About the Execution of LoLA for NeoElection-COL-4
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
14745.080 | 3594260.00 | 3721637.00 | 234.70 | FTFTFTF?TFTFFTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fko/mcc2019-input.r104-oct2-155272225500141.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..............................................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is NeoElection-COL-4, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r104-oct2-155272225500141
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 256K
-rw-r--r-- 1 mcc users 3.9K Feb 12 02:45 CTLCardinality.txt
-rw-r--r-- 1 mcc users 20K Feb 12 02:44 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Feb 8 01:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 8 01:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 104 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 342 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.6K Feb 5 00:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K Feb 5 00:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.5K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.6K Feb 4 06:52 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 22K Feb 4 06:51 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.9K Feb 1 00:29 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K Feb 1 00:28 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 4 22:21 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 81K Mar 10 17:31 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-4-LTLCardinality-00
FORMULA_NAME NeoElection-COL-4-LTLCardinality-01
FORMULA_NAME NeoElection-COL-4-LTLCardinality-02
FORMULA_NAME NeoElection-COL-4-LTLCardinality-03
FORMULA_NAME NeoElection-COL-4-LTLCardinality-04
FORMULA_NAME NeoElection-COL-4-LTLCardinality-05
FORMULA_NAME NeoElection-COL-4-LTLCardinality-06
FORMULA_NAME NeoElection-COL-4-LTLCardinality-07
FORMULA_NAME NeoElection-COL-4-LTLCardinality-08
FORMULA_NAME NeoElection-COL-4-LTLCardinality-09
FORMULA_NAME NeoElection-COL-4-LTLCardinality-10
FORMULA_NAME NeoElection-COL-4-LTLCardinality-11
FORMULA_NAME NeoElection-COL-4-LTLCardinality-12
FORMULA_NAME NeoElection-COL-4-LTLCardinality-13
FORMULA_NAME NeoElection-COL-4-LTLCardinality-14
FORMULA_NAME NeoElection-COL-4-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1552776537740
info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ NeoElection-COL-4 @ 3570 seconds
FORMULA NeoElection-COL-4-LTLCardinality-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-03 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-01 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
FORMULA NeoElection-COL-4-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: -24
rslt: Output for LTLCardinality @ NeoElection-COL-4
{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat Mar 16 22:48:57 2019
",
"timelimit": 3570
},
"child":
[
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 237
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 274
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 18,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 18,
"visible_transitions": 0
},
"processed": "(2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)",
"processed_size": 148,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 296
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 323
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 395
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 445
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 5,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 5,
"visible_transitions": 0
},
"processed": "A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760)))",
"processed_size": 52,
"rewrites": 61
},
"result":
{
"edges": 169,
"markings": 169,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 509
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 593
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 712
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 890
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 105,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 105,
"visible_transitions": 0
},
"processed": "A (X (F ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856))))",
"processed_size": 827,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1187
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 5,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 5,
"visible_transitions": 0
},
"processed": "A (G (F ((3 <= p1739 + p1738 + p1737 + p1736 + p1735))))",
"processed_size": 56,
"rewrites": 61
},
"result":
{
"edges": 279,
"markings": 279,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},
{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1781
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 5,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 5,
"visible_transitions": 0
},
"processed": "A (F (G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735))))",
"processed_size": 56,
"rewrites": 61
},
"result":
{
"edges": 171,
"markings": 170,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 90708,
"runtime": 3573.000000,
"signal": "User defined signal 2",
"timelimitreached": true
},
"files":
{
"JSON": "LTLCardinality.json",
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "FALSE : A(X(TRUE)) : FALSE : TRUE : A(X(**)) : A(X(TRUE)) : ** : A(F(G(**))) : A(X(TRUE)) : FALSE : TRUE : A(G(F(**))) : FALSE : TRUE : A(F(G(**))) : A(X(F(**)))"
},
"net":
{
"arcs": 12809,
"conflict_clusters": 1339,
"places": 1830,
"places_significant": 489,
"singleton_clusters": 0,
"transitions": 2214
},
"result":
{
"interim_value": "no yes no yes no yes no unknown yes no yes no no yes no yes ",
"preliminary_value": "no yes no yes no yes no unknown yes no yes no no yes no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 1830, Transitions: 2214
lola: @ trans T-startNeg__end
lola: @ trans T-poll__handleAI2
lola: @ trans T-poll__handleAI1
lola: @ trans T-poll__handleRI
lola: @ trans T-poll__handleAnsP2
lola: @ trans T-sendAnnPs__start
lola: @ trans T-startNeg__start
lola: @ trans T-sendAnnPs__send
lola: @ trans T-sendAnnPs__end
lola: @ trans T-poll__iAmPrimary
lola: @ trans T-poll__end
lola: @ trans T-poll__handleAnsP3
lola: @ trans T-poll__handleAnnP1
lola: @ trans T-startSec
lola: @ trans T-poll__handleRP
lola: @ trans T-poll__handleAskP
lola: @ trans T-poll__handleAnnP2
lola: @ trans T-poll__start
lola: @ trans T-poll__handleAnsP1
lola: @ trans T-poll__handleAnsP4
lola: @ trans T-startNeg__send
lola: @ trans T-poll__iAmSecondary
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 4044/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 1830
lola: finding significant places
lola: 1830 places, 2214 transitions, 489 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p1765 + p1766 + p1767 + p1768 + p1769)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704)
lola: after: (0 <= 11)
lola: LP says that atomic proposition is always false: (2 <= p1604 + p1603 + p1602 + p1601 + p1600)
lola: LP says that atomic proposition is always false: (2 <= p834 + p833 + p832 + p831 + p830)
lola: LP says that atomic proposition is always false: (1 <= p1604 + p1603 + p1602 + p1601 + p1600)
lola: place invariant simplifies atomic proposition
lola: before: (p1739 + p1738 + p1737 + p1736 + p1735 <= p848 + p845 + p842 + p839 + p836 + p835 + p837 + p838 + p840 + p841 + p843 + p844 + p846 + p847 + p849)
lola: after: (p1739 + p1738 + p1737 + p1736 + p1735 <= 4)
lola: LP says that atomic proposition is always true: (p1739 + p1738 + p1737 + p1736 + p1735 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704)
lola: after: (0 <= 9)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756 + p1757 + p1758)
lola: after: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)
lola: place invariant simplifies atomic proposition
lola: before: (p1823 + p1822 + p1821 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1813 + p1812 + p1811 + p1810 + p1809 + p1808 + p1807 + p1806 + p1805 + p1803 + p1802 + p1801 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1793 + p1792 + p1791 + p1790 + p1789 + p1788 + p1787 + p1786 + p1785 + p1783 + p1782 + p1781 + p1780 + p1779 + p1778 + p1777 + p1776 + p1775 + p1784 + p1794 + p1804 + p1814 + p1824 <= p829 + p828 + p827 + p826 + p825)
lola: after: (4 <= p829 + p828 + p827 + p826 + p825)
lola: place invariant simplifies atomic proposition
