fond
Model Checking Contest 2019
9th edition, Prague, Czech Republic, April 7, 2019 (TOOLympics)
Execution of r104-oct2-155272225500141
Last Updated
Apr 15, 2019

About the Execution of LoLA for NeoElection-COL-4

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
14745.080 3594260.00 3721637.00 234.70 FTFTFTF?TFTFFTFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fko/mcc2019-input.r104-oct2-155272225500141.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fko/mcc2019-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..............................................
=====================================================================
Generated by BenchKit 2-3954
Executing tool lola
Input is NeoElection-COL-4, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r104-oct2-155272225500141
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 256K
-rw-r--r-- 1 mcc users 3.9K Feb 12 02:45 CTLCardinality.txt
-rw-r--r-- 1 mcc users 20K Feb 12 02:44 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Feb 8 01:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 8 01:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K Mar 10 17:31 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Mar 10 17:31 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 104 Feb 24 15:05 GlobalProperties.txt
-rw-r--r-- 1 mcc users 342 Feb 24 15:05 GlobalProperties.xml
-rw-r--r-- 1 mcc users 2.6K Feb 5 00:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K Feb 5 00:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Feb 4 22:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.5K Feb 4 22:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.6K Feb 4 06:52 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 22K Feb 4 06:51 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 3.9K Feb 1 00:29 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K Feb 1 00:28 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 4 22:21 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 4 22:21 UpperBounds.xml

-rw-r--r-- 1 mcc users 5 Jan 29 09:34 equiv_pt
-rw-r--r-- 1 mcc users 2 Jan 29 09:34 instance
-rw-r--r-- 1 mcc users 5 Jan 29 09:34 iscolored
-rw-r--r-- 1 mcc users 81K Mar 10 17:31 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-4-LTLCardinality-00
FORMULA_NAME NeoElection-COL-4-LTLCardinality-01
FORMULA_NAME NeoElection-COL-4-LTLCardinality-02
FORMULA_NAME NeoElection-COL-4-LTLCardinality-03
FORMULA_NAME NeoElection-COL-4-LTLCardinality-04
FORMULA_NAME NeoElection-COL-4-LTLCardinality-05
FORMULA_NAME NeoElection-COL-4-LTLCardinality-06
FORMULA_NAME NeoElection-COL-4-LTLCardinality-07
FORMULA_NAME NeoElection-COL-4-LTLCardinality-08
FORMULA_NAME NeoElection-COL-4-LTLCardinality-09
FORMULA_NAME NeoElection-COL-4-LTLCardinality-10
FORMULA_NAME NeoElection-COL-4-LTLCardinality-11
FORMULA_NAME NeoElection-COL-4-LTLCardinality-12
FORMULA_NAME NeoElection-COL-4-LTLCardinality-13
FORMULA_NAME NeoElection-COL-4-LTLCardinality-14
FORMULA_NAME NeoElection-COL-4-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1552776537740

info: Time: 3600 - MCC
vrfy: Checking LTLCardinality @ NeoElection-COL-4 @ 3570 seconds

FORMULA NeoElection-COL-4-LTLCardinality-00 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-02 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-03 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-06 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-09 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-04 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-05 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-01 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-08 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT

FORMULA NeoElection-COL-4-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
vrfy: finished
info: timeLeft: -24
rslt: Output for LTLCardinality @ NeoElection-COL-4

{
"build":
{
"architecture": 64,
"assertions": false,
"build_hostname": "mcc2019",
"build_system": "x86_64-unknown-linux-gnu",
"optimizations": true,
"package_version": "2.0",
"svn_version": "3189M"
},
"call":
{
"exec_host": "mcc2019",
"markinglimit": null,
"parameters":
[
"--pnmlnet",
"model.pnml",
"--xmlformula",
"--formula=LTLCardinality.xml",
"--mcc",
"--donotcomputecapacities",
"--encoder=simplecompressed",
"--safe",
"--check=modelchecking",
"--stubborn=deletion",
"--stateequation=par",
"--timelimit=3570",
"--localtimelimit=0",
"--preference=force_ltl",
"--json=LTLCardinality.json",
"--jsoninclude=formula,formulastat,net"
],
"starttime": "Sat Mar 16 22:48:57 2019
",
"timelimit": 3570
},
"child":
[

