About the Execution of LoLA for NeoElection-COL-8
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5079.310 | 3594231.00 | 3692850.00 | 232.40 | 8 ? 0 0 56 0 8 0 56 64 0 8 8 64 8 8 | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r104-oct2-155272225500173.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is NeoElection-COL-8, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r104-oct2-155272225500173
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 280K
-rw-r--r-- 1 mcc users 3.9K Feb 12 03:09 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K Feb 12 03:08 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Feb 8 02:03 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 8 02:02 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 104 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 342 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.7K Feb 5 00:19 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K Feb 5 00:19 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.5K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.4K Feb 4 07:16 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 20K Feb 4 07:15 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.5K Feb 1 01:23 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 17K Feb 1 01:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 4 22:22 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.9K Feb 4 22:21 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 120K Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of positive values
NUM_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-8-UpperBounds-00
FORMULA_NAME NeoElection-COL-8-UpperBounds-01
FORMULA_NAME NeoElection-COL-8-UpperBounds-02
FORMULA_NAME NeoElection-COL-8-UpperBounds-03
FORMULA_NAME NeoElection-COL-8-UpperBounds-04
FORMULA_NAME NeoElection-COL-8-UpperBounds-05
FORMULA_NAME NeoElection-COL-8-UpperBounds-06
FORMULA_NAME NeoElection-COL-8-UpperBounds-07
FORMULA_NAME NeoElection-COL-8-UpperBounds-08
FORMULA_NAME NeoElection-COL-8-UpperBounds-09
FORMULA_NAME NeoElection-COL-8-UpperBounds-10
FORMULA_NAME NeoElection-COL-8-UpperBounds-11
FORMULA_NAME NeoElection-COL-8-UpperBounds-12
FORMULA_NAME NeoElection-COL-8-UpperBounds-13
FORMULA_NAME NeoElection-COL-8-UpperBounds-14
FORMULA_NAME NeoElection-COL-8-UpperBounds-15
=== Now, execution of the tool begins
BK_START 1552779051958
info: Time: 3600 - MCC
vrfy: Checking UpperBounds @ NeoElection-COL-8 @ 3570 seconds
FORMULA NeoElection-COL-8-UpperBounds-05 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-08 56 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-09 64 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-12 8 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-13 64 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-02 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-03 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-07 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-15 8 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-06 8 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-00 8 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-14 8 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-11 8 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-10 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-8-UpperBounds-04 56 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: -25
rslt: Output for UpperBounds @ NeoElection-COL-8
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=UpperBounds.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--check=modelchecking",
"--stubborn=tarjan",
"--timelimit=3570",
"--localtimelimit=0",
"--json=UpperBounds.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat Mar 16 23:30:52 2019
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "MAX(0)",
"processed_size": 6,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 0
},
"task":
{
"compoundnumber": 0,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 237
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "MAX(56)",
"processed_size": 7,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 56
},
"task":
{
"compoundnumber": 1,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "MAX(64)",
"processed_size": 7,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 64
},
"task":
{
"compoundnumber": 2,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 273
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "MAX(8)",
"processed_size": 6,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 8
},
"task":
{
"compoundnumber": 3,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 296
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "MAX(64)",
"processed_size": 7,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 64
},
"task":
{
"compoundnumber": 4,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 323
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036)",
"processed_size": 74,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 0
},
"task":
{
"compoundnumber": 5,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 355
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036)",
"processed_size": 74,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 0
},
"task":
{
"compoundnumber": 6,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 391
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "MAX(p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626)",
"processed_size": 74,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 0
},
"task":
{
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 446
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 9,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 9,
"visible_transitions": 0
},
"processed": "MAX(p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4617)",
"processed_size": 74,
"rewrites": 0
},
"result":
{
"edges": 602,
"markings": 603,
"produced_by": "search",
"value": 8
},
"task":
{
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 519
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 66,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 66,
"visible_transitions": 0
},
"processed": "MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856)",
"processed_size": 530,
"rewrites": 0
},
"result":
{
"edges": 8,
"markings": 9,
"produced_by": "search",
"value": 8
},
"task":
{
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 622
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 66,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 66,
"visible_transitions": 0
},
"processed": "MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856)",
"processed_size": 530,
"rewrites": 0
},
"result":
{
"edges": 8,
"markings": 9,
"produced_by": "search",
"value": 8
},
"task":
{
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 776
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 66,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 66,
"visible_transitions": 0
},
"processed": "MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856)",
"processed_size": 530,
"rewrites": 0
},
"result":
{
"edges": 8,
"markings": 9,
"produced_by": "search",
"value": 8
},
"task":
{
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1032
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 66,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 66,
"visible_transitions": 0
},
"processed": "MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856)",
"processed_size": 530,
"rewrites": 0
},
"result":
{
"edges": 8,
"markings": 9,
"produced_by": "search",
"value": 8
},
"task":
{
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1546
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 648,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 648,
"visible_transitions": 0
},
"processed": "MAX(p8675 + p8674 + p8673 + p8672 + p8671 + p8670 + p6083 + p6082 + p6081 + p6080 + p7379 + p7378 + p7377 + p7376 + p7375 + p7374 + p7373 + p7372 + p8669 + p8668 + p6079 + p6078 + p6077 + p6076 + p7426 + p7427 + p7428 + p7429 + p6130 + p6131 + p6132 + p6133 + p6134 + p6135 + p6136 + p6137 + p8722 + p8723 + p8724 + p8725 + p8726 + p8727 + p8728 + p8729 + p7430 + p7431 + p7432 + p7433 + p8621 + p8620 + p7325 + p7324 + p7323 + p7322 + p7321 + p7320 + p8619 + p8618 + p8617 + p8616 + p8615 + p8614 + p6029 + p6028 + p6027 + p6026 + p6025 + p6024 + p6023 + p6022 + p7319 + p7318 + p7271 + p7270 + p8567 + p8566 + p8565 + p8564 + p8563 + p8562 + p8561 + p8560 + p7269 + p7268 + p7267 + p7266 + p7265 + p7264 + p8513 + p8512 + p8511 + p8510 + p7217 + p7216 + p7215 + p7214 + p7213 + p7212 + p7211 + p7210 + p8509 + p8508 + p8507 + p8506 + p6184 + p6185 + p6186 + p6187 + p6188 + p6189 + p8776 + p8777 + p8778 + p8779 + p7480 + p7481 + p7482 + p7483 + p7484 + p7485 + p7486 + p7487 + p6190 + p6191 + p8780 + p8781 + p8782 + p8783 + p7163 + p7162 + p7161 + p7160 + p8459 + p8458 + p8457 + p8456 + p8455 + p8454 + p8453 + p8452 + p7159 + p7158 + p7157 + p7156 + p8405 + p8404 + p8403 + p8402 + p8401 + p8400 + p7109 + p7108 + p7107 + p7106 + p7105 + p7104 + p7103 + p7102 + p8399 + p8398 + p8351 + p8350 + p7055 + p7054 + p7053 + p7052 + p7051 + p7050 + p8349 + p8348 + p8347 + p8346 + p8345 + p8344 + p7049 + p7048 + p7001 + p7000 + p8297 + p8296 + p8295 + p8294 + p8293 + p8292 + p8291 + p8290 + p8243 + p8242 + p8241 + p8240 + p8239 + p8238 + p8237 + p8236 + p8189 + p8188 + p8187 + p8186 + p8185 + p8184 + p8183 + p8182 + p6238 + p6239 + p8135 + p8134 + p8133 + p8132 + p8131 + p8130 + p8129 + p8128 + p8081 + p8080 + p8079 + p8078 + p8077 + p8076 + p7534 + p7535 + p7536 + p7537 + p7538 + p7539 + p6240 + p6241 + p6242 + p6243 + p6244 + p6245 + p8075 + p8074 + p8027 + p8026 + p8830 + p8831 + p8832 + p8833 + p8834 + p8835 + p8836 + p8837 + p8025 + p8024 + p7540 + p7541 + p8023 + p8022 + p8021 + p8020 + p7588 + p7589 + p6292 + p6293 + p6294 + p6295 + p6296 + p6297 + p6298 + p6299 + p8884 + p8885 + p8886 + p8887 + p8888 + p8889 + p7590 + p7591 + p7592 + p7593 + p7594 + p7595 + p8890 + p8891 + p5000 + p5001 + p5002 + p5003 + p6346 + p6347 + p6348 + p6349 + p5050 + p5051 + p5052 + p5053 + p5054 + p5055 + p5056 + p5057 + p8938 + p8939 + p7642 + p7643 + p7644 + p7645 + p7646 + p7647 + p7648 + p7649 + p6350 + p6351 + p6352 + p6353 + p8940 + p8941 + p8942 + p8943 + p8944 + p8945 + p7696 + p7697 + p7698 + p7699 + p8992 + p8993 + p8994 + p8995 + p8996 + p8997 + p8998 + p8999 + p5104 + p5105 + p5106 + p5107 + p5108 + p5109 + p6400 + p6401 + p6402 + p6403 + p6404 + p6405 + p6406 + p6407 + p5110 + p5111 + p7700 + p7701 + p7702 + p7703 + p4999 + p4998 + p4997 + p4996 + p4949 + p4948 + p4947 + p4946 + p4945 + p4944 + p4943 + p4942 + p5158 + p5159 + p6454 + p6455 + p6456 + p6457 + p6458 + p6459 + p5160 + p5161 + p5162 + p5163 + p5164 + p5165 + p7750 + p7751 + p7752 + p7753 + p7754 + p7755 + p7756 + p7757 + p6460 + p6461 + p4895 + p4894 + p4893 + p4892 + p4891 + p4890 + p4889 + p4888 + p4841 + p4840 + p4839 + p4838 + p4837 + p4836 + p4835 + p4834 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4780 + p6508 + p6509 + p5212 + p5213 + p5214 + p5215 + p5216 + p5217 + p5218 + p5219 + p7804 + p7805 + p7806 + p7807 + p7808 + p7809 + p6510 + p6511 + p6512 + p6513 + p6514 + p6515 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p7810 + p7811 + p5975 + p5974 + p5973 + p5972 + p5971 + p5970 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p5969 + p5968 + p5921 + p5920 + p5266 + p5267 + p5268 + p5269 + p5919 + p7858 + p7859 + p5918 + p5917 + p6562 + p6563 + p6564 + p6565 + p6566 + p6567 + p6568 + p6569 + p5270 + p5271 + p5272 + p5273 + p5916 + p5915 + p5914 + p7860 + p7861 + p7862 + p7863 + p7864 + p7865 + p5867 + p5866 + p5865 + p5864 + p5863 + p5862 + p5861 + p5860 + p5813 + p5812 + p5811 + p5810 + p5809 + p5808 + p5807 + p5806 + p6616 + p6617 + p6618 + p6619 + p5320 + p5321 + p5322 + p5323 + p5324 + p5325 + p5326 + p5327 + p7912 + p7913 + p7914 + p7915 + p7916 + p7917 + p7918 + p7919 + p6620 + p6621 + p6622 + p6623 + p5759 + p5758 + p5757 + p5756 + p5755 + p5754 + p5753 + p5752 + p5374 + p5375 + p5376 + p5377 + p5378 + p5379 + p5705 + p5704 + p5703 + p5702 + p5701 + p5700 + p7966 + p7967 + p7968 + p7969 + p6670 + p6671 + p6672 + p6673 + p6674 + p6675 + p6676 + p6677 + p5380 + p5381 + p7970 + p7971 + p7972 + p7973 + p6999 + p6998 + p6997 + p6996 + p6995 + p6994 + p5699 + p5698 + p5651 + p5650 + p6947 + p6946 + p6945 + p6944 + p6943 + p6942 + p6941 + p6940 + p5649 + p5648 + p5647 + p5646 + p5645 + p5644 + p6893 + p6892 + p6891 + p6890 + p5597 + p5596 + p5595 + p5594 + p5593 + p5592 + p5591 + p5590 + p6889 + p5428 + p5429 + p6888 + p6887 + p6886 + p6724 + p6725 + p6726 + p6727 + p6728 + p6729 + p5430 + p5431 + p5432 + p5433 + p5434 + p5435 + p5543 + p5542 + p5541 + p5540 + p6839 + p6838 + p6837 + p6836 + p6835 + p6730 + p6731 + p6834 + p6833 + p6832 + p5539 + p5538 + p5537 + p5536 + p6785 + p6784 + p6783 + p6782 + p6781 + p6780 + p5489 + p5488 + p5487 + p5486 + p5485 + p5484 + p5483 + p5482 + p6779 + p6778)",
"processed_size": 5186,
"rewrites": 0
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "search",
"value": 0
},
"task":
{
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 3085
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 1134,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 1134,
"visible_transitions": 0
},
"processed": "MAX(p0 + p9 + p1998 + p1989 + p1980 + p1971 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1944 + p1935 + p1926 + p1917 + p1908 + p1907 + p1906 + p1905 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1890 + p1881 + p1872 + p1863 + p1854 + p1853 + p1852 + p1851 + p1850 + p1849 + p1848 + p1847 + p1846 + p1845 + p1836 + p1827 + p1818 + p1809 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1794 + p1793 + p1792 + p1791 + p1782 + p1773 + p1764 + p1755 + p1746 + p1745 + p1744 + p1743 + p1742 + p1741 + p1740 + p1739 + p1738 + p1737 + p1728 + p1719 + p1710 + p1701 + p2997 + p1692 + p1691 + p1690 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p1689 + p1688 + p1687 + p1686 + p1685 + p1684 + p1683 + p2979 + p2970 + p1674 + p2961 + p1665 + p2952 + p1656 + p2943 + p1647 + p2934 + p2933 + p2932 + p2931 + p2930 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1630 + p2929 + p2928 + p2927 + p2926 + p2925 + p1629 + p1620 + p2916 + p1611 + p2907 + p1602 + p2898 + p1593 + p2889 + p2880 + p1584 + p1583 + p1582 + p1581 + p1580 + p2879 + p2878 + p2877 + p2876 + p2875 + p2874 + p2873 + p2872 + p2871 + p1579 + p1578 + p1577 + p1576 + p1575 + p2862 + p1566 + p2853 + p1557 + p2844 + p1548 + p2835 + p1539 + p1530 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2820 + p1529 + p1528 + p1527 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p2819 + p2818 + p2817 + p1512 + p2808 + p1503 + p2799 + p2790 + p1494 + p2781 + p1485 + p2772 + p2771 + p2770 + p1476 + p1475 + p1474 + p1473 + p1472 + p1471 + p1470 + p2769 + p2768 + p2767 + p2766 + p2765 + p2764 + p2763 + p1469 + p1468 + p1467 + p2754 + p1458 + p2745 + p1449 + p1440 + p2736 + p1431 + p2727 + p1422 + p1421 + p1420 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p1419 + p1418 + p1417 + p1416 + p1415 + p1414 + p1413 + p2709 + p2700 + p1404 + p3996 + p2691 + p3987 + p1395 + p2682 + p3978 + p1386 + p2673 + p3969 + p3960 + p1377 + p2664 + p2663 + p2662 + p2661 + p2660 + p3959 + p3958 + p3957 + p3956 + p3955 + p3954 + p3953 + p3952 + p3951 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p2659 + p2658 + p2657 + p2656 + p2655 + p3942 + p1359 + p1350 + p2646 + p3933 + p1341 + p2637 + p3924 + p1332 + p2628 + p3915 + p1323 + p2619 + p2610 + p3906 + p3905 + p3904 + p3903 + p3902 + p3901 + p3900 + p1314 + p1313 + p1312 + p1311 + p1310 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p1309 + p1308 + p1307 + p1306 + p1305 + p3899 + p3898 + p3897 + p2592 + p3888 + p1296 + p2583 + p3879 + p3870 + p1287 + p2574 + p3861 + p1278 + p2565 + p3852 + p3851 + p3850 + p1269 + p1260 + p2556 + p2555 + p2554 + p2553 + p2552 + p2551 + p2550 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p3843 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1252 + p1251 + p2549 + p2548 + p2547 + p3834 + p1242 + p2538 + p3825 + p1233 + p2529 + p2520 + p3816 + p1224 + p2511 + p3807 + p1215 + p2502 + p2501 + p2500 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p3798 + p3797 + p3796 + p3795 + p3794 + p3793 + p3792 + p3791 + p3790 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p3789 + p3780 + p1199 + p1198 + p1197 + p2484 + p3771 + p1188 + p2475 + p3762 + p1179 + p1170 + p2466 + p3753 + p1161 + p2457 + p3744 + p3743 + p3742 + p3741 + p3740 + p1152 + p1151 + p1150 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p2442 + p2441 + p2440 + p3739 + p3738 + p3737 + p3736 + p3735 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p2439 + p2430 + p3726 + p1134 + p2421 + p3717 + p1125 + p2412 + p3708 + p1116 + p2403 + p1107 + p99 + p90 + p81 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p54 + p45 + p36 + p27 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 + p999 + p990 + p989 + p988 + p987 + p986 + p985 + p984 + p983 + p982 + p981 + p972 + p963 + p954 + p945 + p936 + p935 + p934 + p933 + p932 + p931 + p930 + p929 + p928 + p927 + p918 + p909 + p900 + p3699 + p3690 + p2394 + p2393 + p2392 + p2391 + p2390 + p3689 + p3688 + p3687 + p3686 + p3685 + p3684 + p3683 + p3682 + p3681 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p2389 + p2388 + p2387 + p2386 + p2385 + p3672 + p1089 + p1080 + p2376 + p3663 + p1071 + p2367 + p3654 + p1062 + p2358 + p3645 + p1053 + p2349 + p2340 + p3636 + p3635 + p3634 + p3633 + p3632 + p3631 + p3630 + p1044 + p1043 + p1042 + p1041 + p1040 + p2339 + p2338 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p2331 + p3629 + p3628 + p3627 + p1039 + p1038 + p1037 + p1036 + p1035 + p2322 + p3618 + p1026 + p2313 + p3609 + p3600 + p1017 + p2304 + p1008 + p891 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p864 + p855 + p846 + p837 + p828 + p827 + p826 + p825 + p824 + p823 + p822 + p821 + p820 + p819 + p810 + p801 + p3591 + p2295 + p3582 + p3581 + p3580 + p2286 + p2285 + p2284 + p2283 + p2282 + p2281 + p2280 + p3579 + p3578 + p3577 + p3576 + p3575 + p3574 + p3573 + p2279 + p2278 + p2277 + p3564 + p2268 + p3555 + p2259 + p2250 + p3546 + p2241 + p3537 + p2232 + p2231 + p2230 + p3528 + p3527 + p3526 + p3525 + p3524 + p3523 + p3522 + p3521 + p3520 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p3519 + p3510 + p2214 + p3501 + p2205 + p792 + p783 + p774 + p773 + p772 + p771 + p770 + p769 + p768 + p767 + p766 + p765 + p756 + p747 + p738 + p729 + p720 + p719 + p718 + p717 + p716 + p715 + p714 + p713 + p712 + p711 + p702 + p3492 + p2196 + p3483 + p2187 + p3474 + p3473 + p3472 + p3471 + p3470 + p2178 + p2177 + p2176 + p2175 + p2174 + p2173 + p2172 + p2171 + p2170 + p3469 + p3468 + p3467 + p3466 + p3465 + p2169 + p2160 + p3456 + p2151 + p3447 + p2142 + p3438 + p2133 + p3429 + p3420 + p2124 + p2123 + p2122 + p2121 + p2120 + p3419 + p3418 + p3417 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p2119 + p2118 + p2117 + p2116 + p2115 + p3402 + p2106 + p693 + p684 + p675 + p666 + p665 + p664 + p663 + p662 + p661 + p660 + p659 + p658 + p657 + p648 + p639 + p630 + p621 + p612 + p611 + p610 + p609 + p608 + p607 + p606 + p605 + p604 + p603 + p3393 + p2097 + p3384 + p2088 + p3375 + p2079 + p2070 + p3366 + p3365 + p3364 + p3363 + p3362 + p3361 + p3360 + p2069 + p2068 + p2067 + p2066 + p2065 + p2064 + p2063 + p2062 + p2061 + p3359 + p3358 + p3357 + p2052 + p3348 + p2043 + p3339 + p3330 + p2034 + p3321 + p2025 + p3312 + p3311 + p3310 + p2016 + p2015 + p2014 + p2013 + p2012 + p2011 + p2010 + p3309 + p3308 + p3307 + p3306 + p3305 + p3304 + p3303 + p2009 + p2008 + p2007 + p594 + p585 + p576 + p567 + p558 + p557 + p556 + p555 + p554 + p553 + p552 + p551 + p550 + p549 + p540 + p531 + p522 + p513 + p504 + p503 + p502 + p501 + p500 + p3294 + p3285 + p3276 + p4005 + p4006 + p4007 + p4008 + p4009 + p3267 + p3258 + p3257 + p4010 + p4011 + p4012 + p4013 + p4014 + p3256 + p3255 + p3254 + p3253 + p3252 + p3251 + p3250 + p3249 + p3240 + p3231 + p4023 + p3222 + p3213 + p3204 + p3203 + p3202 + p4032 + p3201 + p3200 + p499 + p498 + p497 + p496 + p495 + p486 + p477 + p468 + p459 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p432 + p423 + p4041 + p414 + p405 + p4050 + p4059 + p3199 + p3198 + p3197 + p3196 + p3195 + p3186 + p4060 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4067 + p4068 + p3177 + p3168 + p3159 + p3150 + p3149 + p4077 + p3148 + p3147 + p3146 + p3145 + p3144 + p3143 + p3142 + p3141 + p3132 + p3123 + p4086 + p3114 + p3105 + p396 + p395 + p394 + p393 + p392 + p391 + p390 + p389 + p388 + p387 + p378 + p369 + p360 + p351 + p342 + p341 + p4095 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p333 + p324 + p315 + p306 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3078 + p4365 + p3069 + p3060 + p4356 + p3051 + p4347 + p3042 + p3041 + p3040 + p4104 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p3039 + p3038 + p3037 + p3036 + p3035 + p3034 + p3033 + p4329 + p4320 + p4113 + p4114 + p4115 + p4116 + p4117 + p4118 + p4119 + p3024 + p4311 + p3015 + p4302 + p3006 + p297 + p288 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p270 + p261 + p252 + p243 + p4120 + p4121 + p4122 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p225 + p216 + p207 + p4131 + p4293 + p4284 + p4283 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p4276 + p4275 + p4266 + p4257 + p4140 + p4149 + p4248 + p4239 + p4230 + p4229 + p4228 + p4227 + p4226 + p4225 + p4224 + p4223 + p4222 + p4221 + p4212 + p4203 + p198 + p189 + p180 + p179 + p178 + p4158 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p162 + p153 + p144 + p135 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p108 + p4167 + p4168 + p4169 + p4194 + p4185 + p4176 + p4175 + p4174 + p4173 + p4172 + p4171 + p4170)",
"processed_size": 8780,
"rewrites": 0
},
"result":
{
"edges": 64,
"markings": 65,
"produced_by": "search",
"value": 56
},
"task":
{
"compoundnumber": 15,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "bound preserving/insertion"
},
"type": "dfs"
},
"type": "bound",
"workflow": "search"
}
}
],
"exit":
{
"error": null,
"memory": 851544,
"runtime": 3572.000000,
"signal": "User defined signal 2",
"timelimitreached": true
},
"files":
{
"JSON": "UpperBounds.json",
"formula": "UpperBounds.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*) : MAX(*)"
},
"net":
{
"arcs": 123063,
"conflict_clusters": 7779,
"places": 10062,
"places_significant": 2209,
"singleton_clusters": 0,
"transitions": 21244
},
"result":
{
"interim_value": "8 unknown 0 0 56 0 8 0 56 64 0 8 8 64 8 8 ",
"preliminary_value": "8 unknown 0 0 56 0 8 0 56 64 0 8 8 64 8 8 "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 10062, Transitions: 21244
