fond
Model Checking Contest 2019
9th edition, Prague, Czech Republic, April 7, 2019 (TOOLympics)
Execution of r104-oct2-155272225500193
Last Updated
Apr 15, 2019

About the Execution of LoLA for NeoElection-PT-3

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
4278.820 29609.00 7248.00 15.00 TFFFTTFTTFFFFFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fko/mcc2019-input.r104-oct2-155272225500193.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................................................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is NeoElection-PT-3, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r104-oct2-155272225500193
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 1.7M
-rw-r--r-- 1 mcc users 71K Feb 12 02:42 CTLCardinality.txt
-rw-r--r-- 1 mcc users 180K Feb 12 02:42 CTLCardinality.xml
-rw-r--r-- 1 mcc users 34K Feb 8 01:19 CTLFireability.txt
-rw-r--r-- 1 mcc users 100K Feb 8 01:19 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 103 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 341 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 26K Feb 5 00:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 58K Feb 5 00:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 10K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 31K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 27K Feb 4 06:49 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 67K Feb 4 06:49 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 33K Feb 1 00:25 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 100K Feb 1 00:25 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 23K Feb 4 22:21 UpperBounds.xml

-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_col
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 6 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 911K Mar 10 17:31 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-3-CTLCardinality-00
FORMULA_NAME NeoElection-PT-3-CTLCardinality-01
FORMULA_NAME NeoElection-PT-3-CTLCardinality-02
FORMULA_NAME NeoElection-PT-3-CTLCardinality-03
FORMULA_NAME NeoElection-PT-3-CTLCardinality-04
FORMULA_NAME NeoElection-PT-3-CTLCardinality-05
FORMULA_NAME NeoElection-PT-3-CTLCardinality-06
FORMULA_NAME NeoElection-PT-3-CTLCardinality-07
FORMULA_NAME NeoElection-PT-3-CTLCardinality-08
FORMULA_NAME NeoElection-PT-3-CTLCardinality-09
FORMULA_NAME NeoElection-PT-3-CTLCardinality-10
FORMULA_NAME NeoElection-PT-3-CTLCardinality-11
FORMULA_NAME NeoElection-PT-3-CTLCardinality-12
FORMULA_NAME NeoElection-PT-3-CTLCardinality-13
FORMULA_NAME NeoElection-PT-3-CTLCardinality-14
FORMULA_NAME NeoElection-PT-3-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1552780439258

info: Time: 3600 - MCC
vrfy: Checking CTLCardinality @ NeoElection-PT-3 @ 3570 seconds

FORMULA NeoElection-PT-3-CTLCardinality-00 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-04 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-PT-3-CTLCardinality-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 3541
rslt: Output for CTLCardinality @ NeoElection-PT-3