lola: before: (p823 + p820 + p819 + p817 + p816 + p814 + p813 + p811 + p808 + p807 + p805 + p802 + p801 + p799 + p798 + p796 + p793 + p792 + p790 + p789 + p787 + p784 + p783 + p781 + p778 + p777 + p775 + p774 + p772 + p771 + p769 + p766 + p763 + p760 + p757 + p754 + p751 + p750 + p752 + p753 + p755 + p756 + p758 + p759 + p761 + p762 + p764 + p765 + p767 + p768 + p770 + p773 + p776 + p779 + p780 + p782 + p785 + p786 + p788 + p791 + p794 + p795 + p797 + p800 + p803 + p804 + p806 + p809 + p810 + p812 + p815 + p818 + p821 + p822 + p824 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 + p574 + p573 + p581 + p582 + p583 + p584 + p572 + p586 + p587 + p588 + p589 + p571 + p591 + p592 + p593 + p594 + p569 + p596 + p597 + p598 + p599 + p568 + p601 + p602 + p603 + p604 + p567 + p566 + p564 + p563 + p562 + p561 + p611 + p612 + p613 + p614 + p559 + p616 + p617 + p618 + p619 + p558 + p621 + p622 + p623 + p624 + p557 + p626 + p627 + p628 + p629 + p556 + p631 + p632 + p633 + p634 + p554 + p553 + p552 + p551 + p544 + p543 + p641 + p642 + p643 + p644 + p542 + p646 + p647 + p648 + p649 + p541 + p651 + p652 + p653 + p654 + p539 + p656 + p657 + p658 + p659 + p538 + p661 + p662 + p663 + p664 + p537 + p536 + p534 + p533 + p532 + p531 + p671 + p672 + p673 + p674 + p529 + p676 + p677 + p678 + p679 + p528 + p681 + p682 + p683 + p684 + p527 + p686 + p687 + p688 + p689 + p526 + p691 + p692 + p693 + p694 + p524 + p523 + p522 + p521 + p514 + p513 + p701 + p702 + p703 + p704 + p512 + p706 + p707 + p708 + p709 + p511 + p711 + p712 + p713 + p714 + p509 + p716 + p717 + p718 + p719 + p508 + p721 + p722 + p723 + p724 + p507 + p506 + p504 + p503 + p502 + p501 + p731 + p732 + p733 + p734 + p499 + p736 + p737 + p738 + p739 + p498 + p741 + p742 + p743 + p744 + p497 + p746 + p747 + p748 + p749 + p496 + p494 + p493 + p492 + p491 + p484 + p483 + p482 + p481 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p469 + p468 + p467 + p466 + p464 + p463 + p462 + p461 + p454 + p453 + p452 + p451 + p449 + p448 + p447 + p446 + p444 + p443 + p442 + p441 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p414 + p413 + p412 + p411 + p409 + p408 + p407 + p406 + p404 + p403 + p402 + p401 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p384 + p383 + p382 + p381 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p364 + p363 + p362 + p361 + p11 + p12 + p13 + p14 + p359 + p16 + p17 + p18 + p19 + p358 + p21 + p22 + p23 + p24 + p357 + p26 + p27 + p28 + p29 + p356 + p31 + p32 + p33 + p34 + p354 + p353 + p352 + p351 + p349 + p348 + p41 + p42 + p43 + p44 + p347 + p46 + p47 + p48 + p49 + p346 + p51 + p52 + p53 + p54 + p344 + p56 + p57 + p58 + p59 + p343 + p61 + p62 + p63 + p64 + p342 + p341 + p334 + p333 + p332 + p331 + p71 + p72 + p73 + p74 + p329 + p76 + p77 + p78 + p79 + p328 + p81 + p82 + p83 + p84 + p327 + p86 + p87 + p88 + p89 + p326 + p91 + p92 + p93 + p94 + p324 + p323 + p322 + p321 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p304 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p294 + p293 + p292 + p291 + p289 + p288 + p287 + p286 + p284 + p283 + p282 + p281 + p274 + p273 + p272 + p271 + p269 + p268 + p267 + p266 + p264 + p263 + p262 + p261 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p234 + p233 + p232 + p231 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p204 + p203 + p202 + p201 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p174 + p173 + p172 + p171 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p144 + p143 + p142 + p141 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p114 + p113 + p112 + p111 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 + p4 + p3 + p2 + p1)
lola: after: (16 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: LP says that atomic proposition is always false: (16 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: place invariant simplifies atomic proposition
lola: before: (p1710 + p1711 + p1712 + p1713 + p1714 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: after: (0 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: place invariant simplifies atomic proposition
lola: before: (p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 <= p1823 + p1822 + p1821 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1813 + p1812 + p1811 + p1810 + p1809 + p1808 + p1807 + p1806 + p1805 + p1803 + p1802 + p1801 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1793 + p1792 + p1791 + p1790 + p1789 + p1788 + p1787 + p1786 + p1785 + p1783 + p1782 + p1781 + p1780 + p1779 + p1778 + p1777 + p1776 + p1775 + p1784 + p1794 + p1804 + p1814 + p1824)
lola: after: (8 <= 0)
lola: LP says that atomic proposition is always false: (1 <= p1825 + p1826 + p1827 + p1828 + p1829)
lola: place invariant simplifies atomic proposition
lola: before: (p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 + p574 + p573 + p581 + p582 + p583 + p584 + p572 + p586 + p587 + p588 + p589 + p571 + p591 + p592 + p593 + p594 + p569 + p596 + p597 + p598 + p599 + p568 + p601 + p602 + p603 + p604 + p567 + p566 + p564 + p563 + p562 + p561 + p611 + p612 + p613 + p614 + p559 + p616 + p617 + p618 + p619 + p558 + p621 + p622 + p623 + p624 + p557 + p626 + p627 + p628 + p629 + p556 + p631 + p632 + p633 + p634 + p554 + p553 + p552 + p551 + p544 + p543 + p641 + p642 + p643 + p644 + p542 + p646 + p647 + p648 + p649 + p541 + p651 + p652 + p653 + p654 + p539 + p656 + p657 + p658 + p659 + p538 + p661 + p662 + p663 + p664 + p537 + p536 + p534 + p533 + p532 + p531 + p671 + p672 + p673 + p674 + p529 + p676 + p677 + p678 + p679 + p528 + p681 + p682 + p683 + p684 + p527 + p686 + p687 + p688 + p689 + p526 + p691 + p692 + p693 + p694 + p524 + p523 + p522 + p521 + p514 + p513 + p701 + p702 + p703 + p704 + p512 + p706 + p707 + p708 + p709 + p511 + p711 + p712 + p713 + p714 + p509 + p716 + p717 + p718 + p719 + p508 + p721 + p722 + p723 + p724 + p507 + p506 + p504 + p503 + p502 + p501 + p731 + p732 + p733 + p734 + p499 + p736 + p737 + p738 + p739 + p498 + p741 + p742 + p743 + p744 + p497 + p746 + p747 + p748 + p749 + p496 + p494 + p493 + p492 + p491 + p484 + p483 + p482 + p481 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p469 + p468 + p467 + p466 + p464 + p463 + p462 + p461 + p454 + p453 + p452 + p451 + p449 + p448 + p447 + p446 + p444 + p443 + p442 + p441 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p414 + p413 + p412 + p411 + p409 + p408 + p407 + p406 + p404 + p403 + p402 + p401 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p384 + p383 + p382 + p381 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p364 + p363 + p362 + p361 + p11 + p12 + p13 + p14 + p359 + p16 + p17 + p18 + p19 + p358 + p21 + p22 + p23 + p24 + p357 + p26 + p27 + p28 + p29 + p356 + p31 + p32 + p33 + p34 + p354 + p353 + p352 + p351 + p349 + p348 + p41 + p42 + p43 + p44 + p347 + p46 + p47 + p48 + p49 + p346 + p51 + p52 + p53 + p54 + p344 + p56 + p57 + p58 + p59 + p343 + p61 + p62 + p63 + p64 + p342 + p341 + p334 + p333 + p332 + p331 + p71 + p72 + p73 + p74 + p329 + p76 + p77 + p78 + p79 + p328 + p81 + p82 + p83 + p84 + p327 + p86 + p87 + p88 + p89 + p326 + p91 + p92 + p93 + p94 + p324 + p323 + p322 + p321 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p304 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p294 + p293 + p292 + p291 + p289 + p288 + p287 + p286 + p284 + p283 + p282 + p281 + p274 + p273 + p272 + p271 + p269 + p268 + p267 + p266 + p264 + p263 + p262 + p261 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p234 + p233 + p232 + p231 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p204 + p203 + p202 + p201 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p174 + p173 + p172 + p171 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p144 + p143 + p142 + p141 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p114 + p113 + p112 + p111 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 + p4 + p3 + p2 + p1 <= p823 + p820 + p819 + p817 + p816 + p814 + p813 + p811 + p808 + p807 + p805 + p802 + p801 + p799 + p798 + p796 + p793 + p792 + p790 + p789 + p787 + p784 + p783 + p781 + p778 + p777 + p775 + p774 + p772 + p771 + p769 + p766 + p763 + p760 + p757 + p754 + p751 + p750 + p752 + p753 + p755 + p756 + p758 + p759 + p761 + p762 + p764 + p765 + p767 + p768 + p770 + p773 + p776 + p779 + p780 + p782 + p785 + p786 + p788 + p791 + p794 + p795 + p797 + p800 + p803 + p804 + p806 + p809 + p810 + p812 + p815 + p818 + p821 + p822 + p824)
lola: after: (p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 <= 16)
lola: LP says that atomic proposition is always true: (p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 <= 16)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1770 + p1771 + p1772 + p1773 + p1774)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p1770 + p1771 + p1772 + p1773 + p1774 <= p823 + p820 + p819 + p817 + p816 + p814 + p813 + p811 + p808 + p807 + p805 + p802 + p801 + p799 + p798 + p796 + p793 + p792 + p790 + p789 + p787 + p784 + p783 + p781 + p778 + p777 + p775 + p774 + p772 + p771 + p769 + p766 + p763 + p760 + p757 + p754 + p751 + p750 + p752 + p753 + p755 + p756 + p758 + p759 + p761 + p762 + p764 + p765 + p767 + p768 + p770 + p773 + p776 + p779 + p780 + p782 + p785 + p786 + p788 + p791 + p794 + p795 + p797 + p800 + p803 + p804 + p806 + p809 + p810 + p812 + p815 + p818 + p821 + p822 + p824)
lola: after: (0 <= 16)
lola: place invariant simplifies atomic proposition