lola: @ trans T-startNeg__end
lola: @ trans T-poll__handleAI2
lola: @ trans T-poll__handleAI1
lola: @ trans T-poll__handleRI
lola: @ trans T-poll__handleAnsP2
lola: @ trans T-sendAnnPs__start
lola: @ trans T-startNeg__start
lola: @ trans T-sendAnnPs__send
lola: @ trans T-sendAnnPs__end
lola: @ trans T-poll__iAmPrimary
lola: @ trans T-poll__end
lola: @ trans T-poll__handleAnsP3
lola: @ trans T-poll__handleAnnP1
lola: @ trans T-startSec
lola: @ trans T-poll__handleRP
lola: @ trans T-poll__handleAskP
lola: @ trans T-poll__handleAnnP2
lola: @ trans T-poll__start
lola: @ trans T-poll__handleAnsP1
lola: @ trans T-poll__handleAnsP4
lola: @ trans T-startNeg__send
lola: @ trans T-poll__iAmSecondary
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 31306/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 321984
lola: finding significant places
lola: 10062 places, 21244 transitions, 2209 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from UpperBounds.xml
lola: place invariant simplifies atomic proposition
lola: before: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9793 + p9794 + p9795 + p9796 + p9797 + p9798 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 + p9857 + p9858 + p9859 + p9860 + p9861 + p9862 <= 0)
lola: after: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p0 + p9 + p1998 + p1989 + p1980 + p1971 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1944 + p1935 + p1926 + p1917 + p1908 + p1907 + p1906 + p1905 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1890 + p1881 + p1872 + p1863 + p1854 + p1853 + p1852 + p1851 + p1850 + p1849 + p1848 + p1847 + p1846 + p1845 + p1836 + p1827 + p1818 + p1809 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1794 + p1793 + p1792 + p1791 + p1782 + p1773 + p1764 + p1755 + p1746 + p1745 + p1744 + p1743 + p1742 + p1741 + p1740 + p1739 + p1738 + p1737 + p1728 + p1719 + p1710 + p1701 + p2997 + p1692 + p1691 + p1690 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p1689 + p1688 + p1687 + p1686 + p1685 + p1684 + p1683 + p2979 + p2970 + p1674 + p2961 + p1665 + p2952 + p1656 + p2943 + p1647 + p2934 + p2933 + p2932 + p2931 + p2930 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1630 + p2929 + p2928 + p2927 + p2926 + p2925 + p1629 + p1620 + p2916 + p1611 + p2907 + p1602 + p2898 + p1593 + p2889 + p2880 + p1584 + p1583 + p1582 + p1581 + p1580 + p2879 + p2878 + p2877 + p2876 + p2875 + p2874 + p2873 + p2872 + p2871 + p1579 + p1578 + p1577 + p1576 + p1575 + p2862 + p1566 + p2853 + p1557 + p2844 + p1548 + p2835 + p1539 + p1530 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2820 + p1529 + p1528 + p1527 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p2819 + p2818 + p2817 + p1512 + p2808 + p1503 + p2799 + p2790 + p1494 + p2781 + p1485 + p2772 + p2771 + p2770 + p1476 + p1475 + p1474 + p1473 + p1472 + p1471 + p1470 + p2769 + p2768 + p2767 + p2766 + p2765 + p2764 + p2763 + p1469 + p1468 + p1467 + p2754 + p1458 + p2745 + p1449 + p1440 + p2736 + p1431 + p2727 + p1422 + p1421 + p1420 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p1419 + p1418 + p1417 + p1416 + p1415 + p1414 + p1413 + p2709 + p2700 + p1404 + p3996 + p2691 + p3987 + p1395 + p2682 + p3978 + p1386 + p2673 + p3969 + p3960 + p1377 + p2664 + p2663 + p2662 + p2661 + p2660 + p3959 + p3958 + p3957 + p3956 + p3955 + p3954 + p3953 + p3952 + p3951 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p2659 + p2658 + p2657 + p2656 + p2655 + p3942 + p1359 + p1350 + p2646 + p3933 + p1341 + p2637 + p3924 + p1332 + p2628 + p3915 + p1323 + p2619 + p2610 + p3906 + p3905 + p3904 + p3903 + p3902 + p3901 + p3900 + p1314 + p1313 + p1312 + p1311 + p1310 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p1309 + p1308 + p1307 + p1306 + p1305 + p3899 + p3898 + p3897 + p2592 + p3888 + p1296 + p2583 + p3879 + p3870 + p1287 + p2574 + p3861 + p1278 + p2565 + p3852 + p3851 + p3850 + p1269 + p1260 + p2556 + p2555 + p2554 + p2553 + p2552 + p2551 + p2550 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p3843 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1252 + p1251 + p2549 + p2548 + p2547 + p3834 + p1242 + p2538 + p3825 + p1233 + p2529 + p2520 + p3816 + p1224 + p2511 + p3807 + p1215 + p2502 + p2501 + p2500 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p3798 + p3797 + p3796 + p3795 + p3794 + p3793 + p3792 + p3791 + p3790 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p3789 + p3780 + p1199 + p1198 + p1197 + p2484 + p3771 + p1188 + p2475 + p3762 + p1179 + p1170 + p2466 + p3753 + p1161 + p2457 + p3744 + p3743 + p3742 + p3741 + p3740 + p1152 + p1151 + p1150 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p2442 + p2441 + p2440 + p3739 + p3738 + p3737 + p3736 + p3735 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p2439 + p2430 + p3726 + p1134 + p2421 + p3717 + p1125 + p2412 + p3708 + p1116 + p2403 + p1107 + p99 + p90 + p81 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p54 + p45 + p36 + p27 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 + p999 + p990 + p989 + p988 + p987 + p986 + p985 + p984 + p983 + p982 + p981 + p972 + p963 + p954 + p945 + p936 + p935 + p934 + p933 + p932 + p931 + p930 + p929 + p928 + p927 + p918 + p909 + p900 + p3699 + p3690 + p2394 + p2393 + p2392 + p2391 + p2390 + p3689 + p3688 + p3687 + p3686 + p3685 + p3684 + p3683 + p3682 + p3681 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p2389 + p2388 + p2387 + p2386 + p2385 + p3672 + p1089 + p1080 + p2376 + p3663 + p1071 + p2367 + p3654 + p1062 + p2358 + p3645 + p1053 + p2349 + p2340 + p3636 + p3635 + p3634 + p3633 + p3632 + p3631 + p3630 + p1044 + p1043 + p1042 + p1041 + p1040 + p2339 + p2338 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p2331 + p3629 + p3628 + p3627 + p1039 + p1038 + p1037 + p1036 + p1035 + p2322 + p3618 + p1026 + p2313 + p3609 + p3600 + p1017 + p2304 + p1008 + p891 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p864 + p855 + p846 + p837 + p828 + p827 + p826 + p825 + p824 + p823 + p822 + p821 + p820 + p819 + p810 + p801 + p3591 + p2295 + p3582 + p3581 + p3580 + p2286 + p2285 + p2284 + p2283 + p2282 + p2281 + p2280 + p3579 + p3578 + p3577 + p3576 + p3575 + p3574 + p3573 + p2279 + p2278 + p2277 + p3564 + p2268 + p3555 + p2259 + p2250 + p3546 + p2241 + p3537 + p2232 + p2231 + p2230 + p3528 + p3527 + p3526 + p3525 + p3524 + p3523 + p3522 + p3521 + p3520 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p3519 + p3510 + p2214 + p3501 + p2205 + p792 + p783 + p774 + p773 + p772 + p771 + p770 + p769 + p768 + p767 + p766 + p765 + p756 + p747 + p738 + p729 + p720 + p719 + p718 + p717 + p716 + p715 + p714 + p713 + p712 + p711 + p702 + p3492 + p2196 + p3483 + p2187 + p3474 + p3473 + p3472 + p3471 + p3470 + p2178 + p2177 + p2176 + p2175 + p2174 + p2173 + p2172 + p2171 + p2170 + p3469 + p3468 + p3467 + p3466 + p3465 + p2169 + p2160 + p3456 + p2151 + p3447 + p2142 + p3438 + p2133 + p3429 + p3420 + p2124 + p2123 + p2122 + p2121 + p2120 + p3419 + p3418 + p3417 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p2119 + p2118 + p2117 + p2116 + p2115 + p3402 + p2106 + p693 + p684 + p675 + p666 + p665 + p664 + p663 + p662 + p661 + p660 + p659 + p658 + p657 + p648 + p639 + p630 + p621 + p612 + p611 + p610 + p609 + p608 + p607 + p606 + p605 + p604 + p603 + p3393 + p2097 + p3384 + p2088 + p3375 + p2079 + p2070 + p3366 + p3365 + p3364 + p3363 + p3362 + p3361 + p3360 + p2069 + p2068 + p2067 + p2066 + p2065 + p2064 + p2063 + p2062 + p2061 + p3359 + p3358 + p3357 + p2052 + p3348 + p2043 + p3339 + p3330 + p2034 + p3321 + p2025 + p3312 + p3311 + p3310 + p2016 + p2015 + p2014 + p2013 + p2012 + p2011 + p2010 + p3309 + p3308 + p3307 + p3306 + p3305 + p3304 + p3303 + p2009 + p2008 + p2007 + p594 + p585 + p576 + p567 + p558 + p557 + p556 + p555 + p554 + p553 + p552 + p551 + p550 + p549 + p540 + p531 + p522 + p513 + p504 + p503 + p502 + p501 + p500 + p3294 + p3285 + p3276 + p4005 + p4006 + p4007 + p4008 + p4009 + p3267 + p3258 + p3257 + p4010 + p4011 + p4012 + p4013 + p4014 + p3256 + p3255 + p3254 + p3253 + p3252 + p3251 + p3250 + p3249 + p3240 + p3231 + p4023 + p3222 + p3213 + p3204 + p3203 + p3202 + p4032 + p3201 + p3200 + p499 + p498 + p497 + p496 + p495 + p486 + p477 + p468 + p459 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p432 + p423 + p4041 + p414 + p405 + p4050 + p4059 + p3199 + p3198 + p3197 + p3196 + p3195 + p3186 + p4060 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4067 + p4068 + p3177 + p3168 + p3159 + p3150 + p3149 + p4077 + p3148 + p3147 + p3146 + p3145 + p3144 + p3143 + p3142 + p3141 + p3132 + p3123 + p4086 + p3114 + p3105 + p396 + p395 + p394 + p393 + p392 + p391 + p390 + p389 + p388 + p387 + p378 + p369 + p360 + p351 + p342 + p341 + p4095 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p333 + p324 + p315 + p306 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3078 + p4365 + p3069 + p3060 + p4356 + p3051 + p4347 + p3042 + p3041 + p3040 + p4104 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p3039 + p3038 + p3037 + p3036 + p3035 + p3034 + p3033 + p4329 + p4320 + p4113 + p4114 + p4115 + p4116 + p4117 + p4118 + p4119 + p3024 + p4311 + p3015 + p4302 + p3006 + p297 + p288 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p270 + p261 + p252 + p243 + p4120 + p4121 + p4122 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p225 + p216 + p207 + p4131 + p4293 + p4284 + p4283 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p4276 + p4275 + p4266 + p4257 + p4140 + p4149 + p4248 + p4239 + p4230 + p4229 + p4228 + p4227 + p4226 + p4225 + p4224 + p4223 + p4222 + p4221 + p4212 + p4203 + p198 + p189 + p180 + p179 + p178 + p4158 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p162 + p153 + p144 + p135 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p108 + p4167 + p4168 + p4169 + p4194 + p4185 + p4176 + p4175 + p4174 + p4173 + p4172 + p4171 + p4170 + p4177 + p4178 + p4179 + p4180 + p4181 + p4182 + p4183 + p4184 + p4186 + p4187 + p4188 + p4189 + p4190 + p4191 + p4192 + p4193 + p4195 + p4196 + p4197 + p4198 + p4199 + p4166 + p4165 + p4164 + p4163 + p4162 + p4161 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p4160 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p4159 + p4157 + p4156 + p4155 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p4154 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p4153 + p199 + p4200 + p4201 + p4202 + p4152 + p4204 + p4205 + p4206 + p4207 + p4208 + p4209 + p4210 + p4211 + p4151 + p4213 + p4214 + p4215 + p4216 + p4217 + p4218 + p4219 + p4220 + p4150 + p4231 + p4232 + p4233 + p4234 + p4235 + p4236 + p4237 + p4238 + p4240 + p4241 + p4242 + p4243 + p4244 + p4245 + p4246 + p4247 + p4249 + p4148 + p4147 + p4146 + p4145 + p4144 + p4143 + p4142 + p4141 + p4250 + p4251 + p4252 + p4253 + p4254 + p4255 + p4256 + p4258 + p4259 + p4260 + p4261 + p4262 + p4263 + p4264 + p4265 + p4267 + p4268 + p4269 + p4270 + p4271 + p4272 + p4273 + p4274 + p4139 + p4138 + p4137 + p4136 + p4135 + p4285 + p4286 + p4287 + p4288 + p4289 + p4290 + p4291 + p4292 + p4134 + p4294 + p4295 + p4296 + p4297 + p4298 + p4299 + p4133 + p4132 + p4130 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p4129 + p4128 + p4127 + p4126 + p4125 + p4124 + p4123 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p289 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p298 + p299 + p3000 + p3001 + p3002 + p3003 + p3004 + p3005 + p3007 + p3008 + p3009 + p4300 + p4301 + p4303 + p4304 + p4305 + p4306 + p4307 + p4308 + p4309 + p3010 + p3011 + p3012 + p3013 + p3014 + p3016 + p3017 + p3018 + p3019 + p4310 + p4312 + p4313 + p4314 + p4315 + p4316 + p4317 + p4318 + p4319 + p3020 + p3021 + p3022 + p3023 + p3025 + p3026 + p3027 + p3028 + p3029 + p4112 + p4321 + p4322 + p4323 + p4324 + p4325 + p4326 + p4327 + p4328 + p4111 + p3030 + p3031 + p3032 + p4110 + p4109 + p4108 + p4107 + p4106 + p4105 + p4339 + p4103 + p4102 + p4101 + p3043 + p3044 + p3045 + p3046 + p3047 + p3048 + p3049 + p4340 + p4341 + p4342 + p4343 + p4344 + p4345 + p4346 + p4100 + p4348 + p4349 + p3050 + p3052 + p3053 + p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p4350 + p4351 + p4352 + p4353 + p4354 + p4355 + p4357 + p4358 + p4359 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p4360 + p4361 + p4362 + p4363 + p4364 + p4366 + p4367 + p4368 + p4369 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3079 + p4370 + p4371 + p4372 + p4373 + p3080 + p3081 + p3082 + p3083 + p3084 + p3085 + p3086 + p3097 + p3098 + p3099 + p300 + p301 + p302 + p303 + p304 + p305 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p4099 + p4098 + p4097 + p4096 + p4094 + p4093 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p4092 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p4091 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p4090 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p397 + p398 + p399 + p3100 + p3101 + p3102 + p3103 + p3104 + p3106 + p3107 + p3108 + p3109 + p3110 + p3111 + p3112 + p3113 + p4089 + p3115 + p3116 + p3117 + p3118 + p3119 + p4088 + p4087 + p4085 + p4084 + p4083 + p4082 + p4081 + p4080 + p3120 + p3121 + p3122 + p3124 + p3125 + p3126 + p3127 + p3128 + p3129 + p3130 + p3131 + p3133 + p3134 + p3135 + p3136 + p3137 + p3138 + p3139 + p3140 + p4079 + p4078 + p4076 + p4075 + p4074 + p4073 + p4072 + p4071 + p4070 + p3151 + p3152 + p3153 + p3154 + p3155 + p3156 + p3157 + p3158 + p3160 + p3161 + p3162 + p3163 + p3164 + p3165 + p3166 + p3167 + p3169 + p3170 + p3171 + p3172 + p3173 + p3174 + p3175 + p3176 + p3178 + p3179 + p4069 + p3180 + p3181 + p3182 + p3183 + p3184 + p3185 + p3187 + p3188 + p3189 + p3190 + p3191 + p3192 + p3193 + p3194 + p4058 + p4057 + p4056 + p4055 + p4054 + p4053 + p4052 + p4051 + p400 + p401 + p402 + p403 + p404 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p415 + p416 + p417 + p418 + p419 + p4049 + p4048 + p4047 + p4046 + p4045 + p4044 + p4043 + p4042 + p4040 + p420 + p421 + p422 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p4039 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4031 + p4030 + p3205 + p3206 + p3207 + p3208 + p3209 + p3210 + p3211 + p3212 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p4029 + p3220 + p3221 + p4028 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p4027 + p4026 + p4025 + p4024 + p4022 + p4021 + p4020 + p3230 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p4019 + p4018 + p4017 + p4016 + p4015 + p3259 + p3260 + p3261 + p3262 + p3263 + p3264 + p3265 + p3266 + p3268 + p3269 + p4004 + p4003 + p4002 + p4001 + p3270 + p3271 + p3272 + p3273 + p3274 + p3275 + p4000 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3283 + p3284 + p3286 + p3287 + p3288 + p3289 + p3290 + p3291 + p3292 + p3293 + p3295 + p3296 + p3297 + p3298 + p3299 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p595 + p596 + p597 + p598 + p599 + p2000 + p2001 + p2002 + p2003 + p2004 + p2005 + p2006 + p3300 + p3301 + p3302 + p2017 + p2018 + p2019 + p3313 + p3314 + p3315 + p3316 + p3317 + p3318 + p3319 + p2020 + p2021 + p2022 + p2023 + p2024 + p2026 + p2027 + p2028 + p2029 + p3320 + p3322 + p3323 + p3324 + p3325 + p3326 + p3327 + p3328 + p3329 + p2030 + p2031 + p2032 + p2033 + p2035 + p2036 + p2037 + p2038 + p2039 + p3331 + p3332 + p3333 + p3334 + p3335 + p3336 + p3337 + p3338 + p2040 + p2041 + p2042 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p3340 + p3341 + p3342 + p3343 + p3344 + p3345 + p3346 + p3347 + p3349 + p2050 + p2051 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p3350 + p3351 + p3352 + p3353 + p3354 + p3355 + p3356 + p2060 + p3367 + p3368 + p3369 + p2071 + p2072 + p2073 + p2074 + p2075 + p2076 + p2077 + p2078 + p3370 + p3371 + p3372 + p3373 + p3374 + p3376 + p3377 + p3378 + p3379 + p2080 + p2081 + p2082 + p2083 + p2084 + p2085 + p2086 + p2087 + p2089 + p3380 + p3381 + p3382 + p3383 + p3385 + p3386 + p3387 + p3388 + p3389 + p2090 + p2091 + p2092 + p2093 + p2094 + p2095 + p2096 + p2098 + p2099 + p3390 + p3391 + p3392 + p3394 + p3395 + p3396 + p3397 + p3398 + p3399 + p600 + p601 + p602 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p2100 + p2101 + p2102 + p2103 + p2104 + p2105 + p2107 + p2108 + p2109 + p3400 + p3401 + p3403 + p3404 + p3405 + p3406 + p3407 + p3408 + p3409 + p2110 + p2111 + p2112 + p2113 + p2114 + p3410 + p2125 + p2126 + p2127 + p2128 + p2129 + p3421 + p3422 + p3423 + p3424 + p3425 + p3426 + p3427 + p3428 + p2130 + p2131 + p2132 + p2134 + p2135 + p2136 + p2137 + p2138 + p2139 + p3430 + p3431 + p3432 + p3433 + p3434 + p3435 + p3436 + p3437 + p3439 + p2140 + p2141 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2149 + p3440 + p3441 + p3442 + p3443 + p3444 + p3445 + p3446 + p3448 + p3449 + p2150 + p2152 + p2153 + p2154 + p2155 + p2156 + p2157 + p2158 + p2159 + p3450 + p3451 + p3452 + p3453 + p3454 + p3455 + p3457 + p3458 + p3459 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p3460 + p3461 + p3462 + p3463 + p3464 + p2179 + p3475 + p3476 + p3477 + p3478 + p3479 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2186 + p2188 + p2189 + p3480 + p3481 + p3482 + p3484 + p3485 + p3486 + p3487 + p3488 + p3489 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2197 + p2198 + p2199 + p3490 + p3491 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p700 + p701 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p2200 + p2201 + p2202 + p2203 + p2204 + p2206 + p2207 + p2208 + p2209 + p3500 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3508 + p3509 + p2210 + p2211 + p2212 + p2213 + p2215 + p2216 + p2217 + p2218 + p2219 + p3511 + p3512 + p3513 + p3514 + p3515 + p3516 + p3517 + p3518 + p2220 + p2221 + p2222 + p3529 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p3530 + p3531 + p3532 + p3533 + p3534 + p3535 + p3536 + p3538 + p3539 + p2240 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2248 + p2249 + p3540 + p3541 + p3542 + p3543 + p3544 + p3545 + p3547 + p3548 + p3549 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p3550 + p3551 + p3552 + p3553 + p3554 + p3556 + p3557 + p3558 + p3559 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2269 + p3560 + p3561 + p3562 + p3563 + p3565 + p3566 + p3567 + p3568 + p3569 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p3570 + p3571 + p3572 + p2287 + p2288 + p2289 + p3583 + p3584 + p3585 + p3586 + p3587 + p3588 + p3589 + p2290 + p2291 + p2292 + p2293 + p2294 + p2296 + p2297 + p2298 + p2299 + p3590 + p3592 + p3593 + p3594 + p3595 + p3596 + p3597 + p3598 + p3599 + p800 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1009 + p2300 + p2301 + p2302 + p2303 + p2305 + p2306 + p2307 + p2308 + p2309 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1018 + p1019 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p2310 + p2311 + p2312 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1027 + p1028 + p1029 + p3610 + p3611 + p3612 + p3613 + p3614 + p3615 + p3616 + p3617 + p3619 + p2320 + p2321 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p1030 + p1031 + p1032 + p1033 + p1034 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p2330 + p1045 + p1046 + p1047 + p1048 + p1049 + p3637 + p3638 + p3639 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p1050 + p1051 + p1052 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p3640 + p3641 + p3642 + p3643 + p3644 + p3646 + p3647 + p3648 + p3649 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2359 + p1060 + p1061 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p3650 + p3651 + p3652 + p3653 + p3655 + p3656 + p3657 + p3658 + p3659 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2368 + p2369 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p3660 + p3661 + p3662 + p3664 + p3665 + p3666 + p3667 + p3668 + p3669 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p3670 + p3671 + p3673 + p3674 + p3675 + p3676 + p3677 + p3678 + p3679 + p2380 + p2381 + p2382 + p2383 + p2384 + p1099 + p3680 + p2395 + p2396 + p2397 + p2398 + p2399 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3697 + p3698 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p37 + p38 + p39 + p40 + p41 + p42 + p43 + p44 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1108 + p1109 + p2400 + p2401 + p2402 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1117 + p1118 + p1119 + p3700 + p3701 + p3702 + p3703 + p3704 + p3705 + p3706 + p3707 + p3709 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p1120 + p1121 + p1122 + p1123 + p1124 + p1126 + p1127 + p1128 + p1129 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3718 + p3719 + p2420 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p1130 + p1131 + p1132 + p1133 + p1135 + p1136 + p1137 + p1138 + p1139 + p3720 + p3721 + p3722 + p3723 + p3724 + p3725 + p3727 + p3728 + p3729 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p1140 + p1141 + p1142 + p3730 + p3731 + p3732 + p3733 + p3734 + p2449 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p3745 + p3746 + p3747 + p3748 + p3749 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2458 + p2459 + p1160 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p3750 + p3751 + p3752 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2467 + p2468 + p2469 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p3760 + p3761 + p3763 + p3764 + p3765 + p3766 + p3767 + p3768 + p3769 + p2470 + p2471 + p2472 + p2473 + p2474 + p2476 + p2477 + p2478 + p2479 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1189 + p3770 + p3772 + p3773 + p3774 + p3775 + p3776 + p3777 + p3778 + p3779 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p3781 + p3782 + p3783 + p3784 + p3785 + p3786 + p3787 + p3788 + p2490 + p2491 + p2492 + p3799 + p1207 + p1208 + p1209 + p2503 + p2504 + p2505 + p2506 + p2507 + p2508 + p2509 + p1210 + p1211 + p1212 + p1213 + p1214 + p1216 + p1217 + p1218 + p1219 + p3800 + p3801 + p3802 + p3803 + p3804 + p3805 + p3806 + p3808 + p3809 + p2510 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p1220 + p1221 + p1222 + p1223 + p1225 + p1226 + p1227 + p1228 + p1229 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3817 + p3818 + p3819 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p1230 + p1231 + p1232 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p3820 + p3821 + p3822 + p3823 + p3824 + p3826 + p3827 + p3828 + p3829 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2539 + p1240 + p1241 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p3830 + p3831 + p3832 + p3833 + p3835 + p3836 + p3837 + p3838 + p3839 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p1250 + p3840 + p3841 + p3842 + p2557 + p2558 + p2559 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p2560 + p2561 + p2562 + p2563 + p2564 + p2566 + p2567 + p2568 + p2569 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1279 + p3860 + p3862 + p3863 + p3864 + p3865 + p3866 + p3867 + p3868 + p3869 + p2570 + p2571 + p2572 + p2573 + p2575 + p2576 + p2577 + p2578 + p2579 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1288 + p1289 + p3871 + p3872 + p3873 + p3874 + p3875 + p3876 + p3877 + p3878 + p2580 + p2581 + p2582 + p2584 + p2585 + p2586 + p2587 + p2588 + p2589 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1297 + p1298 + p1299 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p3886 + p3887 + p3889 + p2590 + p2591 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p3890 + p3891 + p3892 + p3893 + p3894 + p3895 + p3896 + p1300 + p1301 + p1302 + p1303 + p1304 + p2600 + p1315 + p1316 + p1317 + p1318 + p1319 + p3907 + p3908 + p3909 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2617 + p2618 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p3910 + p3911 + p3912 + p3913 + p3914 + p3916 + p3917 + p3918 + p3919 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p1330 + p1331 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p3920 + p3921 + p3922 + p3923 + p3925 + p3926 + p3927 + p3928 + p3929 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2638 + p2639 + p1340 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p3930 + p3931 + p3932 + p3934 + p3935 + p3936 + p3937 + p3938 + p3939 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p3940 + p3941 + p3943 + p3944 + p3945 + p3946 + p3947 + p3948 + p3949 + p2650 + p2651 + p2652 + p2653 + p2654 + p1369 + p3950 + p2665 + p2666 + p2667 + p2668 + p2669 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1378 + p1379 + p3961 + p3962 + p3963 + p3964 + p3965 + p3966 + p3967 + p3968 + p2670 + p2671 + p2672 + p2674 + p2675 + p2676 + p2677 + p2678 + p2679 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1387 + p1388 + p1389 + p3970 + p3971 + p3972 + p3973 + p3974 + p3975 + p3976 + p3977 + p3979 + p2680 + p2681 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p1390 + p1391 + p1392 + p1393 + p1394 + p1396 + p1397 + p1398 + p1399 + p3980 + p3981 + p3982 + p3983 + p3984 + p3985 + p3986 + p3988 + p3989 + p2690 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2699 + p3990 + p3991 + p3992 + p3993 + p3994 + p3995 + p3997 + p3998 + p3999 + p1400 + p1401 + p1402 + p1403 + p1405 + p1406 + p1407 + p1408 + p1409 + p2701 + p2702 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p1410 + p1411 + p1412 + p2719 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2728 + p2729 + p1430 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p2730 + p2731 + p2732 + p2733 + p2734 + p2735 + p2737 + p2738 + p2739 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p2740 + p2741 + p2742 + p2743 + p2744 + p2746 + p2747 + p2748 + p2749 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1459 + p2750 + p2751 + p2752 + p2753 + p2755 + p2756 + p2757 + p2758 + p2759 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p2760 + p2761 + p2762 + p1477 + p1478 + p1479 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p1480 + p1481 + p1482 + p1483 + p1484 + p1486 + p1487 + p1488 + p1489 + p2780 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p2788 + p2789 + p1490 + p1491 + p1492 + p1493 + p1495 + p1496 + p1497 + p1498 + p1499 + p2791 + p2792 + p2793 + p2794 + p2795 + p2796 + p2797 + p2798 + p1500 + p1501 + p1502 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2809 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p1520 + p2827 + p2828 + p2829 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p2830 + p2831 + p2832 + p2833 + p2834 + p2836 + p2837 + p2838 + p2839 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1549 + p2840 + p2841 + p2842 + p2843 + p2845 + p2846 + p2847 + p2848 + p2849 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1558 + p1559 + p2850 + p2851 + p2852 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1567 + p1568 + p1569 + p2860 + p2861 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p1570 + p1571 + p1572 + p1573 + p1574 + p2870 + p1585 + p1586 + p1587 + p1588 + p1589 + p2881 + p2882 + p2883 + p2884 + p2885 + p2886 + p2887 + p2888 + p1590 + p1591 + p1592 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 + p2890 + p2891 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p2899 + p1600 + p1601 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p2900 + p2901 + p2902 + p2903 + p2904 + p2905 + p2906 + p2908 + p2909 + p1610 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2917 + p2918 + p2919 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p2920 + p2921 + p2922 + p2923 + p2924 + p1639 + p2935 + p2936 + p2937 + p2938 + p2939 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1648 + p1649 + p2940 + p2941 + p2942 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1657 + p1658 + p1659 + p2950 + p2951 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p1660 + p1661 + p1662 + p1663 + p1664 + p1666 + p1667 + p1668 + p1669 + p2960 + p2962 + p2963 + p2964 + p2965 + p2966 + p2967 + p2968 + p2969 + p1670 + p1671 + p1672 + p1673 + p1675 + p1676 + p1677 + p1678 + p1679 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p2977 + p2978 + p1680 + p1681 + p1682 + p2989 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2998 + p2999 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1711 + p1712 + p1713 + p1714 + p1715 + p1716 + p1717 + p1718 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1801 + p1802 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1834 + p1835 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1862 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1882 + p1883 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1918 + p1919 + p1920 + p1921 + p1922 + p1923 + p1924 + p1925 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1933 + p1934 + p1936 + p1937 + p1938 + p1939 + p1940 + p1941 + p1942 + p1943 + p1945 + p1946 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1963 + p1964 + p1965 + p1966 + p1967 + p1968 + p1969 + p1970 + p1972 + p1973 + p1974 + p1975 + p1976 + p1977 + p1978 + p1979 + p1981 + p1982 + p1983 + p1984 + p1985 + p1986 + p1987 + p1988 + p1990 + p1991 + p1992 + p1993 + p1994 + p1995 + p1996 + p1997 + p1999 + p8 + p7 + p6 + p5 + p4 + p3 + p2 + p1 <= 0)
lola: after: (p0 + p9 + p1998 + p1989 + p1980 + p1971 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1944 + p1935 + p1926 + p1917 + p1908 + p1907 + p1906 + p1905 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1890 + p1881 + p1872 + p1863 + p1854 + p1853 + p1852 + p1851 + p1850 + p1849 + p1848 + p1847 + p1846 + p1845 + p1836 + p1827 + p1818 + p1809 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1794 + p1793 + p1792 + p1791 + p1782 + p1773 + p1764 + p1755 + p1746 + p1745 + p1744 + p1743 + p1742 + p1741 + p1740 + p1739 + p1738 + p1737 + p1728 + p1719 + p1710 + p1701 + p2997 + p1692 + p1691 + p1690 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p1689 + p1688 + p1687 + p1686 + p1685 + p1684 + p1683 + p2979 + p2970 + p1674 + p2961 + p1665 + p2952 + p1656 + p2943 + p1647 + p2934 + p2933 + p2932 + p2931 + p2930 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1630 + p2929 + p2928 + p2927 + p2926 + p2925 + p1629 + p1620 + p2916 + p1611 + p2907 + p1602 + p2898 + p1593 + p2889 + p2880 + p1584 + p1583 + p1582 + p1581 + p1580 + p2879 + p2878 + p2877 + p2876 + p2875 + p2874 + p2873 + p2872 + p2871 + p1579 + p1578 + p1577 + p1576 + p1575 + p2862 + p1566 + p2853 + p1557 + p2844 + p1548 + p2835 + p1539 + p1530 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2820 + p1529 + p1528 + p1527 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p2819 + p2818 + p2817 + p1512 + p2808 + p1503 + p2799 + p2790 + p1494 + p2781 + p1485 + p2772 + p2771 + p2770 + p1476 + p1475 + p1474 + p1473 + p1472 + p1471 + p1470 + p2769 + p2768 + p2767 + p2766 + p2765 + p2764 + p2763 + p1469 + p1468 + p1467 + p2754 + p1458 + p2745 + p1449 + p1440 + p2736 + p1431 + p2727 + p1422 + p1421 + p1420 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p1419 + p1418 + p1417 + p1416 + p1415 + p1414 + p1413 + p2709 + p2700 + p1404 + p3996 + p2691 + p3987 + p1395 + p2682 + p3978 + p1386 + p2673 + p3969 + p3960 + p1377 + p2664 + p2663 + p2662 + p2661 + p2660 + p3959 + p3958 + p3957 + p3956 + p3955 + p3954 + p3953 + p3952 + p3951 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p2659 + p2658 + p2657 + p2656 + p2655 + p3942 + p1359 + p1350 + p2646 + p3933 + p1341 + p2637 + p3924 + p1332 + p2628 + p3915 + p1323 + p2619 + p2610 + p3906 + p3905 + p3904 + p3903 + p3902 + p3901 + p3900 + p1314 + p1313 + p1312 + p1311 + p1310 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p1309 + p1308 + p1307 + p1306 + p1305 + p3899 + p3898 + p3897 + p2592 + p3888 + p1296 + p2583 + p3879 + p3870 + p1287 + p2574 + p3861 + p1278 + p2565 + p3852 + p3851 + p3850 + p1269 + p1260 + p2556 + p2555 + p2554 + p2553 + p2552 + p2551 + p2550 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p3843 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1252 + p1251 + p2549 + p2548 + p2547 + p3834 + p1242 + p2538 + p3825 + p1233 + p2529 + p2520 + p3816 + p1224 + p2511 + p3807 + p1215 + p2502 + p2501 + p2500 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p3798 + p3797 + p3796 + p3795 + p3794 + p3793 + p3792 + p3791 + p3790 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p3789 + p3780 + p1199 + p1198 + p1197 + p2484 + p3771 + p1188 + p2475 + p3762 + p1179 + p1170 + p2466 + p3753 + p1161 + p2457 + p3744 + p3743 + p3742 + p3741 + p3740 + p1152 + p1151 + p1150 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p2442 + p2441 + p2440 + p3739 + p3738 + p3737 + p3736 + p3735 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p2439 + p2430 + p3726 + p1134 + p2421 + p3717 + p1125 + p2412 + p3708 + p1116 + p2403 + p1107 + p99 + p90 + p81 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p54 + p45 + p36 + p27 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 + p999 + p990 + p989 + p988 + p987 + p986 + p985 + p984 + p983 + p982 + p981 + p972 + p963 + p954 + p945 + p936 + p935 + p934 + p933 + p932 + p931 + p930 + p929 + p928 + p927 + p918 + p909 + p900 + p3699 + p3690 + p2394 + p2393 + p2392 + p2391 + p2390 + p3689 + p3688 + p3687 + p3686 + p3685 + p3684 + p3683 + p3682 + p3681 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p2389 + p2388 + p2387 + p2386 + p2385 + p3672 + p1089 + p1080 + p2376 + p3663 + p1071 + p2367 + p3654 + p1062 + p2358 + p3645 + p1053 + p2349 + p2340 + p3636 + p3635 + p3634 + p3633 + p3632 + p3631 + p3630 + p1044 + p1043 + p1042 + p1041 + p1040 + p2339 + p2338 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p2331 + p3629 + p3628 + p3627 + p1039 + p1038 + p1037 + p1036 + p1035 + p2322 + p3618 + p1026 + p2313 + p3609 + p3600 + p1017 + p2304 + p1008 + p891 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p864 + p855 + p846 + p837 + p828 + p827 + p826 + p825 + p824 + p823 + p822 + p821 + p820 + p819 + p810 + p801 + p3591 + p2295 + p3582 + p3581 + p3580 + p2286 + p2285 + p2284 + p2283 + p2282 + p2281 + p2280 + p3579 + p3578 + p3577 + p3576 + p3575 + p3574 + p3573 + p2279 + p2278 + p2277 + p3564 + p2268 + p3555 + p2259 + p2250 + p3546 + p2241 + p3537 + p2232 + p2231 + p2230 + p3528 + p3527 + p3526 + p3525 + p3524 + p3523 + p3522 + p3521 + p3520 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p3519 + p3510 + p2214 + p3501 + p2205 + p792 + p783 + p774 + p773 + p772 + p771 + p770 + p769 + p768 + p767 + p766 + p765 + p756 + p747 + p738 + p729 + p720 + p719 + p718 + p717 + p716 + p715 + p714 + p713 + p712 + p711 + p702 + p3492 + p2196 + p3483 + p2187 + p3474 + p3473 + p3472 + p3471 + p3470 + p2178 + p2177 + p2176 + p2175 + p2174 + p2173 + p2172 + p2171 + p2170 + p3469 + p3468 + p3467 + p3466 + p3465 + p2169 + p2160 + p3456 + p2151 + p3447 + p2142 + p3438 + p2133 + p3429 + p3420 + p2124 + p2123 + p2122 + p2121 + p2120 + p3419 + p3418 + p3417 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p2119 + p2118 + p2117 + p2116 + p2115 + p3402 + p2106 + p693 + p684 + p675 + p666 + p665 + p664 + p663 + p662 + p661 + p660 + p659 + p658 + p657 + p648 + p639 + p630 + p621 + p612 + p611 + p610 + p609 + p608 + p607 + p606 + p605 + p604 + p603 + p3393 + p2097 + p3384 + p2088 + p3375 + p2079 + p2070 + p3366 + p3365 + p3364 + p3363 + p3362 + p3361 + p3360 + p2069 + p2068 + p2067 + p2066 + p2065 + p2064 + p2063 + p2062 + p2061 + p3359 + p3358 + p3357 + p2052 + p3348 + p2043 + p3339 + p3330 + p2034 + p3321 + p2025 + p3312 + p3311 + p3310 + p2016 + p2015 + p2014 + p2013 + p2012 + p2011 + p2010 + p3309 + p3308 + p3307 + p3306 + p3305 + p3304 + p3303 + p2009 + p2008 + p2007 + p594 + p585 + p576 + p567 + p558 + p557 + p556 + p555 + p554 + p553 + p552 + p551 + p550 + p549 + p540 + p531 + p522 + p513 + p504 + p503 + p502 + p501 + p500 + p3294 + p3285 + p3276 + p4005 + p4006 + p4007 + p4008 + p4009 + p3267 + p3258 + p3257 + p4010 + p4011 + p4012 + p4013 + p4014 + p3256 + p3255 + p3254 + p3253 + p3252 + p3251 + p3250 + p3249 + p3240 + p3231 + p4023 + p3222 + p3213 + p3204 + p3203 + p3202 + p4032 + p3201 + p3200 + p499 + p498 + p497 + p496 + p495 + p486 + p477 + p468 + p459 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p432 + p423 + p4041 + p414 + p405 + p4050 + p4059 + p3199 + p3198 + p3197 + p3196 + p3195 + p3186 + p4060 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4067 + p4068 + p3177 + p3168 + p3159 + p3150 + p3149 + p4077 + p3148 + p3147 + p3146 + p3145 + p3144 + p3143 + p3142 + p3141 + p3132 + p3123 + p4086 + p3114 + p3105 + p396 + p395 + p394 + p393 + p392 + p391 + p390 + p389 + p388 + p387 + p378 + p369 + p360 + p351 + p342 + p341 + p4095 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p333 + p324 + p315 + p306 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3078 + p4365 + p3069 + p3060 + p4356 + p3051 + p4347 + p3042 + p3041 + p3040 + p4104 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p3039 + p3038 + p3037 + p3036 + p3035 + p3034 + p3033 + p4329 + p4320 + p4113 + p4114 + p4115 + p4116 + p4117 + p4118 + p4119 + p3024 + p4311 + p3015 + p4302 + p3006 + p297 + p288 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p270 + p261 + p252 + p243 + p4120 + p4121 + p4122 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p225 + p216 + p207 + p4131 + p4293 + p4284 + p4283 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p4276 + p4275 + p4266 + p4257 + p4140 + p4149 + p4248 + p4239 + p4230 + p4229 + p4228 + p4227 + p4226 + p4225 + p4224 + p4223 + p4222 + p4221 + p4212 + p4203 + p198 + p189 + p180 + p179 + p178 + p4158 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p162 + p153 + p144 + p135 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p108 + p4167 + p4168 + p4169 + p4194 + p4185 + p4176 + p4175 + p4174 + p4173 + p4172 + p4171 + p4170 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p9882 + p9883 + p9884 + p9885 + p9886 + p9887 + p9888 + p9889 + p9890 <= 0)
lola: after: (0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9793 + p9794 + p9795 + p9796 + p9797 + p9798 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 + p9857 + p9858 + p9859 + p9860 + p9861 + p9862 <= 0)
lola: after: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p9045 + p9046 + p9047 + p9048 + p9049 + p9050 + p9051 + p9052 + p9053 + p9054 + p9055 + p9056 + p9057 + p9058 + p9059 + p9060 + p9061 + p9062 + p9063 + p9064 + p9065 + p9066 + p9067 + p9068 + p9069 + p9070 + p9071 + p9072 + p9073 + p9074 + p9075 + p9076 + p9077 + p9078 + p9079 + p9080 + p9081 + p9082 + p9083 + p9084 + p9085 + p9086 + p9087 + p9088 + p9089 + p9090 + p9091 + p9092 + p9093 + p9094 + p9095 + p9096 + p9097 + p9098 + p9099 + p9100 + p9101 + p9102 + p9103 + p9104 + p9105 + p9106 + p9107 + p9108 + p9109 + p9110 + p9111 + p9112 + p9113 + p9114 + p9115 + p9116 + p9117 + p9118 + p9119 + p9120 + p9121 + p9122 + p9123 + p9124 + p9125 + p9126 + p9127 + p9128 + p9129 + p9130 + p9131 + p9132 + p9133 + p9134 + p9135 + p9136 + p9137 + p9138 + p9139 + p9140 + p9141 + p9142 + p9143 + p9144 + p9145 + p9146 + p9147 + p9148 + p9149 + p9150 + p9151 + p9152 + p9153 + p9154 + p9155 + p9156 + p9157 + p9158 + p9159 + p9160 + p9161 + p9162 + p9163 + p9164 + p9165 + p9166 + p9167 + p9168 + p9169 + p9170 + p9171 + p9172 + p9173 + p9174 + p9175 + p9176 + p9177 + p9178 + p9179 + p9180 + p9181 + p9182 + p9183 + p9184 + p9185 + p9186 + p9187 + p9188 + p9189 + p9190 + p9191 + p9192 + p9193 + p9194 + p9195 + p9196 + p9197 + p9198 + p9199 + p9200 + p9201 + p9202 + p9203 + p9204 + p9205 + p9206 + p9207 + p9208 + p9209 + p9210 + p9211 + p9212 + p9213 + p9214 + p9215 + p9216 + p9217 + p9218 + p9219 + p9220 + p9221 + p9222 + p9223 + p9224 + p9225 + p9226 + p9227 + p9228 + p9229 + p9230 + p9231 + p9232 + p9233 + p9234 + p9235 + p9236 + p9237 + p9238 + p9239 + p9240 + p9241 + p9242 + p9243 + p9244 + p9245 + p9246 + p9247 + p9248 + p9249 + p9250 + p9251 + p9252 + p9253 + p9254 + p9255 + p9256 + p9257 + p9258 + p9259 + p9260 + p9261 + p9262 + p9263 + p9264 + p9265 + p9266 + p9267 + p9268 + p9269 + p9270 + p9271 + p9272 + p9273 + p9274 + p9275 + p9276 + p9277 + p9278 + p9279 + p9280 + p9281 + p9282 + p9283 + p9284 + p9285 + p9286 + p9287 + p9288 + p9289 + p9290 + p9291 + p9292 + p9293 + p9294 + p9295 + p9296 + p9297 + p9298 + p9299 + p9300 + p9301 + p9302 + p9303 + p9304 + p9305 + p9306 + p9307 + p9308 + p9309 + p9310 + p9311 + p9312 + p9313 + p9314 + p9315 + p9316 + p9317 + p9318 + p9319 + p9320 + p9321 + p9322 + p9323 + p9324 + p9325 + p9326 + p9327 + p9328 + p9329 + p9330 + p9331 + p9332 + p9333 + p9334 + p9335 + p9336 + p9337 + p9338 + p9339 + p9340 + p9341 + p9342 + p9343 + p9344 + p9345 + p9346 + p9347 + p9348 + p9349 + p9350 + p9351 + p9352 + p9353 + p9354 + p9355 + p9356 + p9357 + p9358 + p9359 + p9360 + p9361 + p9362 + p9363 + p9364 + p9365 + p9366 + p9367 + p9368 + p9369 + p9370 + p9371 + p9372 + p9373 + p9374 + p9375 + p9376 + p9377 + p9378 + p9379 + p9380 + p9381 + p9382 + p9383 + p9384 + p9385 + p9386 + p9387 + p9388 + p9389 + p9390 + p9391 + p9392 + p9393 + p9394 + p9395 + p9396 + p9397 + p9398 + p9399 + p9400 + p9401 + p9402 + p9403 + p9404 + p9405 + p9406 + p9407 + p9408 + p9409 + p9410 + p9411 + p9412 + p9413 + p9414 + p9415 + p9416 + p9417 + p9418 + p9419 + p9420 + p9421 + p9422 + p9423 + p9424 + p9425 + p9426 + p9427 + p9428 + p9429 + p9430 + p9431 + p9432 + p9433 + p9434 + p9435 + p9436 + p9437 + p9438 + p9439 + p9440 + p9441 + p9442 + p9443 + p9444 + p9445 + p9446 + p9447 + p9448 + p9449 + p9450 + p9451 + p9452 + p9453 + p9454 + p9455 + p9456 + p9457 + p9458 + p9459 + p9460 + p9461 + p9462 + p9463 + p9464 + p9465 + p9466 + p9467 + p9468 + p9469 + p9470 + p9471 + p9472 + p9473 + p9474 + p9475 + p9476 + p9477 + p9478 + p9479 + p9480 + p9481 + p9482 + p9483 + p9484 + p9485 + p9486 + p9487 + p9488 + p9489 + p9490 + p9491 + p9492 + p9493 + p9494 + p9495 + p9496 + p9497 + p9498 + p9499 + p9500 + p9501 + p9502 + p9503 + p9504 + p9505 + p9506 + p9507 + p9508 + p9509 + p9510 + p9511 + p9512 + p9513 + p9514 + p9515 + p9516 + p9517 + p9518 + p9519 + p9520 + p9521 + p9522 + p9523 + p9524 + p9525 + p9526 + p9527 + p9528 + p9529 + p9530 + p9531 + p9532 + p9533 + p9534 + p9535 + p9536 + p9537 + p9538 + p9539 + p9540 + p9541 + p9542 + p9543 + p9544 + p9545 + p9546 + p9547 + p9548 + p9549 + p9550 + p9551 + p9552 + p9553 + p9554 + p9555 + p9556 + p9557 + p9558 + p9559 + p9560 + p9561 + p9562 + p9563 + p9564 + p9565 + p9566 + p9567 + p9568 + p9569 + p9570 + p9571 + p9572 + p9573 + p9574 + p9575 + p9576 + p9577 + p9578 + p9579 + p9580 + p9581 + p9582 + p9583 + p9584 + p9585 + p9586 + p9587 + p9588 + p9589 + p9590 + p9591 + p9592 + p9593 + p9594 + p9595 + p9596 + p9597 + p9598 + p9599 + p9600 + p9601 + p9602 + p9603 + p9604 + p9605 + p9606 + p9607 + p9608 + p9609 + p9610 + p9611 + p9612 + p9613 + p9614 + p9615 + p9616 + p9617 + p9618 + p9619 + p9620 + p9621 + p9622 + p9623 + p9624 + p9625 + p9626 + p9627 + p9628 + p9629 + p9630 + p9631 + p9632 + p9633 + p9634 + p9635 + p9636 + p9637 + p9638 + p9639 + p9640 + p9641 + p9642 + p9643 + p9644 + p9645 + p9646 + p9647 + p9648 + p9649 + p9650 + p9651 + p9652 + p9653 + p9654 + p9655 + p9656 + p9657 + p9658 + p9659 + p9660 + p9661 + p9662 + p9663 + p9664 + p9665 + p9666 + p9667 + p9668 + p9669 + p9670 + p9671 + p9672 + p9673 + p9674 + p9675 + p9676 + p9677 + p9678 + p9679 + p9680 + p9681 + p9682 + p9683 + p9684 + p9685 + p9686 + p9687 + p9688 + p9689 + p9690 + p9691 + p9692 <= 0)
lola: after: (56 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4615 + p4612 + p4611 + p4609 + p4608 + p4606 + p4605 + p4603 + p4602 + p4600 + p4599 + p4597 + p4596 + p4594 + p4593 + p4591 + p4588 + p4587 + p4585 + p4582 + p4581 + p4579 + p4578 + p4576 + p4575 + p4573 + p4572 + p4570 + p4569 + p4567 + p4566 + p4564 + p4561 + p4560 + p4558 + p4557 + p4555 + p4552 + p4551 + p4549 + p4548 + p4546 + p4545 + p4543 + p4542 + p4540 + p4539 + p4537 + p4534 + p4533 + p4531 + p4530 + p4528 + p4527 + p4525 + p4522 + p4521 + p4519 + p4518 + p4516 + p4515 + p4513 + p4512 + p4510 + p4507 + p4506 + p4504 + p4503 + p4501 + p4500 + p4498 + p4497 + p4495 + p4492 + p4491 + p4489 + p4488 + p4486 + p4485 + p4483 + p4480 + p4479 + p4477 + p4476 + p4474 + p4473 + p4471 + p4470 + p4468 + p4467 + p4465 + p4462 + p4461 + p4459 + p4458 + p4456 + p4453 + p4452 + p4450 + p4449 + p4447 + p4446 + p4444 + p4443 + p4441 + p4440 + p4438 + p4437 + p4435 + p4432 + p4431 + p4429 + p4426 + p4425 + p4423 + p4422 + p4420 + p4419 + p4417 + p4416 + p4414 + p4413 + p4411 + p4410 + p4408 + p4407 + p4405 + p4402 + p4399 + p4396 + p4393 + p4390 + p4387 + p4384 + p4381 + p4378 + p4375 + p4374 + p4376 + p4377 + p4379 + p4380 + p4382 + p4383 + p4385 + p4386 + p4388 + p4389 + p4391 + p4392 + p4394 + p4395 + p4397 + p4398 + p4400 + p4401 + p4403 + p4404 + p4406 + p4409 + p4412 + p4415 + p4418 + p4421 + p4424 + p4427 + p4428 + p4430 + p4433 + p4434 + p4436 + p4439 + p4442 + p4445 + p4448 + p4451 + p4454 + p4455 + p4457 + p4460 + p4463 + p4464 + p4466 + p4469 + p4472 + p4475 + p4478 + p4481 + p4482 + p4484 + p4487 + p4490 + p4493 + p4494 + p4496 + p4499 + p4502 + p4505 + p4508 + p4509 + p4511 + p4514 + p4517 + p4520 + p4523 + p4524 + p4526 + p4529 + p4532 + p4535 + p4536 + p4538 + p4541 + p4544 + p4547 + p4550 + p4553 + p4554 + p4556 + p4559 + p4562 + p4563 + p4565 + p4568 + p4571 + p4574 + p4577 + p4580 + p4583 + p4584 + p4586 + p4589 + p4590 + p4592 + p4595 + p4598 + p4601 + p4604 + p4607 + p4610 + p4613 + p4614 + p4616 <= 0)
