI_0 + P-network_3_7_RP_0 + P-network_4_2_AskP_0 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_1_0_RP_0 + P-network_4_3_AI_0 + P-network_5_6_RP_0 + P-network_5_2_AskP_0 + P-network_6_2_AI_0 + P-network_7_5_RP_0 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_5_AnnP_0 + P-network_4_7_RI_0 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_6_7_AI_0 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_6_6_RI_0 + P-network_7_1_AskP_0 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_6_1_AnsP_0 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_7 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_1_1_AnnP_0 + P-network_1_7_AI_0 + P-network_1_6_AnnP_0 + P-network_7_6_AskP_0 + P-network_3_6_AI_0 + P-network_0_4_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_5_AI_0 + P-network_7_4_AI_0 + P-network_5_7_AskP_0 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_2_3_AskP_0 + P-network_3_0_AnnP_0)
lola: LP says that atomic proposition is always false: (2 <= P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_6 + P-startNeg__broadcasting_1_7 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_2_5 + P-startNeg__broadcasting_2_6 + P-startNeg__broadcasting_2_7 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_3_5 + P-startNeg__broadcasting_3_6 + P-startNeg__broadcasting_3_7 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_4_5 + P-startNeg__broadcasting_4_6 + P-startNeg__broadcasting_4_7 + P-startNeg__broadcasting_5_1 + P-startNeg__broadcasting_5_2 + P-startNeg__broadcasting_5_3 + P-startNeg__broadcasting_5_4 + P-startNeg__broadcasting_5_5 + P-startNeg__broadcasting_5_6 + P-startNeg__broadcasting_5_7 + P-startNeg__broadcasting_6_1 + P-startNeg__broadcasting_6_2 + P-startNeg__broadcasting_6_3 + P-startNeg__broadcasting_6_4 + P-startNeg__broadcasting_6_5 + P-startNeg__broadcasting_6_6 + P-startNeg__broadcasting_6_7 + P-startNeg__broadcasting_7_1 + P-startNeg__broadcasting_7_2 + P-startNeg__broadcasting_7_3 + P-startNeg__broadcasting_7_4 + P-startNeg__broadcasting_7_5 + P-startNeg__broadcasting_7_6 + P-startNeg__broadcasting_7_7 + P-startNeg__broadcasting_0_6 + P-startNeg__broadcasting_0_7 <= P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_5_6_AskP_0 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_2 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_7 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_4_0_RI_5 + P-poll__networl_4_0_RI_6 + P-poll__networl_4_0_RI_7 + P-poll__networl_4_2_RP_7 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_0 + P-poll__networl_6_1_RP_7 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_6_1_RP_6 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_0 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_2_2_AskP_7 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_5_AskP_4 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_7_5_AskP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_1_4_RI_7 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_4 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_0 + P-poll__networl_5_2_RI_7 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_5 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_0 + P-poll__networl_7_1_RI_7 + P-poll__networl_7_1_RI_6 + P-poll__networl_7_1_RI_5 + P-poll__networl_7_1_RI_4 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_7_1_RI_3 + P-poll__networl_7_1_RI_2 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_6 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_0_3_AI_5 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_0_3_AI_4 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_3 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_2 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_7 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_0 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_0 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_0 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_6 + P-poll__networl_4_7_AskP_0 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_7 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_5_7_RP_0 + P-poll__networl_5_7_RP_1 + P-poll__networl_5_7_RP_2 + P-poll__networl_5_7_RP_3 + P-poll__networl_5_7_RP_4 + P-poll__networl_5_7_RP_5 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_0 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_6_0_AI_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_6_0_AI_6 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_0 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_0 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_3 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_2_7_AskP_2 + P-poll__networl_7_0_AI_0 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_7 + P-poll__networl_2_7_AskP_1 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_6_4_RP_0 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_7 + P-poll__networl_5_1_AI_0 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_7 + P-poll__networl_4_5_RP_0 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_7 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_0_7_RI_7 + P-poll__networl_2_6_RP_0 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_7 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_1_3_AI_7 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RP_0 + P-poll__networl_0_7_RP_1 + P-poll__networl_0_7_RP_2 + P-poll__networl_0_7_RP_3 + P-poll__networl_0_7_RP_4 + P-poll__networl_0_7_RP_5 + P-poll__networl_0_7_RP_6 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_0 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_3 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_2_6_RI_2 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_4 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_0 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_5 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_0 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_5_0_RI_3 + P-poll__networl_5_0_RI_4 + P-poll__networl_5_0_RI_5 + P-poll__networl_5_0_RI_6 + P-poll__networl_5_0_RI_7 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_RI_5 + P-poll__networl_3_1_RI_6 + P-poll__networl_3_1_RI_7 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_0_4_AskP_0 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_7 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_0 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_4_0_RP_0 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_7 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_7 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_1 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_3_4_AI_0 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_7 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_5 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_RP_4 + P-poll__networl_4_7_RP_3 + P-poll__networl_4_7_RP_2 + P-poll__networl_4_7_RP_1 + P-poll__networl_4_7_RP_0 + P-poll__networl_5_3_AI_7 + P-poll__networl_5_3_AI_6 + P-poll__networl_5_3_AI_5 + P-poll__networl_5_3_AI_4 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_3_AI_3 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_5_3_AI_2 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_0 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_3 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_7 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_0 + P-poll__networl_4_6_AskP_7 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_0 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_7_3_AI_0 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_7 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_5_4_AI_0 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_7 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_6 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_3_5_AI_0 + P-poll__networl_3_5_AI_1 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_4 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_7 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_1_6_AI_0 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_3 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_7 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_5_RI_1 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_4 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_2_AskP_0 + P-poll__networl_6_2_AskP_1 + P-poll__networl_6_2_AskP_2 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_7 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_4 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_6 + P-poll__networl_4_6_RI_7 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_5_7_RI_4 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_7_RI_1 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_3 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_7 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_7_6_RI_2 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_1_7_RP_0 + P-poll__networl_1_7_RP_1 + P-poll__networl_1_7_RP_2 + P-poll__networl_1_7_RP_3 + P-poll__networl_1_7_RP_4 + P-poll__networl_1_7_RP_5 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_6_5_AskP_7 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_0 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_6_0_RI_0 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_2 + P-poll__networl_6_0_RI_3 + P-poll__networl_6_0_RI_4 + P-poll__networl_6_0_RI_5 + P-poll__networl_6_0_RI_6 + P-poll__networl_6_0_RI_7 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_1_RI_6 + P-poll__networl_4_1_RI_7 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_0_5_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_5 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_7 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_7 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_6_5_AI_0 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_7 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_5 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_3 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_0 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_5_0_AskP_7 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_5_0_AskP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_7_7_AI_7 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_0 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_4_4_AskP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_2_7_RP_0 + P-poll__networl_2_7_RP_1 + P-poll__networl_2_7_RP_2 + P-poll__networl_2_7_RP_3 + P-poll__networl_2_7_RP_4 + P-poll__networl_2_7_RP_5 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_0_RP_7 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_3 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_1 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_3_6_AskP_0 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_5_AskP_0 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_7 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_7_2_RP_0 + P-poll__networl_7_2_RP_1 + P-poll__networl_7_2_RP_2 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_7 + P-poll__networl_5_3_RP_0 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_4 + P-poll__networl_5_3_RP_5 + P-poll__networl_5_3_RP_6 + P-poll__networl_5_3_RP_7 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_3_4_RP_0 + P-poll__networl_3_4_RP_1 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_4 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_7 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_1_5_RP_0 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_5_RP_7 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_7_0_RI_3 + P-poll__networl_7_0_RI_4 + P-poll__networl_7_0_RI_5 + P-poll__networl_7_0_RI_6 + P-poll__networl_7_0_RI_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_5_1_RI_3 + P-poll__networl_5_1_RI_4 + P-poll__networl_5_1_RI_5 + P-poll__networl_5_1_RI_6 + P-poll__networl_5_1_RI_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_0_2_AskP_7 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_0_2_AskP_6 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_1_1_RI_7 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_3_0_RI_7 + P-poll__networl_3_0_RI_6 + P-poll__networl_3_0_RI_5 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_0 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_7 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_7 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_2_RP_6 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_6 + P-poll__networl_1_0_RP_7 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_0 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_5 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_2 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_0 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_1_6_AskP_0 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_6_AskP_7 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_0 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_2 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_0_4_RI_1 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_0_4_RI_0 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_4 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_0 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_7 + P-poll__networl_6_2_AI_0 + P-poll__networl_6_2_AI_1 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_7 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_5_6_RP_0 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_3 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_7 + P-poll__networl_4_3_AI_0 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_3 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_5 