lola: before: (p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 + p850 + p851 + p852 + p853 + p854 + p855 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 + p574 + p573 + p581 + p582 + p583 + p584 + p572 + p586 + p587 + p588 + p589 + p571 + p591 + p592 + p593 + p594 + p569 + p596 + p597 + p598 + p599 + p568 + p601 + p602 + p603 + p604 + p567 + p566 + p564 + p563 + p562 + p561 + p611 + p612 + p613 + p614 + p559 + p616 + p617 + p618 + p619 + p558 + p621 + p622 + p623 + p624 + p557 + p626 + p627 + p628 + p629 + p556 + p631 + p632 + p633 + p634 + p554 + p553 + p552 + p551 + p544 + p543 + p641 + p642 + p643 + p644 + p542 + p646 + p647 + p648 + p649 + p541 + p651 + p652 + p653 + p654 + p539 + p656 + p657 + p658 + p659 + p538 + p661 + p662 + p663 + p664 + p537 + p536 + p534 + p533 + p532 + p531 + p671 + p672 + p673 + p674 + p529 + p676 + p677 + p678 + p679 + p528 + p681 + p682 + p683 + p684 + p527 + p686 + p687 + p688 + p689 + p526 + p691 + p692 + p693 + p694 + p524 + p523 + p522 + p521 + p514 + p513 + p701 + p702 + p703 + p704 + p512 + p706 + p707 + p708 + p709 + p511 + p711 + p712 + p713 + p714 + p509 + p716 + p717 + p718 + p719 + p508 + p721 + p722 + p723 + p724 + p507 + p506 + p504 + p503 + p502 + p501 + p731 + p732 + p733 + p734 + p499 + p736 + p737 + p738 + p739 + p498 + p741 + p742 + p743 + p744 + p497 + p746 + p747 + p748 + p749 + p496 + p494 + p493 + p492 + p491 + p484 + p483 + p482 + p481 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p469 + p468 + p467 + p466 + p464 + p463 + p462 + p461 + p454 + p453 + p452 + p451 + p449 + p448 + p447 + p446 + p444 + p443 + p442 + p441 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p414 + p413 + p412 + p411 + p409 + p408 + p407 + p406 + p404 + p403 + p402 + p401 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p384 + p383 + p382 + p381 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p364 + p363 + p362 + p361 + p11 + p12 + p13 + p14 + p359 + p16 + p17 + p18 + p19 + p358 + p21 + p22 + p23 + p24 + p357 + p26 + p27 + p28 + p29 + p356 + p31 + p32 + p33 + p34 + p354 + p353 + p352 + p351 + p349 + p348 + p41 + p42 + p43 + p44 + p347 + p46 + p47 + p48 + p49 + p346 + p51 + p52 + p53 + p54 + p344 + p56 + p57 + p58 + p59 + p343 + p61 + p62 + p63 + p64 + p342 + p341 + p334 + p333 + p332 + p331 + p71 + p72 + p73 + p74 + p329 + p76 + p77 + p78 + p79 + p328 + p81 + p82 + p83 + p84 + p327 + p86 + p87 + p88 + p89 + p326 + p91 + p92 + p93 + p94 + p324 + p323 + p322 + p321 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p304 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p294 + p293 + p292 + p291 + p289 + p288 + p287 + p286 + p284 + p283 + p282 + p281 + p274 + p273 + p272 + p271 + p269 + p268 + p267 + p266 + p264 + p263 + p262 + p261 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p234 + p233 + p232 + p231 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p204 + p203 + p202 + p201 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p174 + p173 + p172 + p171 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p144 + p143 + p142 + p141 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p114 + p113 + p112 + p111 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 + p4 + p3 + p2 + p1)
lola: after: (p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: LP says that atomic proposition is always true: (p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: place invariant simplifies atomic proposition
lola: before: (p1823 + p1822 + p1821 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1813 + p1812 + p1811 + p1810 + p1809 + p1808 + p1807 + p1806 + p1805 + p1803 + p1802 + p1801 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1793 + p1792 + p1791 + p1790 + p1789 + p1788 + p1787 + p1786 + p1785 + p1783 + p1782 + p1781 + p1780 + p1779 + p1778 + p1777 + p1776 + p1775 + p1784 + p1794 + p1804 + p1814 + p1824 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: after: (4 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1770 + p1771 + p1772 + p1773 + p1774)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 + p850 + p851 + p852 + p853 + p854 + p855 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599)
lola: after: (p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856)
lola: A ((1 <= 0)) : A (F (F (G (X ((0 <= 11)))))) : A (F (X (((2 <= p1604 + p1603 + p1602 + p1601 + p1600) U (2 <= p834 + p833 + p832 + p831 + p830))))) : A ((((3 <= p1764 + p1763 + p1762 + p1761 + p1760) U (1 <= p1604 + p1603 + p1602 + p1601 + p1600)) U G ((p1739 + p1738 + p1737 + p1736 + p1735 <= 4)))) : A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760))) : A (G (X (G ((0 <= 9))))) : A ((2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)) : A (G (F (G (G ((4 <= p829 + p828 + p827 + p826 + p825)))))) : A (X (X (((16 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578) U (0 <= p1739 + p1738 + p1737 + p1736 + p1735))))) : A (F (((8 <= 0) U (1 <= p1825 + p1826 + p1827 + p1828 + p1829)))) : A (F (F (G (G ((p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 <= 16)))))) : A (G (G (F (X ((3 <= p1739 + p1738 + p1737 + p1736 + p1735)))))) : A (X (F (X (X ((3 <= 0)))))) : A ((0 <= 16)) : A (((p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578) U G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735)))) : A (F ((F ((2 <= 0)) U X ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:374
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)
lola: processed formula length: 148
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 323 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 395 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760)))
lola: processed formula length: 52
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 169 markings, 169 edges
lola: ========================================
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 10 will run for 593 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 11 will run for 712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 12 will run for 890 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1... (shortened)
lola: processed formula length: 827
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 13 will run for 1187 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: processed formula length: 56
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 279 markings, 279 edges
lola: ========================================
lola: subprocess 14 will run for 1781 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: processed formula length: 56
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 170 markings, 171 edges
lola: ========================================
lola: subprocess 15 will run for 3563 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: processed formula length: 51
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 190533 markings, 1670055 edges, 38107 markings/sec, 0 secs
lola: 371285 markings, 3309805 edges, 36150 markings/sec, 5 secs
lola: 551088 markings, 4959935 edges, 35961 markings/sec, 10 secs
lola: 728139 markings, 6619747 edges, 35410 markings/sec, 15 secs
lola: 905697 markings, 8250759 edges, 35512 markings/sec, 20 secs
lola: 1078029 markings, 9910663 edges, 34466 markings/sec, 25 secs
lola: 1247825 markings, 11577904 edges, 33959 markings/sec, 30 secs
lola: 1405734 markings, 13247548 edges, 31582 markings/sec, 35 secs
lola: 1563894 markings, 14904406 edges, 31632 markings/sec, 40 secs
lola: 1734447 markings, 16570930 edges, 34111 markings/sec, 45 secs
lola: 1905801 markings, 18228350 edges, 34271 markings/sec, 50 secs
lola: 2075400 markings, 19888350 edges, 33920 markings/sec, 55 secs
lola: 2246835 markings, 21536427 edges, 34287 markings/sec, 60 secs
lola: 2416158 markings, 23150266 edges, 33865 markings/sec, 65 secs
lola: 2568429 markings, 24808438 edges, 30454 markings/sec, 70 secs
lola: 2742738 markings, 26438445 edges, 34862 markings/sec, 75 secs
lola: 2905656 markings, 28077155 edges, 32584 markings/sec, 80 secs
lola: 3069196 markings, 29697925 edges, 32708 markings/sec, 85 secs
lola: 3245119 markings, 31345774 edges, 35185 markings/sec, 90 secs
lola: 3413787 markings, 32999099 edges, 33734 markings/sec, 95 secs
lola: 3581576 markings, 34633111 edges, 33558 markings/sec, 100 secs
lola: 3758517 markings, 36279845 edges, 35388 markings/sec, 105 secs
lola: 3937646 markings, 37908355 edges, 35826 markings/sec, 110 secs
lola: 4113482 markings, 39525154 edges, 35167 markings/sec, 115 secs
lola: 4282634 markings, 41144287 edges, 33830 markings/sec, 120 secs
lola: 4456471 markings, 42764307 edges, 34767 markings/sec, 125 secs
lola: 4622422 markings, 44406934 edges, 33190 markings/sec, 130 secs
lola: 4780951 markings, 46041406 edges, 31706 markings/sec, 135 secs
lola: 4935104 markings, 47675111 edges, 30831 markings/sec, 140 secs
lola: 5097420 markings, 49302094 edges, 32463 markings/sec, 145 secs
lola: 5262727 markings, 50931169 edges, 33061 markings/sec, 150 secs
lola: 5427650 markings, 52555790 edges, 32985 markings/sec, 155 secs
lola: 5596621 markings, 54162363 edges, 33794 markings/sec, 160 secs
lola: 5750156 markings, 55793513 edges, 30707 markings/sec, 165 secs
lola: 5914612 markings, 57405629 edges, 32891 markings/sec, 170 secs
lola: 6073985 markings, 59015064 edges, 31875 markings/sec, 175 secs
lola: 6234490 markings, 60621349 edges, 32101 markings/sec, 180 secs
lola: 6405381 markings, 62255301 edges, 34178 markings/sec, 185 secs
lola: 6569965 markings, 63891890 edges, 32917 markings/sec, 190 secs
lola: 6742665 markings, 65534182 edges, 34540 markings/sec, 195 secs
lola: 6910856 markings, 67212389 edges, 33638 markings/sec, 200 secs
lola: 7074155 markings, 68887393 edges, 32660 markings/sec, 205 secs
lola: 7239349 markings, 70545217 edges, 33039 markings/sec, 210 secs
lola: 7392593 markings, 72208335 edges, 30649 markings/sec, 215 secs
lola: 7555938 markings, 73866955 edges, 32669 markings/sec, 220 secs
lola: 7714714 markings, 75517882 edges, 31755 markings/sec, 225 secs
lola: 7875433 markings, 77161328 edges, 32144 markings/sec, 230 secs
lola: 8024293 markings, 78829820 edges, 29772 markings/sec, 235 secs
lola: 8177455 markings, 80489387 edges, 30632 markings/sec, 240 secs
lola: 8317584 markings, 82145607 edges, 28026 markings/sec, 245 secs
lola: 8464423 markings, 83808710 edges, 29368 markings/sec, 250 secs
lola: 8606092 markings, 85454296 edges, 28334 markings/sec, 255 secs
lola: 8760373 markings, 87123623 edges, 30856 markings/sec, 260 secs
lola: 8919192 markings, 88782878 edges, 31764 markings/sec, 265 secs
lola: 9070124 markings, 90456738 edges, 30186 markings/sec, 270 secs
lola: 9221835 markings, 92107255 edges, 30342 markings/sec, 275 secs
lola: 9376874 markings, 93773779 edges, 31008 markings/sec, 280 secs
lola: 9535404 markings, 95449370 edges, 31706 markings/sec, 285 secs
lola: 9680456 markings, 97103181 edges, 29010 markings/sec, 290 secs
lola: 9824218 markings, 98773632 edges, 28752 markings/sec, 295 secs
