About the Execution of LoLA for NeoElection-PT-3
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4278.820 | 29609.00 | 7248.00 | 15.00 | TFFFTTFTTFFFFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r104-oct2-155272225500193.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................................................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is NeoElection-PT-3, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r104-oct2-155272225500193
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 1.7M
-rw-r--r-- 1 mcc users 71K Feb 12 02:42 CTLCardinality.txt
-rw-r--r-- 1 mcc users 180K Feb 12 02:42 CTLCardinality.xml
-rw-r--r-- 1 mcc users 34K Feb 8 01:19 CTLFireability.txt
-rw-r--r-- 1 mcc users 100K Feb 8 01:19 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 103 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 341 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 26K Feb 5 00:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 58K Feb 5 00:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 10K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 31K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 27K Feb 4 06:49 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 67K Feb 4 06:49 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 33K Feb 1 00:25 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 100K Feb 1 00:25 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 23K Feb 4 22:21 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_col
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 6 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 911K Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-3-CTLCardinality-00
FORMULA_NAME NeoElection-PT-3-CTLCardinality-01
FORMULA_NAME NeoElection-PT-3-CTLCardinality-02
FORMULA_NAME NeoElection-PT-3-CTLCardinality-03
FORMULA_NAME NeoElection-PT-3-CTLCardinality-04
FORMULA_NAME NeoElection-PT-3-CTLCardinality-05
FORMULA_NAME NeoElection-PT-3-CTLCardinality-06
FORMULA_NAME NeoElection-PT-3-CTLCardinality-07
FORMULA_NAME NeoElection-PT-3-CTLCardinality-08
FORMULA_NAME NeoElection-PT-3-CTLCardinality-09
FORMULA_NAME NeoElection-PT-3-CTLCardinality-10
FORMULA_NAME NeoElection-PT-3-CTLCardinality-11
FORMULA_NAME NeoElection-PT-3-CTLCardinality-12
FORMULA_NAME NeoElection-PT-3-CTLCardinality-13
FORMULA_NAME NeoElection-PT-3-CTLCardinality-14
FORMULA_NAME NeoElection-PT-3-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1552780439258
info: Time: 3600 - MCC
vrfy: Checking CTLCardinality @ NeoElection-PT-3 @ 3570 seconds
FORMULA NeoElection-PT-3-CTLCardinality-00 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-01 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-03 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-04 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-PT-3-CTLCardinality-07 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: 3541
rslt: Output for CTLCardinality @ NeoElection-PT-3
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=CTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=tarjan",
"--stateequation=par",
"--quickchecks",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ctl",
"--json=CTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat Mar 16 23:53:59 2019
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 237
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 274
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 297
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 324
},
"exit": null,
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 396
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 445
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 8,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 509
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 9,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 594
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 10,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 713
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 11,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 891
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 12,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1188
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 105
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 13,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1782
},
"exit":
{
"localtimelimitreached": false
},
"result":
{
"edges": 87,
"markings": 88,
"produced_by": "state space",
"value": true
},
"task":
{
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "deadlock preserving/insertion"
},
"treads": 1,
"type": "dfs"
},
"type": "deadlock",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 3565
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 1,
"F": 0,
"G": 0,
"U": 1,
"X": 0,
"aconj": 1,
"adisj": 0,
"aneg": 0,
"comp": 2,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 152,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 152,
"visible_transitions": 0
},
"processed": "E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3))))",
"processed_size": 3451,
"rewrites": 108
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "state space /EU",
"value": true
},
"task":
{
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "eu preserving",
"visible": 904
},
"threads": 1,
"type": "dfs"
},
"stateequation":
{
"literals": 1,
"problems": 1
},
"type": "existential_until",
"workflow": "stateequation"
}
}
],
"exit":
{
"error": null,
"memory": 28756,
"runtime": 5.000000,
"signal": null,
"timelimitreached": false
},
"files":
{
"formula": "CTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "TRUE : FALSE : FALSE : FALSE : TRUE : TRUE : FALSE : E((** U **)) : E(F(DEADLOCK)) : FALSE : FALSE : FALSE : FALSE : FALSE : FALSE : FALSE"
},
"net":
{
"arcs": 5840,
"conflict_clusters": 652,
"places": 972,
"places_significant": 300,
"singleton_clusters": 0,
"transitions": 1016
},
"result":
{
"preliminary_value": "yes no no no yes yes no yes yes no no no no no no no ",
"value": "yes no no no yes yes no yes yes no no no no no no no "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains place/transition net