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=CTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=tarjan",
"--stateequation=par",
"--quickchecks",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ctl",
"--json=CTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat Mar 16 23:53:59 2019
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 237
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 274
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 297
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 324
},
"exit": null,
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 396
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 445
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 509
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 9,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 594
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 10,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 713
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 11,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 891
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 12,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1188
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 13,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1782
},
"exit":
{
"localtimelimitreached": false
},
"result":
{
"edges": 87,
"markings": 88,
"produced_by": "state space",
"value": true
},
"task":
{
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "deadlock preserving/insertion"
},
"treads": 1,
"type": "dfs"
},
"type": "deadlock",
"workflow": "search"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 3565
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 1,
"F": 0,
"G": 0,
"U": 1,
"X": 0,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 152,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 152,
"visible_transitions": 0
},
"processed": "E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3))))",
"processed_size": 3451,
"rewrites": 108
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space /EU",
"value": true
},
"task":
{
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "eu preserving",
"visible": 904
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "existential_until",
"workflow": "stateequation"
}
}
],
"exit":
{
"error": null,
"memory": 28756,
"runtime": 5.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "CTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "TRUE : FALSE : FALSE : FALSE : TRUE : TRUE : FALSE : E((** U **)) : E(F(DEADLOCK)) : FALSE : FALSE : FALSE : FALSE : FALSE : FALSE : FALSE"
},
"net":
{
"arcs": 5840,
"conflict_clusters": 652,
"places": 972,
"places_significant": 300,
"singleton_clusters": 0,
"transitions": 1016
},
"result":
{
"preliminary_value": "yes no no no yes yes no yes yes no no no no no no no ",
"value": "yes no no no yes yes no yes yes no no no no no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 1988/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 972
lola: finding significant places
lola: 972 places, 1016 transitions, 300 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from CTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= 3)
lola: LP says that atomic proposition is always true: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= 3)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_1_2_3 + P-masterList_1_2_2 + P-masterList_1_2_1 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_2_0 + P-masterList_1_1_3 + P-masterList_1_1_2 + P-masterList_1_1_1 + P-masterList_1_1_0 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_0 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_0 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_1 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_3_AskP_0 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_0 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_3_1_AskP_3 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_3_2_RP_0 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_0 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: after: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: LP says that atomic proposition is always true: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= 0)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3)
lola: after: (P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (0 <= 1)
lola: LP says that atomic proposition is always false: (2 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_0 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_0 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_1 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_3_AskP_0 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_0 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_3_1_AskP_3 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_3_2_RP_0 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_0 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3)
lola: after: (3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3)
lola: after: (0 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-stage_3_PRIM + P-stage_3_SEC + P-stage_2_PRIM + P-stage_1_NEG + P-stage_0_NEG + P-stage_1_PRIM + P-stage_0_SEC + P-stage_1_SEC + P-stage_2_NEG + P-stage_0_PRIM + P-stage_2_SEC + P-stage_3_NEG)
lola: after: (0 <= 1)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3)
lola: after: (P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_0 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_0 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_1 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_3_AskP_0 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_0 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_3_1_AskP_3 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_3_2_RP_0 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_0 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= 3)
lola: LP says that atomic proposition is always true: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= 3)
lola: LP says that atomic proposition is always true: (P-network_1_1_AskP_0 <= P-network_1_1_AnsP_2)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_0_1_AskP_1)
lola: after: (1 <= 0)
lola: LP says that atomic proposition is always false: (3 <= P-masterState_0_F_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_0_AI_2 <= P-poll__networl_3_3_RP_3)
lola: after: (0 <= 0)
lola: LP says that atomic proposition is always false: (2 <= P-network_0_1_RI_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterState_1_T_3 <= P-network_1_0_RI_2)
lola: after: (P-masterState_1_T_3 <= 0)
lola: LP says that atomic proposition is always true: (P-masterState_1_T_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-network_0_2_RP_2)
lola: after: (3 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_0_2_AnsP_3 <= P-network_2_1_AnsP_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_2_0_AnsP_2 <= P-network_3_3_AskP_3)
lola: after: (P-poll__networl_2_0_AnsP_2 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_2_0_AnsP_2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-poll__networl_2_1_AI_1)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_3_RI_2 <= P-poll__networl_2_3_AnsP_1)
lola: after: (0 <= P-poll__networl_2_3_AnsP_1)
lola: LP says that atomic proposition is always false: (3 <= P-network_3_1_AnsP_2)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_0_3_RP_0 <= P-poll__networl_3_2_AnsP_1)
lola: after: (0 <= P-poll__networl_3_2_AnsP_1)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_3_3_RP_2)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__waitingMessage_2 <= P-masterList_2_2_2)
lola: after: (P-poll__waitingMessage_2 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__waitingMessage_2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-poll__networl_0_1_AnnP_2)
lola: after: (2 <= 0)
lola: LP says that atomic proposition is always false: (1 <= P-poll__networl_2_3_AnsP_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_1_AnsP_3 <= P-poll__networl_3_1_AskP_2)
lola: after: (P-poll__networl_1_1_AnsP_3 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_1_1_AnsP_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_0_3_AnnP_2)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_3_AskP_2 <= P-poll__networl_1_1_AnnP_2)
lola: after: (0 <= 0)
lola: LP says that atomic proposition is always true: (P-startNeg__broadcasting_0_1 <= P-network_1_3_AI_0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_0_0_RP_2)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_2_0_AnsP_3 <= P-dead_3)
lola: after: (P-poll__networl_2_0_AnsP_3 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_2_0_AnsP_3 <= 0)
lola: (E (F ((1 <= 0))) OR A (F (A (G ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= 3)))))) : A (F ((3 <= 0))) : E (F (NOT(A (G ((P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)))))) : NOT(NOT(NOT(A (G ((P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= 0)))))) : E (((P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0) U A (G ((0 <= 1))))) : E (G (A (G ((P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 <= 1))))) : A ((E (F ((3 <= 0))) U ())) : (E (G (())) AND E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3))))) : E (((P-network_1_1_AskP_0 <= P-network_1_1_AnsP_2) U A (X ((1 <= 0))))) : (NOT(NOT(E (F ((3 <= P-masterState_0_F_1))))) AND A (X ((0 <= 0)))) : (NOT(A (((2 <= P-network_0_1_RI_0) U (P-masterState_1_T_3 <= 0)))) OR E (F (A (F ((3 <= 0)))))) : A (F ((() AND E (F ((2 <= 0)))))) : E (F (A (F ((P-poll__networl_2_3_AnsP_1 + 1 <= 0))))) : E (X (E (F (())))) : (E (X (())) AND E (F (()))) : (A (G (A (X ((0 <= 0))))) AND (((P-startNeg__broadcasting_0_1 <= P-network_1_3_AI_0) OR A (X ((1 <= 0)))) AND NOT(E (G ((P-poll__networl_2_0_AnsP_3 <= 0))))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:139
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:133
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:139
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 12 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 13 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 14 will run for 1782 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F (DEADLOCK))
lola: ========================================
lola: SUBTASK
lola: checking reachability of deadlocks
lola: Planning: workflow for deadlock check: search (--findpath=off,--siphontrap=off)
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using deadlock preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The net has deadlock(s).
lola: 88 markings, 87 edges
lola: ========================================
lola: subprocess 15 will run for 3565 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-netwo... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking existential until
lola: rewrite Frontend/Parser/formula_rewrite.k:618
lola: Planning: workflow for reachability check: stateequation (--findpath=off)
lola: built state equation task
lola: rewrite Frontend/Parser/formula_rewrite.k:738
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-netwo... (shortened)
lola: processed formula length: 3451
lola: 108 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EU)
lola: state space: using reachability graph (EU version) (--search=depth)
lola: state space: using eu preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:711
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3))
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: yes
lola: produced by: state space /EU
lola: There is a path where Predicate Phi holds until Predicate Psi.
lola: 0 markings, 0 edges
lola: ========================================
lola: RESULT
lola:
SUMMARY: yes no no no yes yes no yes yes no no no no no no no
lola:
preliminary result: yes no no no yes yes no yes yes no no no no no no no
lola: memory consumption: 28756 KB
lola: time consumption: 5 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
rslt: finished

BK_STOP 1552780468867

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-3"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is NeoElection-PT-3, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r104-oct2-155272225500193"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-3.tgz
mv NeoElection-PT-3 execution
cd execution
if [ "CTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "CTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;