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 222
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 0,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 237
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 1,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 254
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 2,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 274
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 18,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 18,
"visible_transitions": 0
},
"processed": "(2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)",
"processed_size": 148,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 3,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 296
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 4,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 323
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 5,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 356
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "FALSE",
"processed_size": 5,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": false
},
"task":
{
"compoundnumber": 6,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 395
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 0,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "TRUE",
"processed_size": 4,
"rewrites": 61
},
"result":
{
"edges": 0,
"markings": 0,
"produced_by": "preprocessing",
"value": true
},
"task":
{
"compoundnumber": 7,
"type": "initial_satisfaction",
"workflow": "preprocessing"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 445
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 5,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 5,
"visible_transitions": 0
},
"processed": "A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760)))",
"processed_size": 52,
"rewrites": 61
},
"result":
{
"edges": 169,
"markings": 169,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 8,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 509
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 9,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 593
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 10,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 712
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 0,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 0,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 0,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 0,
"visible_transitions": 0
},
"processed": "A (X (TRUE))",
"processed_size": 12,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 3
},
"compoundnumber": 11,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 890
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 0,
"U": 0,
"X": 1,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 105,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 105,
"visible_transitions": 0
},
"processed": "A (X (F ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856))))",
"processed_size": 827,
"rewrites": 61
},
"result":
{
"edges": 4,
"markings": 5,
"produced_by": "LTL model checker",
"value": true
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 12,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "no (formula contains X operator)"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1187
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 5,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 5,
"visible_transitions": 0
},
"processed": "A (G (F ((3 <= p1739 + p1738 + p1737 + p1736 + p1735))))",
"processed_size": 56,
"rewrites": 61
},
"result":
{
"edges": 279,
"markings": 279,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 13,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
},