lola: after: (64 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p8675 + p8674 + p8673 + p8672 + p8671 + p8670 + p6083 + p6082 + p6081 + p6080 + p7379 + p7378 + p7377 + p7376 + p7375 + p7374 + p7373 + p7372 + p8669 + p8668 + p6079 + p6078 + p6077 + p6076 + p7426 + p7427 + p7428 + p7429 + p6130 + p6131 + p6132 + p6133 + p6134 + p6135 + p6136 + p6137 + p8722 + p8723 + p8724 + p8725 + p8726 + p8727 + p8728 + p8729 + p7430 + p7431 + p7432 + p7433 + p8621 + p8620 + p7325 + p7324 + p7323 + p7322 + p7321 + p7320 + p8619 + p8618 + p8617 + p8616 + p8615 + p8614 + p6029 + p6028 + p6027 + p6026 + p6025 + p6024 + p6023 + p6022 + p7319 + p7318 + p7271 + p7270 + p8567 + p8566 + p8565 + p8564 + p8563 + p8562 + p8561 + p8560 + p7269 + p7268 + p7267 + p7266 + p7265 + p7264 + p8513 + p8512 + p8511 + p8510 + p7217 + p7216 + p7215 + p7214 + p7213 + p7212 + p7211 + p7210 + p8509 + p8508 + p8507 + p8506 + p6184 + p6185 + p6186 + p6187 + p6188 + p6189 + p8776 + p8777 + p8778 + p8779 + p7480 + p7481 + p7482 + p7483 + p7484 + p7485 + p7486 + p7487 + p6190 + p6191 + p8780 + p8781 + p8782 + p8783 + p7163 + p7162 + p7161 + p7160 + p8459 + p8458 + p8457 + p8456 + p8455 + p8454 + p8453 + p8452 + p7159 + p7158 + p7157 + p7156 + p8405 + p8404 + p8403 + p8402 + p8401 + p8400 + p7109 + p7108 + p7107 + p7106 + p7105 + p7104 + p7103 + p7102 + p8399 + p8398 + p8351 + p8350 + p7055 + p7054 + p7053 + p7052 + p7051 + p7050 + p8349 + p8348 + p8347 + p8346 + p8345 + p8344 + p7049 + p7048 + p7001 + p7000 + p8297 + p8296 + p8295 + p8294 + p8293 + p8292 + p8291 + p8290 + p8243 + p8242 + p8241 + p8240 + p8239 + p8238 + p8237 + p8236 + p8189 + p8188 + p8187 + p8186 + p8185 + p8184 + p8183 + p8182 + p6238 + p6239 + p8135 + p8134 + p8133 + p8132 + p8131 + p8130 + p8129 + p8128 + p8081 + p8080 + p8079 + p8078 + p8077 + p8076 + p7534 + p7535 + p7536 + p7537 + p7538 + p7539 + p6240 + p6241 + p6242 + p6243 + p6244 + p6245 + p8075 + p8074 + p8027 + p8026 + p8830 + p8831 + p8832 + p8833 + p8834 + p8835 + p8836 + p8837 + p8025 + p8024 + p7540 + p7541 + p8023 + p8022 + p8021 + p8020 + p7588 + p7589 + p6292 + p6293 + p6294 + p6295 + p6296 + p6297 + p6298 + p6299 + p8884 + p8885 + p8886 + p8887 + p8888 + p8889 + p7590 + p7591 + p7592 + p7593 + p7594 + p7595 + p8890 + p8891 + p5000 + p5001 + p5002 + p5003 + p6346 + p6347 + p6348 + p6349 + p5050 + p5051 + p5052 + p5053 + p5054 + p5055 + p5056 + p5057 + p8938 + p8939 + p7642 + p7643 + p7644 + p7645 + p7646 + p7647 + p7648 + p7649 + p6350 + p6351 + p6352 + p6353 + p8940 + p8941 + p8942 + p8943 + p8944 + p8945 + p7696 + p7697 + p7698 + p7699 + p8992 + p8993 + p8994 + p8995 + p8996 + p8997 + p8998 + p8999 + p5104 + p5105 + p5106 + p5107 + p5108 + p5109 + p6400 + p6401 + p6402 + p6403 + p6404 + p6405 + p6406 + p6407 + p5110 + p5111 + p7700 + p7701 + p7702 + p7703 + p4999 + p4998 + p4997 + p4996 + p4949 + p4948 + p4947 + p4946 + p4945 + p4944 + p4943 + p4942 + p5158 + p5159 + p6454 + p6455 + p6456 + p6457 + p6458 + p6459 + p5160 + p5161 + p5162 + p5163 + p5164 + p5165 + p7750 + p7751 + p7752 + p7753 + p7754 + p7755 + p7756 + p7757 + p6460 + p6461 + p4895 + p4894 + p4893 + p4892 + p4891 + p4890 + p4889 + p4888 + p4841 + p4840 + p4839 + p4838 + p4837 + p4836 + p4835 + p4834 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4780 + p6508 + p6509 + p5212 + p5213 + p5214 + p5215 + p5216 + p5217 + p5218 + p5219 + p7804 + p7805 + p7806 + p7807 + p7808 + p7809 + p6510 + p6511 + p6512 + p6513 + p6514 + p6515 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p7810 + p7811 + p5975 + p5974 + p5973 + p5972 + p5971 + p5970 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p5969 + p5968 + p5921 + p5920 + p5266 + p5267 + p5268 + p5269 + p5919 + p7858 + p7859 + p5918 + p5917 + p6562 + p6563 + p6564 + p6565 + p6566 + p6567 + p6568 + p6569 + p5270 + p5271 + p5272 + p5273 + p5916 + p5915 + p5914 + p7860 + p7861 + p7862 + p7863 + p7864 + p7865 + p5867 + p5866 + p5865 + p5864 + p5863 + p5862 + p5861 + p5860 + p5813 + p5812 + p5811 + p5810 + p5809 + p5808 + p5807 + p5806 + p6616 + p6617 + p6618 + p6619 + p5320 + p5321 + p5322 + p5323 + p5324 + p5325 + p5326 + p5327 + p7912 + p7913 + p7914 + p7915 + p7916 + p7917 + p7918 + p7919 + p6620 + p6621 + p6622 + p6623 + p5759 + p5758 + p5757 + p5756 + p5755 + p5754 + p5753 + p5752 + p5374 + p5375 + p5376 + p5377 + p5378 + p5379 + p5705 + p5704 + p5703 + p5702 + p5701 + p5700 + p7966 + p7967 + p7968 + p7969 + p6670 + p6671 + p6672 + p6673 + p6674 + p6675 + p6676 + p6677 + p5380 + p5381 + p7970 + p7971 + p7972 + p7973 + p6999 + p6998 + p6997 + p6996 + p6995 + p6994 + p5699 + p5698 + p5651 + p5650 + p6947 + p6946 + p6945 + p6944 + p6943 + p6942 + p6941 + p6940 + p5649 + p5648 + p5647 + p5646 + p5645 + p5644 + p6893 + p6892 + p6891 + p6890 + p5597 + p5596 + p5595 + p5594 + p5593 + p5592 + p5591 + p5590 + p6889 + p5428 + p5429 + p6888 + p6887 + p6886 + p6724 + p6725 + p6726 + p6727 + p6728 + p6729 + p5430 + p5431 + p5432 + p5433 + p5434 + p5435 + p5543 + p5542 + p5541 + p5540 + p6839 + p6838 + p6837 + p6836 + p6835 + p6730 + p6731 + p6834 + p6833 + p6832 + p5539 + p5538 + p5537 + p5536 + p6785 + p6784 + p6783 + p6782 + p6781 + p6780 + p5489 + p5488 + p5487 + p5486 + p5485 + p5484 + p5483 + p5482 + p6779 + p6778 + p5469 + p5468 + p5467 + p5466 + p5465 + p5464 + p5463 + p5462 + p6760 + p6761 + p6762 + p6763 + p6764 + p6765 + p6766 + p6767 + p6768 + p6769 + p5470 + p5471 + p5472 + p5473 + p5474 + p5475 + p5476 + p5477 + p5478 + p5479 + p5461 + p6770 + p6771 + p6772 + p6773 + p6774 + p6775 + p6776 + p6777 + p5460 + p6759 + p5480 + p5481 + p6758 + p6757 + p6756 + p6755 + p6754 + p6753 + p6752 + p6751 + p6750 + p6786 + p6787 + p6788 + p6789 + p5490 + p5491 + p5492 + p5493 + p5494 + p5495 + p5496 + p5497 + p5498 + p5499 + p6790 + p6791 + p6792 + p6793 + p6794 + p6795 + p6796 + p6797 + p6798 + p6799 + p5459 + p5458 + p5457 + p5456 + p5455 + p5454 + p5453 + p5452 + p5451 + p5450 + p6749 + p6748 + p6747 + p6746 + p6745 + p6744 + p6743 + p6742 + p6741 + p6740 + p5500 + p5501 + p5502 + p5503 + p5504 + p5505 + p5506 + p5507 + p5508 + p5509 + p6800 + p6801 + p6802 + p6803 + p6804 + p6805 + p6806 + p6807 + p6808 + p6809 + p5510 + p5511 + p5512 + p5513 + p5514 + p5515 + p5516 + p5517 + p5518 + p5519 + p5449 + p5448 + p5447 + p5446 + p5445 + p5444 + p5443 + p5442 + p6810 + p6811 + p6812 + p6813 + p6814 + p6815 + p6816 + p6817 + p6818 + p6819 + p5520 + p5521 + p5522 + p5523 + p5524 + p5525 + p5526 + p5527 + p5528 + p5529 + p5441 + p5440 + p6820 + p6821 + p6822 + p6823 + p6824 + p6825 + p6826 + p6827 + p6828 + p6829 + p5530 + p5531 + p5532 + p5533 + p5534 + p5535 + p6739 + p6738 + p6737 + p6736 + p6735 + p6830 + p6831 + p6734 + p6733 + p6732 + p5439 + p5544 + p5545 + p5546 + p5547 + p5548 + p5549 + p5438 + p6840 + p6841 + p6842 + p6843 + p6844 + p6845 + p6846 + p6847 + p6848 + p6849 + p5550 + p5551 + p5552 + p5553 + p5554 + p5555 + p5556 + p5557 + p5558 + p5559 + p5437 + p6850 + p6851 + p6852 + p6853 + p6854 + p6855 + p6856 + p6857 + p6858 + p6859 + p5560 + p5561 + p5562 + p5563 + p5564 + p5565 + p5566 + p5567 + p5568 + p5569 + p5436 + p6723 + p6722 + p6721 + p6720 + p6860 + p6861 + p6862 + p6863 + p6864 + p6865 + p6866 + p6867 + p6868 + p6869 + p5570 + p5571 + p5572 + p5573 + p5574 + p5575 + p5576 + p5577 + p5578 + p5579 + p6870 + p6871 + p6872 + p6873 + p6874 + p6875 + p6876 + p6877 + p6878 + p6879 + p5580 + p5581 + p5582 + p5583 + p5584 + p5585 + p5586 + p5587 + p5588 + p5589 + p6880 + p6881 + p6882 + p6883 + p6884 + p6885 + p5427 + p5426 + p5425 + p5424 + p5423 + p5422 + p5421 + p5420 + p6719 + p5598 + p5599 + p6718 + p6717 + p6716 + p6715 + p6894 + p6895 + p6896 + p6897 + p6898 + p6899 + p6714 + p6713 + p6712 + p6711 + p6710 + p5419 + p5418 + p5417 + p5416 + p5415 + p5414 + p5413 + p5412 + p5411 + p5410 + p6709 + p6708 + p6707 + p6706 + p6705 + p6704 + p6703 + p6702 + p5600 + p5601 + p5602 + p5603 + p5604 + p5605 + p5606 + p5607 + p5608 + p5609 + p6701 + p6700 + p6900 + p6901 + p6902 + p6903 + p6904 + p6905 + p6906 + p6907 + p6908 + p6909 + p5610 + p5611 + p5612 + p5613 + p5614 + p5615 + p5616 + p5617 + p5618 + p5619 + p5409 + p5408 + p5407 + p5406 + p5405 + p5404 + p6910 + p6911 + p6912 + p6913 + p6914 + p6915 + p6916 + p6917 + p6918 + p6919 + p5620 + p5621 + p5622 + p5623 + p5624 + p5625 + p5626 + p5627 + p5628 + p5629 + p5403 + p5402 + p5401 + p5400 + p6920 + p6921 + p6922 + p6923 + p6924 + p6925 + p6926 + p6927 + p6928 + p6929 + p5630 + p5631 + p5632 + p5633 + p5634 + p5635 + p5636 + p5637 + p5638 + p5639 + p7999 + p6930 + p6931 + p6932 + p6933 + p6934 + p6935 + p6936 + p6937 + p6938 + p6939 + p5640 + p5641 + p5642 + p5643 + p7998 + p7997 + p7996 + p7995 + p7994 + p7993 + p7992 + p7991 + p7990 + p6699 + p6698 + p6697 + p6696 + p6695 + p6694 + p6693 + p6692 + p6948 + p6949 + p6691 + p6690 + p5652 + p5653 + p5654 + p5655 + p5656 + p5657 + p5658 + p5659 + p7989 + p7988 + p6950 + p6951 + p6952 + p6953 + p6954 + p6955 + p6956 + p6957 + p6958 + p6959 + p5660 + p5661 + p5662 + p5663 + p5664 + p5665 + p5666 + p5667 + p5668 + p5669 + p7987 + p7986 + p7985 + p7984 + p7983 + p6960 + p6961 + p6962 + p6963 + p6964 + p6965 + p6966 + p6967 + p6968 + p6969 + p5670 + p5671 + p5672 + p5673 + p5674 + p5675 + p5676 + p5677 + p5678 + p5679 + p7982 + p7981 + p7980 + p5399 + p5398 + p5397 + p5396 + p5395 + p5394 + p5393 + p6970 + p6971 + p6972 + p6973 + p6974 + p6975 + p6976 + p6977 + p6978 + p6979 + p5680 + p5681 + p5682 + p5683 + p5684 + p5685 + p5686 + p5687 + p5688 + p5689 + p5392 + p5391 + p5390 + p6689 + p6980 + p6981 + p6982 + p6983 + p6984 + p6985 + p6986 + p6987 + p6988 + p6989 + p5690 + p5691 + p5692 + p5693 + p5694 + p5695 + p5696 + p5697 + p6688 + p6687 + p6990 + p6991 + p6992 + p6993 + p6686 + p6685 + p6684 + p6683 + p6682 + p6681 + p6680 + p7979 + p7978 + p7977 + p7976 + p7975 + p7974 + p5389 + p5388 + p5387 + p5386 + p5385 + p5384 + p5383 + p5382 + p6679 + p6678 + p7965 + p7964 + p7963 + p7962 + p7961 + p7960 + p5706 + p5707 + p5708 + p5709 + p5373 + p5372 + p5371 + p5370 + p6669 + p6668 + p5710 + p5711 + p5712 + p5713 + p5714 + p5715 + p5716 + p5717 + p5718 + p5719 + p6667 + p6666 + p6665 + p6664 + p6663 + p6662 + p6661 + p5720 + p5721 + p5722 + p5723 + p5724 + p5725 + p5726 + p5727 + p5728 + p5729 + p6660 + p7959 + p7958 + p7957 + p7956 + p7955 + p7954 + p7953 + p7952 + p7951 + p7950 + p5730 + p5731 + p5732 + p5733 + p5734 + p5735 + p5736 + p5737 + p5738 + p5739 + p5369 + p5368 + p5367 + p5740 + p5741 + p5742 + p5743 + p5744 + p5745 + p5746 + p5747 + p5748 + p5749 + p5366 + p5365 + p5364 + p5363 + p5362 + p5361 + p5360 + p5750 + p5751 + p6659 + p6658 + p6657 + p6656 + p6655 + p6654 + p6653 + p6652 + p6651 + p6650 + p7949 + p7948 + p7947 + p7946 + p5760 + p5761 + p5762 + p5763 + p5764 + p5765 + p5766 + p5767 + p5768 + p5769 + p7945 + p7944 + p7943 + p7942 + p7941 + p7940 + p5359 + p5770 + p5771 + p5772 + p5773 + p5774 + p5775 + p5776 + p5777 + p5778 + p5779 + p5358 + p5357 + p5356 + p5355 + p5354 + p5353 + p5352 + p5351 + p5350 + p6649 + p6648 + p5780 + p5781 + p5782 + p5783 + p5784 + p5785 + p5786 + p5787 + p5788 + p5789 + p6647 + p6646 + p6645 + p6644 + p6643 + p5790 + p5791 + p5792 + p5793 + p5794 + p5795 + p5796 + p5797 + p5798 + p5799 + p6642 + p6641 + p6640 + p7939 + p7938 + p7937 + p7936 + p7935 + p7934 + p7933 + p7932 + p7931 + p7930 + p5349 + p5348 + p5347 + p5346 + p5345 + p5344 + p5343 + p5342 + p5341 + p5340 + p6639 + p6638 + p6637 + p6636 + p6635 + p6634 + p6633 + p6632 + p6631 + p6630 + p7929 + p7928 + p7927 + p7926 + p7925 + p7924 + p7923 + p7922 + p7921 + p7920 + p5339 + p5338 + p5337 + p5336 + p5335 + p5334 + p5333 + p5332 + p5331 + p5330 + p6629 + p6628 + p6627 + p6626 + p6625 + p6624 + p7911 + p7910 + p5329 + p5328 + p6615 + p6614 + p6613 + p6612 + p6611 + p6610 + p5800 + p5801 + p5802 + p5803 + p5804 + p5805 + p7909 + p7908 + p7907 + p7906 + p7905 + p7904 + p7903 + p7902 + p7901 + p7900 + p5814 + p5815 + p5816 + p5817 + p5818 + p5819 + p5319 + p5318 + p5317 + p5820 + p5821 + p5822 + p5823 + p5824 + p5825 + p5826 + p5827 + p5828 + p5829 + p5316 + p5315 + p5314 + p5313 + p5312 + p5311 + p5310 + p6609 + p5830 + p5831 + p5832 + p5833 + p5834 + p5835 + p5836 + p5837 + p5838 + p5839 + p6608 + p6607 + p6606 + p6605 + p6604 + p6603 + p6602 + p6601 + p6600 + p5309 + p5308 + p5840 + p5841 + p5842 + p5843 + p5844 + p5845 + p5846 + p5847 + p5848 + p5849 + p5307 + p5306 + p5305 + p5304 + p5303 + p5302 + p5850 + p5851 + p5852 + p5853 + p5854 + p5855 + p5856 + p5857 + p5858 + p5859 + p5301 + p5300 + p7899 + p7898 + p7897 + p7896 + p7895 + p7894 + p7893 + p7892 + p5868 + p5869 + p7891 + p7890 + p6599 + p6598 + p6597 + p6596 + p6595 + p6594 + p5870 + p5871 + p5872 + p5873 + p5874 + p5875 + p5876 + p5877 + p5878 + p5879 + p6593 + p6592 + p6591 + p6590 + p7889 + p7888 + p5880 + p5881 + p5882 + p5883 + p5884 + p5885 + p5886 + p5887 + p5888 + p5889 + p7887 + p7886 + p7885 + p7884 + p7883 + p7882 + p5890 + p5891 + p5892 + p5893 + p5894 + p5895 + p5896 + p5897 + p5898 + p5899 + p7881 + p7880 + p5299 + p5298 + p5297 + p5296 + p5295 + p5294 + p5293 + p5292 + p5291 + p5290 + p6589 + p6588 + p6587 + p6586 + p6585 + p6584 + p6583 + p6582 + p6581 + p6580 + p7879 + p7878 + p7877 + p7876 + p7875 + p7874 + p7873 + p7872 + p7871 + p7870 + p5289 + p5288 + p5287 + p5286 + p5285 + p5284 + p5283 + p5282 + p5281 + p5280 + p6579 + p6578 + p6577 + p6576 + p6575 + p6574 + p6573 + p6572 + p6571 + p5900 + p5901 + p5902 + p5903 + p5904 + p5905 + p5906 + p5907 + p5908 + p5909 + p6570 + p7869 + p7868 + p7867 + p7866 + p5279 + p5278 + p5277 + p5910 + p5911 + p5912 + p5913 + p5276 + p5275 + p5274 + p6561 + p6560 + p7857 + p7856 + p7855 + p7854 + p7853 + p7852 + p7851 + p7850 + p5265 + p5264 + p5263 + p5262 + p5261 + p5260 + p6559 + p6558 + p5922 + p5923 + p5924 + p5925 + p5926 + p5927 + p5928 + p5929 + p6557 + p6556 + p6555 + p6554 + p6553 + p6552 + p6551 + p6550 + p7849 + p5930 + p5931 + p5932 + p5933 + p5934 + p5935 + p5936 + p5937 + p5938 + p5939 + p7848 + p7847 + p7846 + p7845 + p7844 + p7843 + p7842 + p7841 + p7840 + p5259 + p5258 + p5257 + p5256 + p5255 + p5254 + p5940 + p5941 + p5942 + p5943 + p5944 + p5945 + p5946 + p5947 + p5948 + p5949 + p5253 + p5252 + p5251 + p5250 + p6549 + p6548 + p6547 + p6546 + p6545 + p6544 + p6543 + p6542 + p5950 + p5951 + p5952 + p5953 + p5954 + p5955 + p5956 + p5957 + p5958 + p5959 + p6541 + p4662 + p4663 + p4664 + p4665 + p4666 + p4667 + p4668 + p4669 + p6540 + p7839 + p5960 + p5961 + p5962 + p5963 + p5964 + p5965 + p5966 + p5967 + p7838 + p7837 + p4670 + p4671 + p7836 + p7835 + p7834 + p7833 + p7832 + p7831 + p7830 + p5249 + p5248 + p5247 + p5246 + p5245 + p5244 + p5243 + p5242 + p5241 + p5976 + p5977 + p5978 + p5979 + p4680 + p4681 + p4682 + p4683 + p4684 + p4685 + p4686 + p4687 + p4688 + p4689 + p5240 + p5980 + p5981 + p5982 + p5983 + p5984 + p5985 + p5986 + p5987 + p5988 + p5989 + p4690 + p4691 + p4692 + p4693 + p4694 + p4695 + p4696 + p4697 + p4698 + p4699 + p5990 + p5991 + p5992 + p5993 + p5994 + p5995 + p5996 + p5997 + p5998 + p5999 + p6539 + p6538 + p6537 + p6536 + p6535 + p6534 + p6533 + p6532 + p6531 + p6530 + p7829 + p7828 + p7827 + p7826 + p7825 + p7824 + p7823 + p7822 + p7821 + p7820 + p5239 + p5238 + p5237 + p5236 + p5235 + p5234 + p5233 + p5232 + p5231 + p5230 + p6529 + p6528 + p6527 + p6526 + p4700 + p4701 + p4702 + p4703 + p4704 + p4705 + p4706 + p4707 + p4708 + p4709 + p6525 + p6524 + p6523 + p6522 + p6521 + p6520 + p7819 + p7818 + p7817 + p7816 + p7815 + p7814 + p7813 + p7812 + p4710 + p4711 + p4712 + p4713 + p4714 + p4715 + p4716 + p4717 + p4718 + p4719 + p5229 + p5228 + p5227 + p4720 + p4721 + p4722 + p4723 + p4724 + p4725 + p5226 + p5225 + p5224 + p5223 + p5222 + p5221 + p5220 + p6519 + p6518 + p6517 + p4734 + p4735 + p4736 + p4737 + p4738 + p4739 + p6516 + p7803 + p4740 + p4741 + p4742 + p4743 + p4744 + p4745 + p4746 + p4747 + p4748 + p4749 + p7802 + p7801 + p7800 + p4750 + p4751 + p4752 + p4753 + p4754 + p4755 + p4756 + p4757 + p4758 + p4759 + p5211 + p5210 + p6507 + p6506 + p6505 + p6504 + p6503 + p6502 + p6501 + p6500 + p5209 + p5208 + p5207 + p5206 + p4760 + p4761 + p4762 + p4763 + p4764 + p4765 + p4766 + p4767 + p4768 + p4769 + p5205 + p5204 + p5203 + p5202 + p5201 + p5200 + p4770 + p4771 + p4772 + p4773 + p4774 + p4775 + p4776 + p4777 + p4778 + p4779 + p7799 + p7798 + p7797 + p7796 + p7795 + p7794 + p7793 + p7792 + p7791 + p7790 + p4788 + p4789 + p6499 + p4790 + p4791 + p4792 + p4793 + p4794 + p4795 + p4796 + p4797 + p4798 + p4799 + p6498 + p6497 + p6496 + p6495 + p6494 + p6493 + p6492 + p6491 + p6490 + p7789 + p7788 + p7787 + p7786 + p7785 + p7784 + p7783 + p7782 + p7781 + p7780 + p5199 + p5198 + p5197 + p5196 + p5195 + p5194 + p5193 + p5192 + p5191 + p5190 + p6489 + p4800 + p4801 + p4802 + p4803 + p4804 + p4805 + p4806 + p4807 + p4808 + p4809 + p6488 + p6487 + p6486 + p6485 + p6484 + p6483 + p6482 + p6481 + p6480 + p4810 + p4811 + p4812 + p4813 + p4814 + p4815 + p4816 + p4817 + p4818 + p4819 + p7779 + p7778 + p7777 + p7776 + p7775 + p7774 + p7773 + p7772 + p7771 + p7770 + p5189 + p5188 + p4820 + p4821 + p4822 + p4823 + p4824 + p4825 + p4826 + p4827 + p4828 + p4829 + p5187 + p5186 + p4830 + p4831 + p4832 + p4833 + p5185 + p5184 + p5183 + p5182 + p5181 + p5180 + p6479 + p6478 + p6477 + p6476 + p6475 + p4842 + p4843 + p4844 + p4845 + p4846 + p4847 + p4848 + p4849 + p6474 + p6473 + p4850 + p4851 + p4852 + p4853 + p4854 + p4855 + p4856 + p4857 + p4858 + p4859 + p6472 + p6471 + p6470 + p7769 + p4860 + p4861 + p4862 + p4863 + p4864 + p4865 + p4866 + p4867 + p4868 + p4869 + p7768 + p7767 + p7766 + p7765 + p7764 + p7763 + p7762 + p7761 + p7760 + p5179 + p5178 + p5177 + p5176 + p5175 + p4870 + p4871 + p4872 + p4873 + p4874 + p4875 + p4876 + p4877 + p4878 + p4879 + p5174 + p5173 + p5172 + p5171 + p4880 + p4881 + p4882 + p4883 + p4884 + p4885 + p4886 + p4887 + p5170 + p6469 + p6468 + p6467 + p6466 + p6465 + p6464 + p6463 + p6462 + p4896 + p4897 + p4898 + p4899 + p7759 + p7758 + p5169 + p5168 + p5167 + p5166 + p6453 + p6452 + p6451 + p6450 + p7749 + p7748 + p7747 + p7746 + p7745 + p7744 + p7743 + p7742 + p7741 + p7740 + p5157 + p5156 + p5155 + p5154 + p5153 + p5152 + p5151 + p5150 + p6449 + p6448 + p6447 + p6446 + p6445 + p6444 + p4900 + p4901 + p4902 + p4903 + p4904 + p4905 + p4906 + p4907 + p4908 + p4909 + p6443 + p6442 + p6441 + p6440 + p7739 + p7738 + p7737 + p4910 + p4911 + p4912 + p4913 + p4914 + p4915 + p4916 + p4917 + p4918 + p4919 + p7736 + p7735 + p7734 + p7733 + p7732 + p7731 + p7730 + p5149 + p5148 + p5147 + p5146 + p5145 + p5144 + p5143 + p5142 + p5141 + p5140 + p4920 + p4921 + p4922 + p4923 + p4924 + p4925 + p4926 + p4927 + p4928 + p4929 + p6439 + p6438 + p6437 + p6436 + p6435 + p6434 + p6433 + p6432 + p6431 + p6430 + p4930 + p4931 + p4932 + p4933 + p4934 + p4935 + p4936 + p4937 + p4938 + p4939 + p7729 + p7728 + p7727 + p4940 + p4941 + p7726 + p7725 + p7724 + p7723 + p7722 + p7721 + p7720 + p5139 + p5138 + p5137 + p5136 + p4950 + p4951 + p4952 + p4953 + p4954 + p4955 + p4956 + p4957 + p4958 + p4959 + p5135 + p5134 + p5133 + p5132 + p4960 + p4961 + p4962 + p4963 + p4964 + p4965 + p4966 + p4967 + p4968 + p4969 + p5131 + p5130 + p6429 + p6428 + p6427 + p6426 + p6425 + p6424 + p6423 + p6422 + p6421 + p6420 + p7719 + p7718 + p7717 + p4970 + p4971 + p4972 + p4973 + p4974 + p4975 + p4976 + p4977 + p4978 + p4979 + p7716 + p7715 + p7714 + p7713 + p7712 + p7711 + p7710 + p5129 + p5128 + p5127 + p5126 + p5125 + p5124 + p5123 + p4980 + p4981 + p4982 + p4983 + p4984 + p4985 + p4986 + p4987 + p4988 + p4989 + p5122 + p5121 + p4990 + p4991 + p4992 + p4993 + p4994 + p4995 + p5120 + p6419 + p6418 + p6417 + p6416 + p6415 + p6414 + p6413 + p6412 + p6411 + p6410 + p7709 + p7708 + p7707 + p7706 + p7705 + p7704 + p5119 + p5118 + p5117 + p5116 + p5115 + p5114 + p5113 + p5112 + p6409 + p6408 + p5103 + p5102 + p5101 + p5100 + p8991 + p8990 + p7695 + p7694 + p7693 + p7692 + p7691 + p7690 + p8989 + p8988 + p8987 + p8986 + p8985 + p8984 + p8983 + p8982 + p8981 + p8980 + p6399 + p6398 + p6397 + p6396 + p6395 + p6394 + p6393 + p6392 + p6391 + p6390 + p7689 + p7688 + p7687 + p7686 + p7685 + p7684 + p7683 + p7682 + p7681 + p7680 + p8979 + p8978 + p8977 + p8976 + p8975 + p8974 + p8973 + p8972 + p8971 + p8970 + p5099 + p5098 + p5097 + p5096 + p5095 + p5094 + p5093 + p5092 + p5091 + p5090 + p6389 + p6388 + p6387 + p6386 + p6385 + p6384 + p6383 + p6382 + p6381 + p6380 + p7679 + p7678 + p7677 + p7676 + p7675 + p7674 + p7673 + p7672 + p7671 + p7670 + p8969 + p8968 + p8967 + p8966 + p8965 + p8964 + p8963 + p8962 + p8961 + p8960 + p5089 + p5088 + p5087 + p5086 + p5085 + p5084 + p5083 + p5082 + p5081 + p5080 + p6379 + p6378 + p6377 + p6376 + p6375 + p6374 + p6373 + p6372 + p6371 + p6370 + p7669 + p7668 + p7667 + p7666 + p7665 + p7664 + p7663 + p7662 + p7661 + p7660 + p8959 + p8958 + p8957 + p8956 + p8955 + p8954 + p8953 + p8952 + p8951 + p8950 + p5079 + p5078 + p5077 + p5076 + p5075 + p5074 + p5073 + p5072 + p5071 + p5070 + p6369 + p6368 + p6367 + p6366 + p6365 + p6364 + p6363 + p6362 + p6361 + p6360 + p7659 + p7658 + p7657 + p7656 + p7655 + p7654 + p7653 + p7652 + p7651 + p7650 + p8949 + p8948 + p8947 + p8946 + p5069 + p5068 + p5067 + p5066 + p5065 + p5064 + p5063 + p5062 + p5061 + p5060 + p6359 + p6358 + p6357 + p6356 + p6355 + p6354 + p7641 + p7640 + p8937 + p8936 + p8935 + p8934 + p8933 + p8932 + p8931 + p8930 + p5059 + p5058 + p6345 + p6344 + p6343 + p6342 + p6341 + p6340 + p7639 + p7638 + p7637 + p7636 + p7635 + p7634 + p7633 + p7632 + p7631 + p7630 + p8929 + p8928 + p8927 + p8926 + p8925 + p8924 + p8923 + p8922 + p8921 + p8920 + p5049 + p5048 + p5047 + p5046 + p5045 + p5044 + p5043 + p5042 + p5041 + p5040 + p6339 + p6338 + p6337 + p6336 + p6335 + p6334 + p6333 + p6332 + p6331 + p6330 + p7629 + p7628 + p7627 + p7626 + p7625 + p7624 + p7623 + p7622 + p7621 + p7620 + p8919 + p8918 + p8917 + p8916 + p8915 + p8914 + p8913 + p8912 + p8911 + p8910 + p5039 + p5038 + p5037 + p5036 + p5035 + p5034 + p5033 + p5032 + p5031 + p5030 + p6329 + p6328 + p6327 + p6326 + p6325 + p6324 + p6323 + p6322 + p6321 + p6320 + p7619 + p7618 + p7617 + p7616 + p7615 + p7614 + p7613 + p7612 + p7611 + p7610 + p8909 + p8908 + p8907 + p8906 + p8905 + p8904 + p8903 + p8902 + p8901 + p8900 + p5029 + p5028 + p5027 + p5026 + p5025 + p5024 + p5023 + p5022 + p5021 + p5020 + p6319 + p6318 + p6317 + p6316 + p6315 + p6314 + p6313 + p6312 + p6311 + p6310 + p7609 + p7608 + p7607 + p7606 + p7605 + p7604 + p7603 + p7602 + p7601 + p7600 + p5019 + p5018 + p5017 + p5016 + p5015 + p5014 + p5013 + p5012 + p5011 + p5010 + p6309 + p6308 + p6307 + p6306 + p6305 + p6304 + p6303 + p6302 + p6301 + p6300 + p5009 + p5008 + p5007 + p5006 + p5005 + p5004 + p8899 + p8898 + p8897 + p8896 + p8895 + p8894 + p8893 + p8892 + p7599 + p7598 + p7597 + p7596 + p8883 + p8882 + p8881 + p8880 + p6291 + p6290 + p7587 + p7586 + p7585 + p7584 + p7583 + p7582 + p7581 + p7580 + p8879 + p8878 + p8877 + p8876 + p8875 + p8874 + p8873 + p8872 + p8871 + p8870 + p6289 + p6288 + p6287 + p6286 + p6285 + p6284 + p6283 + p6282 + p6281 + p6280 + p7579 + p7578 + p7577 + p7576 + p7575 + p7574 + p7573 + p7572 + p7571 + p7570 + p8869 + p8868 + p8867 + p8866 + p8865 + p8864 + p8863 + p8862 + p8861 + p8860 + p6279 + p6278 + p6277 + p6276 + p6275 + p6274 + p6273 + p6272 + p6271 + p6270 + p7569 + p7568 + p7567 + p7566 + p7565 + p7564 + p7563 + p7562 + p7561 + p7560 + p8859 + p8858 + p8857 + p8856 + p8855 + p8854 + p8853 + p8852 + p8851 + p8850 + p6269 + p6268 + p6267 + p6266 + p6265 + p6264 + p6263 + p6262 + p9000 + p9001 + p9002 + p9003 + p9004 + p9005 + p9006 + p9007 + p9008 + p9009 + p9010 + p9011 + p9012 + p9013 + p9014 + p9015 + p9016 + p9017 + p9018 + p9019 + p9020 + p9021 + p9022 + p9023 + p9024 + p9025 + p9026 + p9027 + p9028 + p9029 + p9030 + p9031 + p9032 + p9033 + p9034 + p9035 + p6261 + p6260 + p7559 + p7558 + p7557 + p7556 + p7555 + p7554 + p7553 + p7552 + p7551 + p7550 + p8849 + p8848 + p8847 + p8846 + p8845 + p8844 + p8843 + p8842 + p8841 + p8840 + p6259 + p6258 + p6257 + p6256 + p6255 + p6254 + p6253 + p6252 + p6251 + p6250 + p7549 + p7548 + p7547 + p7546 + p8000 + p8001 + p8002 + p8003 + p8004 + p8005 + p8006 + p8007 + p8008 + p8009 + p8010 + p8011 + p8012 + p8013 + p8014 + p8015 + p8016 + p8017 + p8018 + p8019 + p7545 + p7544 + p7543 + p7542 + p8839 + p8838 + p6249 + p6248 + p8028 + p8029 + p8030 + p8031 + p8032 + p8033 + p8034 + p8035 + p8036 + p8037 + p8038 + p8039 + p8040 + p8041 + p8042 + p8043 + p8044 + p8045 + p8046 + p8047 + p8048 + p8049 + p8050 + p8051 + p8052 + p8053 + p8054 + p8055 + p8056 + p8057 + p8058 + p8059 + p8060 + p8061 + p8062 + p8063 + p8064 + p8065 + p8066 + p8067 + p8068 + p8069 + p8070 + p8071 + p8072 + p8073 + p6247 + p6246 + p7533 + p7532 + p7531 + p7530 + p8829 + p8828 + p8082 + p8083 + p8084 + p8085 + p8086 + p8087 + p8088 + p8089 + p8090 + p8091 + p8092 + p8093 + p8094 + p8095 + p8096 + p8097 + p8098 + p8099 + p8100 + p8101 + p8102 + p8103 + p8104 + p8105 + p8106 + p8107 + p8108 + p8109 + p8110 + p8111 + p8112 + p8113 + p8114 + p8115 + p8116 + p8117 + p8118 + p8119 + p8120 + p8121 + p8122 + p8123 + p8124 + p8125 + p8126 + p8127 + p8827 + p8826 + p8825 + p8824 + p8823 + p8822 + p8821 + p8820 + p8136 + p8137 + p8138 + p8139 + p8140 + p8141 + p8142 + p8143 + p8144 + p8145 + p8146 + p8147 + p8148 + p8149 + p8150 + p8151 + p8152 + p8153 + p8154 + p8155 + p8156 + p8157 + p8158 + p8159 + p8160 + p8161 + p8162 + p8163 + p8164 + p8165 + p8166 + p8167 + p8168 + p8169 + p8170 + p8171 + p8172 + p8173 + p8174 + p8175 + p8176 + p8177 + p8178 + p8179 + p8180 + p8181 + p6237 + p6236 + p6235 + p6234 + p6233 + p6232 + p6231 + p6230 + p8190 + p8191 + p8192 + p8193 + p8194 + p8195 + p8196 + p8197 + p8198 + p8199 + p8200 + p8201 + p8202 + p8203 + p8204 + p8205 + p8206 + p8207 + p8208 + p8209 + p8210 + p8211 + p8212 + p8213 + p8214 + p8215 + p8216 + p8217 + p8218 + p8219 + p8220 + p8221 + p8222 + p8223 + p8224 + p8225 + p8226 + p8227 + p8228 + p8229 + p8230 + p8231 + p8232 + p8233 + p8234 + p8235 + p7529 + p7528 + p7527 + p7526 + p7525 + p7524 + p7523 + p7522 + p8244 + p8245 + p8246 + p8247 + p8248 + p8249 + p8250 + p8251 + p8252 + p8253 + p8254 + p8255 + p8256 + p8257 + p8258 + p8259 + p8260 + p8261 + p8262 + p8263 + p8264 + p8265 + p8266 + p8267 + p8268 + p8269 + p8270 + p8271 + p8272 + p8273 + p8274 + p8275 + p8276 + p8277 + p8278 + p8279 + p8280 + p8281 + p8282 + p8283 + p8284 + p8285 + p8286 + p8287 + p8288 + p8289 + p7521 + p7520 + p8819 + p8818 + p8817 + p8816 + p8815 + p8814 + p8298 + p8299 + p8813 + p8812 + p7002 + p7003 + p7004 + p7005 + p7006 + p7007 + p7008 + p7009 + p8300 + p8301 + p8302 + p8303 + p8304 + p8305 + p8306 + p8307 + p8308 + p8309 + p7010 + p7011 + p7012 + p7013 + p7014 + p7015 + p7016 + p7017 + p7018 + p7019 + p8310 + p8311 + p8312 + p8313 + p8314 + p8315 + p8316 + p8317 + p8318 + p8319 + p7020 + p7021 + p7022 + p7023 + p7024 + p7025 + p7026 + p7027 + p7028 + p7029 + p8320 + p8321 + p8322 + p8323 + p8324 + p8325 + p8326 + p8327 + p8328 + p8329 + p7030 + p7031 + p7032 + p7033 + p7034 + p7035 + p7036 + p7037 + p7038 + p7039 + p8330 + p8331 + p8332 + p8333 + p8334 + p8335 + p8336 + p8337 + p8338 + p8339 + p7040 + p7041 + p7042 + p7043 + p7044 + p7045 + p7046 + p7047 + p8811 + p8810 + p8340 + p8341 + p8342 + p8343 + p6229 + p6228 + p6227 + p6226 + p6225 + p6224 + p6223 + p6222 + p6221 + p6220 + p7519 + p7518 + p7056 + p7057 + p7058 + p7059 + p7517 + p7516 + p8352 + p8353 + p8354 + p8355 + p8356 + p8357 + p8358 + p8359 + p7060 + p7061 + p7062 + p7063 + p7064 + p7065 + p7066 + p7067 + p7068 + p7069 + p8360 + p8361 + p8362 + p8363 + p8364 + p8365 + p8366 + p8367 + p8368 + p8369 + p7070 + p7071 + p7072 + p7073 + p7074 + p7075 + p7076 + p7077 + p7078 + p7079 + p8370 + p8371 + p8372 + p8373 + p8374 + p8375 + p8376 + p8377 + p8378 + p8379 + p7080 + p7081 + p7082 + p7083 + p7084 + p7085 + p7086 + p7087 + p7088 + p7089 + p8380 + p8381 + p8382 + p8383 + p8384 + p8385 + p8386 + p8387 + p8388 + p8389 + p7090 + p7091 + p7092 + p7093 + p7094 + p7095 + p7096 + p7097 + p7098 + p7099 + p8390 + p8391 + p8392 + p8393 + p8394 + p8395 + p8396 + p8397 + p7515 + p7514 + p7513 + p7512 + p7511 + p7510 + p8809 + p8808 + p8807 + p7100 + p7101 + p8806 + p8805 + p8804 + p8803 + p8802 + p8801 + p8800 + p6219 + p6218 + p6217 + p6216 + p6215 + p6214 + p6213 + p8406 + p8407 + p8408 + p8409 + p7110 + p7111 + p7112 + p7113 + p7114 + p7115 + p7116 + p7117 + p7118 + p7119 + p6212 + p6211 + p8410 + p8411 + p8412 + p8413 + p8414 + p8415 + p8416 + p8417 + p8418 + p8419 + p7120 + p7121 + p7122 + p7123 + p7124 + p7125 + p7126 + p7127 + p7128 + p7129 + p6210 + p7509 + p8420 + p8421 + p8422 + p8423 + p8424 + p8425 + p8426 + p8427 + p8428 + p8429 + p7130 + p7131 + p7132 + p7133 + p7134 + p7135 + p7136 + p7137 + p7138 + p7139 + p7508 + p7507 + p7506 + p7505 + p7504 + p7503 + p7502 + p7501 + p7500 + p6209 + p8430 + p8431 + p8432 + p8433 + p8434 + p8435 + p8436 + p8437 + p8438 + p8439 + p7140 + p7141 + p7142 + p7143 + p7144 + p7145 + p7146 + p7147 + p7148 + p7149 + p6208 + p6207 + p6206 + p6205 + p6204 + p6203 + p6202 + p6201 + p6200 + p8440 + p8441 + p8442 + p8443 + p8444 + p8445 + p8446 + p8447 + p8448 + p8449 + p7150 + p7151 + p7152 + p7153 + p7154 + p7155 + p8799 + p8798 + p8797 + p8796 + p8795 + p8794 + p8793 + p8450 + p8451 + p8792 + p8791 + p8790 + p7499 + p7498 + p7497 + p7496 + p7495 + p7494 + p7493 + p7492 + p7491 + p7164 + p7165 + p7166 + p7167 + p7168 + p7169 + p7490 + p8789 + p8788 + p8787 + p8786 + p8785 + p8784 + p6199 + p6198 + p6197 + p8460 + p8461 + p8462 + p8463 + p8464 + p8465 + p8466 + p8467 + p8468 + p8469 + p7170 + p7171 + p7172 + p7173 + p7174 + p7175 + p7176 + p7177 + p7178 + p7179 + p6196 + p6195 + p6194 + p6193 + p6192 + p7489 + p7488 + p8775 + p8774 + p8773 + p8470 + p8471 + p8472 + p8473 + p8474 + p8475 + p8476 + p8477 + p8478 + p8479 + p7180 + p7181 + p7182 + p7183 + p7184 + p7185 + p7186 + p7187 + p7188 + p7189 + p8772 + p8771 + p8770 + p6183 + p6182 + p6181 + p6180 + p7479 + p7478 + p7477 + p8480 + p8481 + p8482 + p8483 + p8484 + p8485 + p8486 + p8487 + p8488 + p8489 + p7190 + p7191 + p7192 + p7193 + p7194 + p7195 + p7196 + p7197 + p7198 + p7199 + p7476 + p7475 + p7474 + p7473 + p7472 + p7471 + p7470 + p8769 + p8768 + p8767 + p8490 + p8491 + p8492 + p8493 + p8494 + p8495 + p8496 + p8497 + p8498 + p8499 + p8766 + p8765 + p8764 + p7200 + p7201 + p7202 + p7203 + p7204 + p7205 + p7206 + p7207 + p7208 + p7209 + p8500 + p8501 + p8502 + p8503 + p8504 + p8505 + p8763 + p8762 + p8761 + p8760 + p6179 + p6178 + p6177 + p6176 + p6175 + p6174 + p6173 + p6172 + p7218 + p7219 + p6171 + p6170 + p7469 + p7468 + p7467 + p8514 + p8515 + p8516 + p8517 + p8518 + p8519 + p7220 + p7221 + p7222 + p7223 + p7224 + p7225 + p7226 + p7227 + p7228 + p7229 + p7466 + p8520 + p8521 + p8522 + p8523 + p8524 + p8525 + p8526 + p8527 + p8528 + p8529 + p7230 + p7231 + p7232 + p7233 + p7234 + p7235 + p7236 + p7237 + p7238 + p7239 + p7465 + p8530 + p8531 + p8532 + p8533 + p8534 + p8535 + p8536 + p8537 + p8538 + p8539 + p7240 + p7241 + p7242 + p7243 + p7244 + p7245 + p7246 + p7247 + p7248 + p7249 + p7464 + p7463 + p8540 + p8541 + p8542 + p8543 + p8544 + p8545 + p8546 + p8547 + p8548 + p8549 + p7250 + p7251 + p7252 + p7253 + p7254 + p7255 + p7256 + p7257 + p7258 + p7259 + p7462 + p8550 + p8551 + p8552 + p8553 + p8554 + p8555 + p8556 + p8557 + p8558 + p8559 + p7260 + p7261 + p7262 + p7263 + p7461 + p7460 + p8759 + p8758 + p8757 + p8756 + p8755 + p8754 + p8753 + p8752 + p8751 + p8750 + p6169 + p6168 + p6167 + p8568 + p8569 + p6166 + p6165 + p7272 + p7273 + p7274 + p7275 + p7276 + p7277 + p7278 + p7279 + p6164 + p8570 + p8571 + p8572 + p8573 + p8574 + p8575 + p8576 + p8577 + p8578 + p8579 + p7280 + p7281 + p7282 + p7283 + p7284 + p7285 + p7286 + p7287 + p7288 + p7289 + p8580 + p8581 + p8582 + p8583 + p8584 + p8585 + p8586 + p8587 + p8588 + p8589 + p7290 + p7291 + p7292 + p7293 + p7294 + p7295 + p7296 + p7297 + p7298 + p7299 + p8590 + p8591 + p8592 + p8593 + p8594 + p8595 + p8596 + p8597 + p8598 + p8599 + p6163 + p6162 + p6161 + p6160 + p7459 + p7458 + p7457 + p7456 + p7455 + p6000 + p6001 + p6002 + p6003 + p6004 + p6005 + p6006 + p6007 + p6008 + p6009 + p7300 + p7301 + p7302 + p7303 + p7304 + p7305 + p7306 + p7307 + p7308 + p7309 + p6010 + p6011 + p6012 + p6013 + p6014 + p6015 + p6016 + p6017 + p6018 + p6019 + p8600 + p8601 + p8602 + p8603 + p8604 + p8605 + p8606 + p8607 + p8608 + p8609 + p7310 + p7311 + p7312 + p7313 + p7314 + p7315 + p7316 + p7317 + p7454 + p7453 + p6020 + p6021 + p7452 + p7451 + p7450 + p8749 + p8748 + p8747 + p8746 + p8745 + p8744 + p8743 + p8742 + p8741 + p8740 + p6159 + p6158 + p6157 + p6156 + p8610 + p8611 + p8612 + p8613 + p6155 + p6154 + p6153 + p6152 + p6151 + p6150 + p7449 + p7448 + p7447 + p7446 + p7445 + p7444 + p7326 + p7327 + p7328 + p7329 + p6030 + p6031 + p6032 + p6033 + p6034 + p6035 + p6036 + p6037 + p6038 + p6039 + p7443 + p7442 + p7441 + p7440 + p8739 + p8738 + p8737 + p8736 + p8735 + p8734 + p8733 + p8732 + p8622 + p8623 + p8624 + p8625 + p8626 + p8627 + p8628 + p8629 + p7330 + p7331 + p7332 + p7333 + p7334 + p7335 + p7336 + p7337 + p7338 + p7339 + p6040 + p6041 + p6042 + p6043 + p6044 + p6045 + p6046 + p6047 + p6048 + p6049 + p8731 + p8730 + p6149 + p6148 + p6147 + p6146 + p6145 + p6144 + p6143 + p8630 + p8631 + p8632 + p8633 + p8634 + p8635 + p8636 + p8637 + p8638 + p8639 + p7340 + p7341 + p7342 + p7343 + p7344 + p7345 + p7346 + p7347 + p7348 + p7349 + p6050 + p6051 + p6052 + p6053 + p6054 + p6055 + p6056 + p6057 + p6058 + p6059 + p6142 + p6141 + p6140 + p7439 + p7438 + p7437 + p7436 + p7435 + p7434 + p8721 + p8640 + p8641 + p8642 + p8643 + p8644 + p8645 + p8646 + p8647 + p8648 + p8649 + p7350 + p7351 + p7352 + p7353 + p7354 + p7355 + p7356 + p7357 + p7358 + p7359 + p6060 + p6061 + p6062 + p6063 + p6064 + p6065 + p6066 + p6067 + p6068 + p6069 + p8720 + p6139 + p6138 + p7425 + p7424 + p7423 + p7422 + p7421 + p7420 + p8650 + p8651 + p8652 + p8653 + p8654 + p8655 + p8656 + p8657 + p8658 + p8659 + p7360 + p7361 + p7362 + p7363 + p7364 + p7365 + p7366 + p7367 + p7368 + p7369 + p6070 + p6071 + p6072 + p6073 + p6074 + p6075 + p8719 + p8718 + p8717 + p8716 + p8715 + p8714 + p8713 + p8712 + p8711 + p8710 + p6129 + p6128 + p6127 + p6126 + p8660 + p8661 + p8662 + p8663 + p8664 + p8665 + p8666 + p8667 + p6125 + p6124 + p7370 + p7371 + p6123 + p6122 + p6121 + p6120 + p7419 + p7418 + p7417 + p7416 + p7415 + p7414 + p7413 + p7412 + p6084 + p6085 + p6086 + p6087 + p6088 + p6089 + p7411 + p7410 + p8709 + p8708 + p8707 + p8706 + p8705 + p8704 + p8703 + p8702 + p8701 + p8700 + p6119 + p6118 + p6117 + p8676 + p8677 + p8678 + p8679 + p7380 + p7381 + p7382 + p7383 + p7384 + p7385 + p7386 + p7387 + p7388 + p7389 + p6090 + p6091 + p6092 + p6093 + p6094 + p6095 + p6096 + p6097 + p6098 + p6099 + p6116 + p6115 + p6114 + p6113 + p6112 + p6111 + p6110 + p7409 + p7408 + p7407 + p8680 + p8681 + p8682 + p8683 + p8684 + p8685 + p8686 + p8687 + p8688 + p8689 + p7390 + p7391 + p7392 + p7393 + p7394 + p7395 + p7396 + p7397 + p7398 + p7399 + p7406 + p7405 + p7404 + p7403 + p7402 + p7401 + p7400 + p6109 + p6108 + p8690 + p8691 + p8692 + p8693 + p8694 + p8695 + p8696 + p8697 + p8698 + p8699 + p6107 + p6106 + p6105 + p6104 + p6103 + p6102 + p6101 + p6100 <= 0)
lola: after: (p8675 + p8674 + p8673 + p8672 + p8671 + p8670 + p6083 + p6082 + p6081 + p6080 + p7379 + p7378 + p7377 + p7376 + p7375 + p7374 + p7373 + p7372 + p8669 + p8668 + p6079 + p6078 + p6077 + p6076 + p7426 + p7427 + p7428 + p7429 + p6130 + p6131 + p6132 + p6133 + p6134 + p6135 + p6136 + p6137 + p8722 + p8723 + p8724 + p8725 + p8726 + p8727 + p8728 + p8729 + p7430 + p7431 + p7432 + p7433 + p8621 + p8620 + p7325 + p7324 + p7323 + p7322 + p7321 + p7320 + p8619 + p8618 + p8617 + p8616 + p8615 + p8614 + p6029 + p6028 + p6027 + p6026 + p6025 + p6024 + p6023 + p6022 + p7319 + p7318 + p7271 + p7270 + p8567 + p8566 + p8565 + p8564 + p8563 + p8562 + p8561 + p8560 + p7269 + p7268 + p7267 + p7266 + p7265 + p7264 + p8513 + p8512 + p8511 + p8510 + p7217 + p7216 + p7215 + p7214 + p7213 + p7212 + p7211 + p7210 + p8509 + p8508 + p8507 + p8506 + p6184 + p6185 + p6186 + p6187 + p6188 + p6189 + p8776 + p8777 + p8778 + p8779 + p7480 + p7481 + p7482 + p7483 + p7484 + p7485 + p7486 + p7487 + p6190 + p6191 + p8780 + p8781 + p8782 + p8783 + p7163 + p7162 + p7161 + p7160 + p8459 + p8458 + p8457 + p8456 + p8455 + p8454 + p8453 + p8452 + p7159 + p7158 + p7157 + p7156 + p8405 + p8404 + p8403 + p8402 + p8401 + p8400 + p7109 + p7108 + p7107 + p7106 + p7105 + p7104 + p7103 + p7102 + p8399 + p8398 + p8351 + p8350 + p7055 + p7054 + p7053 + p7052 + p7051 + p7050 + p8349 + p8348 + p8347 + p8346 + p8345 + p8344 + p7049 + p7048 + p7001 + p7000 + p8297 + p8296 + p8295 + p8294 + p8293 + p8292 + p8291 + p8290 + p8243 + p8242 + p8241 + p8240 + p8239 + p8238 + p8237 + p8236 + p8189 + p8188 + p8187 + p8186 + p8185 + p8184 + p8183 + p8182 + p6238 + p6239 + p8135 + p8134 + p8133 + p8132 + p8131 + p8130 + p8129 + p8128 + p8081 + p8080 + p8079 + p8078 + p8077 + p8076 + p7534 + p7535 + p7536 + p7537 + p7538 + p7539 + p6240 + p6241 + p6242 + p6243 + p6244 + p6245 + p8075 + p8074 + p8027 + p8026 + p8830 + p8831 + p8832 + p8833 + p8834 + p8835 + p8836 + p8837 + p8025 + p8024 + p7540 + p7541 + p8023 + p8022 + p8021 + p8020 + p7588 + p7589 + p6292 + p6293 + p6294 + p6295 + p6296 + p6297 + p6298 + p6299 + p8884 + p8885 + p8886 + p8887 + p8888 + p8889 + p7590 + p7591 + p7592 + p7593 + p7594 + p7595 + p8890 + p8891 + p5000 + p5001 + p5002 + p5003 + p6346 + p6347 + p6348 + p6349 + p5050 + p5051 + p5052 + p5053 + p5054 + p5055 + p5056 + p5057 + p8938 + p8939 + p7642 + p7643 + p7644 + p7645 + p7646 + p7647 + p7648 + p7649 + p6350 + p6351 + p6352 + p6353 + p8940 + p8941 + p8942 + p8943 + p8944 + p8945 + p7696 + p7697 + p7698 + p7699 + p8992 + p8993 + p8994 + p8995 + p8996 + p8997 + p8998 + p8999 + p5104 + p5105 + p5106 + p5107 + p5108 + p5109 + p6400 + p6401 + p6402 + p6403 + p6404 + p6405 + p6406 + p6407 + p5110 + p5111 + p7700 + p7701 + p7702 + p7703 + p4999 + p4998 + p4997 + p4996 + p4949 + p4948 + p4947 + p4946 + p4945 + p4944 + p4943 + p4942 + p5158 + p5159 + p6454 + p6455 + p6456 + p6457 + p6458 + p6459 + p5160 + p5161 + p5162 + p5163 + p5164 + p5165 + p7750 + p7751 + p7752 + p7753 + p7754 + p7755 + p7756 + p7757 + p6460 + p6461 + p4895 + p4894 + p4893 + p4892 + p4891 + p4890 + p4889 + p4888 + p4841 + p4840 + p4839 + p4838 + p4837 + p4836 + p4835 + p4834 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4780 + p6508 + p6509 + p5212 + p5213 + p5214 + p5215 + p5216 + p5217 + p5218 + p5219 + p7804 + p7805 + p7806 + p7807 + p7808 + p7809 + p6510 + p6511 + p6512 + p6513 + p6514 + p6515 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p7810 + p7811 + p5975 + p5974 + p5973 + p5972 + p5971 + p5970 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p5969 + p5968 + p5921 + p5920 + p5266 + p5267 + p5268 + p5269 + p5919 + p7858 + p7859 + p5918 + p5917 + p6562 + p6563 + p6564 + p6565 + p6566 + p6567 + p6568 + p6569 + p5270 + p5271 + p5272 + p5273 + p5916 + p5915 + p5914 + p7860 + p7861 + p7862 + p7863 + p7864 + p7865 + p5867 + p5866 + p5865 + p5864 + p5863 + p5862 + p5861 + p5860 + p5813 + p5812 + p5811 + p5810 + p5809 + p5808 + p5807 + p5806 + p6616 + p6617 + p6618 + p6619 + p5320 + p5321 + p5322 + p5323 + p5324 + p5325 + p5326 + p5327 + p7912 + p7913 + p7914 + p7915 + p7916 + p7917 + p7918 + p7919 + p6620 + p6621 + p6622 + p6623 + p5759 + p5758 + p5757 + p5756 + p5755 + p5754 + p5753 + p5752 + p5374 + p5375 + p5376 + p5377 + p5378 + p5379 + p5705 + p5704 + p5703 + p5702 + p5701 + p5700 + p7966 + p7967 + p7968 + p7969 + p6670 + p6671 + p6672 + p6673 + p6674 + p6675 + p6676 + p6677 + p5380 + p5381 + p7970 + p7971 + p7972 + p7973 + p6999 + p6998 + p6997 + p6996 + p6995 + p6994 + p5699 + p5698 + p5651 + p5650 + p6947 + p6946 + p6945 + p6944 + p6943 + p6942 + p6941 + p6940 + p5649 + p5648 + p5647 + p5646 + p5645 + p5644 + p6893 + p6892 + p6891 + p6890 + p5597 + p5596 + p5595 + p5594 + p5593 + p5592 + p5591 + p5590 + p6889 + p5428 + p5429 + p6888 + p6887 + p6886 + p6724 + p6725 + p6726 + p6727 + p6728 + p6729 + p5430 + p5431 + p5432 + p5433 + p5434 + p5435 + p5543 + p5542 + p5541 + p5540 + p6839 + p6838 + p6837 + p6836 + p6835 + p6730 + p6731 + p6834 + p6833 + p6832 + p5539 + p5538 + p5537 + p5536 + p6785 + p6784 + p6783 + p6782 + p6781 + p6780 + p5489 + p5488 + p5487 + p5486 + p5485 + p5484 + p5483 + p5482 + p6779 + p6778 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9793 + p9794 + p9795 + p9796 + p9797 + p9798 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 + p9857 + p9858 + p9859 + p9860 + p9861 + p9862 <= 0)
lola: after: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4660 + p4657 + p4654 + p4651 + p4648 + p4645 + p4642 + p4639 + p4636 + p4635 + p4637 + p4638 + p4640 + p4641 + p4643 + p4644 + p4646 + p4647 + p4649 + p4650 + p4652 + p4653 + p4655 + p4656 + p4658 + p4659 + p4661 <= 0)
lola: after: (8 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4615 + p4612 + p4611 + p4609 + p4608 + p4606 + p4605 + p4603 + p4602 + p4600 + p4599 + p4597 + p4596 + p4594 + p4593 + p4591 + p4588 + p4587 + p4585 + p4582 + p4581 + p4579 + p4578 + p4576 + p4575 + p4573 + p4572 + p4570 + p4569 + p4567 + p4566 + p4564 + p4561 + p4560 + p4558 + p4557 + p4555 + p4552 + p4551 + p4549 + p4548 + p4546 + p4545 + p4543 + p4542 + p4540 + p4539 + p4537 + p4534 + p4533 + p4531 + p4530 + p4528 + p4527 + p4525 + p4522 + p4521 + p4519 + p4518 + p4516 + p4515 + p4513 + p4512 + p4510 + p4507 + p4506 + p4504 + p4503 + p4501 + p4500 + p4498 + p4497 + p4495 + p4492 + p4491 + p4489 + p4488 + p4486 + p4485 + p4483 + p4480 + p4479 + p4477 + p4476 + p4474 + p4473 + p4471 + p4470 + p4468 + p4467 + p4465 + p4462 + p4461 + p4459 + p4458 + p4456 + p4453 + p4452 + p4450 + p4449 + p4447 + p4446 + p4444 + p4443 + p4441 + p4440 + p4438 + p4437 + p4435 + p4432 + p4431 + p4429 + p4426 + p4425 + p4423 + p4422 + p4420 + p4419 + p4417 + p4416 + p4414 + p4413 + p4411 + p4410 + p4408 + p4407 + p4405 + p4402 + p4399 + p4396 + p4393 + p4390 + p4387 + p4384 + p4381 + p4378 + p4375 + p4374 + p4376 + p4377 + p4379 + p4380 + p4382 + p4383 + p4385 + p4386 + p4388 + p4389 + p4391 + p4392 + p4394 + p4395 + p4397 + p4398 + p4400 + p4401 + p4403 + p4404 + p4406 + p4409 + p4412 + p4415 + p4418 + p4421 + p4424 + p4427 + p4428 + p4430 + p4433 + p4434 + p4436 + p4439 + p4442 + p4445 + p4448 + p4451 + p4454 + p4455 + p4457 + p4460 + p4463 + p4464 + p4466 + p4469 + p4472 + p4475 + p4478 + p4481 + p4482 + p4484 + p4487 + p4490 + p4493 + p4494 + p4496 + p4499 + p4502 + p4505 + p4508 + p4509 + p4511 + p4514 + p4517 + p4520 + p4523 + p4524 + p4526 + p4529 + p4532 + p4535 + p4536 + p4538 + p4541 + p4544 + p4547 + p4550 + p4553 + p4554 + p4556 + p4559 + p4562 + p4563 + p4565 + p4568 + p4571 + p4574 + p4577 + p4580 + p4583 + p4584 + p4586 + p4589 + p4590 + p4592 + p4595 + p4598 + p4601 + p4604 + p4607 + p4610 + p4613 + p4614 + p4616 <= 0)
lola: after: (64 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9793 + p9794 + p9795 + p9796 + p9797 + p9798 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 + p9857 + p9858 + p9859 + p9860 + p9861 + p9862 <= 0)
lola: after: (p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856 <= 0)