lola: finished parsing
lola: closed net file model.pnml
lola: 1988/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 972
lola: finding significant places
lola: 972 places, 1016 transitions, 300 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from CTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= 3)
lola: LP says that atomic proposition is always true: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= 3)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_1_2_3 + P-masterList_1_2_2 + P-masterList_1_2_1 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_2_0 + P-masterList_1_1_3 + P-masterList_1_1_2 + P-masterList_1_1_1 + P-masterList_1_1_0 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_3_1_0 + P-masterList_3_1_1 + P-masterList_3_1_2 + P-masterList_3_1_3 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_0 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_0 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_1 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_3_AskP_0 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_0 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_3_1_AskP_3 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_3_2_RP_0 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_0 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: after: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: LP says that atomic proposition is always true: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= 0)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3)
lola: after: (P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (0 <= 1)
lola: LP says that atomic proposition is always false: (2 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_0 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_0 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_1 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_3_AskP_0 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_0 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_3_1_AskP_3 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_3_2_RP_0 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_0 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3)
lola: after: (3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-crashed_0 + P-crashed_1 + P-crashed_2 + P-crashed_3 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3)
lola: after: (0 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-stage_3_PRIM + P-stage_3_SEC + P-stage_2_PRIM + P-stage_1_NEG + P-stage_0_NEG + P-stage_1_PRIM + P-stage_0_SEC + P-stage_1_SEC + P-stage_2_NEG + P-stage_0_PRIM + P-stage_2_SEC + P-stage_3_NEG)
lola: after: (0 <= 1)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_1 + P-network_3_2_RP_1 + P-network_3_2_RP_2 + P-network_3_2_RP_3 + P-network_1_3_RP_1 + P-network_1_3_RP_2 + P-network_1_3_RP_3 + P-network_0_0_AI_1 + P-network_0_0_AI_2 + P-network_0_0_AI_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AnnP_3 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_1 + P-network_3_1_AnnP_1 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_2_3_AskP_1 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_1_0_RP_3 + P-network_2_2_AI_1 + P-network_2_2_AI_2 + P-network_2_2_AI_3 + P-network_1_0_RP_2 + P-network_0_3_AI_1 + P-network_0_3_AI_2 + P-network_0_3_AI_3 + P-network_1_0_RP_1 + P-network_3_3_RI_1 + P-network_3_3_RI_2 + P-network_3_3_RI_3 + P-network_2_2_AnnP_1 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_0_1_RI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_3 + P-network_0_1_RI_2 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_0_1_RI_1 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_2_0_RI_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_0_RI_2 + P-network_2_0_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AnnP_3 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_1 + P-network_0_3_RP_3 + P-network_0_3_RP_2 + P-network_0_3_RP_1 + P-network_2_2_RP_3 + P-network_2_2_RP_2 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_0_AnnP_3 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AnnP_2 + P-network_2_0_AskP_1 + P-network_2_0_AskP_2 + P-network_2_0_AskP_3 + P-network_2_0_AnnP_1 + P-network_1_3_RI_3 + P-network_1_3_RI_2 + P-network_1_3_RI_1 + P-network_0_1_AskP_1 + P-network_0_1_AskP_2 + P-network_0_1_AskP_3 + P-network_3_2_RI_3 + P-network_3_2_RI_2 + P-network_3_2_RI_1 + P-network_1_3_AskP_3 + P-network_1_3_AskP_2 + P-network_1_3_AskP_1 + P-network_0_2_AI_3 + P-network_0_2_AI_2 + P-network_0_2_AI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_2_1_AI_3 + P-network_2_1_AI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_1_AI_1 + P-network_3_2_AskP_3 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_2_AskP_2 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_AskP_1 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_3_3_AI_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_2_1_RP_1 + P-network_2_1_RP_2 + P-network_2_1_RP_3 + P-network_0_2_RP_1 + P-network_0_2_RP_2 + P-network_0_2_RP_3 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_0_3_AskP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_0_3_AskP_2 + P-network_0_3_AskP_1 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_2_2_AskP_3 + P-network_2_2_AskP_2 + P-network_2_2_AskP_1 + P-network_3_0_AI_1 + P-network_3_0_AI_2 + P-network_3_0_AI_3 + P-network_1_1_AI_1 + P-network_1_1_AI_2 + P-network_1_1_AI_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_2_2_RI_1 + P-network_2_2_RI_2 + P-network_2_2_RI_3 + P-network_0_3_RI_1 + P-network_0_3_RI_2 + P-network_0_3_RI_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_0_RP_3 + P-network_0_0_RP_2 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_0_0_RP_1 + P-network_0_0_AnnP_1 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_3 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3)