lola: 9978431 markings, 100393780 edges, 30843 markings/sec, 300 secs
lola: 10122743 markings, 102012027 edges, 28862 markings/sec, 305 secs
lola: 10269176 markings, 103639469 edges, 29287 markings/sec, 310 secs
lola: 10417708 markings, 105249765 edges, 29706 markings/sec, 315 secs
lola: 10576094 markings, 106904339 edges, 31677 markings/sec, 320 secs
lola: 10730985 markings, 108561048 edges, 30978 markings/sec, 325 secs
lola: 10883426 markings, 110228580 edges, 30488 markings/sec, 330 secs
lola: 11033287 markings, 111864860 edges, 29972 markings/sec, 335 secs
lola: 11192450 markings, 113513237 edges, 31833 markings/sec, 340 secs
lola: 11358787 markings, 115102985 edges, 33267 markings/sec, 345 secs
lola: 11517944 markings, 116694400 edges, 31831 markings/sec, 350 secs
lola: 11667463 markings, 118307620 edges, 29904 markings/sec, 355 secs
lola: 11818823 markings, 119956474 edges, 30272 markings/sec, 360 secs
lola: 11967787 markings, 121599957 edges, 29793 markings/sec, 365 secs
lola: 12104000 markings, 123245052 edges, 27243 markings/sec, 370 secs
lola: 12271526 markings, 124875465 edges, 33505 markings/sec, 375 secs
lola: 12437012 markings, 126507035 edges, 33097 markings/sec, 380 secs
lola: 12604316 markings, 128122420 edges, 33461 markings/sec, 385 secs
lola: 12768200 markings, 129730007 edges, 32777 markings/sec, 390 secs
lola: 12924987 markings, 131372250 edges, 31357 markings/sec, 395 secs
lola: 13090151 markings, 132986978 edges, 33033 markings/sec, 400 secs
lola: 13254822 markings, 134592406 edges, 32934 markings/sec, 405 secs
lola: 13412548 markings, 136209746 edges, 31545 markings/sec, 410 secs
lola: 13565849 markings, 137850659 edges, 30660 markings/sec, 415 secs
lola: 13714752 markings, 139476759 edges, 29781 markings/sec, 420 secs
lola: 13860626 markings, 141111552 edges, 29175 markings/sec, 425 secs
lola: 14007173 markings, 142724885 edges, 29309 markings/sec, 430 secs
lola: 14155835 markings, 144357597 edges, 29732 markings/sec, 435 secs
lola: 14321643 markings, 145979463 edges, 33162 markings/sec, 440 secs
lola: 14474581 markings, 147616083 edges, 30588 markings/sec, 445 secs
lola: 14633137 markings, 149242562 edges, 31711 markings/sec, 450 secs
lola: 14787523 markings, 150863073 edges, 30877 markings/sec, 455 secs
lola: 14946031 markings, 152447019 edges, 31702 markings/sec, 460 secs
lola: 15095472 markings, 154056136 edges, 29888 markings/sec, 465 secs
lola: 15235524 markings, 155701144 edges, 28010 markings/sec, 470 secs
lola: 15395748 markings, 157293199 edges, 32045 markings/sec, 475 secs
lola: 15543379 markings, 158888204 edges, 29526 markings/sec, 480 secs
lola: 15696539 markings, 160485444 edges, 30632 markings/sec, 485 secs
lola: 15845482 markings, 162065503 edges, 29789 markings/sec, 490 secs
lola: 16006982 markings, 163682717 edges, 32300 markings/sec, 495 secs
lola: 16166075 markings, 165309898 edges, 31819 markings/sec, 500 secs
lola: 16320529 markings, 166947978 edges, 30891 markings/sec, 505 secs
lola: 16476945 markings, 168562673 edges, 31283 markings/sec, 510 secs
lola: 16638324 markings, 170190523 edges, 32276 markings/sec, 515 secs
lola: 16801535 markings, 171768208 edges, 32642 markings/sec, 520 secs
lola: 16983469 markings, 173439114 edges, 36387 markings/sec, 525 secs
lola: 17153087 markings, 175106463 edges, 33924 markings/sec, 530 secs
lola: 17322025 markings, 176756463 edges, 33788 markings/sec, 535 secs
lola: 17485384 markings, 178407712 edges, 32672 markings/sec, 540 secs
lola: 17652344 markings, 180069279 edges, 33392 markings/sec, 545 secs
lola: 17817623 markings, 181717634 edges, 33056 markings/sec, 550 secs
lola: 17985650 markings, 183355450 edges, 33605 markings/sec, 555 secs
lola: 18141132 markings, 185017955 edges, 31096 markings/sec, 560 secs
lola: 18299192 markings, 186673228 edges, 31612 markings/sec, 565 secs
lola: 18445160 markings, 188329611 edges, 29194 markings/sec, 570 secs
lola: 18594231 markings, 189990156 edges, 29814 markings/sec, 575 secs
lola: 18742875 markings, 191628476 edges, 29729 markings/sec, 580 secs
lola: 18906394 markings, 193286444 edges, 32704 markings/sec, 585 secs
lola: 19065947 markings, 194931228 edges, 31911 markings/sec, 590 secs
lola: 19223589 markings, 196583258 edges, 31528 markings/sec, 595 secs
lola: 19378618 markings, 198213696 edges, 31006 markings/sec, 600 secs
lola: 19542176 markings, 199863599 edges, 32712 markings/sec, 605 secs
lola: 19698446 markings, 201481152 edges, 31254 markings/sec, 610 secs
lola: 19844785 markings, 203140835 edges, 29268 markings/sec, 615 secs
lola: 20000443 markings, 204786969 edges, 31132 markings/sec, 620 secs
lola: 20154986 markings, 206401849 edges, 30909 markings/sec, 625 secs
lola: 20308612 markings, 208028813 edges, 30725 markings/sec, 630 secs
lola: 20459412 markings, 209636134 edges, 30160 markings/sec, 635 secs
lola: 20620245 markings, 211270954 edges, 32167 markings/sec, 640 secs
lola: 20784917 markings, 212909675 edges, 32934 markings/sec, 645 secs
lola: 20938780 markings, 214545409 edges, 30773 markings/sec, 650 secs
lola: 21095665 markings, 216191510 edges, 31377 markings/sec, 655 secs
lola: 21256318 markings, 217844501 edges, 32131 markings/sec, 660 secs
lola: 21416541 markings, 219482275 edges, 32045 markings/sec, 665 secs
lola: 21582766 markings, 221102625 edges, 33245 markings/sec, 670 secs
lola: 21749612 markings, 222726510 edges, 33369 markings/sec, 675 secs
lola: 21917600 markings, 224335916 edges, 33598 markings/sec, 680 secs
lola: 22082816 markings, 225950471 edges, 33043 markings/sec, 685 secs
lola: 22234981 markings, 227569351 edges, 30433 markings/sec, 690 secs
lola: 22398643 markings, 229177735 edges, 32732 markings/sec, 695 secs
lola: 22560728 markings, 230782373 edges, 32417 markings/sec, 700 secs
lola: 22723652 markings, 232382187 edges, 32585 markings/sec, 705 secs
lola: 22874621 markings, 233993757 edges, 30194 markings/sec, 710 secs
lola: 23020782 markings, 235623076 edges, 29232 markings/sec, 715 secs
lola: 23172791 markings, 237228405 edges, 30402 markings/sec, 720 secs
lola: 23314828 markings, 238855009 edges, 28407 markings/sec, 725 secs
lola: 23463528 markings, 240473794 edges, 29740 markings/sec, 730 secs
lola: 23608631 markings, 242090638 edges, 29021 markings/sec, 735 secs
lola: 23762806 markings, 243726098 edges, 30835 markings/sec, 740 secs
lola: 23925776 markings, 245344274 edges, 32594 markings/sec, 745 secs
lola: 24076924 markings, 246972452 edges, 30230 markings/sec, 750 secs
lola: 24234073 markings, 248588465 edges, 31430 markings/sec, 755 secs
lola: 24389566 markings, 250208585 edges, 31099 markings/sec, 760 secs
lola: 24546876 markings, 251801241 edges, 31462 markings/sec, 765 secs
lola: 24694910 markings, 253421493 edges, 29607 markings/sec, 770 secs
lola: 24837358 markings, 255097184 edges, 28490 markings/sec, 775 secs
lola: 24993151 markings, 256712428 edges, 31159 markings/sec, 780 secs
lola: 25145736 markings, 258306241 edges, 30517 markings/sec, 785 secs
lola: 25296009 markings, 259913913 edges, 30055 markings/sec, 790 secs
lola: 25447659 markings, 261503562 edges, 30330 markings/sec, 795 secs
lola: 25603806 markings, 263113512 edges, 31229 markings/sec, 800 secs
lola: 25768662 markings, 264736198 edges, 32971 markings/sec, 805 secs
lola: 25920581 markings, 266370857 edges, 30384 markings/sec, 810 secs
lola: 26077695 markings, 267999925 edges, 31423 markings/sec, 815 secs
lola: 26231313 markings, 269620648 edges, 30724 markings/sec, 820 secs
lola: 26402669 markings, 271251619 edges, 34271 markings/sec, 825 secs
lola: 26579760 markings, 272875161 edges, 35418 markings/sec, 830 secs
lola: 26756278 markings, 274483013 edges, 35304 markings/sec, 835 secs
lola: 26926350 markings, 276109585 edges, 34014 markings/sec, 840 secs
lola: 27101931 markings, 277716153 edges, 35116 markings/sec, 845 secs
lola: 27265455 markings, 279345114 edges, 32705 markings/sec, 850 secs
lola: 27421761 markings, 280974760 edges, 31261 markings/sec, 855 secs
lola: 27577220 markings, 282602015 edges, 31092 markings/sec, 860 secs
lola: 27746108 markings, 284255364 edges, 33778 markings/sec, 865 secs
lola: 27915295 markings, 285912111 edges, 33837 markings/sec, 870 secs
lola: 28084224 markings, 287564617 edges, 33786 markings/sec, 875 secs
lola: 28254985 markings, 289197013 edges, 34152 markings/sec, 880 secs
lola: 28411184 markings, 290861951 edges, 31240 markings/sec, 885 secs
lola: 28577273 markings, 292479954 edges, 33218 markings/sec, 890 secs
lola: 28740603 markings, 294113005 edges, 32666 markings/sec, 895 secs
lola: 28913273 markings, 295756493 edges, 34534 markings/sec, 900 secs
lola: 29082250 markings, 297413674 edges, 33795 markings/sec, 905 secs
lola: 29250473 markings, 299066613 edges, 33645 markings/sec, 910 secs
lola: 29429551 markings, 300705779 edges, 35816 markings/sec, 915 secs
lola: 29606880 markings, 302330729 edges, 35466 markings/sec, 920 secs
lola: 29774045 markings, 303947350 edges, 33433 markings/sec, 925 secs
lola: 29944220 markings, 305537887 edges, 34035 markings/sec, 930 secs
lola: 30103344 markings, 307150847 edges, 31825 markings/sec, 935 secs
lola: 30253865 markings, 308763136 edges, 30104 markings/sec, 940 secs
lola: 30413357 markings, 310390073 edges, 31898 markings/sec, 945 secs
lola: 30578853 markings, 312021706 edges, 33099 markings/sec, 950 secs
lola: 30744446 markings, 313657717 edges, 33119 markings/sec, 955 secs
lola: 30905591 markings, 315278317 edges, 32229 markings/sec, 960 secs
lola: 31066184 markings, 316909223 edges, 32119 markings/sec, 965 secs