lola: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856) : MAX(p9791 + p9790 + p9789 + p9788 + p9787 + p9786 + p9785 + p9784 + p9783) : MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036) : MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036) : MAX(p0 + p9 + p1998 + p1989 + p1980 + p1971 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1944 + p1935 + p1926 + p1917 + p1908 + p1907 + p1906 + p1905 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1890 + p1881 + p1872 + p1863 + p1854 + p1853 + p1852 + p1851 + p1850 + p1849 + p1848 + p1847 + p1846 + p1845 + p1836 + p1827 + p1818 + p1809 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1794 + p1793 + p1792 + p1791 + p1782 + p1773 + p1764 + p1755 + p1746 + p1745 + p1744 + p1743 + p1742 + p1741 + p1740 + p1739 + p1738 + p1737 + p1728 + p1719 + p1710 + p1701 + p2997 + p1692 + p1691 + p1690 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p2982 + p2981 + p2980 + p1689 + p1688 + p1687 + p1686 + p1685 + p1684 + p1683 + p2979 + p2970 + p1674 + p2961 + p1665 + p2952 + p1656 + p2943 + p1647 + p2934 + p2933 + p2932 + p2931 + p2930 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1630 + p2929 + p2928 + p2927 + p2926 + p2925 + p1629 + p1620 + p2916 + p1611 + p2907 + p1602 + p2898 + p1593 + p2889 + p2880 + p1584 + p1583 + p1582 + p1581 + p1580 + p2879 + p2878 + p2877 + p2876 + p2875 + p2874 + p2873 + p2872 + p2871 + p1579 + p1578 + p1577 + p1576 + p1575 + p2862 + p1566 + p2853 + p1557 + p2844 + p1548 + p2835 + p1539 + p1530 + p2826 + p2825 + p2824 + p2823 + p2822 + p2821 + p2820 + p1529 + p1528 + p1527 + p1526 + p1525 + p1524 + p1523 + p1522 + p1521 + p2819 + p2818 + p2817 + p1512 + p2808 + p1503 + p2799 + p2790 + p1494 + p2781 + p1485 + p2772 + p2771 + p2770 + p1476 + p1475 + p1474 + p1473 + p1472 + p1471 + p1470 + p2769 + p2768 + p2767 + p2766 + p2765 + p2764 + p2763 + p1469 + p1468 + p1467 + p2754 + p1458 + p2745 + p1449 + p1440 + p2736 + p1431 + p2727 + p1422 + p1421 + p1420 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p1419 + p1418 + p1417 + p1416 + p1415 + p1414 + p1413 + p2709 + p2700 + p1404 + p3996 + p2691 + p3987 + p1395 + p2682 + p3978 + p1386 + p2673 + p3969 + p3960 + p1377 + p2664 + p2663 + p2662 + p2661 + p2660 + p3959 + p3958 + p3957 + p3956 + p3955 + p3954 + p3953 + p3952 + p3951 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p2659 + p2658 + p2657 + p2656 + p2655 + p3942 + p1359 + p1350 + p2646 + p3933 + p1341 + p2637 + p3924 + p1332 + p2628 + p3915 + p1323 + p2619 + p2610 + p3906 + p3905 + p3904 + p3903 + p3902 + p3901 + p3900 + p1314 + p1313 + p1312 + p1311 + p1310 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2603 + p2602 + p2601 + p1309 + p1308 + p1307 + p1306 + p1305 + p3899 + p3898 + p3897 + p2592 + p3888 + p1296 + p2583 + p3879 + p3870 + p1287 + p2574 + p3861 + p1278 + p2565 + p3852 + p3851 + p3850 + p1269 + p1260 + p2556 + p2555 + p2554 + p2553 + p2552 + p2551 + p2550 + p3849 + p3848 + p3847 + p3846 + p3845 + p3844 + p3843 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1252 + p1251 + p2549 + p2548 + p2547 + p3834 + p1242 + p2538 + p3825 + p1233 + p2529 + p2520 + p3816 + p1224 + p2511 + p3807 + p1215 + p2502 + p2501 + p2500 + p1206 + p1205 + p1204 + p1203 + p1202 + p1201 + p1200 + p3798 + p3797 + p3796 + p3795 + p3794 + p3793 + p3792 + p3791 + p3790 + p2499 + p2498 + p2497 + p2496 + p2495 + p2494 + p2493 + p3789 + p3780 + p1199 + p1198 + p1197 + p2484 + p3771 + p1188 + p2475 + p3762 + p1179 + p1170 + p2466 + p3753 + p1161 + p2457 + p3744 + p3743 + p3742 + p3741 + p3740 + p1152 + p1151 + p1150 + p2448 + p2447 + p2446 + p2445 + p2444 + p2443 + p2442 + p2441 + p2440 + p3739 + p3738 + p3737 + p3736 + p3735 + p1149 + p1148 + p1147 + p1146 + p1145 + p1144 + p1143 + p2439 + p2430 + p3726 + p1134 + p2421 + p3717 + p1125 + p2412 + p3708 + p1116 + p2403 + p1107 + p99 + p90 + p81 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p54 + p45 + p36 + p27 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10 + p999 + p990 + p989 + p988 + p987 + p986 + p985 + p984 + p983 + p982 + p981 + p972 + p963 + p954 + p945 + p936 + p935 + p934 + p933 + p932 + p931 + p930 + p929 + p928 + p927 + p918 + p909 + p900 + p3699 + p3690 + p2394 + p2393 + p2392 + p2391 + p2390 + p3689 + p3688 + p3687 + p3686 + p3685 + p3684 + p3683 + p3682 + p3681 + p1098 + p1097 + p1096 + p1095 + p1094 + p1093 + p1092 + p1091 + p1090 + p2389 + p2388 + p2387 + p2386 + p2385 + p3672 + p1089 + p1080 + p2376 + p3663 + p1071 + p2367 + p3654 + p1062 + p2358 + p3645 + p1053 + p2349 + p2340 + p3636 + p3635 + p3634 + p3633 + p3632 + p3631 + p3630 + p1044 + p1043 + p1042 + p1041 + p1040 + p2339 + p2338 + p2337 + p2336 + p2335 + p2334 + p2333 + p2332 + p2331 + p3629 + p3628 + p3627 + p1039 + p1038 + p1037 + p1036 + p1035 + p2322 + p3618 + p1026 + p2313 + p3609 + p3600 + p1017 + p2304 + p1008 + p891 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p874 + p873 + p864 + p855 + p846 + p837 + p828 + p827 + p826 + p825 + p824 + p823 + p822 + p821 + p820 + p819 + p810 + p801 + p3591 + p2295 + p3582 + p3581 + p3580 + p2286 + p2285 + p2284 + p2283 + p2282 + p2281 + p2280 + p3579 + p3578 + p3577 + p3576 + p3575 + p3574 + p3573 + p2279 + p2278 + p2277 + p3564 + p2268 + p3555 + p2259 + p2250 + p3546 + p2241 + p3537 + p2232 + p2231 + p2230 + p3528 + p3527 + p3526 + p3525 + p3524 + p3523 + p3522 + p3521 + p3520 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p3519 + p3510 + p2214 + p3501 + p2205 + p792 + p783 + p774 + p773 + p772 + p771 + p770 + p769 + p768 + p767 + p766 + p765 + p756 + p747 + p738 + p729 + p720 + p719 + p718 + p717 + p716 + p715 + p714 + p713 + p712 + p711 + p702 + p3492 + p2196 + p3483 + p2187 + p3474 + p3473 + p3472 + p3471 + p3470 + p2178 + p2177 + p2176 + p2175 + p2174 + p2173 + p2172 + p2171 + p2170 + p3469 + p3468 + p3467 + p3466 + p3465 + p2169 + p2160 + p3456 + p2151 + p3447 + p2142 + p3438 + p2133 + p3429 + p3420 + p2124 + p2123 + p2122 + p2121 + p2120 + p3419 + p3418 + p3417 + p3416 + p3415 + p3414 + p3413 + p3412 + p3411 + p2119 + p2118 + p2117 + p2116 + p2115 + p3402 + p2106 + p693 + p684 + p675 + p666 + p665 + p664 + p663 + p662 + p661 + p660 + p659 + p658 + p657 + p648 + p639 + p630 + p621 + p612 + p611 + p610 + p609 + p608 + p607 + p606 + p605 + p604 + p603 + p3393 + p2097 + p3384 + p2088 + p3375 + p2079 + p2070 + p3366 + p3365 + p3364 + p3363 + p3362 + p3361 + p3360 + p2069 + p2068 + p2067 + p2066 + p2065 + p2064 + p2063 + p2062 + p2061 + p3359 + p3358 + p3357 + p2052 + p3348 + p2043 + p3339 + p3330 + p2034 + p3321 + p2025 + p3312 + p3311 + p3310 + p2016 + p2015 + p2014 + p2013 + p2012 + p2011 + p2010 + p3309 + p3308 + p3307 + p3306 + p3305 + p3304 + p3303 + p2009 + p2008 + p2007 + p594 + p585 + p576 + p567 + p558 + p557 + p556 + p555 + p554 + p553 + p552 + p551 + p550 + p549 + p540 + p531 + p522 + p513 + p504 + p503 + p502 + p501 + p500 + p3294 + p3285 + p3276 + p4005 + p4006 + p4007 + p4008 + p4009 + p3267 + p3258 + p3257 + p4010 + p4011 + p4012 + p4013 + p4014 + p3256 + p3255 + p3254 + p3253 + p3252 + p3251 + p3250 + p3249 + p3240 + p3231 + p4023 + p3222 + p3213 + p3204 + p3203 + p3202 + p4032 + p3201 + p3200 + p499 + p498 + p497 + p496 + p495 + p486 + p477 + p468 + p459 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p432 + p423 + p4041 + p414 + p405 + p4050 + p4059 + p3199 + p3198 + p3197 + p3196 + p3195 + p3186 + p4060 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4067 + p4068 + p3177 + p3168 + p3159 + p3150 + p3149 + p4077 + p3148 + p3147 + p3146 + p3145 + p3144 + p3143 + p3142 + p3141 + p3132 + p3123 + p4086 + p3114 + p3105 + p396 + p395 + p394 + p393 + p392 + p391 + p390 + p389 + p388 + p387 + p378 + p369 + p360 + p351 + p342 + p341 + p4095 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p333 + p324 + p315 + p306 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3078 + p4365 + p3069 + p3060 + p4356 + p3051 + p4347 + p3042 + p3041 + p3040 + p4104 + p4338 + p4337 + p4336 + p4335 + p4334 + p4333 + p4332 + p4331 + p4330 + p3039 + p3038 + p3037 + p3036 + p3035 + p3034 + p3033 + p4329 + p4320 + p4113 + p4114 + p4115 + p4116 + p4117 + p4118 + p4119 + p3024 + p4311 + p3015 + p4302 + p3006 + p297 + p288 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p270 + p261 + p252 + p243 + p4120 + p4121 + p4122 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p225 + p216 + p207 + p4131 + p4293 + p4284 + p4283 + p4282 + p4281 + p4280 + p4279 + p4278 + p4277 + p4276 + p4275 + p4266 + p4257 + p4140 + p4149 + p4248 + p4239 + p4230 + p4229 + p4228 + p4227 + p4226 + p4225 + p4224 + p4223 + p4222 + p4221 + p4212 + p4203 + p198 + p189 + p180 + p179 + p178 + p4158 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p162 + p153 + p144 + p135 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p108 + p4167 + p4168 + p4169 + p4194 + p4185 + p4176 + p4175 + p4174 + p4173 + p4172 + p4171 + p4170) : MAX(0) : MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856) : MAX(p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626) : MAX(56) : MAX(64) : MAX(p8675 + p8674 + p8673 + p8672 + p8671 + p8670 + p6083 + p6082 + p6081 + p6080 + p7379 + p7378 + p7377 + p7376 + p7375 + p7374 + p7373 + p7372 + p8669 + p8668 + p6079 + p6078 + p6077 + p6076 + p7426 + p7427 + p7428 + p7429 + p6130 + p6131 + p6132 + p6133 + p6134 + p6135 + p6136 + p6137 + p8722 + p8723 + p8724 + p8725 + p8726 + p8727 + p8728 + p8729 + p7430 + p7431 + p7432 + p7433 + p8621 + p8620 + p7325 + p7324 + p7323 + p7322 + p7321 + p7320 + p8619 + p8618 + p8617 + p8616 + p8615 + p8614 + p6029 + p6028 + p6027 + p6026 + p6025 + p6024 + p6023 + p6022 + p7319 + p7318 + p7271 + p7270 + p8567 + p8566 + p8565 + p8564 + p8563 + p8562 + p8561 + p8560 + p7269 + p7268 + p7267 + p7266 + p7265 + p7264 + p8513 + p8512 + p8511 + p8510 + p7217 + p7216 + p7215 + p7214 + p7213 + p7212 + p7211 + p7210 + p8509 + p8508 + p8507 + p8506 + p6184 + p6185 + p6186 + p6187 + p6188 + p6189 + p8776 + p8777 + p8778 + p8779 + p7480 + p7481 + p7482 + p7483 + p7484 + p7485 + p7486 + p7487 + p6190 + p6191 + p8780 + p8781 + p8782 + p8783 + p7163 + p7162 + p7161 + p7160 + p8459 + p8458 + p8457 + p8456 + p8455 + p8454 + p8453 + p8452 + p7159 + p7158 + p7157 + p7156 + p8405 + p8404 + p8403 + p8402 + p8401 + p8400 + p7109 + p7108 + p7107 + p7106 + p7105 + p7104 + p7103 + p7102 + p8399 + p8398 + p8351 + p8350 + p7055 + p7054 + p7053 + p7052 + p7051 + p7050 + p8349 + p8348 + p8347 + p8346 + p8345 + p8344 + p7049 + p7048 + p7001 + p7000 + p8297 + p8296 + p8295 + p8294 + p8293 + p8292 + p8291 + p8290 + p8243 + p8242 + p8241 + p8240 + p8239 + p8238 + p8237 + p8236 + p8189 + p8188 + p8187 + p8186 + p8185 + p8184 + p8183 + p8182 + p6238 + p6239 + p8135 + p8134 + p8133 + p8132 + p8131 + p8130 + p8129 + p8128 + p8081 + p8080 + p8079 + p8078 + p8077 + p8076 + p7534 + p7535 + p7536 + p7537 + p7538 + p7539 + p6240 + p6241 + p6242 + p6243 + p6244 + p6245 + p8075 + p8074 + p8027 + p8026 + p8830 + p8831 + p8832 + p8833 + p8834 + p8835 + p8836 + p8837 + p8025 + p8024 + p7540 + p7541 + p8023 + p8022 + p8021 + p8020 + p7588 + p7589 + p6292 + p6293 + p6294 + p6295 + p6296 + p6297 + p6298 + p6299 + p8884 + p8885 + p8886 + p8887 + p8888 + p8889 + p7590 + p7591 + p7592 + p7593 + p7594 + p7595 + p8890 + p8891 + p5000 + p5001 + p5002 + p5003 + p6346 + p6347 + p6348 + p6349 + p5050 + p5051 + p5052 + p5053 + p5054 + p5055 + p5056 + p5057 + p8938 + p8939 + p7642 + p7643 + p7644 + p7645 + p7646 + p7647 + p7648 + p7649 + p6350 + p6351 + p6352 + p6353 + p8940 + p8941 + p8942 + p8943 + p8944 + p8945 + p7696 + p7697 + p7698 + p7699 + p8992 + p8993 + p8994 + p8995 + p8996 + p8997 + p8998 + p8999 + p5104 + p5105 + p5106 + p5107 + p5108 + p5109 + p6400 + p6401 + p6402 + p6403 + p6404 + p6405 + p6406 + p6407 + p5110 + p5111 + p7700 + p7701 + p7702 + p7703 + p4999 + p4998 + p4997 + p4996 + p4949 + p4948 + p4947 + p4946 + p4945 + p4944 + p4943 + p4942 + p5158 + p5159 + p6454 + p6455 + p6456 + p6457 + p6458 + p6459 + p5160 + p5161 + p5162 + p5163 + p5164 + p5165 + p7750 + p7751 + p7752 + p7753 + p7754 + p7755 + p7756 + p7757 + p6460 + p6461 + p4895 + p4894 + p4893 + p4892 + p4891 + p4890 + p4889 + p4888 + p4841 + p4840 + p4839 + p4838 + p4837 + p4836 + p4835 + p4834 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4780 + p6508 + p6509 + p5212 + p5213 + p5214 + p5215 + p5216 + p5217 + p5218 + p5219 + p7804 + p7805 + p7806 + p7807 + p7808 + p7809 + p6510 + p6511 + p6512 + p6513 + p6514 + p6515 + p4733 + p4732 + p4731 + p4730 + p4729 + p4728 + p4727 + p4726 + p7810 + p7811 + p5975 + p5974 + p5973 + p5972 + p5971 + p5970 + p4679 + p4678 + p4677 + p4676 + p4675 + p4674 + p4673 + p4672 + p5969 + p5968 + p5921 + p5920 + p5266 + p5267 + p5268 + p5269 + p5919 + p7858 + p7859 + p5918 + p5917 + p6562 + p6563 + p6564 + p6565 + p6566 + p6567 + p6568 + p6569 + p5270 + p5271 + p5272 + p5273 + p5916 + p5915 + p5914 + p7860 + p7861 + p7862 + p7863 + p7864 + p7865 + p5867 + p5866 + p5865 + p5864 + p5863 + p5862 + p5861 + p5860 + p5813 + p5812 + p5811 + p5810 + p5809 + p5808 + p5807 + p5806 + p6616 + p6617 + p6618 + p6619 + p5320 + p5321 + p5322 + p5323 + p5324 + p5325 + p5326 + p5327 + p7912 + p7913 + p7914 + p7915 + p7916 + p7917 + p7918 + p7919 + p6620 + p6621 + p6622 + p6623 + p5759 + p5758 + p5757 + p5756 + p5755 + p5754 + p5753 + p5752 + p5374 + p5375 + p5376 + p5377 + p5378 + p5379 + p5705 + p5704 + p5703 + p5702 + p5701 + p5700 + p7966 + p7967 + p7968 + p7969 + p6670 + p6671 + p6672 + p6673 + p6674 + p6675 + p6676 + p6677 + p5380 + p5381 + p7970 + p7971 + p7972 + p7973 + p6999 + p6998 + p6997 + p6996 + p6995 + p6994 + p5699 + p5698 + p5651 + p5650 + p6947 + p6946 + p6945 + p6944 + p6943 + p6942 + p6941 + p6940 + p5649 + p5648 + p5647 + p5646 + p5645 + p5644 + p6893 + p6892 + p6891 + p6890 + p5597 + p5596 + p5595 + p5594 + p5593 + p5592 + p5591 + p5590 + p6889 + p5428 + p5429 + p6888 + p6887 + p6886 + p6724 + p6725 + p6726 + p6727 + p6728 + p6729 + p5430 + p5431 + p5432 + p5433 + p5434 + p5435 + p5543 + p5542 + p5541 + p5540 + p6839 + p6838 + p6837 + p6836 + p6835 + p6730 + p6731 + p6834 + p6833 + p6832 + p5539 + p5538 + p5537 + p5536 + p6785 + p6784 + p6783 + p6782 + p6781 + p6780 + p5489 + p5488 + p5487 + p5486 + p5485 + p5484 + p5483 + p5482 + p6779 + p6778) : MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856) : MAX(8) : MAX(64) : MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p9837 + p9838 + p9840 + p9841 + p9842 + p9843 + p9844 + p9845 + p9846 + p9848 + p9849 + p9850 + p9851 + p9852 + p9853 + p9854 + p9856) : MAX(p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4617)
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(56)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(56)
lola: processed formula length: 7
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 56
lola: SUBRESULT
lola: result: 56
lola: produced by: state space
lola: The maximum value of the given expression is 56
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(64)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(64)
lola: processed formula length: 7
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 64
lola: SUBRESULT
lola: result: 64
lola: produced by: state space
lola: The maximum value of the given expression is 64
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(8)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(8)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 8
lola: SUBRESULT
lola: result: 8
lola: produced by: state space
lola: The maximum value of the given expression is 8
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(64)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(64)
lola: processed formula length: 7
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 64
lola: SUBRESULT
lola: result: 64
lola: produced by: state space
lola: The maximum value of the given expression is 64
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 323 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036)
lola: processed formula length: 74
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9044 + p9043 + p9042 + p9041 + p9040 + p9039 + p9038 + p9037 + p9036)
lola: processed formula length: 74
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 394 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p9791 + p9790 + p9789 + p9788 + p9787 + p9786 + p9785 + p9784 + p9783)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9791 + p9790 + p9789 + p9788 + p9787 + p9786 + p9785 + p9784 + p9783)
lola: processed formula length: 74
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 8
lola: 4954 markings, 18077 edges, 991 markings/sec, 5 secs
lola: 12262 markings, 58010 edges, 1462 markings/sec, 10 secs
lola: 19815 markings, 103117 edges, 1511 markings/sec, 15 secs
lola: 27425 markings, 148037 edges, 1522 markings/sec, 20 secs
lola: 34646 markings, 192289 edges, 1444 markings/sec, 25 secs
lola: 41838 markings, 229733 edges, 1438 markings/sec, 30 secs
lola: 49609 markings, 273409 edges, 1554 markings/sec, 35 secs
lola: 57438 markings, 326265 edges, 1566 markings/sec, 40 secs
lola: 65211 markings, 381430 edges, 1555 markings/sec, 45 secs
lola: 72903 markings, 438618 edges, 1538 markings/sec, 50 secs
lola: 80362 markings, 483799 edges, 1492 markings/sec, 55 secs
lola: 88134 markings, 528203 edges, 1554 markings/sec, 60 secs
lola: 95788 markings, 577096 edges, 1531 markings/sec, 65 secs
lola: 103502 markings, 634360 edges, 1543 markings/sec, 70 secs
lola: 111437 markings, 687453 edges, 1587 markings/sec, 75 secs
lola: 118852 markings, 739750 edges, 1483 markings/sec, 80 secs
lola: 126398 markings, 781522 edges, 1509 markings/sec, 85 secs
lola: 133589 markings, 825958 edges, 1438 markings/sec, 90 secs
lola: 141049 markings, 876155 edges, 1492 markings/sec, 95 secs
lola: 148427 markings, 928158 edges, 1476 markings/sec, 100 secs
lola: 155645 markings, 982030 edges, 1444 markings/sec, 105 secs
lola: 162698 markings, 1025194 edges, 1411 markings/sec, 110 secs
lola: 170317 markings, 1068377 edges, 1524 markings/sec, 115 secs
lola: 177968 markings, 1117491 edges, 1530 markings/sec, 120 secs
lola: 185717 markings, 1174596 edges, 1550 markings/sec, 125 secs
lola: 193657 markings, 1228110 edges, 1588 markings/sec, 130 secs
lola: 201091 markings, 1280326 edges, 1487 markings/sec, 135 secs
lola: 208760 markings, 1323021 edges, 1534 markings/sec, 140 secs
lola: 216340 markings, 1370648 edges, 1516 markings/sec, 145 secs
lola: 224246 markings, 1423981 edges, 1581 markings/sec, 150 secs
lola: 232110 markings, 1479521 edges, 1573 markings/sec, 155 secs
lola: 239633 markings, 1533345 edges, 1505 markings/sec, 160 secs
lola: 247096 markings, 1578856 edges, 1493 markings/sec, 165 secs
lola: 254479 markings, 1620439 edges, 1477 markings/sec, 170 secs
lola: 261798 markings, 1668581 edges, 1464 markings/sec, 175 secs
lola: 269065 markings, 1722560 edges, 1453 markings/sec, 180 secs
lola: 276496 markings, 1773066 edges, 1486 markings/sec, 185 secs
lola: 283455 markings, 1822005 edges, 1392 markings/sec, 190 secs
lola: 290784 markings, 1862682 edges, 1466 markings/sec, 195 secs
lola: 298374 markings, 1909671 edges, 1518 markings/sec, 200 secs
lola: 306221 markings, 1962378 edges, 1569 markings/sec, 205 secs
lola: 314043 markings, 2017667 edges, 1564 markings/sec, 210 secs
lola: 321574 markings, 2072075 edges, 1506 markings/sec, 215 secs
lola: 329029 markings, 2117551 edges, 1491 markings/sec, 220 secs
lola: 336808 markings, 2161799 edges, 1556 markings/sec, 225 secs
lola: 344579 markings, 2213315 edges, 1554 markings/sec, 230 secs
lola: 352319 markings, 2269147 edges, 1548 markings/sec, 235 secs
lola: 360098 markings, 2324730 edges, 1556 markings/sec, 240 secs
lola: 367546 markings, 2372899 edges, 1490 markings/sec, 245 secs
lola: 375090 markings, 2414956 edges, 1509 markings/sec, 250 secs
lola: 382216 markings, 2461539 edges, 1425 markings/sec, 255 secs
lola: 389719 markings, 2512583 edges, 1501 markings/sec, 260 secs
lola: 397181 markings, 2565122 edges, 1492 markings/sec, 265 secs
lola: 404293 markings, 2616066 edges, 1422 markings/sec, 270 secs
lola: 411363 markings, 2658934 edges, 1414 markings/sec, 275 secs
lola: 419159 markings, 2703333 edges, 1559 markings/sec, 280 secs
lola: 427080 markings, 2755786 edges, 1584 markings/sec, 285 secs
lola: 434975 markings, 2812491 edges, 1579 markings/sec, 290 secs
lola: 442781 markings, 2869319 edges, 1561 markings/sec, 295 secs
lola: 450223 markings, 2916064 edges, 1488 markings/sec, 300 secs
lola: 457965 markings, 2959718 edges, 1548 markings/sec, 305 secs
lola: 465567 markings, 3008763 edges, 1520 markings/sec, 310 secs
lola: 473343 markings, 3064446 edges, 1555 markings/sec, 315 secs
lola: 481239 markings, 3118379 edges, 1579 markings/sec, 320 secs
lola: 488676 markings, 3170743 edges, 1487 markings/sec, 325 secs
lola: 496182 markings, 3214089 edges, 1501 markings/sec, 330 secs
lola: 503422 markings, 3257432 edges, 1448 markings/sec, 335 secs
lola: 510847 markings, 3307333 edges, 1485 markings/sec, 340 secs
lola: 518145 markings, 3359663 edges, 1460 markings/sec, 345 secs
lola: 525413 markings, 3413598 edges, 1454 markings/sec, 350 secs
lola: 532462 markings, 3456918 edges, 1410 markings/sec, 355 secs
lola: 540004 markings, 3499478 edges, 1508 markings/sec, 360 secs
lola: 547611 markings, 3548541 edges, 1521 markings/sec, 365 secs
lola: 555434 markings, 3603853 edges, 1565 markings/sec, 370 secs
lola: 563350 markings, 3658017 edges, 1583 markings/sec, 375 secs
lola: 570808 markings, 3710743 edges, 1492 markings/sec, 380 secs
lola: 578398 markings, 3754970 edges, 1518 markings/sec, 385 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown unknown 0 0 unknown 0 unknown unknown 56 64 unknown unknown 8 64 unknown unknown
lola: memory consumption: 971888 KB
lola: time consumption: 416 seconds
lola: print data as JSON (--json)
lola: writing JSON to UpperBounds.json
lola: closed JSON file UpperBounds.json
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown unknown 0 0 unknown 0 unknown unknown 56 64 unknown unknown 8 64 unknown unknown
lola: memory consumption: 972860 KB
lola: time consumption: 418 seconds
lola: print data as JSON (--json)
lola: writing JSON to UpperBounds.json
lola: closed JSON file UpperBounds.json
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 8 will run for 391 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4634 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4627 + p4626)
lola: processed formula length: 74
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 9 will run for 446 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4617)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4625 + p4624 + p4623 + p4622 + p4621 + p4620 + p4619 + p4618 + p4617)
lola: processed formula length: 74
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 8
lola: SUBRESULT
lola: result: 8
lola: produced by: state space
lola: The maximum value of the given expression is 8
lola: 603 markings, 602 edges
lola: ========================================
lola: subprocess 10 will run for 519 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: processed formula length: 530
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 8
lola: SUBRESULT
lola: result: 8
lola: produced by: state space
lola: The maximum value of the given expression is 8
lola: 9 markings, 8 edges
lola: ========================================
lola: subprocess 11 will run for 622 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: processed formula length: 530
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 8
lola: SUBRESULT
lola: result: 8
lola: produced by: state space
lola: The maximum value of the given expression is 8
lola: 9 markings, 8 edges
lola: ========================================
lola: subprocess 12 will run for 776 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: processed formula length: 530
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 8
lola: SUBRESULT
lola: result: 8
lola: produced by: state space
lola: The maximum value of the given expression is 8
lola: 9 markings, 8 edges
lola: ========================================
lola: subprocess 13 will run for 1032 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9863 + p9855 + p9847 + p9839 + p9831 + p9823 + p9815 + p9807 + p9799 + p9792 + p9862 + p9861 + p9860 + p9859 + p9858 + p9857 + p9800 + p9801 + p9802 + p9803 + p9804 + p9805 + p9806 + p9808 + p9809 + p9810 + p9811 + p9812 + p9813 + p9814 + p9816 + p9817 + p9818 + p9819 + p9820 + p9821 + p9822 + p9824 + p9825 + p9826 + p9827 + p9828 + p9829 + p9830 + p9832 + p9833 + p9834 + p9835 + p9836 + p983... (shortened)
lola: processed formula length: 530
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 8
lola: SUBRESULT
lola: result: 8
lola: produced by: state space
lola: The maximum value of the given expression is 8
lola: 9 markings, 8 edges
lola: ========================================
lola: subprocess 14 will run for 1546 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p8675 + p8674 + p8673 + p8672 + p8671 + p8670 + p6083 + p6082 + p6081 + p6080 + p7379 + p7378 + p7377 + p7376 + p7375 + p7374 + p7373 + p7372 + p8669 + p8668 + p6079 + p6078 + p6077 + p6076 + p7426 + p7427 + p7428 + p7429 + p6130 + p6131 + p6132 + p6133 + p6134 + p6135 + p6136 + p6137 + p8722 + p8723 + p8724 + p8725 + p8726 + p8727 + p8728 + p8729 + p7430 + p7431 + p7432 + p7433 + p8621 + p862... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p8675 + p8674 + p8673 + p8672 + p8671 + p8670 + p6083 + p6082 + p6081 + p6080 + p7379 + p7378 + p7377 + p7376 + p7375 + p7374 + p7373 + p7372 + p8669 + p8668 + p6079 + p6078 + p6077 + p6076 + p7426 + p7427 + p7428 + p7429 + p6130 + p6131 + p6132 + p6133 + p6134 + p6135 + p6136 + p6137 + p8722 + p8723 + p8724 + p8725 + p8726 + p8727 + p8728 + p8729 + p7430 + p7431 + p7432 + p7433 + p8621 + p862... (shortened)