lola: after: (P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_1_3_AskP_0 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_3 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_0 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_0 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_1 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_3_AskP_0 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_0 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_3_RP_2 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_1_RP_0 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_3 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_3 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_3 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_3_1_AskP_3 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_1 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_0 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_3 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_3_2_RP_0 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_0 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_0 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 <= P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_3_T_0 + P-masterState_3_T_1 + P-masterState_3_T_2 + P-masterState_3_T_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_T_2 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_1_T_3 + P-masterState_3_F_3 + P-masterState_2_T_3 + P-masterState_0_F_3)
lola: after: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= 3)
lola: LP says that atomic proposition is always true: (P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= 3)
lola: LP says that atomic proposition is always true: (P-network_1_1_AskP_0 <= P-network_1_1_AnsP_2)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_0_1_AskP_1)
lola: after: (1 <= 0)
lola: LP says that atomic proposition is always false: (3 <= P-masterState_0_F_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_0_AI_2 <= P-poll__networl_3_3_RP_3)
lola: after: (0 <= 0)
lola: LP says that atomic proposition is always false: (2 <= P-network_0_1_RI_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-masterState_1_T_3 <= P-network_1_0_RI_2)
lola: after: (P-masterState_1_T_3 <= 0)
lola: LP says that atomic proposition is always true: (P-masterState_1_T_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-network_0_2_RP_2)
lola: after: (3 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_0_2_AnsP_3 <= P-network_2_1_AnsP_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_2_0_AnsP_2 <= P-network_3_3_AskP_3)
lola: after: (P-poll__networl_2_0_AnsP_2 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_2_0_AnsP_2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-poll__networl_2_1_AI_1)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_3_RI_2 <= P-poll__networl_2_3_AnsP_1)
lola: after: (0 <= P-poll__networl_2_3_AnsP_1)
lola: LP says that atomic proposition is always false: (3 <= P-network_3_1_AnsP_2)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_0_3_RP_0 <= P-poll__networl_3_2_AnsP_1)
lola: after: (0 <= P-poll__networl_3_2_AnsP_1)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_3_3_RP_2)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__waitingMessage_2 <= P-masterList_2_2_2)
lola: after: (P-poll__waitingMessage_2 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__waitingMessage_2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-poll__networl_0_1_AnnP_2)
lola: after: (2 <= 0)
lola: LP says that atomic proposition is always false: (1 <= P-poll__networl_2_3_AnsP_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_1_AnsP_3 <= P-poll__networl_3_1_AskP_2)
lola: after: (P-poll__networl_1_1_AnsP_3 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_1_1_AnsP_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_0_3_AnnP_2)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_3_AskP_2 <= P-poll__networl_1_1_AnnP_2)
lola: after: (0 <= 0)
lola: LP says that atomic proposition is always true: (P-startNeg__broadcasting_0_1 <= P-network_1_3_AI_0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_0_0_RP_2)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_2_0_AnsP_3 <= P-dead_3)
lola: after: (P-poll__networl_2_0_AnsP_3 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_2_0_AnsP_3 <= 0)
lola: (E (F ((1 <= 0))) OR A (F (A (G ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 <= 3)))))) : A (F ((3 <= 0))) : E (F (NOT(A (G ((P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_3 <= P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)))))) : NOT(NOT(NOT(A (G ((P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 <= 0)))))) : E (((P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0) U A (G ((0 <= 1))))) : E (G (A (G ((P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3 <= 1))))) : A ((E (F ((3 <= 0))) U ())) : (E (G (())) AND E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3))))) : E (((P-network_1_1_AskP_0 <= P-network_1_1_AnsP_2) U A (X ((1 <= 0))))) : (NOT(NOT(E (F ((3 <= P-masterState_0_F_1))))) AND A (X ((0 <= 0)))) : (NOT(A (((2 <= P-network_0_1_RI_0) U (P-masterState_1_T_3 <= 0)))) OR E (F (A (F ((3 <= 0)))))) : A (F ((() AND E (F ((2 <= 0)))))) : E (F (A (F ((P-poll__networl_2_3_AnsP_1 + 1 <= 0))))) : E (X (E (F (())))) : (E (X (())) AND E (F (()))) : (A (G (A (X ((0 <= 0))))) AND (((P-startNeg__broadcasting_0_1 <= P-network_1_3_AI_0) OR A (X ((1 <= 0)))) AND NOT(E (G ((P-poll__networl_2_0_AnsP_3 <= 0))))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:139
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:133
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:117
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:139
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 12 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 13 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 105 rewrites
lola: closed formula file CTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 14 will run for 1782 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F (DEADLOCK))
lola: ========================================
lola: SUBTASK
lola: checking reachability of deadlocks
lola: Planning: workflow for deadlock check: search (--findpath=off,--siphontrap=off)
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using deadlock preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The net has deadlock(s).