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_7 + P-poll__networl_3_7_RP_0 + P-poll__networl_3_7_RP_1 + P-poll__networl_3_7_RP_2 + P-poll__networl_3_7_RP_3 + P-poll__networl_3_7_RP_4 + P-poll__networl_3_7_RP_5 + P-poll__networl_3_7_RP_6 + P-poll__networl_3_7_RP_7 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_7 + P-poll__networl_0_7_AskP_3 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_0_5_AI_0 + P-poll__networl_0_5_AI_1 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_3 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_7 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_7_3_RI_0 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_7 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_1_RI_7 + P-poll__networl_6_1_RI_6 + P-poll__networl_6_1_RI_5 + P-poll__networl_6_1_RI_4 + P-poll__networl_6_1_RI_3 + P-poll__networl_5_4_RI_0 + P-poll__networl_5_4_RI_1 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_7 + P-poll__networl_6_1_RI_2 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_0 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_5 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_3 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_2 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_0 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_2_5_RP_7 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_0_AI_7 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_0 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7)
lola: after: (P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_6 + P-startNeg__broadcasting_1_7 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_2_5 + P-startNeg__broadcasting_2_6 + P-startNeg__broadcasting_2_7 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_3_5 + P-startNeg__broadcasting_3_6 + P-startNeg__broadcasting_3_7 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_4_5 + P-startNeg__broadcasting_4_6 + P-startNeg__broadcasting_4_7 + P-startNeg__broadcasting_5_1 + P-startNeg__broadcasting_5_2 + P-startNeg__broadcasting_5_3 + P-startNeg__broadcasting_5_4 + P-startNeg__broadcasting_5_5 + P-startNeg__broadcasting_5_6 + P-startNeg__broadcasting_5_7 + P-startNeg__broadcasting_6_1 + P-startNeg__broadcasting_6_2 + P-startNeg__broadcasting_6_3 + P-startNeg__broadcasting_6_4 + P-startNeg__broadcasting_6_5 + P-startNeg__broadcasting_6_6 + P-startNeg__broadcasting_6_7 + P-startNeg__broadcasting_7_1 + P-startNeg__broadcasting_7_2 + P-startNeg__broadcasting_7_3 + P-startNeg__broadcasting_7_4 + P-startNeg__broadcasting_7_5 + P-startNeg__broadcasting_7_6 + P-startNeg__broadcasting_7_7 + P-startNeg__broadcasting_0_6 + P-startNeg__broadcasting_0_7 <= P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1)
lola: LP says that atomic proposition is always false: (1 <= P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 + P-electedSecondary_5 + P-electedSecondary_6 + P-electedSecondary_7)
lola: LP says that atomic proposition is always false: (3 <= P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)
lola: LP says that atomic proposition is always false: (3 <= P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 + P-electedSecondary_5 + P-electedSecondary_6 + P-electedSecondary_7)
lola: LP says that atomic proposition is always false: (1 <= P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 + P-electedSecondary_5 + P-electedSecondary_6 + P-electedSecondary_7)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterState_2_T_7 <= P-poll__networl_4_0_AnnP_7)
lola: after: (P-masterState_2_T_7 <= 0)
lola: LP says that atomic proposition is always true: (P-masterState_2_T_7 <= 0)
lola: LP says that atomic proposition is always false: (2 <= P-negotiation_7_0_DONE)
lola: LP says that atomic proposition is always false: (3 <= P-network_1_0_AnsP_7)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-poll__networl_4_4_RP_7)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-network_3_5_RI_3)
lola: after: (2 <= 0)
lola: LP says that atomic proposition is always false: (2 <= P-poll__networl_7_2_AnsP_7)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_6_AI_3 <= P-network_3_4_AnsP_6)
lola: after: (0 <= P-network_3_4_AnsP_6)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_4_7_RP_7 <= P-poll__networl_2_2_RP_1)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_3_3_AnnP_4 <= P-poll__networl_6_5_AnnP_4)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_1_4_AskP_4)
lola: after: (1 <= 0)
lola: LP says that atomic proposition is always false: (2 <= P-poll__networl_6_3_AnsP_5)
lola: A (G (())) : E (F (())) : A (G (())) : A (G (())) : E (F ((42 <= 0))) : E (F ((3 <= 0))) : E (F (())) : A (G (())) : A (G ((P-masterState_2_T_7 <= 0))) : E (F (())) : E (F ((2 <= 0))) : E (F ((2 <= 0))) : E (F ((2 <= P-poll__networl_7_2_AnsP_7))) : A (G ((0 <= P-network_3_4_AnsP_6))) : E (F (())) : E (F ((2 <= P-poll__networl_6_3_AnsP_5)))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 216 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 230 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 247 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 266 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 288 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 314 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 346 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 384 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 432 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 494 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 576 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 11 will run for 692 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 12 will run for 865 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 13 will run for 1153 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 14 will run for 1730 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 15 will run for 3461 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file ReachabilityCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: RESULT
lola:
SUMMARY: yes no yes yes no no no yes yes no no no no yes no no
lola:
preliminary result: yes no yes yes no no no yes yes no no no no yes no no
lola: memory consumption: 543248 KB
lola: time consumption: 109 seconds
lola: print data as JSON (--json)
lola: writing JSON to ReachabilityCardinality.json
lola: closed JSON file ReachabilityCardinality.json
rslt: finished
BK_STOP 1552784003010
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-7"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is NeoElection-PT-7, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r104-oct2-155272225600233"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-7.tgz
mv NeoElection-PT-7 execution
cd execution
if [ "ReachabilityCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;