lola: 31224274 markings, 318524925 edges, 31618 markings/sec, 970 secs
lola: 31392728 markings, 320148210 edges, 33691 markings/sec, 975 secs
lola: 31557962 markings, 321790219 edges, 33047 markings/sec, 980 secs
lola: 31727696 markings, 323436560 edges, 33947 markings/sec, 985 secs
lola: 31889272 markings, 325071652 edges, 32315 markings/sec, 990 secs
lola: 32048681 markings, 326709742 edges, 31882 markings/sec, 995 secs
lola: 32207637 markings, 328339686 edges, 31791 markings/sec, 1000 secs
lola: 32362019 markings, 329984699 edges, 30876 markings/sec, 1005 secs
lola: 32519085 markings, 331622726 edges, 31413 markings/sec, 1010 secs
lola: 32676850 markings, 333256343 edges, 31553 markings/sec, 1015 secs
lola: 32824995 markings, 334925708 edges, 29629 markings/sec, 1020 secs
lola: 32968717 markings, 336582230 edges, 28744 markings/sec, 1025 secs
lola: 33110329 markings, 338217891 edges, 28322 markings/sec, 1030 secs
lola: 33250762 markings, 339835555 edges, 28087 markings/sec, 1035 secs
lola: 33401228 markings, 341433281 edges, 30093 markings/sec, 1040 secs
lola: 33544387 markings, 343012555 edges, 28632 markings/sec, 1045 secs
lola: 33693924 markings, 344636455 edges, 29907 markings/sec, 1050 secs
lola: 33843578 markings, 346264107 edges, 29931 markings/sec, 1055 secs
lola: 33992865 markings, 347854958 edges, 29857 markings/sec, 1060 secs
lola: 34130387 markings, 349491887 edges, 27504 markings/sec, 1065 secs
lola: 34277393 markings, 351080596 edges, 29401 markings/sec, 1070 secs
lola: 34420755 markings, 352674932 edges, 28672 markings/sec, 1075 secs
lola: 34565730 markings, 354285260 edges, 28995 markings/sec, 1080 secs
lola: 34714653 markings, 355913732 edges, 29785 markings/sec, 1085 secs
lola: 34872681 markings, 357555209 edges, 31606 markings/sec, 1090 secs
lola: 35020268 markings, 359184220 edges, 29517 markings/sec, 1095 secs
lola: 35166461 markings, 360798875 edges, 29239 markings/sec, 1100 secs
lola: 35325425 markings, 362412472 edges, 31793 markings/sec, 1105 secs
lola: 35484971 markings, 363959260 edges, 31909 markings/sec, 1110 secs
lola: 35630876 markings, 365510661 edges, 29181 markings/sec, 1115 secs
lola: 35778950 markings, 367125101 edges, 29615 markings/sec, 1120 secs
lola: 35919617 markings, 368706153 edges, 28133 markings/sec, 1125 secs
lola: 36055773 markings, 370324754 edges, 27231 markings/sec, 1130 secs
lola: 36222081 markings, 371915577 edges, 33262 markings/sec, 1135 secs
lola: 36384831 markings, 373502917 edges, 32550 markings/sec, 1140 secs
lola: 36546878 markings, 375096952 edges, 32409 markings/sec, 1145 secs
lola: 36704128 markings, 376720277 edges, 31450 markings/sec, 1150 secs
lola: 36867593 markings, 378338804 edges, 32693 markings/sec, 1155 secs
lola: 37029994 markings, 379953304 edges, 32480 markings/sec, 1160 secs
lola: 37180434 markings, 381591370 edges, 30088 markings/sec, 1165 secs
lola: 37324858 markings, 383193378 edges, 28885 markings/sec, 1170 secs
lola: 37470046 markings, 384799380 edges, 29038 markings/sec, 1175 secs
lola: 37613341 markings, 386396246 edges, 28659 markings/sec, 1180 secs
lola: 37772404 markings, 388001903 edges, 31813 markings/sec, 1185 secs
lola: 37923627 markings, 389611107 edges, 30245 markings/sec, 1190 secs
lola: 38077735 markings, 391211029 edges, 30822 markings/sec, 1195 secs
lola: 38233643 markings, 392812130 edges, 31182 markings/sec, 1200 secs
lola: 38384663 markings, 394392116 edges, 30204 markings/sec, 1205 secs
lola: 38523654 markings, 396016457 edges, 27798 markings/sec, 1210 secs
lola: 38679633 markings, 397586817 edges, 31196 markings/sec, 1215 secs
lola: 38825035 markings, 399170045 edges, 29080 markings/sec, 1220 secs
lola: 38972550 markings, 400733421 edges, 29503 markings/sec, 1225 secs
lola: 39129283 markings, 402327785 edges, 31347 markings/sec, 1230 secs
lola: 39283837 markings, 403935082 edges, 30911 markings/sec, 1235 secs
lola: 39438672 markings, 405548380 edges, 30967 markings/sec, 1240 secs
lola: 39592089 markings, 407152379 edges, 30683 markings/sec, 1245 secs
lola: 39753565 markings, 408714737 edges, 32295 markings/sec, 1250 secs
lola: 39925617 markings, 410325700 edges, 34410 markings/sec, 1255 secs
lola: 40089183 markings, 411942513 edges, 32713 markings/sec, 1260 secs
lola: 40253645 markings, 413550432 edges, 32892 markings/sec, 1265 secs
lola: 40409197 markings, 415172618 edges, 31110 markings/sec, 1270 secs
lola: 40571831 markings, 416775045 edges, 32527 markings/sec, 1275 secs
lola: 40733170 markings, 418368872 edges, 32268 markings/sec, 1280 secs
lola: 40883614 markings, 419986036 edges, 30089 markings/sec, 1285 secs
lola: 41031303 markings, 421602648 edges, 29538 markings/sec, 1290 secs
lola: 41177543 markings, 423228282 edges, 29248 markings/sec, 1295 secs
lola: 41320631 markings, 424836847 edges, 28618 markings/sec, 1300 secs
lola: 41480023 markings, 426465890 edges, 31878 markings/sec, 1305 secs
lola: 41633792 markings, 428087991 edges, 30754 markings/sec, 1310 secs
lola: 41788505 markings, 429708597 edges, 30943 markings/sec, 1315 secs
lola: 41946829 markings, 431330100 edges, 31665 markings/sec, 1320 secs
lola: 42100642 markings, 432922508 edges, 30763 markings/sec, 1325 secs
lola: 42240171 markings, 434562822 edges, 27906 markings/sec, 1330 secs
lola: 42398413 markings, 436155249 edges, 31648 markings/sec, 1335 secs
lola: 42546333 markings, 437754250 edges, 29584 markings/sec, 1340 secs
lola: 42694727 markings, 439339776 edges, 29679 markings/sec, 1345 secs
lola: 42853718 markings, 440952830 edges, 31798 markings/sec, 1350 secs
lola: 43009865 markings, 442574384 edges, 31229 markings/sec, 1355 secs
lola: 43165015 markings, 444206000 edges, 31030 markings/sec, 1360 secs
lola: 43320580 markings, 445826438 edges, 31113 markings/sec, 1365 secs
lola: 43474600 markings, 447409053 edges, 30804 markings/sec, 1370 secs
lola: 43640254 markings, 449002971 edges, 33131 markings/sec, 1375 secs
lola: 43802691 markings, 450603141 edges, 32487 markings/sec, 1380 secs
lola: 43965455 markings, 452194970 edges, 32553 markings/sec, 1385 secs
lola: 44116841 markings, 453792516 edges, 30277 markings/sec, 1390 secs
lola: 44276916 markings, 455382877 edges, 32015 markings/sec, 1395 secs
lola: 44436453 markings, 456964799 edges, 31907 markings/sec, 1400 secs
lola: 44591854 markings, 458547575 edges, 31080 markings/sec, 1405 secs
lola: 44733600 markings, 460160189 edges, 28349 markings/sec, 1410 secs
lola: 44882106 markings, 461751994 edges, 29701 markings/sec, 1415 secs
lola: 45024521 markings, 463366054 edges, 28483 markings/sec, 1420 secs
lola: 45167866 markings, 464948846 edges, 28669 markings/sec, 1425 secs
lola: 45315478 markings, 466564088 edges, 29522 markings/sec, 1430 secs
lola: 45474640 markings, 468162585 edges, 31832 markings/sec, 1435 secs
lola: 45626561 markings, 469773791 edges, 30384 markings/sec, 1440 secs
lola: 45777956 markings, 471367892 edges, 30279 markings/sec, 1445 secs
lola: 45934240 markings, 472950209 edges, 31257 markings/sec, 1450 secs
lola: 46080237 markings, 474539216 edges, 29199 markings/sec, 1455 secs
lola: 46216287 markings, 476151236 edges, 27210 markings/sec, 1460 secs
lola: 46371396 markings, 477728007 edges, 31022 markings/sec, 1465 secs
lola: 46517321 markings, 479307800 edges, 29185 markings/sec, 1470 secs
lola: 46663603 markings, 480853035 edges, 29256 markings/sec, 1475 secs
lola: 46809918 markings, 482374211 edges, 29263 markings/sec, 1480 secs
lola: 46966522 markings, 483954544 edges, 31321 markings/sec, 1485 secs
lola: 47116344 markings, 485540360 edges, 29964 markings/sec, 1490 secs
lola: 47262360 markings, 487085941 edges, 29203 markings/sec, 1495 secs
lola: 47420498 markings, 488696521 edges, 31628 markings/sec, 1500 secs
lola: 47592816 markings, 490349093 edges, 34464 markings/sec, 1505 secs
lola: 47751160 markings, 491972789 edges, 31669 markings/sec, 1510 secs
lola: 47911378 markings, 493600125 edges, 32044 markings/sec, 1515 secs
lola: 48072115 markings, 495246187 edges, 32147 markings/sec, 1520 secs
lola: 48226465 markings, 496916442 edges, 30870 markings/sec, 1525 secs
lola: 48387862 markings, 498558681 edges, 32279 markings/sec, 1530 secs
lola: 48547409 markings, 500193691 edges, 31909 markings/sec, 1535 secs
lola: 48701442 markings, 501837661 edges, 30807 markings/sec, 1540 secs
lola: 48851243 markings, 503501995 edges, 29960 markings/sec, 1545 secs
lola: 48996679 markings, 505151427 edges, 29087 markings/sec, 1550 secs
lola: 49140380 markings, 506812709 edges, 28740 markings/sec, 1555 secs
lola: 49281632 markings, 508458502 edges, 28250 markings/sec, 1560 secs
lola: 49427424 markings, 510114440 edges, 29158 markings/sec, 1565 secs
lola: 49590123 markings, 511771577 edges, 32540 markings/sec, 1570 secs
lola: 49738901 markings, 513428421 edges, 29756 markings/sec, 1575 secs
lola: 49893622 markings, 515086461 edges, 30944 markings/sec, 1580 secs
lola: 50043603 markings, 516724794 edges, 29996 markings/sec, 1585 secs
lola: 50201452 markings, 518359228 edges, 31570 markings/sec, 1590 secs
lola: 50350366 markings, 519987079 edges, 29783 markings/sec, 1595 secs
lola: 50488529 markings, 521653236 edges, 27633 markings/sec, 1600 secs
lola: 50641128 markings, 523286441 edges, 30520 markings/sec, 1605 secs
lola: 50788040 markings, 524901594 edges, 29382 markings/sec, 1610 secs
lola: 50937593 markings, 526530952 edges, 29911 markings/sec, 1615 secs
lola: 51081905 markings, 528143873 edges, 28862 markings/sec, 1620 secs
lola: 51237209 markings, 529780531 edges, 31061 markings/sec, 1625 secs
lola: 51396885 markings, 531434678 edges, 31935 markings/sec, 1630 secs