lola: 88 markings, 87 edges
lola: ========================================
lola: subprocess 15 will run for 3565 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-netwo... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking existential until
lola: rewrite Frontend/Parser/formula_rewrite.k:618
lola: Planning: workflow for reachability check: stateequation (--findpath=off)
lola: built state equation task
lola: rewrite Frontend/Parser/formula_rewrite.k:738
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: E (((1 <= P-poll__handlingMessage_3 + P-poll__handlingMessage_2 + P-poll__handlingMessage_1 + P-poll__handlingMessage_0) U ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-netwo... (shortened)
lola: processed formula length: 3451
lola: 108 rewrites
lola: closed formula file CTLCardinality.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EU)
lola: state space: using reachability graph (EU version) (--search=depth)
lola: state space: using eu preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: state equation task get result started, id 0
lola: rewrite Frontend/Parser/formula_rewrite.k:711
lola: state equation task get result rewrite finished id 0
lola: state equation task get result unparse finished++ id 0
lola: formula 0: ((P-network_1_0_RI_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_0_0_AnnP_0 + P-network_0_0_RP_0 + P-network_1_2_RP_0 + P-network_3_1_RP_0 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_0 + P-network_0_3_RI_0 + P-network_2_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AI_0 + P-network_2_2_AskP_0 + P-network_3_0_AI_0 + P-network_3_1_AskP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_2_3_AI_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_0_3_AskP_0 + P-network_2_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_1_0_AnnP_0 + P-network_0_0_RI_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_0_2_RP_0 + P-network_2_1_RP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_3_3_AI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_2_RI_0 + P-network_1_1_AskP_0 + P-network_3_1_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_2_0_AI_0 + P-network_3_3_RP_0 + P-network_3_0_AskP_0 + P-network_2_1_AI_0 + P-network_2_3_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_1_3_AI_0 + P-network_0_2_AI_0 + P-network_3_2_AI_0 + P-network_1_3_AskP_0 + P-network_3_2_RI_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_3_RI_0 + P-network_0_1_AskP_0 + P-network_2_0_AnnP_0 + P-network_2_0_AskP_0 + P-network_1_3_AnnP_0 + P-network_3_2_AnsP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_3 + P-network_2_2_RP_0 + P-network_3_2_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_0_3_RP_0 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_1_AnnP_0 + P-network_1_1_RP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_2_0_RI_0 + P-network_3_0_RP_0 + P-network_0_2_RI_0 + P-network_0_1_RI_0 + P-network_1_0_AskP_0 + P-network_2_1_RI_0 + P-network_0_3_AnnP_0 + P-network_1_0_AI_0 + P-network_2_3_RP_0 + P-network_2_2_AnnP_0 + P-network_3_3_RI_0 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_1 + P-network_1_0_RP_0 + P-network_0_0_AnsP_0 + P-network_0_3_AI_0 + P-network_2_2_AI_0 + P-network_0_0_AskP_0 + P-network_2_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_3_1_AnnP_0 + P-network_3_0_AnnP_0 + P-network_0_1_RP_0 + P-network_2_0_RP_0 + P-network_1_1_RI_0 + P-network_3_0_RI_0 + P-network_0_2_AnnP_0 + P-network_0_0_AI_0 + P-network_1_3_RP_0 + P-network_3_2_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_3_RI_0 + P-network_2_3_AnsP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_3 + P-network_1_2_AI_0 + P-network_3_1_AI_0 + P-network_3_3_AskP_0 <= P-poll__waitingMessage_2 + P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_3))
lola: state equation task get result unparse finished id 0
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: yes
lola: produced by: state space /EU
lola: There is a path where Predicate Phi holds until Predicate Psi.
lola: 0 markings, 0 edges
lola: ========================================
lola: RESULT
lola:
SUMMARY: yes no no no yes yes no yes yes no no no no no no no
lola:
preliminary result: yes no no no yes yes no yes yes no no no no no no no
lola: memory consumption: 28756 KB
lola: time consumption: 5 seconds
lola: print data as JSON (--json)
lola: writing JSON to CTLCardinality.json
lola: closed JSON file CTLCardinality.json
rslt: finished
BK_STOP 1552780468867
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-3"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is NeoElection-PT-3, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r104-oct2-155272225500193"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-3.tgz
mv NeoElection-PT-3 execution
cd execution
if [ "CTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "CTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;