lola: processed formula length: 5186
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 15 will run for 3085 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p0 + p9 + p1998 + p1989 + p1980 + p1971 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1944 + p1935 + p1926 + p1917 + p1908 + p1907 + p1906 + p1905 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1890 + p1881 + p1872 + p1863 + p1854 + p1853 + p1852 + p1851 + p1850 + p1849 + p1848 + p1847 + p1846 + p1845 + p1836 + p1827 + p1818 + p1809 + p1800 + p1799 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p0 + p9 + p1998 + p1989 + p1980 + p1971 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1944 + p1935 + p1926 + p1917 + p1908 + p1907 + p1906 + p1905 + p1904 + p1903 + p1902 + p1901 + p1900 + p1899 + p1890 + p1881 + p1872 + p1863 + p1854 + p1853 + p1852 + p1851 + p1850 + p1849 + p1848 + p1847 + p1846 + p1845 + p1836 + p1827 + p1818 + p1809 + p1800 + p1799 + p1... (shortened)
lola: processed formula length: 8780
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 56
lola: SUBRESULT
lola: result: 56
lola: produced by: state space
lola: The maximum value of the given expression is 56
lola: 65 markings, 64 edges
lola: ========================================
lola: ========================================
lola: ...considering subproblem: MAX(p9791 + p9790 + p9789 + p9788 + p9787 + p9786 + p9785 + p9784 + p9783)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p9791 + p9790 + p9789 + p9788 + p9787 + p9786 + p9785 + p9784 + p9783)
lola: processed formula length: 74
lola: 0 rewrites
lola: closed formula file UpperBounds.xml
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: 0 markings, 0 edges, 0 markings/sec, 0 secs
lola: Structural Bound: 8
lola: 4972 markings, 18144 edges, 994 markings/sec, 5 secs
lola: 12297 markings, 58205 edges, 1465 markings/sec, 10 secs
lola: 19875 markings, 103639 edges, 1516 markings/sec, 15 secs
lola: 27515 markings, 148581 edges, 1528 markings/sec, 20 secs
lola: 34750 markings, 192936 edges, 1447 markings/sec, 25 secs
lola: 41977 markings, 230444 edges, 1445 markings/sec, 30 secs
lola: 49789 markings, 274468 edges, 1562 markings/sec, 35 secs
lola: 57654 markings, 327442 edges, 1573 markings/sec, 40 secs
lola: 65462 markings, 382878 edges, 1562 markings/sec, 45 secs
lola: 73175 markings, 439924 edges, 1543 markings/sec, 50 secs
lola: 80669 markings, 485308 edges, 1499 markings/sec, 55 secs
lola: 88458 markings, 529896 edges, 1558 markings/sec, 60 secs
lola: 96130 markings, 579840 edges, 1534 markings/sec, 65 secs
lola: 103865 markings, 636970 edges, 1547 markings/sec, 70 secs
lola: 111809 markings, 690125 edges, 1589 markings/sec, 75 secs
lola: 119226 markings, 742390 edges, 1483 markings/sec, 80 secs
lola: 126785 markings, 783733 edges, 1512 markings/sec, 85 secs
lola: 133946 markings, 828807 edges, 1432 markings/sec, 90 secs
lola: 141439 markings, 878710 edges, 1499 markings/sec, 95 secs
lola: 148832 markings, 930997 edges, 1479 markings/sec, 100 secs
lola: 156037 markings, 984116 edges, 1441 markings/sec, 105 secs
lola: 163105 markings, 1027167 edges, 1414 markings/sec, 110 secs
lola: 170758 markings, 1071130 edges, 1531 markings/sec, 115 secs
lola: 178439 markings, 1121053 edges, 1536 markings/sec, 120 secs
lola: 186177 markings, 1178254 edges, 1548 markings/sec, 125 secs
lola: 194122 markings, 1231359 edges, 1589 markings/sec, 130 secs
lola: 201540 markings, 1283688 edges, 1484 markings/sec, 135 secs
lola: 209255 markings, 1326071 edges, 1543 markings/sec, 140 secs
lola: 216793 markings, 1374770 edges, 1508 markings/sec, 145 secs
lola: 224735 markings, 1427502 edges, 1588 markings/sec, 150 secs
lola: 232622 markings, 1483007 edges, 1577 markings/sec, 155 secs
lola: 240136 markings, 1536437 edges, 1503 markings/sec, 160 secs
lola: 247606 markings, 1582584 edges, 1494 markings/sec, 165 secs
lola: 254979 markings, 1623761 edges, 1475 markings/sec, 170 secs
lola: 262327 markings, 1672470 edges, 1470 markings/sec, 175 secs
lola: 269626 markings, 1725758 edges, 1460 markings/sec, 180 secs
lola: 277037 markings, 1777365 edges, 1482 markings/sec, 185 secs
lola: 284050 markings, 1825759 edges, 1403 markings/sec, 190 secs
lola: 291475 markings, 1866647 edges, 1485 markings/sec, 195 secs
lola: 299042 markings, 1915284 edges, 1513 markings/sec, 200 secs
lola: 307006 markings, 1968409 edges, 1593 markings/sec, 205 secs
lola: 314910 markings, 2024100 edges, 1581 markings/sec, 210 secs
lola: 322434 markings, 2077607 edges, 1505 markings/sec, 215 secs
lola: 329907 markings, 2123700 edges, 1495 markings/sec, 220 secs
lola: 337668 markings, 2167688 edges, 1552 markings/sec, 225 secs
lola: 345496 markings, 2220579 edges, 1566 markings/sec, 230 secs
lola: 353269 markings, 2275395 edges, 1555 markings/sec, 235 secs
lola: 360965 markings, 2332992 edges, 1539 markings/sec, 240 secs
lola: 368424 markings, 2378209 edges, 1492 markings/sec, 245 secs
lola: 375915 markings, 2420179 edges, 1498 markings/sec, 250 secs
lola: 383075 markings, 2466450 edges, 1432 markings/sec, 255 secs
lola: 390532 markings, 2519145 edges, 1491 markings/sec, 260 secs
lola: 398083 markings, 2570901 edges, 1510 markings/sec, 265 secs
lola: 405162 markings, 2621427 edges, 1416 markings/sec, 270 secs
lola: 412232 markings, 2665025 edges, 1414 markings/sec, 275 secs
lola: 420016 markings, 2709132 edges, 1557 markings/sec, 280 secs
lola: 427830 markings, 2761957 edges, 1563 markings/sec, 285 secs
lola: 435608 markings, 2816839 edges, 1556 markings/sec, 290 secs
lola: 443304 markings, 2874385 edges, 1539 markings/sec, 295 secs
lola: 450775 markings, 2919652 edges, 1494 markings/sec, 300 secs
lola: 458538 markings, 2963672 edges, 1553 markings/sec, 305 secs
lola: 466165 markings, 3012528 edges, 1525 markings/sec, 310 secs
lola: 473883 markings, 3069494 edges, 1544 markings/sec, 315 secs
lola: 481798 markings, 3122784 edges, 1583 markings/sec, 320 secs
lola: 489218 markings, 3174887 edges, 1484 markings/sec, 325 secs
lola: 496749 markings, 3216835 edges, 1506 markings/sec, 330 secs
lola: 503941 markings, 3261132 edges, 1438 markings/sec, 335 secs
lola: 511394 markings, 3311068 edges, 1491 markings/sec, 340 secs
lola: 518761 markings, 3363321 edges, 1473 markings/sec, 345 secs
lola: 525981 markings, 3417365 edges, 1444 markings/sec, 350 secs
lola: 533030 markings, 3460464 edges, 1410 markings/sec, 355 secs
lola: 540633 markings, 3503379 edges, 1521 markings/sec, 360 secs
lola: 548270 markings, 3552464 edges, 1527 markings/sec, 365 secs
lola: 556023 markings, 3608977 edges, 1551 markings/sec, 370 secs
lola: 563943 markings, 3662975 edges, 1584 markings/sec, 375 secs
lola: 571377 markings, 3714920 edges, 1487 markings/sec, 380 secs
lola: 579024 markings, 3757899 edges, 1529 markings/sec, 385 secs
lola: 586615 markings, 3805096 edges, 1518 markings/sec, 390 secs
lola: 594504 markings, 3858246 edges, 1578 markings/sec, 395 secs
lola: 602344 markings, 3913619 edges, 1568 markings/sec, 400 secs
lola: 609885 markings, 3967895 edges, 1508 markings/sec, 405 secs
lola: 617399 markings, 4013641 edges, 1503 markings/sec, 410 secs
lola: 624593 markings, 4073512 edges, 1439 markings/sec, 415 secs
lola: 631631 markings, 4140992 edges, 1408 markings/sec, 420 secs
lola: 638650 markings, 4214725 edges, 1404 markings/sec, 425 secs
lola: 645907 markings, 4284383 edges, 1451 markings/sec, 430 secs
lola: 652641 markings, 4352113 edges, 1347 markings/sec, 435 secs
lola: 659413 markings, 4413991 edges, 1354 markings/sec, 440 secs
lola: 667333 markings, 4458561 edges, 1584 markings/sec, 445 secs
lola: 675318 markings, 4512342 edges, 1597 markings/sec, 450 secs
lola: 683249 markings, 4568406 edges, 1586 markings/sec, 455 secs
lola: 691030 markings, 4625613 edges, 1556 markings/sec, 460 secs
lola: 698625 markings, 4671641 edges, 1519 markings/sec, 465 secs
lola: 706514 markings, 4716662 edges, 1578 markings/sec, 470 secs
lola: 714338 markings, 4767890 edges, 1565 markings/sec, 475 secs
lola: 722170 markings, 4825029 edges, 1566 markings/sec, 480 secs
lola: 730127 markings, 4880702 edges, 1591 markings/sec, 485 secs
lola: 737663 markings, 4930484 edges, 1507 markings/sec, 490 secs
lola: 745277 markings, 4972876 edges, 1523 markings/sec, 495 secs
lola: 752525 markings, 5020142 edges, 1450 markings/sec, 500 secs
lola: 760097 markings, 5071379 edges, 1514 markings/sec, 505 secs
lola: 767653 markings, 5124658 edges, 1511 markings/sec, 510 secs
lola: 774867 markings, 5176403 edges, 1443 markings/sec, 515 secs
lola: 782046 markings, 5219778 edges, 1436 markings/sec, 520 secs
lola: 789897 markings, 5264479 edges, 1570 markings/sec, 525 secs
lola: 797825 markings, 5317349 edges, 1586 markings/sec, 530 secs
lola: 805717 markings, 5373778 edges, 1578 markings/sec, 535 secs
lola: 813550 markings, 5431699 edges, 1567 markings/sec, 540 secs
lola: 821112 markings, 5478195 edges, 1512 markings/sec, 545 secs
lola: 828994 markings, 5523064 edges, 1576 markings/sec, 550 secs
lola: 836755 markings, 5572846 edges, 1552 markings/sec, 555 secs
lola: 844684 markings, 5631997 edges, 1586 markings/sec, 560 secs
lola: 853066 markings, 5688096 edges, 1676 markings/sec, 565 secs
lola: 860830 markings, 5740875 edges, 1553 markings/sec, 570 secs
lola: 868349 markings, 5782683 edges, 1504 markings/sec, 575 secs
lola: 875414 markings, 5829018 edges, 1413 markings/sec, 580 secs
lola: 882833 markings, 5877897 edges, 1484 markings/sec, 585 secs
lola: 890169 markings, 5929356 edges, 1467 markings/sec, 590 secs
lola: 896828 markings, 5978849 edges, 1332 markings/sec, 595 secs
lola: 903312 markings, 6018704 edges, 1297 markings/sec, 600 secs
lola: 910506 markings, 6059243 edges, 1439 markings/sec, 605 secs
lola: 917509 markings, 6104637 edges, 1401 markings/sec, 610 secs
lola: 924773 markings, 6154211 edges, 1453 markings/sec, 615 secs
lola: 932678 markings, 6209696 edges, 1581 markings/sec, 620 secs
lola: 939897 markings, 6261234 edges, 1444 markings/sec, 625 secs
lola: 946982 markings, 6304401 edges, 1417 markings/sec, 630 secs
lola: 954138 markings, 6344628 edges, 1431 markings/sec, 635 secs
lola: 961801 markings, 6395127 edges, 1533 markings/sec, 640 secs
lola: 969197 markings, 6449351 edges, 1479 markings/sec, 645 secs
lola: 976696 markings, 6501234 edges, 1500 markings/sec, 650 secs
lola: 983478 markings, 6549132 edges, 1356 markings/sec, 655 secs
lola: 990997 markings, 6597006 edges, 1504 markings/sec, 660 secs
lola: 997969 markings, 6661151 edges, 1394 markings/sec, 665 secs
lola: 1005152 markings, 6730638 edges, 1437 markings/sec, 670 secs
lola: 1012073 markings, 6801312 edges, 1384 markings/sec, 675 secs
lola: 1019128 markings, 6874110 edges, 1411 markings/sec, 680 secs
lola: 1025898 markings, 6937444 edges, 1354 markings/sec, 685 secs
lola: 1033271 markings, 6990231 edges, 1475 markings/sec, 690 secs
lola: 1040825 markings, 7039235 edges, 1511 markings/sec, 695 secs
lola: 1048820 markings, 7094126 edges, 1599 markings/sec, 700 secs
lola: 1056783 markings, 7149302 edges, 1593 markings/sec, 705 secs
lola: 1064307 markings, 7202641 edges, 1505 markings/sec, 710 secs
lola: 1071829 markings, 7247346 edges, 1504 markings/sec, 715 secs
lola: 1079490 markings, 7292185 edges, 1532 markings/sec, 720 secs
lola: 1087313 markings, 7344829 edges, 1565 markings/sec, 725 secs
lola: 1095133 markings, 7400284 edges, 1564 markings/sec, 730 secs
lola: 1102528 markings, 7455156 edges, 1479 markings/sec, 735 secs
lola: 1109894 markings, 7499751 edges, 1473 markings/sec, 740 secs
lola: 1117068 markings, 7555492 edges, 1435 markings/sec, 745 secs
lola: 1123852 markings, 7619839 edges, 1357 markings/sec, 750 secs
lola: 1130901 markings, 7689744 edges, 1410 markings/sec, 755 secs
lola: 1137988 markings, 7760998 edges, 1417 markings/sec, 760 secs
lola: 1144759 markings, 7829797 edges, 1354 markings/sec, 765 secs
lola: 1151452 markings, 7890598 edges, 1339 markings/sec, 770 secs
lola: 1158951 markings, 7939078 edges, 1500 markings/sec, 775 secs
lola: 1166626 markings, 7989013 edges, 1535 markings/sec, 780 secs
lola: 1174352 markings, 8046068 edges, 1545 markings/sec, 785 secs
lola: 1182221 markings, 8099370 edges, 1574 markings/sec, 790 secs
lola: 1189514 markings, 8150506 edges, 1459 markings/sec, 795 secs
lola: 1197270 markings, 8193324 edges, 1551 markings/sec, 800 secs
lola: 1204865 markings, 8242334 edges, 1519 markings/sec, 805 secs
lola: 1212865 markings, 8295487 edges, 1600 markings/sec, 810 secs
lola: 1220801 markings, 8351222 edges, 1587 markings/sec, 815 secs
lola: 1228343 markings, 8404716 edges, 1508 markings/sec, 820 secs
lola: 1235827 markings, 8450793 edges, 1497 markings/sec, 825 secs
lola: 1243184 markings, 8492614 edges, 1471 markings/sec, 830 secs
lola: 1250531 markings, 8540999 edges, 1469 markings/sec, 835 secs
lola: 1257759 markings, 8593520 edges, 1446 markings/sec, 840 secs
lola: 1265086 markings, 8645045 edges, 1465 markings/sec, 845 secs
lola: 1272111 markings, 8692973 edges, 1405 markings/sec, 850 secs
lola: 1279555 markings, 8734344 edges, 1489 markings/sec, 855 secs
lola: 1287213 markings, 8783766 edges, 1532 markings/sec, 860 secs
lola: 1295240 markings, 8837201 edges, 1605 markings/sec, 865 secs
lola: 1303134 markings, 8892587 edges, 1579 markings/sec, 870 secs
lola: 1310713 markings, 8946324 edges, 1516 markings/sec, 875 secs
lola: 1318242 markings, 8992449 edges, 1506 markings/sec, 880 secs
lola: 1326077 markings, 9037080 edges, 1567 markings/sec, 885 secs
lola: 1333907 markings, 9089880 edges, 1566 markings/sec, 890 secs
lola: 1341727 markings, 9145342 edges, 1564 markings/sec, 895 secs
lola: 1349444 markings, 9202305 edges, 1543 markings/sec, 900 secs
lola: 1356898 markings, 9247371 edges, 1491 markings/sec, 905 secs
lola: 1364369 markings, 9290550 edges, 1494 markings/sec, 910 secs
lola: 1371574 markings, 9336615 edges, 1441 markings/sec, 915 secs
lola: 1378880 markings, 9389099 edges, 1461 markings/sec, 920 secs
lola: 1386326 markings, 9439926 edges, 1489 markings/sec, 925 secs
lola: 1393373 markings, 9489787 edges, 1409 markings/sec, 930 secs
lola: 1400430 markings, 9533309 edges, 1411 markings/sec, 935 secs
lola: 1408273 markings, 9577603 edges, 1569 markings/sec, 940 secs
lola: 1416163 markings, 9630793 edges, 1578 markings/sec, 945 secs
lola: 1423961 markings, 9686087 edges, 1560 markings/sec, 950 secs
lola: 1431715 markings, 9743325 edges, 1551 markings/sec, 955 secs
lola: 1439221 markings, 9788694 edges, 1501 markings/sec, 960 secs
lola: 1446969 markings, 9833137 edges, 1550 markings/sec, 965 secs
lola: 1454617 markings, 9882893 edges, 1530 markings/sec, 970 secs
lola: 1462418 markings, 9940393 edges, 1560 markings/sec, 975 secs
lola: 1470176 markings, 9992534 edges, 1552 markings/sec, 980 secs
lola: 1477656 markings, 10045205 edges, 1496 markings/sec, 985 secs
lola: 1485095 markings, 10093213 edges, 1488 markings/sec, 990 secs
lola: 1491833 markings, 10155102 edges, 1348 markings/sec, 995 secs
lola: 1498754 markings, 10222235 edges, 1384 markings/sec, 1000 secs
lola: 1505561 markings, 10291420 edges, 1361 markings/sec, 1005 secs
lola: 1512306 markings, 10359982 edges, 1349 markings/sec, 1010 secs
lola: 1518691 markings, 10423616 edges, 1277 markings/sec, 1015 secs
lola: 1525820 markings, 10477522 edges, 1426 markings/sec, 1020 secs
lola: 1533411 markings, 10524812 edges, 1518 markings/sec, 1025 secs
lola: 1541190 markings, 10576982 edges, 1556 markings/sec, 1030 secs
lola: 1548928 markings, 10631655 edges, 1548 markings/sec, 1035 secs
lola: 1556323 markings, 10685274 edges, 1479 markings/sec, 1040 secs
lola: 1563799 markings, 10730767 edges, 1495 markings/sec, 1045 secs
lola: 1571560 markings, 10775048 edges, 1552 markings/sec, 1050 secs
lola: 1579299 markings, 10826019 edges, 1548 markings/sec, 1055 secs
lola: 1587023 markings, 10882180 edges, 1545 markings/sec, 1060 secs
lola: 1594828 markings, 10937424 edges, 1561 markings/sec, 1065 secs
lola: 1602260 markings, 10985992 edges, 1486 markings/sec, 1070 secs
lola: 1609783 markings, 11027832 edges, 1505 markings/sec, 1075 secs
lola: 1616890 markings, 11074374 edges, 1421 markings/sec, 1080 secs
lola: 1624346 markings, 11124619 edges, 1491 markings/sec, 1085 secs
lola: 1631770 markings, 11177213 edges, 1485 markings/sec, 1090 secs
lola: 1638894 markings, 11228059 edges, 1425 markings/sec, 1095 secs
lola: 1645949 markings, 11271143 edges, 1411 markings/sec, 1100 secs
lola: 1653644 markings, 11314754 edges, 1539 markings/sec, 1105 secs
lola: 1661378 markings, 11365515 edges, 1547 markings/sec, 1110 secs
lola: 1669084 markings, 11421883 edges, 1541 markings/sec, 1115 secs
lola: 1676855 markings, 11476361 edges, 1554 markings/sec, 1120 secs
lola: 1684287 markings, 11525719 edges, 1486 markings/sec, 1125 secs
lola: 1691929 markings, 11568190 edges, 1528 markings/sec, 1130 secs
lola: 1699474 markings, 11617145 edges, 1509 markings/sec, 1135 secs
lola: 1707347 markings, 11671041 edges, 1575 markings/sec, 1140 secs
lola: 1715233 markings, 11725790 edges, 1577 markings/sec, 1145 secs
lola: 1722706 markings, 11778798 edges, 1495 markings/sec, 1150 secs
lola: 1730154 markings, 11825394 edges, 1490 markings/sec, 1155 secs
lola: 1737094 markings, 11886128 edges, 1388 markings/sec, 1160 secs
lola: 1744072 markings, 11953161 edges, 1396 markings/sec, 1165 secs
lola: 1750960 markings, 12024829 edges, 1378 markings/sec, 1170 secs
lola: 1758029 markings, 12093896 edges, 1414 markings/sec, 1175 secs
lola: 1764716 markings, 12160645 edges, 1337 markings/sec, 1180 secs
lola: 1771584 markings, 12219167 edges, 1374 markings/sec, 1185 secs
lola: 1779297 markings, 12264249 edges, 1543 markings/sec, 1190 secs
lola: 1787178 markings, 12317290 edges, 1576 markings/sec, 1195 secs
lola: 1794995 markings, 12372652 edges, 1563 markings/sec, 1200 secs
lola: 1802619 markings, 12428681 edges, 1525 markings/sec, 1205 secs
lola: 1810094 markings, 12474077 edges, 1495 markings/sec, 1210 secs
lola: 1817844 markings, 12518292 edges, 1550 markings/sec, 1215 secs
lola: 1825533 markings, 12568429 edges, 1538 markings/sec, 1220 secs
lola: 1833243 markings, 12625295 edges, 1542 markings/sec, 1225 secs
lola: 1841110 markings, 12679116 edges, 1573 markings/sec, 1230 secs
lola: 1848513 markings, 12729895 edges, 1481 markings/sec, 1235 secs
lola: 1855873 markings, 12779327 edges, 1472 markings/sec, 1240 secs
lola: 1862665 markings, 12841879 edges, 1358 markings/sec, 1245 secs
lola: 1869736 markings, 12910165 edges, 1414 markings/sec, 1250 secs
lola: 1876692 markings, 12980872 edges, 1391 markings/sec, 1255 secs
lola: 1883590 markings, 13052456 edges, 1380 markings/sec, 1260 secs
lola: 1890266 markings, 13114891 edges, 1335 markings/sec, 1265 secs
lola: 1897530 markings, 13167376 edges, 1453 markings/sec, 1270 secs
lola: 1905094 markings, 13216358 edges, 1513 markings/sec, 1275 secs
lola: 1913001 markings, 13270119 edges, 1581 markings/sec, 1280 secs
lola: 1920900 markings, 13325089 edges, 1580 markings/sec, 1285 secs
lola: 1928386 markings, 13378292 edges, 1497 markings/sec, 1290 secs
lola: 1935892 markings, 13423781 edges, 1501 markings/sec, 1295 secs
lola: 1943608 markings, 13468155 edges, 1543 markings/sec, 1300 secs
lola: 1951438 markings, 13520948 edges, 1566 markings/sec, 1305 secs
lola: 1959207 markings, 13576043 edges, 1554 markings/sec, 1310 secs
lola: 1966853 markings, 13632621 edges, 1529 markings/sec, 1315 secs
lola: 1974302 markings, 13677704 edges, 1490 markings/sec, 1320 secs
lola: 1981491 markings, 13733417 edges, 1438 markings/sec, 1325 secs
lola: 1988283 markings, 13797880 edges, 1358 markings/sec, 1330 secs
lola: 1995309 markings, 13867455 edges, 1405 markings/sec, 1335 secs
lola: 2002366 markings, 13938620 edges, 1411 markings/sec, 1340 secs
lola: 2009139 markings, 14007373 edges, 1355 markings/sec, 1345 secs
lola: 2015846 markings, 14068308 edges, 1341 markings/sec, 1350 secs
lola: 2023400 markings, 14117241 edges, 1511 markings/sec, 1355 secs
lola: 2031085 markings, 14167218 edges, 1537 markings/sec, 1360 secs
lola: 2038811 markings, 14224259 edges, 1545 markings/sec, 1365 secs
lola: 2046714 markings, 14277814 edges, 1581 markings/sec, 1370 secs
lola: 2054129 markings, 14329330 edges, 1483 markings/sec, 1375 secs
lola: 2061835 markings, 14371886 edges, 1541 markings/sec, 1380 secs
lola: 2069367 markings, 14420700 edges, 1506 markings/sec, 1385 secs
lola: 2077292 markings, 14473498 edges, 1585 markings/sec, 1390 secs
lola: 2085168 markings, 14528808 edges, 1575 markings/sec, 1395 secs
lola: 2092660 markings, 14582057 edges, 1498 markings/sec, 1400 secs
lola: 2100107 markings, 14628491 edges, 1489 markings/sec, 1405 secs
lola: 2107086 markings, 14687626 edges, 1396 markings/sec, 1410 secs
lola: 2114009 markings, 14754047 edges, 1385 markings/sec, 1415 secs
lola: 2120869 markings, 14826657 edges, 1372 markings/sec, 1420 secs
lola: 2127978 markings, 14894917 edges, 1422 markings/sec, 1425 secs
lola: 2134673 markings, 14962214 edges, 1339 markings/sec, 1430 secs
lola: 2141421 markings, 15023035 edges, 1350 markings/sec, 1435 secs
lola: 2149188 markings, 15067016 edges, 1553 markings/sec, 1440 secs
lola: 2157033 markings, 15119894 edges, 1569 markings/sec, 1445 secs
lola: 2164813 markings, 15175143 edges, 1556 markings/sec, 1450 secs
lola: 2172491 markings, 15232027 edges, 1536 markings/sec, 1455 secs
lola: 2179961 markings, 15277236 edges, 1494 markings/sec, 1460 secs
lola: 2187722 markings, 15321807 edges, 1552 markings/sec, 1465 secs
lola: 2195371 markings, 15371090 edges, 1530 markings/sec, 1470 secs
lola: 2203064 markings, 15428578 edges, 1539 markings/sec, 1475 secs
lola: 2210976 markings, 15481015 edges, 1582 markings/sec, 1480 secs
lola: 2218366 markings, 15533489 edges, 1478 markings/sec, 1485 secs
lola: 2225785 markings, 15580578 edges, 1484 markings/sec, 1490 secs
lola: 2232607 markings, 15642999 edges, 1364 markings/sec, 1495 secs
lola: 2239662 markings, 15711496 edges, 1411 markings/sec, 1500 secs
lola: 2246598 markings, 15781836 edges, 1387 markings/sec, 1505 secs
lola: 2253539 markings, 15852698 edges, 1388 markings/sec, 1510 secs
lola: 2260196 markings, 15917209 edges, 1331 markings/sec, 1515 secs
lola: 2267362 markings, 15970539 edges, 1433 markings/sec, 1520 secs
lola: 2274914 markings, 16019091 edges, 1510 markings/sec, 1525 secs
lola: 2282863 markings, 16072098 edges, 1590 markings/sec, 1530 secs
lola: 2290732 markings, 16127605 edges, 1574 markings/sec, 1535 secs
lola: 2298241 markings, 16181033 edges, 1502 markings/sec, 1540 secs