lola: 51546501 markings, 533092355 edges, 29923 markings/sec, 1635 secs
lola: 51697902 markings, 534745616 edges, 30280 markings/sec, 1640 secs
lola: 51850571 markings, 536388693 edges, 30534 markings/sec, 1645 secs
lola: 52018121 markings, 538035812 edges, 33510 markings/sec, 1650 secs
lola: 52177433 markings, 539688051 edges, 31862 markings/sec, 1655 secs
lola: 52336686 markings, 541313250 edges, 31851 markings/sec, 1660 secs
lola: 52482360 markings, 542945063 edges, 29135 markings/sec, 1665 secs
lola: 52640570 markings, 544553472 edges, 31642 markings/sec, 1670 secs
lola: 52796338 markings, 546152972 edges, 31154 markings/sec, 1675 secs
lola: 52941391 markings, 547771717 edges, 29011 markings/sec, 1680 secs
lola: 53088282 markings, 549385442 edges, 29378 markings/sec, 1685 secs
lola: 53227268 markings, 551044515 edges, 27797 markings/sec, 1690 secs
lola: 53366377 markings, 552664440 edges, 27822 markings/sec, 1695 secs
lola: 53509875 markings, 554287798 edges, 28700 markings/sec, 1700 secs
lola: 53663864 markings, 555909617 edges, 30798 markings/sec, 1705 secs
lola: 53811511 markings, 557544653 edges, 29529 markings/sec, 1710 secs
lola: 53957564 markings, 559158920 edges, 29211 markings/sec, 1715 secs
lola: 54110485 markings, 560771197 edges, 30584 markings/sec, 1720 secs
lola: 54254711 markings, 562382104 edges, 28845 markings/sec, 1725 secs
lola: 54392409 markings, 564022067 edges, 27540 markings/sec, 1730 secs
lola: 54540255 markings, 565613019 edges, 29569 markings/sec, 1735 secs
lola: 54680844 markings, 567187568 edges, 28118 markings/sec, 1740 secs
lola: 54822382 markings, 568774488 edges, 28308 markings/sec, 1745 secs
lola: 54972652 markings, 570360633 edges, 30054 markings/sec, 1750 secs
lola: 55118570 markings, 571955778 edges, 29184 markings/sec, 1755 secs
lola: 55265129 markings, 573545434 edges, 29312 markings/sec, 1760 secs
lola: 55407734 markings, 575133700 edges, 28521 markings/sec, 1765 secs
lola: 55562362 markings, 576747771 edges, 30926 markings/sec, 1770 secs
lola: 55708232 markings, 578362231 edges, 29174 markings/sec, 1775 secs
lola: 55850642 markings, 579980805 edges, 28482 markings/sec, 1780 secs
lola: 55991851 markings, 581578748 edges, 28242 markings/sec, 1785 secs
lola: 56138421 markings, 583197244 edges, 29314 markings/sec, 1790 secs
lola: 56272356 markings, 584787825 edges, 26787 markings/sec, 1795 secs
lola: 56411356 markings, 586433141 edges, 27800 markings/sec, 1800 secs
lola: 56551518 markings, 588031395 edges, 28032 markings/sec, 1805 secs
lola: 56694997 markings, 589643658 edges, 28696 markings/sec, 1810 secs
lola: 56837618 markings, 591242773 edges, 28524 markings/sec, 1815 secs
lola: 56973126 markings, 592844048 edges, 27102 markings/sec, 1820 secs
lola: 57106588 markings, 594487496 edges, 26692 markings/sec, 1825 secs
lola: 57240063 markings, 596104386 edges, 26695 markings/sec, 1830 secs
lola: 57366999 markings, 597720250 edges, 25387 markings/sec, 1835 secs
lola: 57493634 markings, 599326756 edges, 25327 markings/sec, 1840 secs
lola: 57619140 markings, 600942542 edges, 25101 markings/sec, 1845 secs
lola: 57745387 markings, 602527429 edges, 25249 markings/sec, 1850 secs
lola: 57877475 markings, 604156497 edges, 26418 markings/sec, 1855 secs
lola: 58021724 markings, 605780675 edges, 28850 markings/sec, 1860 secs
lola: 58159201 markings, 607402479 edges, 27495 markings/sec, 1865 secs
lola: 58292243 markings, 609025525 edges, 26608 markings/sec, 1870 secs
lola: 58428440 markings, 610640655 edges, 27239 markings/sec, 1875 secs
lola: 58559721 markings, 612226923 edges, 26256 markings/sec, 1880 secs
lola: 58698789 markings, 613855987 edges, 27814 markings/sec, 1885 secs
lola: 58836373 markings, 615424090 edges, 27517 markings/sec, 1890 secs
lola: 58966579 markings, 617017904 edges, 26041 markings/sec, 1895 secs
lola: 59090980 markings, 618629037 edges, 24880 markings/sec, 1900 secs
lola: 59217618 markings, 620235501 edges, 25328 markings/sec, 1905 secs
lola: 59354439 markings, 621813273 edges, 27364 markings/sec, 1910 secs
lola: 59487682 markings, 623434353 edges, 26649 markings/sec, 1915 secs
lola: 59623331 markings, 625084160 edges, 27130 markings/sec, 1920 secs
lola: 59756684 markings, 626718837 edges, 26671 markings/sec, 1925 secs
lola: 59890844 markings, 628323511 edges, 26832 markings/sec, 1930 secs
lola: 60032673 markings, 629987332 edges, 28366 markings/sec, 1935 secs
lola: 60179861 markings, 631652828 edges, 29438 markings/sec, 1940 secs
lola: 60316593 markings, 633309353 edges, 27346 markings/sec, 1945 secs
lola: 60457171 markings, 634996255 edges, 28116 markings/sec, 1950 secs
lola: 60597696 markings, 636674922 edges, 28105 markings/sec, 1955 secs
lola: 60736856 markings, 638348669 edges, 27832 markings/sec, 1960 secs
lola: 60887728 markings, 640008663 edges, 30174 markings/sec, 1965 secs
lola: 61036738 markings, 641610012 edges, 29802 markings/sec, 1970 secs
lola: 61182466 markings, 643192355 edges, 29146 markings/sec, 1975 secs
lola: 61319748 markings, 644807163 edges, 27456 markings/sec, 1980 secs
lola: 61460451 markings, 646457501 edges, 28141 markings/sec, 1985 secs
lola: 61598349 markings, 648131805 edges, 27580 markings/sec, 1990 secs
lola: 61735902 markings, 649796482 edges, 27511 markings/sec, 1995 secs
lola: 61866492 markings, 651471972 edges, 26118 markings/sec, 2000 secs
lola: 61993389 markings, 653141924 edges, 25379 markings/sec, 2005 secs
lola: 62152751 markings, 654785395 edges, 31872 markings/sec, 2010 secs
lola: 62303063 markings, 656443979 edges, 30062 markings/sec, 2015 secs
lola: 62458060 markings, 658099230 edges, 30999 markings/sec, 2020 secs
lola: 62610368 markings, 659745977 edges, 30462 markings/sec, 2025 secs
lola: 62760311 markings, 661387840 edges, 29989 markings/sec, 2030 secs
lola: 62899641 markings, 663065294 edges, 27866 markings/sec, 2035 secs
lola: 63054487 markings, 664701569 edges, 30969 markings/sec, 2040 secs
lola: 63204446 markings, 666341899 edges, 29992 markings/sec, 2045 secs
lola: 63354302 markings, 667970303 edges, 29971 markings/sec, 2050 secs
lola: 63499449 markings, 669602743 edges, 29029 markings/sec, 2055 secs
lola: 63637877 markings, 671274054 edges, 27686 markings/sec, 2060 secs
lola: 63779798 markings, 672921449 edges, 28384 markings/sec, 2065 secs
lola: 63913575 markings, 674572704 edges, 26755 markings/sec, 2070 secs
lola: 64047436 markings, 676226748 edges, 26772 markings/sec, 2075 secs
lola: 64185115 markings, 677869987 edges, 27536 markings/sec, 2080 secs
lola: 64316951 markings, 679486459 edges, 26367 markings/sec, 2085 secs
lola: 64458903 markings, 681134180 edges, 28390 markings/sec, 2090 secs
lola: 64609573 markings, 682787053 edges, 30134 markings/sec, 2095 secs
lola: 64747571 markings, 684416550 edges, 27600 markings/sec, 2100 secs
lola: 64890448 markings, 686058006 edges, 28575 markings/sec, 2105 secs
lola: 65032106 markings, 687675093 edges, 28332 markings/sec, 2110 secs
lola: 65173327 markings, 689299982 edges, 28244 markings/sec, 2115 secs
lola: 65319940 markings, 690922659 edges, 29323 markings/sec, 2120 secs
lola: 65459227 markings, 692524861 edges, 27857 markings/sec, 2125 secs
lola: 65593573 markings, 694180825 edges, 26869 markings/sec, 2130 secs
lola: 65722960 markings, 695835412 edges, 25877 markings/sec, 2135 secs
lola: 65867701 markings, 697435042 edges, 28948 markings/sec, 2140 secs
lola: 66008031 markings, 699057184 edges, 28066 markings/sec, 2145 secs
lola: 66144965 markings, 700691617 edges, 27387 markings/sec, 2150 secs
lola: 66286422 markings, 702315478 edges, 28291 markings/sec, 2155 secs
lola: 66423627 markings, 703920034 edges, 27441 markings/sec, 2160 secs
lola: 66565563 markings, 705542331 edges, 28387 markings/sec, 2165 secs
lola: 66715322 markings, 707170113 edges, 29952 markings/sec, 2170 secs
lola: 66855254 markings, 708798100 edges, 27986 markings/sec, 2175 secs
lola: 66994789 markings, 710436608 edges, 27907 markings/sec, 2180 secs
lola: 67138754 markings, 712059146 edges, 28793 markings/sec, 2185 secs
lola: 67278443 markings, 713680316 edges, 27938 markings/sec, 2190 secs
lola: 67427981 markings, 715288430 edges, 29908 markings/sec, 2195 secs
lola: 67572991 markings, 716864411 edges, 29002 markings/sec, 2200 secs
lola: 67733873 markings, 718511205 edges, 32176 markings/sec, 2205 secs
lola: 67885781 markings, 720184371 edges, 30382 markings/sec, 2210 secs
lola: 68042323 markings, 721869284 edges, 31308 markings/sec, 2215 secs
lola: 68197703 markings, 723535233 edges, 31076 markings/sec, 2220 secs
lola: 68350689 markings, 725203080 edges, 30597 markings/sec, 2225 secs
lola: 68492481 markings, 726904299 edges, 28358 markings/sec, 2230 secs
lola: 68649935 markings, 728569051 edges, 31491 markings/sec, 2235 secs
lola: 68801629 markings, 730238196 edges, 30339 markings/sec, 2240 secs
lola: 68955542 markings, 731895886 edges, 30783 markings/sec, 2245 secs
lola: 69102955 markings, 733557191 edges, 29483 markings/sec, 2250 secs
lola: 69244270 markings, 735247803 edges, 28263 markings/sec, 2255 secs
lola: 69387732 markings, 736913177 edges, 28692 markings/sec, 2260 secs
lola: 69519850 markings, 738564679 edges, 26424 markings/sec, 2265 secs
lola: 69656622 markings, 740221786 edges, 27354 markings/sec, 2270 secs
lola: 69790150 markings, 741863711 edges, 26706 markings/sec, 2275 secs
lola: 69924358 markings, 743500018 edges, 26842 markings/sec, 2280 secs
lola: 70070554 markings, 745159221 edges, 29239 markings/sec, 2285 secs
lola: 70221595 markings, 746806391 edges, 30208 markings/sec, 2290 secs
lola: 70359337 markings, 748454331 edges, 27548 markings/sec, 2295 secs
lola: 70506985 markings, 750124726 edges, 29530 markings/sec, 2300 secs
lola: 70649011 markings, 751786661 edges, 28405 markings/sec, 2305 secs
lola: 70795456 markings, 753459702 edges, 29289 markings/sec, 2310 secs
lola: 70944127 markings, 755091821 edges, 29734 markings/sec, 2315 secs
lola: 71086289 markings, 756737190 edges, 28432 markings/sec, 2320 secs
lola: 71218453 markings, 758387187 edges, 26433 markings/sec, 2325 secs
lola: 71353422 markings, 760047989 edges, 26994 markings/sec, 2330 secs
lola: 71499255 markings, 761662782 edges, 29167 markings/sec, 2335 secs
lola: 71634958 markings, 763274994 edges, 27141 markings/sec, 2340 secs
lola: 71773951 markings, 764899543 edges, 27799 markings/sec, 2345 secs
lola: 71911727 markings, 766513511 edges, 27555 markings/sec, 2350 secs
lola: 72047499 markings, 768102911 edges, 27154 markings/sec, 2355 secs
lola: 72196746 markings, 769740138 edges, 29849 markings/sec, 2360 secs
lola: 72347351 markings, 771390059 edges, 30121 markings/sec, 2365 secs
lola: 72485387 markings, 773044837 edges, 27607 markings/sec, 2370 secs
lola: 72632402 markings, 774704169 edges, 29403 markings/sec, 2375 secs
lola: 72772021 markings, 776339890 edges, 27924 markings/sec, 2380 secs
lola: 72916366 markings, 777987948 edges, 28869 markings/sec, 2385 secs
lola: 73060562 markings, 779601541 edges, 28839 markings/sec, 2390 secs
lola: 73201406 markings, 781205641 edges, 28169 markings/sec, 2395 secs
lola: 73353959 markings, 782823706 edges, 30511 markings/sec, 2400 secs
lola: 73504070 markings, 784439581 edges, 30022 markings/sec, 2405 secs
lola: 73654943 markings, 786059530 edges, 30175 markings/sec, 2410 secs
lola: 73805420 markings, 787694918 edges, 30095 markings/sec, 2415 secs
lola: 73955835 markings, 789336251 edges, 30083 markings/sec, 2420 secs
lola: 74097757 markings, 790994503 edges, 28384 markings/sec, 2425 secs
lola: 74241024 markings, 792643059 edges, 28653 markings/sec, 2430 secs
lola: 74391600 markings, 794272689 edges, 30115 markings/sec, 2435 secs
lola: 74540139 markings, 795882329 edges, 29708 markings/sec, 2440 secs
lola: 74686379 markings, 797473599 edges, 29248 markings/sec, 2445 secs
lola: 74827192 markings, 799076908 edges, 28163 markings/sec, 2450 secs
lola: 74957336 markings, 800715499 edges, 26029 markings/sec, 2455 secs
lola: 75094739 markings, 802345984 edges, 27481 markings/sec, 2460 secs
lola: 75232785 markings, 803958889 edges, 27609 markings/sec, 2465 secs
lola: 75360007 markings, 805582747 edges, 25444 markings/sec, 2470 secs
lola: 75496021 markings, 807211611 edges, 27203 markings/sec, 2475 secs
lola: 75627721 markings, 808819649 edges, 26340 markings/sec, 2480 secs
lola: 75760612 markings, 810440253 edges, 26578 markings/sec, 2485 secs
lola: 75896121 markings, 812069097 edges, 27102 markings/sec, 2490 secs
lola: 76045096 markings, 813697049 edges, 29795 markings/sec, 2495 secs
lola: 76187327 markings, 815316296 edges, 28446 markings/sec, 2500 secs
lola: 76324316 markings, 816935569 edges, 27398 markings/sec, 2505 secs
lola: 76467624 markings, 818554021 edges, 28662 markings/sec, 2510 secs
lola: 76606234 markings, 820161277 edges, 27722 markings/sec, 2515 secs
lola: 76751757 markings, 821788293 edges, 29105 markings/sec, 2520 secs
lola: 76891799 markings, 823378261 edges, 28008 markings/sec, 2525 secs
lola: 77026905 markings, 824987850 edges, 27021 markings/sec, 2530 secs
lola: 77155923 markings, 826623052 edges, 25804 markings/sec, 2535 secs
lola: 77282717 markings, 828257501 edges, 25359 markings/sec, 2540 secs
lola: 77426498 markings, 829864192 edges, 28756 markings/sec, 2545 secs
lola: 77567048 markings, 831453173 edges, 28110 markings/sec, 2550 secs
lola: 77698488 markings, 833045261 edges, 26288 markings/sec, 2555 secs
lola: 77838771 markings, 834641916 edges, 28057 markings/sec, 2560 secs
lola: 77972359 markings, 836220779 edges, 26718 markings/sec, 2565 secs
lola: 78110326 markings, 837824177 edges, 27593 markings/sec, 2570 secs
lola: 78260112 markings, 839451511 edges, 29957 markings/sec, 2575 secs
lola: 78403068 markings, 841073283 edges, 28591 markings/sec, 2580 secs
lola: 78541128 markings, 842707094 edges, 27612 markings/sec, 2585 secs
lola: 78684974 markings, 844329134 edges, 28769 markings/sec, 2590 secs
lola: 78821551 markings, 845934096 edges, 27315 markings/sec, 2595 secs
lola: 78960862 markings, 847562727 edges, 27862 markings/sec, 2600 secs
lola: 79119013 markings, 849146696 edges, 31630 markings/sec, 2605 secs
lola: 79280866 markings, 850690194 edges, 32371 markings/sec, 2610 secs
lola: 79436370 markings, 852228126 edges, 31101 markings/sec, 2615 secs
lola: 79580562 markings, 853790392 edges, 28838 markings/sec, 2620 secs
lola: 79727904 markings, 855376977 edges, 29468 markings/sec, 2625 secs
lola: 79874145 markings, 856968645 edges, 29248 markings/sec, 2630 secs
lola: 80015548 markings, 858546629 edges, 28281 markings/sec, 2635 secs
lola: 80147682 markings, 860146752 edges, 26427 markings/sec, 2640 secs
lola: 80302649 markings, 861759235 edges, 30993 markings/sec, 2645 secs
lola: 80468102 markings, 863371422 edges, 33091 markings/sec, 2650 secs
lola: 80633643 markings, 864976644 edges, 33108 markings/sec, 2655 secs
lola: 80797686 markings, 866581346 edges, 32809 markings/sec, 2660 secs
lola: 80947956 markings, 868206609 edges, 30054 markings/sec, 2665 secs
lola: 81115089 markings, 869808877 edges, 33427 markings/sec, 2670 secs
lola: 81277235 markings, 871404715 edges, 32429 markings/sec, 2675 secs
lola: 81438971 markings, 873002220 edges, 32347 markings/sec, 2680 secs
lola: 81588722 markings, 874633894 edges, 29950 markings/sec, 2685 secs
lola: 81741580 markings, 876248660 edges, 30572 markings/sec, 2690 secs
lola: 81883057 markings, 877875768 edges, 28295 markings/sec, 2695 secs
lola: 82030204 markings, 879491032 edges, 29429 markings/sec, 2700 secs
lola: 82174349 markings, 881104269 edges, 28829 markings/sec, 2705 secs
lola: 82334153 markings, 882729811 edges, 31961 markings/sec, 2710 secs
lola: 82489525 markings, 884342905 edges, 31074 markings/sec, 2715 secs
lola: 82643873 markings, 885960533 edges, 30870 markings/sec, 2720 secs
lola: 82796838 markings, 887566024 edges, 30593 markings/sec, 2725 secs
lola: 82954870 markings, 889177142 edges, 31606 markings/sec, 2730 secs
lola: 83108500 markings, 890773875 edges, 30726 markings/sec, 2735 secs
lola: 83254265 markings, 892434825 edges, 29153 markings/sec, 2740 secs
lola: 83409976 markings, 894086896 edges, 31142 markings/sec, 2745 secs
lola: 83562037 markings, 895679887 edges, 30412 markings/sec, 2750 secs
lola: 83711071 markings, 897284333 edges, 29807 markings/sec, 2755 secs
lola: 83861527 markings, 898864909 edges, 30091 markings/sec, 2760 secs
lola: 84014870 markings, 900466155 edges, 30669 markings/sec, 2765 secs
lola: 84179446 markings, 902080442 edges, 32915 markings/sec, 2770 secs
lola: 84330789 markings, 903717604 edges, 30269 markings/sec, 2775 secs
lola: 84488758 markings, 905346122 edges, 31594 markings/sec, 2780 secs
lola: 84642636 markings, 906967773 edges, 30776 markings/sec, 2785 secs
lola: 84812947 markings, 908581810 edges, 34062 markings/sec, 2790 secs
lola: 84973252 markings, 910184678 edges, 32061 markings/sec, 2795 secs
lola: 85134499 markings, 911774542 edges, 32249 markings/sec, 2800 secs
lola: 85284236 markings, 913383631 edges, 29947 markings/sec, 2805 secs
lola: 85447510 markings, 914990970 edges, 32655 markings/sec, 2810 secs
lola: 85609681 markings, 916598066 edges, 32434 markings/sec, 2815 secs
lola: 85759960 markings, 918231581 edges, 30056 markings/sec, 2820 secs
lola: 85909601 markings, 919840952 edges, 29928 markings/sec, 2825 secs
lola: 86050091 markings, 921448839 edges, 28098 markings/sec, 2830 secs
lola: 86191152 markings, 923036935 edges, 28212 markings/sec, 2835 secs
lola: 86341857 markings, 924645712 edges, 30141 markings/sec, 2840 secs
lola: 86495273 markings, 926246800 edges, 30683 markings/sec, 2845 secs
lola: 86648388 markings, 927853119 edges, 30623 markings/sec, 2850 secs
lola: 86797619 markings, 929451306 edges, 29846 markings/sec, 2855 secs
lola: 86952060 markings, 931031417 edges, 30888 markings/sec, 2860 secs
lola: 87094280 markings, 932633998 edges, 28444 markings/sec, 2865 secs
lola: 87242065 markings, 934237781 edges, 29557 markings/sec, 2870 secs
lola: 87387860 markings, 935814894 edges, 29159 markings/sec, 2875 secs
lola: 87536704 markings, 937394412 edges, 29769 markings/sec, 2880 secs
lola: 87683250 markings, 938968893 edges, 29309 markings/sec, 2885 secs
lola: 87843737 markings, 940569637 edges, 32097 markings/sec, 2890 secs
lola: 87991669 markings, 942185761 edges, 29586 markings/sec, 2895 secs
lola: 88144232 markings, 943783670 edges, 30513 markings/sec, 2900 secs
lola: 88301256 markings, 945399072 edges, 31405 markings/sec, 2905 secs
lola: 88456987 markings, 947006833 edges, 31146 markings/sec, 2910 secs
lola: 88601964 markings, 948629950 edges, 28995 markings/sec, 2915 secs
lola: 88751736 markings, 950237350 edges, 29954 markings/sec, 2920 secs
lola: 88901975 markings, 951878958 edges, 30048 markings/sec, 2925 secs
lola: 89046805 markings, 953509840 edges, 28966 markings/sec, 2930 secs
lola: 89189370 markings, 955174877 edges, 28513 markings/sec, 2935 secs
lola: 89339456 markings, 956805392 edges, 30017 markings/sec, 2940 secs
lola: 89489010 markings, 958421617 edges, 29911 markings/sec, 2945 secs
lola: 89635708 markings, 960024608 edges, 29340 markings/sec, 2950 secs
lola: 89774546 markings, 961626750 edges, 27768 markings/sec, 2955 secs
lola: 89911034 markings, 963259477 edges, 27298 markings/sec, 2960 secs