lola: 2305714 markings, 16226989 edges, 1495 markings/sec, 1545 secs
lola: 2313462 markings, 16271135 edges, 1550 markings/sec, 1550 secs
lola: 2321265 markings, 16323433 edges, 1561 markings/sec, 1555 secs
lola: 2329009 markings, 16378234 edges, 1549 markings/sec, 1560 secs
lola: 2336699 markings, 16435499 edges, 1538 markings/sec, 1565 secs
lola: 2344144 markings, 16480830 edges, 1489 markings/sec, 1570 secs
lola: 2351061 markings, 16551369 edges, 1383 markings/sec, 1575 secs
lola: 2357280 markings, 16642565 edges, 1244 markings/sec, 1580 secs
lola: 2363872 markings, 16738139 edges, 1318 markings/sec, 1585 secs
lola: 2370296 markings, 16835666 edges, 1285 markings/sec, 1590 secs
lola: 2376711 markings, 16932940 edges, 1283 markings/sec, 1595 secs
lola: 2382868 markings, 17024706 edges, 1231 markings/sec, 1600 secs
lola: 2389388 markings, 17104144 edges, 1304 markings/sec, 1605 secs
lola: 2397080 markings, 17150140 edges, 1538 markings/sec, 1610 secs
lola: 2404985 markings, 17203225 edges, 1581 markings/sec, 1615 secs
lola: 2412835 markings, 17258725 edges, 1570 markings/sec, 1620 secs
lola: 2420457 markings, 17314432 edges, 1524 markings/sec, 1625 secs
lola: 2427946 markings, 17359963 edges, 1498 markings/sec, 1630 secs
lola: 2435727 markings, 17404131 edges, 1556 markings/sec, 1635 secs
lola: 2443431 markings, 17454680 edges, 1541 markings/sec, 1640 secs
lola: 2451157 markings, 17511214 edges, 1545 markings/sec, 1645 secs
lola: 2458992 markings, 17566114 edges, 1567 markings/sec, 1650 secs
lola: 2466420 markings, 17615446 edges, 1486 markings/sec, 1655 secs
lola: 2474147 markings, 17658351 edges, 1545 markings/sec, 1660 secs
lola: 2481716 markings, 17707363 edges, 1514 markings/sec, 1665 secs
lola: 2489600 markings, 17761762 edges, 1577 markings/sec, 1670 secs
lola: 2497517 markings, 17816548 edges, 1583 markings/sec, 1675 secs
lola: 2504988 markings, 17869542 edges, 1494 markings/sec, 1680 secs
lola: 2512552 markings, 17915444 edges, 1513 markings/sec, 1685 secs
lola: 2520558 markings, 17970833 edges, 1601 markings/sec, 1690 secs
lola: 2528771 markings, 18034323 edges, 1643 markings/sec, 1695 secs
lola: 2536942 markings, 18100329 edges, 1634 markings/sec, 1700 secs
lola: 2544793 markings, 18164703 edges, 1570 markings/sec, 1705 secs
lola: 2552542 markings, 18219908 edges, 1550 markings/sec, 1710 secs
lola: 2560605 markings, 18274101 edges, 1613 markings/sec, 1715 secs
lola: 2568749 markings, 18336897 edges, 1629 markings/sec, 1720 secs
lola: 2576863 markings, 18402235 edges, 1623 markings/sec, 1725 secs
lola: 2584807 markings, 18468247 edges, 1589 markings/sec, 1730 secs
lola: 2592545 markings, 18523010 edges, 1548 markings/sec, 1735 secs
lola: 2600224 markings, 18574412 edges, 1536 markings/sec, 1740 secs
lola: 2607763 markings, 18631288 edges, 1508 markings/sec, 1745 secs
lola: 2615304 markings, 18694594 edges, 1508 markings/sec, 1750 secs
lola: 2623021 markings, 18754904 edges, 1543 markings/sec, 1755 secs
lola: 2630249 markings, 18812871 edges, 1446 markings/sec, 1760 secs
lola: 2637940 markings, 18862869 edges, 1538 markings/sec, 1765 secs
lola: 2645800 markings, 18921126 edges, 1572 markings/sec, 1770 secs
lola: 2654053 markings, 18985100 edges, 1651 markings/sec, 1775 secs
lola: 2662277 markings, 19050637 edges, 1645 markings/sec, 1780 secs
lola: 2670031 markings, 19113229 edges, 1551 markings/sec, 1785 secs
lola: 2677911 markings, 19166870 edges, 1576 markings/sec, 1790 secs
lola: 2685815 markings, 19223000 edges, 1581 markings/sec, 1795 secs
lola: 2694006 markings, 19286718 edges, 1638 markings/sec, 1800 secs
lola: 2702173 markings, 19353072 edges, 1633 markings/sec, 1805 secs
lola: 2709968 markings, 19415814 edges, 1559 markings/sec, 1810 secs
lola: 2717693 markings, 19471154 edges, 1545 markings/sec, 1815 secs
lola: 2725288 markings, 19521684 edges, 1519 markings/sec, 1820 secs
lola: 2732951 markings, 19581099 edges, 1533 markings/sec, 1825 secs
lola: 2740551 markings, 19642372 edges, 1520 markings/sec, 1830 secs
lola: 2748114 markings, 19705536 edges, 1513 markings/sec, 1835 secs
lola: 2755388 markings, 19758125 edges, 1455 markings/sec, 1840 secs
lola: 2763237 markings, 19810256 edges, 1570 markings/sec, 1845 secs
lola: 2771183 markings, 19869446 edges, 1589 markings/sec, 1850 secs
lola: 2779236 markings, 19937277 edges, 1611 markings/sec, 1855 secs
lola: 2787503 markings, 20000740 edges, 1653 markings/sec, 1860 secs
lola: 2795195 markings, 20061702 edges, 1538 markings/sec, 1865 secs
lola: 2803217 markings, 20113866 edges, 1604 markings/sec, 1870 secs
lola: 2811079 markings, 20172392 edges, 1572 markings/sec, 1875 secs
lola: 2819236 markings, 20237363 edges, 1631 markings/sec, 1880 secs
lola: 2827447 markings, 20302142 edges, 1642 markings/sec, 1885 secs
lola: 2835152 markings, 20364292 edges, 1541 markings/sec, 1890 secs
lola: 2842932 markings, 20416332 edges, 1556 markings/sec, 1895 secs
lola: 2850344 markings, 20469384 edges, 1482 markings/sec, 1900 secs
lola: 2858057 markings, 20528837 edges, 1543 markings/sec, 1905 secs
lola: 2865691 markings, 20590476 edges, 1527 markings/sec, 1910 secs
lola: 2873111 markings, 20652179 edges, 1484 markings/sec, 1915 secs
lola: 2880388 markings, 20703670 edges, 1455 markings/sec, 1920 secs
lola: 2888327 markings, 20756907 edges, 1588 markings/sec, 1925 secs
lola: 2896353 markings, 20817500 edges, 1605 markings/sec, 1930 secs
lola: 2904402 markings, 20883887 edges, 1610 markings/sec, 1935 secs
lola: 2912479 markings, 20950040 edges, 1615 markings/sec, 1940 secs
lola: 2920185 markings, 21006442 edges, 1541 markings/sec, 1945 secs
lola: 2928198 markings, 21060059 edges, 1603 markings/sec, 1950 secs
lola: 2936107 markings, 21118777 edges, 1582 markings/sec, 1955 secs
lola: 2944084 markings, 21186135 edges, 1595 markings/sec, 1960 secs
lola: 2952278 markings, 21249189 edges, 1639 markings/sec, 1965 secs
lola: 2959935 markings, 21309551 edges, 1531 markings/sec, 1970 secs
lola: 2967721 markings, 21360332 edges, 1557 markings/sec, 1975 secs
lola: 2975072 markings, 21415613 edges, 1470 markings/sec, 1980 secs
lola: 2982828 markings, 21475185 edges, 1551 markings/sec, 1985 secs
lola: 2990537 markings, 21537277 edges, 1542 markings/sec, 1990 secs
lola: 2997874 markings, 21597143 edges, 1467 markings/sec, 1995 secs
lola: 3005169 markings, 21648696 edges, 1459 markings/sec, 2000 secs
lola: 3013190 markings, 21702906 edges, 1604 markings/sec, 2005 secs
lola: 3021267 markings, 21765200 edges, 1615 markings/sec, 2010 secs
lola: 3029192 markings, 21829199 edges, 1585 markings/sec, 2015 secs
lola: 3037009 markings, 21894621 edges, 1563 markings/sec, 2020 secs
lola: 3044736 markings, 21948948 edges, 1545 markings/sec, 2025 secs
lola: 3052780 markings, 22002921 edges, 1609 markings/sec, 2030 secs
lola: 3060776 markings, 22063078 edges, 1599 markings/sec, 2035 secs
lola: 3068807 markings, 22129638 edges, 1606 markings/sec, 2040 secs
lola: 3076911 markings, 22195040 edges, 1621 markings/sec, 2045 secs
lola: 3084602 markings, 22252183 edges, 1538 markings/sec, 2050 secs
lola: 3092131 markings, 22314435 edges, 1506 markings/sec, 2055 secs
lola: 3099139 markings, 22388086 edges, 1402 markings/sec, 2060 secs
lola: 3106464 markings, 22467260 edges, 1465 markings/sec, 2065 secs
lola: 3113784 markings, 22548596 edges, 1464 markings/sec, 2070 secs
lola: 3120786 markings, 22626404 edges, 1400 markings/sec, 2075 secs
lola: 3127712 markings, 22696331 edges, 1385 markings/sec, 2080 secs
lola: 3135622 markings, 22753692 edges, 1582 markings/sec, 2085 secs
lola: 3143705 markings, 22815228 edges, 1617 markings/sec, 2090 secs
lola: 3151804 markings, 22881338 edges, 1620 markings/sec, 2095 secs
lola: 3159870 markings, 22948765 edges, 1613 markings/sec, 2100 secs
lola: 3167601 markings, 23004264 edges, 1546 markings/sec, 2105 secs
lola: 3175672 markings, 23058310 edges, 1614 markings/sec, 2110 secs
lola: 3183649 markings, 23117652 edges, 1595 markings/sec, 2115 secs
lola: 3191697 markings, 23184594 edges, 1610 markings/sec, 2120 secs
lola: 3199856 markings, 23249309 edges, 1632 markings/sec, 2125 secs
lola: 3207559 markings, 23307815 edges, 1541 markings/sec, 2130 secs
lola: 3215352 markings, 23358977 edges, 1559 markings/sec, 2135 secs
lola: 3222758 markings, 23414516 edges, 1481 markings/sec, 2140 secs
lola: 3230466 markings, 23475461 edges, 1542 markings/sec, 2145 secs
lola: 3238207 markings, 23536817 edges, 1548 markings/sec, 2150 secs
lola: 3245527 markings, 23596362 edges, 1464 markings/sec, 2155 secs
lola: 3252842 markings, 23648609 edges, 1463 markings/sec, 2160 secs
lola: 3260910 markings, 23702573 edges, 1614 markings/sec, 2165 secs
lola: 3269085 markings, 23765690 edges, 1635 markings/sec, 2170 secs
lola: 3277236 markings, 23831539 edges, 1630 markings/sec, 2175 secs
lola: 3285138 markings, 23896802 edges, 1580 markings/sec, 2180 secs
lola: 3292888 markings, 23951738 edges, 1550 markings/sec, 2185 secs
lola: 3300933 markings, 24005770 edges, 1609 markings/sec, 2190 secs
lola: 3309027 markings, 24068146 edges, 1619 markings/sec, 2195 secs
lola: 3317099 markings, 24133720 edges, 1614 markings/sec, 2200 secs
lola: 3325073 markings, 24200479 edges, 1595 markings/sec, 2205 secs
lola: 3332796 markings, 24254708 edges, 1545 markings/sec, 2210 secs
lola: 3340499 markings, 24306598 edges, 1541 markings/sec, 2215 secs
lola: 3347975 markings, 24362582 edges, 1495 markings/sec, 2220 secs
lola: 3355503 markings, 24426131 edges, 1506 markings/sec, 2225 secs
lola: 3363266 markings, 24485682 edges, 1553 markings/sec, 2230 secs
lola: 3370515 markings, 24543685 edges, 1450 markings/sec, 2235 secs
lola: 3378090 markings, 24593857 edges, 1515 markings/sec, 2240 secs
lola: 3385977 markings, 24651123 edges, 1577 markings/sec, 2245 secs
lola: 3394302 markings, 24715745 edges, 1665 markings/sec, 2250 secs
lola: 3402601 markings, 24782254 edges, 1660 markings/sec, 2255 secs
lola: 3410432 markings, 24845426 edges, 1566 markings/sec, 2260 secs
lola: 3418318 markings, 24900204 edges, 1577 markings/sec, 2265 secs
lola: 3426285 markings, 24955839 edges, 1593 markings/sec, 2270 secs
lola: 3434433 markings, 25018736 edges, 1630 markings/sec, 2275 secs
lola: 3442579 markings, 25084538 edges, 1629 markings/sec, 2280 secs
lola: 3450486 markings, 25149403 edges, 1581 markings/sec, 2285 secs
lola: 3458205 markings, 25204330 edges, 1544 markings/sec, 2290 secs
lola: 3465451 markings, 25272968 edges, 1449 markings/sec, 2295 secs
lola: 3472628 markings, 25348968 edges, 1435 markings/sec, 2300 secs
lola: 3479764 markings, 25430620 edges, 1427 markings/sec, 2305 secs
lola: 3487092 markings, 25509586 edges, 1466 markings/sec, 2310 secs
lola: 3493979 markings, 25585421 edges, 1377 markings/sec, 2315 secs
lola: 3501213 markings, 25650745 edges, 1447 markings/sec, 2320 secs
lola: 3509152 markings, 25707297 edges, 1588 markings/sec, 2325 secs
lola: 3517383 markings, 25771463 edges, 1646 markings/sec, 2330 secs
lola: 3525595 markings, 25837695 edges, 1642 markings/sec, 2335 secs
lola: 3533412 markings, 25900684 edges, 1563 markings/sec, 2340 secs
lola: 3541197 markings, 25955981 edges, 1557 markings/sec, 2345 secs
lola: 3549215 markings, 26010140 edges, 1604 markings/sec, 2350 secs
lola: 3557384 markings, 26073284 edges, 1634 markings/sec, 2355 secs
lola: 3565521 markings, 26139141 edges, 1627 markings/sec, 2360 secs
lola: 3573402 markings, 26203960 edges, 1576 markings/sec, 2365 secs
lola: 3581137 markings, 26258831 edges, 1547 markings/sec, 2370 secs
lola: 3588437 markings, 26326836 edges, 1460 markings/sec, 2375 secs
lola: 3595595 markings, 26402434 edges, 1432 markings/sec, 2380 secs
lola: 3602717 markings, 26484777 edges, 1424 markings/sec, 2385 secs
lola: 3610086 markings, 26563328 edges, 1474 markings/sec, 2390 secs
lola: 3617001 markings, 26639158 edges, 1383 markings/sec, 2395 secs
lola: 3624128 markings, 26706333 edges, 1425 markings/sec, 2400 secs
lola: 3632118 markings, 26762099 edges, 1598 markings/sec, 2405 secs
lola: 3640342 markings, 26825618 edges, 1645 markings/sec, 2410 secs
lola: 3648531 markings, 26892052 edges, 1638 markings/sec, 2415 secs
lola: 3656436 markings, 26956692 edges, 1581 markings/sec, 2420 secs
lola: 3664315 markings, 27013355 edges, 1576 markings/sec, 2425 secs
lola: 3672493 markings, 27067479 edges, 1636 markings/sec, 2430 secs
lola: 3680766 markings, 27131444 edges, 1655 markings/sec, 2435 secs
lola: 3689015 markings, 27198179 edges, 1650 markings/sec, 2440 secs
lola: 3696920 markings, 27263135 edges, 1581 markings/sec, 2445 secs
lola: 3704780 markings, 27319055 edges, 1572 markings/sec, 2450 secs
lola: 3712524 markings, 27370735 edges, 1549 markings/sec, 2455 secs
lola: 3720249 markings, 27429799 edges, 1545 markings/sec, 2460 secs
lola: 3727870 markings, 27492420 edges, 1524 markings/sec, 2465 secs
lola: 3735294 markings, 27552668 edges, 1485 markings/sec, 2470 secs
lola: 3742588 markings, 27608035 edges, 1459 markings/sec, 2475 secs
lola: 3750408 markings, 27659338 edges, 1564 markings/sec, 2480 secs
lola: 3758198 markings, 27717521 edges, 1558 markings/sec, 2485 secs
lola: 3766358 markings, 27783285 edges, 1632 markings/sec, 2490 secs
lola: 3774557 markings, 27847955 edges, 1640 markings/sec, 2495 secs
lola: 3782142 markings, 27908945 edges, 1517 markings/sec, 2500 secs
lola: 3790059 markings, 27961365 edges, 1583 markings/sec, 2505 secs
lola: 3797965 markings, 28019897 edges, 1581 markings/sec, 2510 secs
lola: 3806199 markings, 28083179 edges, 1647 markings/sec, 2515 secs
lola: 3814362 markings, 28148453 edges, 1633 markings/sec, 2520 secs
lola: 3822100 markings, 28211022 edges, 1548 markings/sec, 2525 secs
lola: 3829830 markings, 28264894 edges, 1546 markings/sec, 2530 secs
lola: 3837342 markings, 28316319 edges, 1502 markings/sec, 2535 secs
lola: 3845012 markings, 28375706 edges, 1534 markings/sec, 2540 secs
lola: 3852605 markings, 28437299 edges, 1519 markings/sec, 2545 secs
lola: 3860087 markings, 28500659 edges, 1496 markings/sec, 2550 secs
lola: 3867356 markings, 28552270 edges, 1454 markings/sec, 2555 secs
lola: 3875251 markings, 28605241 edges, 1579 markings/sec, 2560 secs
lola: 3883198 markings, 28664410 edges, 1589 markings/sec, 2565 secs
lola: 3891233 markings, 28731070 edges, 1607 markings/sec, 2570 secs
lola: 3899427 markings, 28795249 edges, 1639 markings/sec, 2575 secs
lola: 3907103 markings, 28854540 edges, 1535 markings/sec, 2580 secs
lola: 3915123 markings, 28907099 edges, 1604 markings/sec, 2585 secs
lola: 3922983 markings, 28965939 edges, 1572 markings/sec, 2590 secs
lola: 3931005 markings, 29030561 edges, 1604 markings/sec, 2595 secs
lola: 3939278 markings, 29095932 edges, 1655 markings/sec, 2600 secs
lola: 3947084 markings, 29158898 edges, 1561 markings/sec, 2605 secs
lola: 3954761 markings, 29215929 edges, 1535 markings/sec, 2610 secs
lola: 3961839 markings, 29288102 edges, 1416 markings/sec, 2615 secs
lola: 3969140 markings, 29366159 edges, 1460 markings/sec, 2620 secs
lola: 3976355 markings, 29446267 edges, 1443 markings/sec, 2625 secs
lola: 3983442 markings, 29528374 edges, 1417 markings/sec, 2630 secs
lola: 3990347 markings, 29597660 edges, 1381 markings/sec, 2635 secs
lola: 3997983 markings, 29658169 edges, 1527 markings/sec, 2640 secs
lola: 4005905 markings, 29717060 edges, 1584 markings/sec, 2645 secs
lola: 4013962 markings, 29784190 edges, 1611 markings/sec, 2650 secs
lola: 4022177 markings, 29847795 edges, 1643 markings/sec, 2655 secs
lola: 4029851 markings, 29909446 edges, 1535 markings/sec, 2660 secs
lola: 4037845 markings, 29961241 edges, 1599 markings/sec, 2665 secs
lola: 4045678 markings, 30019447 edges, 1567 markings/sec, 2670 secs
lola: 4053852 markings, 30083699 edges, 1635 markings/sec, 2675 secs
lola: 4062041 markings, 30148629 edges, 1638 markings/sec, 2680 secs
lola: 4069750 markings, 30210823 edges, 1542 markings/sec, 2685 secs
lola: 4077509 markings, 30263456 edges, 1552 markings/sec, 2690 secs
lola: 4084957 markings, 30316039 edges, 1490 markings/sec, 2695 secs
lola: 4092654 markings, 30375284 edges, 1539 markings/sec, 2700 secs
lola: 4100283 markings, 30436866 edges, 1526 markings/sec, 2705 secs
lola: 4107717 markings, 30499166 edges, 1487 markings/sec, 2710 secs
lola: 4114977 markings, 30550550 edges, 1452 markings/sec, 2715 secs
lola: 4122879 markings, 30603689 edges, 1580 markings/sec, 2720 secs
lola: 4130860 markings, 30663486 edges, 1596 markings/sec, 2725 secs
lola: 4138886 markings, 30729995 edges, 1605 markings/sec, 2730 secs
lola: 4146996 markings, 30795203 edges, 1622 markings/sec, 2735 secs
lola: 4154689 markings, 30852875 edges, 1539 markings/sec, 2740 secs
lola: 4162704 markings, 30905922 edges, 1603 markings/sec, 2745 secs
lola: 4170595 markings, 30964618 edges, 1578 markings/sec, 2750 secs
lola: 4178615 markings, 31031467 edges, 1604 markings/sec, 2755 secs
lola: 4186821 markings, 31095042 edges, 1641 markings/sec, 2760 secs
lola: 4194462 markings, 31156575 edges, 1528 markings/sec, 2765 secs
lola: 4202098 markings, 31214015 edges, 1527 markings/sec, 2770 secs
lola: 4209091 markings, 31285858 edges, 1399 markings/sec, 2775 secs
lola: 4216413 markings, 31363928 edges, 1464 markings/sec, 2780 secs
lola: 4223624 markings, 31443823 edges, 1442 markings/sec, 2785 secs
lola: 4230673 markings, 31525032 edges, 1410 markings/sec, 2790 secs
lola: 4237565 markings, 31594568 edges, 1378 markings/sec, 2795 secs
lola: 4245226 markings, 31654543 edges, 1532 markings/sec, 2800 secs
lola: 4253153 markings, 31713534 edges, 1585 markings/sec, 2805 secs
lola: 4261172 markings, 31781367 edges, 1604 markings/sec, 2810 secs
lola: 4269420 markings, 31844549 edges, 1650 markings/sec, 2815 secs
lola: 4277104 markings, 31905376 edges, 1537 markings/sec, 2820 secs
lola: 4285100 markings, 31957378 edges, 1599 markings/sec, 2825 secs
lola: 4292937 markings, 32015747 edges, 1567 markings/sec, 2830 secs
lola: 4301079 markings, 32080522 edges, 1628 markings/sec, 2835 secs
lola: 4309272 markings, 32145108 edges, 1639 markings/sec, 2840 secs
lola: 4316969 markings, 32207207 edges, 1539 markings/sec, 2845 secs
lola: 4324640 markings, 32263908 edges, 1534 markings/sec, 2850 secs
lola: 4331706 markings, 32334851 edges, 1413 markings/sec, 2855 secs
lola: 4338989 markings, 32412991 edges, 1457 markings/sec, 2860 secs
lola: 4346165 markings, 32493042 edges, 1435 markings/sec, 2865 secs
lola: 4353315 markings, 32573843 edges, 1430 markings/sec, 2870 secs
lola: 4360190 markings, 32645287 edges, 1375 markings/sec, 2875 secs
lola: 4367729 markings, 32706507 edges, 1508 markings/sec, 2880 secs
lola: 4375612 markings, 32765256 edges, 1577 markings/sec, 2885 secs
lola: 4383752 markings, 32830768 edges, 1628 markings/sec, 2890 secs
lola: 4391970 markings, 32895579 edges, 1644 markings/sec, 2895 secs
lola: 4399651 markings, 32957450 edges, 1536 markings/sec, 2900 secs
lola: 4407623 markings, 33010104 edges, 1594 markings/sec, 2905 secs
lola: 4415567 markings, 33069661 edges, 1589 markings/sec, 2910 secs
lola: 4423954 markings, 33133838 edges, 1677 markings/sec, 2915 secs
lola: 4432287 markings, 33200249 edges, 1667 markings/sec, 2920 secs
lola: 4440091 markings, 33263302 edges, 1561 markings/sec, 2925 secs
lola: 4447769 markings, 33319813 edges, 1536 markings/sec, 2930 secs
lola: 4454869 markings, 33390199 edges, 1420 markings/sec, 2935 secs
lola: 4462132 markings, 33468403 edges, 1453 markings/sec, 2940 secs
lola: 4469296 markings, 33548055 edges, 1433 markings/sec, 2945 secs
lola: 4476469 markings, 33628442 edges, 1435 markings/sec, 2950 secs
lola: 4483331 markings, 33701048 edges, 1372 markings/sec, 2955 secs
lola: 4490811 markings, 33762908 edges, 1496 markings/sec, 2960 secs
lola: 4498678 markings, 33821467 edges, 1573 markings/sec, 2965 secs
lola: 4506855 markings, 33886354 edges, 1635 markings/sec, 2970 secs
lola: 4515079 markings, 33951203 edges, 1645 markings/sec, 2975 secs
lola: 4522802 markings, 34013494 edges, 1545 markings/sec, 2980 secs
lola: 4530717 markings, 34066525 edges, 1583 markings/sec, 2985 secs
lola: 4538571 markings, 34123569 edges, 1571 markings/sec, 2990 secs
lola: 4546769 markings, 34187237 edges, 1640 markings/sec, 2995 secs
lola: 4554947 markings, 34252854 edges, 1636 markings/sec, 3000 secs
lola: 4562707 markings, 34315570 edges, 1552 markings/sec, 3005 secs
lola: 4570408 markings, 34371382 edges, 1540 markings/sec, 3010 secs
lola: 4577556 markings, 34441033 edges, 1430 markings/sec, 3015 secs
lola: 4584780 markings, 34517704 edges, 1445 markings/sec, 3020 secs
lola: 4591911 markings, 34598387 edges, 1426 markings/sec, 3025 secs
lola: 4599155 markings, 34677631 edges, 1449 markings/sec, 3030 secs
lola: 4605992 markings, 34753161 edges, 1367 markings/sec, 3035 secs
lola: 4613347 markings, 34815670 edges, 1471 markings/sec, 3040 secs
lola: 4621192 markings, 34873596 edges, 1569 markings/sec, 3045 secs
lola: 4629441 markings, 34937085 edges, 1650 markings/sec, 3050 secs
lola: 4637636 markings, 35002649 edges, 1639 markings/sec, 3055 secs
lola: 4645398 markings, 35065393 edges, 1552 markings/sec, 3060 secs
lola: 4653219 markings, 35119700 edges, 1564 markings/sec, 3065 secs
lola: 4661160 markings, 35175148 edges, 1588 markings/sec, 3070 secs
lola: time limit reached - aborting
lola: lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: 8 unknown 0 0 56 0 8 0 56 64 0 8 8 64 8 8
preliminary result: 8 unknown 0 0 56 0 8 0 56 64 0 8 8 64 8 8
lola:
preliminary result: 8 unknown 0 0 56 0 8 0 56 64 0 8 8 64 8 8
lola: memory consumption: 1680172 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to UpperBounds.json
lola: closed JSON file UpperBounds.json
lola: memory consumption: 1680728 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to UpperBounds.json
lola: closed JSON file UpperBounds.json
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: 8 unknown 0 0 56 0 8 0 56 64 0 8 8 64 8 8
lola:
preliminary result: 8 unknown 0 0 56 0 8 0 56 64 0 8 8 64 8 8
lola: memory consumption: 851544 KB
lola: time consumption: 3572 seconds
lola: print data as JSON (--json)
lola: writing JSON to UpperBounds.json
lola: closed JSON file UpperBounds.json
rslt: finished
BK_STOP 1552782646189
--------------------
content from stderr:
grep: GenericPropertiesVerdict.xml: No such file or directory
grep: GenericPropertiesVerdict.xml: No such file or directory
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-8"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is NeoElection-COL-8, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r104-oct2-155272225500173"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-8.tgz
mv NeoElection-COL-8 execution
cd execution
if [ "UpperBounds" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "UpperBounds" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;