lola: 90049300 markings, 964875123 edges, 27653 markings/sec, 2965 secs
lola: 90178813 markings, 966493473 edges, 25903 markings/sec, 2970 secs
lola: 90311121 markings, 968120365 edges, 26462 markings/sec, 2975 secs
lola: 90445697 markings, 969726539 edges, 26915 markings/sec, 2980 secs
lola: 90575928 markings, 971334411 edges, 26046 markings/sec, 2985 secs
lola: 90714978 markings, 972960187 edges, 27810 markings/sec, 2990 secs
lola: 90861654 markings, 974579833 edges, 29335 markings/sec, 2995 secs
lola: 90999363 markings, 976198951 edges, 27542 markings/sec, 3000 secs
lola: 91139847 markings, 977831592 edges, 28097 markings/sec, 3005 secs
lola: 91279925 markings, 979430835 edges, 28016 markings/sec, 3010 secs
lola: 91420206 markings, 981044399 edges, 28056 markings/sec, 3015 secs
lola: 91561269 markings, 982650501 edges, 28213 markings/sec, 3020 secs
lola: 91699952 markings, 984244124 edges, 27737 markings/sec, 3025 secs
lola: 91832547 markings, 985866428 edges, 26519 markings/sec, 3030 secs
lola: 91958700 markings, 987511875 edges, 25231 markings/sec, 3035 secs
lola: 92103262 markings, 989108685 edges, 28912 markings/sec, 3040 secs
lola: 92243262 markings, 990689519 edges, 28000 markings/sec, 3045 secs
lola: 92374334 markings, 992285204 edges, 26214 markings/sec, 3050 secs
lola: 92512295 markings, 993883366 edges, 27592 markings/sec, 3055 secs
lola: 92645662 markings, 995460866 edges, 26673 markings/sec, 3060 secs
lola: 92782899 markings, 997066208 edges, 27447 markings/sec, 3065 secs
lola: 92933503 markings, 998691708 edges, 30121 markings/sec, 3070 secs
lola: 93075829 markings, 1000313869 edges, 28465 markings/sec, 3075 secs
lola: 93214466 markings, 1001948663 edges, 27727 markings/sec, 3080 secs
lola: 93355608 markings, 1003574480 edges, 28228 markings/sec, 3085 secs
lola: 93494767 markings, 1005183965 edges, 27832 markings/sec, 3090 secs
lola: 93642333 markings, 1006808840 edges, 29513 markings/sec, 3095 secs
lola: 93802756 markings, 1008369749 edges, 32085 markings/sec, 3100 secs
lola: 93961923 markings, 1009922397 edges, 31833 markings/sec, 3105 secs
lola: 94110217 markings, 1011499548 edges, 29659 markings/sec, 3110 secs
lola: 94258764 markings, 1013085002 edges, 29709 markings/sec, 3115 secs
lola: 94404984 markings, 1014696129 edges, 29244 markings/sec, 3120 secs
lola: 94549457 markings, 1016289965 edges, 28895 markings/sec, 3125 secs
lola: 94684430 markings, 1017894306 edges, 26995 markings/sec, 3130 secs
lola: 94823764 markings, 1019497931 edges, 27867 markings/sec, 3135 secs
lola: 94986115 markings, 1021084738 edges, 32470 markings/sec, 3140 secs
lola: 95133706 markings, 1022693235 edges, 29518 markings/sec, 3145 secs
lola: 95289231 markings, 1024276133 edges, 31105 markings/sec, 3150 secs
lola: 95440786 markings, 1025872129 edges, 30311 markings/sec, 3155 secs
lola: 95585994 markings, 1027453782 edges, 29042 markings/sec, 3160 secs
lola: 95730240 markings, 1029068447 edges, 28849 markings/sec, 3165 secs
lola: 95881880 markings, 1030654960 edges, 30328 markings/sec, 3170 secs
lola: 96034913 markings, 1032237162 edges, 30607 markings/sec, 3175 secs
lola: 96184331 markings, 1033816007 edges, 29884 markings/sec, 3180 secs
lola: 96325939 markings, 1035411023 edges, 28322 markings/sec, 3185 secs
lola: 96465208 markings, 1037025814 edges, 27854 markings/sec, 3190 secs
lola: 96609115 markings, 1038617231 edges, 28781 markings/sec, 3195 secs
lola: 96737920 markings, 1040221453 edges, 25761 markings/sec, 3200 secs
lola: 96874309 markings, 1041828940 edges, 27278 markings/sec, 3205 secs
lola: 97013004 markings, 1043411887 edges, 27739 markings/sec, 3210 secs
lola: 97146303 markings, 1045007749 edges, 26660 markings/sec, 3215 secs
lola: 97291670 markings, 1046616466 edges, 29073 markings/sec, 3220 secs
lola: 97445151 markings, 1048209565 edges, 30696 markings/sec, 3225 secs
lola: 97582489 markings, 1049821951 edges, 27468 markings/sec, 3230 secs
lola: 97730540 markings, 1051422971 edges, 29610 markings/sec, 3235 secs
lola: 97872339 markings, 1053010785 edges, 28360 markings/sec, 3240 secs
lola: 98016240 markings, 1054622128 edges, 28780 markings/sec, 3245 secs
lola: 98163335 markings, 1056190785 edges, 29419 markings/sec, 3250 secs
lola: 98302043 markings, 1057775611 edges, 27742 markings/sec, 3255 secs
lola: 98434778 markings, 1059407811 edges, 26547 markings/sec, 3260 secs
lola: 98574285 markings, 1061039396 edges, 27901 markings/sec, 3265 secs
lola: 98722815 markings, 1062602775 edges, 29706 markings/sec, 3270 secs
lola: 98855775 markings, 1064179672 edges, 26592 markings/sec, 3275 secs
lola: 98995543 markings, 1065763321 edges, 27954 markings/sec, 3280 secs
lola: 99138287 markings, 1067322802 edges, 28549 markings/sec, 3285 secs
lola: 99276594 markings, 1068897520 edges, 27661 markings/sec, 3290 secs
lola: 99425300 markings, 1070497981 edges, 29741 markings/sec, 3295 secs
lola: 99577008 markings, 1072094966 edges, 30342 markings/sec, 3300 secs
lola: 99714917 markings, 1073709745 edges, 27582 markings/sec, 3305 secs
lola: 99863739 markings, 1075312308 edges, 29764 markings/sec, 3310 secs
lola: 100004734 markings, 1076903889 edges, 28199 markings/sec, 3315 secs
lola: 100150457 markings, 1078521513 edges, 29145 markings/sec, 3320 secs
lola: 100310681 markings, 1080069829 edges, 32045 markings/sec, 3325 secs
lola: 100473428 markings, 1081642760 edges, 32549 markings/sec, 3330 secs
lola: 100630560 markings, 1083251756 edges, 31426 markings/sec, 3335 secs
lola: 100784249 markings, 1084871493 edges, 30738 markings/sec, 3340 secs
lola: 100937794 markings, 1086468666 edges, 30709 markings/sec, 3345 secs
lola: 101092355 markings, 1088081608 edges, 30912 markings/sec, 3350 secs
lola: 101234673 markings, 1089702907 edges, 28464 markings/sec, 3355 secs
lola: 101389585 markings, 1091309755 edges, 30982 markings/sec, 3360 secs
lola: 101539984 markings, 1092920150 edges, 30080 markings/sec, 3365 secs
lola: 101692052 markings, 1094511369 edges, 30414 markings/sec, 3370 secs
lola: 101842966 markings, 1096106098 edges, 30183 markings/sec, 3375 secs
lola: 101981830 markings, 1097737774 edges, 27773 markings/sec, 3380 secs
lola: 102127832 markings, 1099354717 edges, 29200 markings/sec, 3385 secs
lola: 102265799 markings, 1100964025 edges, 27593 markings/sec, 3390 secs
lola: 102399868 markings, 1102586041 edges, 26814 markings/sec, 3395 secs
lola: 102538154 markings, 1104201101 edges, 27657 markings/sec, 3400 secs
lola: 102673026 markings, 1105795143 edges, 26974 markings/sec, 3405 secs
lola: 102814703 markings, 1107429480 edges, 28335 markings/sec, 3410 secs
lola: 102971324 markings, 1109078639 edges, 31324 markings/sec, 3415 secs
lola: 103118151 markings, 1110724249 edges, 29365 markings/sec, 3420 secs
lola: 103265457 markings, 1112382372 edges, 29461 markings/sec, 3425 secs
lola: 103414224 markings, 1114019584 edges, 29753 markings/sec, 3430 secs
lola: 103560338 markings, 1115641928 edges, 29223 markings/sec, 3435 secs
lola: 103709067 markings, 1117247749 edges, 29746 markings/sec, 3440 secs
lola: 103854322 markings, 1118867456 edges, 29051 markings/sec, 3445 secs
lola: 103992885 markings, 1120516990 edges, 27713 markings/sec, 3450 secs
lola: 104129793 markings, 1122175700 edges, 27382 markings/sec, 3455 secs
lola: 104280702 markings, 1123789011 edges, 30182 markings/sec, 3460 secs
lola: 104422086 markings, 1125399138 edges, 28277 markings/sec, 3465 secs
lola: 104564244 markings, 1127021423 edges, 28432 markings/sec, 3470 secs
lola: 104709125 markings, 1128627559 edges, 28976 markings/sec, 3475 secs
lola: 104850857 markings, 1130233896 edges, 28346 markings/sec, 3480 secs
lola: 105002818 markings, 1131875139 edges, 30392 markings/sec, 3485 secs
lola: 105157942 markings, 1133512462 edges, 31025 markings/sec, 3490 secs
lola: 105300377 markings, 1135167218 edges, 28487 markings/sec, 3495 secs
lola: 105452119 markings, 1136816399 edges, 30348 markings/sec, 3500 secs
lola: 105596819 markings, 1138444816 edges, 28940 markings/sec, 3505 secs
lola: 105745793 markings, 1140095673 edges, 29795 markings/sec, 3510 secs
lola: 105900814 markings, 1141682154 edges, 31004 markings/sec, 3515 secs
lola: 106056740 markings, 1143288846 edges, 31185 markings/sec, 3520 secs
lola: 106221285 markings, 1144901161 edges, 32909 markings/sec, 3525 secs
lola: 106371408 markings, 1146530616 edges, 30025 markings/sec, 3530 secs
lola: 106529746 markings, 1148140145 edges, 31668 markings/sec, 3535 secs
lola: 106682440 markings, 1149755482 edges, 30539 markings/sec, 3540 secs
lola: 106831221 markings, 1151350434 edges, 29756 markings/sec, 3545 secs
lola: 106971020 markings, 1152987847 edges, 27960 markings/sec, 3550 secs
lola: 107131760 markings, 1154592435 edges, 32148 markings/sec, 3555 secs
lola: time limit reached - aborting
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola: memory consumption: 90364 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: processed formula length: 51
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola: memory consumption: 90708 KB
lola: time consumption: 3573 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished
BK_STOP 1552780132000
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-4"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is NeoElection-COL-4, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r104-oct2-155272225500141"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-4.tgz
mv NeoElection-COL-4 execution
cd execution
if [ "LTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "LTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;