{
"call":
{
"dynamic_timelimit": true,
"localtimelimit": 1781
},
"exit":
{
"localtimelimitreached": false
},
"formula":
{
"count":
{
"A": 1,
"E": 0,
"F": 1,
"G": 1,
"U": 0,
"X": 0,
"aconj": 0,
"adisj": 0,
"aneg": 0,
"comp": 1,
"cont": 0,
"dl": 0,
"fir": 0,
"nodl": 0,
"place_references": 5,
"taut": 0,
"tconj": 0,
"tdisj": 0,
"tneg": 0,
"transition_references": 0,
"unfir": 0,
"visible_places": 5,
"visible_transitions": 0
},
"processed": "A (F (G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735))))",
"processed_size": 56,
"rewrites": 61
},
"result":
{
"edges": 171,
"markings": 170,
"produced_by": "LTL model checker",
"value": false
},
"task":
{
"buchi":
{
"states": 2
},
"compoundnumber": 14,
"search":
{
"store":
{
"encoder": "simple compression",
"type": "prefix"
},
"stubborn":
{
"type": "ltl preserving/insertion"
},
"type": "product automaton/dfs"
},
"type": "LTL",
"workflow": "product automaton"
}
}
],
"exit":
{
"error": null,
"memory": 90708,
"runtime": 3573.000000,
"signal": "User defined signal 2",
"timelimitreached": true
},
"files":
{
"JSON": "LTLCardinality.json",
"formula": "LTLCardinality.xml",
"net": "model.pnml"
},
"formula":
{
"skeleton": "FALSE : A(X(TRUE)) : FALSE : TRUE : A(X(**)) : A(X(TRUE)) : ** : A(F(G(**))) : A(X(TRUE)) : FALSE : TRUE : A(G(F(**))) : FALSE : TRUE : A(F(G(**))) : A(X(F(**)))"
},
"net":
{
"arcs": 12809,
"conflict_clusters": 1339,
"places": 1830,
"places_significant": 489,
"singleton_clusters": 0,
"transitions": 2214
},
"result":
{
"interim_value": "no yes no yes no yes no unknown yes no yes no no yes no yes ",
"preliminary_value": "no yes no yes no yes no unknown yes no yes no no yes no yes "
},
"task":
{
"type": "compound"
}
}
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: input: PNML file (--pnml)
lola: reading net from model.pnml
lola: reading pnml
lola: PNML file contains High-Level net
lola: Places: 1830, Transitions: 2214
lola: @ trans T-startNeg__end
lola: @ trans T-poll__handleAI2
lola: @ trans T-poll__handleAI1
lola: @ trans T-poll__handleRI
lola: @ trans T-poll__handleAnsP2
lola: @ trans T-sendAnnPs__start
lola: @ trans T-startNeg__start
lola: @ trans T-sendAnnPs__send
lola: @ trans T-sendAnnPs__end
lola: @ trans T-poll__iAmPrimary
lola: @ trans T-poll__end
lola: @ trans T-poll__handleAnsP3
lola: @ trans T-poll__handleAnnP1
lola: @ trans T-startSec
lola: @ trans T-poll__handleRP
lola: @ trans T-poll__handleAskP
lola: @ trans T-poll__handleAnnP2
lola: @ trans T-poll__start
lola: @ trans T-poll__handleAnsP1
lola: @ trans T-poll__handleAnsP4
lola: @ trans T-startNeg__send
lola: @ trans T-poll__iAmSecondary
lola: finished unfolding
lola: finished parsing
lola: closed net file model.pnml
lola: 4044/268435456 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 1830
lola: finding significant places
lola: 1830 places, 2214 transitions, 489 significant places
lola: compute conflict clusters
lola: computed conflict clusters
lola: Computing conflicting sets
lola: Computing back conflicting sets
lola: TASK
lola: Reading formula in XML format (--xmlformula)
lola: reading pnml
lola: reading formula from LTLCardinality.xml
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p1765 + p1766 + p1767 + p1768 + p1769)
lola: after: (1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704)
lola: after: (0 <= 11)
lola: LP says that atomic proposition is always false: (2 <= p1604 + p1603 + p1602 + p1601 + p1600)
lola: LP says that atomic proposition is always false: (2 <= p834 + p833 + p832 + p831 + p830)
lola: LP says that atomic proposition is always false: (1 <= p1604 + p1603 + p1602 + p1601 + p1600)
lola: place invariant simplifies atomic proposition
lola: before: (p1739 + p1738 + p1737 + p1736 + p1735 <= p848 + p845 + p842 + p839 + p836 + p835 + p837 + p838 + p840 + p841 + p843 + p844 + p846 + p847 + p849)
lola: after: (p1739 + p1738 + p1737 + p1736 + p1735 <= 4)
lola: LP says that atomic proposition is always true: (p1739 + p1738 + p1737 + p1736 + p1735 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704)
lola: after: (0 <= 9)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1741 + p1742 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756 + p1757 + p1758)
lola: after: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)
lola: place invariant simplifies atomic proposition
lola: before: (p1823 + p1822 + p1821 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1813 + p1812 + p1811 + p1810 + p1809 + p1808 + p1807 + p1806 + p1805 + p1803 + p1802 + p1801 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1793 + p1792 + p1791 + p1790 + p1789 + p1788 + p1787 + p1786 + p1785 + p1783 + p1782 + p1781 + p1780 + p1779 + p1778 + p1777 + p1776 + p1775 + p1784 + p1794 + p1804 + p1814 + p1824 <= p829 + p828 + p827 + p826 + p825)
lola: after: (4 <= p829 + p828 + p827 + p826 + p825)
lola: place invariant simplifies atomic proposition
lola: before: (p823 + p820 + p819 + p817 + p816 + p814 + p813 + p811 + p808 + p807 + p805 + p802 + p801 + p799 + p798 + p796 + p793 + p792 + p790 + p789 + p787 + p784 + p783 + p781 + p778 + p777 + p775 + p774 + p772 + p771 + p769 + p766 + p763 + p760 + p757 + p754 + p751 + p750 + p752 + p753 + p755 + p756 + p758 + p759 + p761 + p762 + p764 + p765 + p767 + p768 + p770 + p773 + p776 + p779 + p780 + p782 + p785 + p786 + p788 + p791 + p794 + p795 + p797 + p800 + p803 + p804 + p806 + p809 + p810 + p812 + p815 + p818 + p821 + p822 + p824 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 + p574 + p573 + p581 + p582 + p583 + p584 + p572 + p586 + p587 + p588 + p589 + p571 + p591 + p592 + p593 + p594 + p569 + p596 + p597 + p598 + p599 + p568 + p601 + p602 + p603 + p604 + p567 + p566 + p564 + p563 + p562 + p561 + p611 + p612 + p613 + p614 + p559 + p616 + p617 + p618 + p619 + p558 + p621 + p622 + p623 + p624 + p557 + p626 + p627 + p628 + p629 + p556 + p631 + p632 + p633 + p634 + p554 + p553 + p552 + p551 + p544 + p543 + p641 + p642 + p643 + p644 + p542 + p646 + p647 + p648 + p649 + p541 + p651 + p652 + p653 + p654 + p539 + p656 + p657 + p658 + p659 + p538 + p661 + p662 + p663 + p664 + p537 + p536 + p534 + p533 + p532 + p531 + p671 + p672 + p673 + p674 + p529 + p676 + p677 + p678 + p679 + p528 + p681 + p682 + p683 + p684 + p527 + p686 + p687 + p688 + p689 + p526 + p691 + p692 + p693 + p694 + p524 + p523 + p522 + p521 + p514 + p513 + p701 + p702 + p703 + p704 + p512 + p706 + p707 + p708 + p709 + p511 + p711 + p712 + p713 + p714 + p509 + p716 + p717 + p718 + p719 + p508 + p721 + p722 + p723 + p724 + p507 + p506 + p504 + p503 + p502 + p501 + p731 + p732 + p733 + p734 + p499 + p736 + p737 + p738 + p739 + p498 + p741 + p742 + p743 + p744 + p497 + p746 + p747 + p748 + p749 + p496 + p494 + p493 + p492 + p491 + p484 + p483 + p482 + p481 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p469 + p468 + p467 + p466 + p464 + p463 + p462 + p461 + p454 + p453 + p452 + p451 + p449 + p448 + p447 + p446 + p444 + p443 + p442 + p441 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p414 + p413 + p412 + p411 + p409 + p408 + p407 + p406 + p404 + p403 + p402 + p401 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p384 + p383 + p382 + p381 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p364 + p363 + p362 + p361 + p11 + p12 + p13 + p14 + p359 + p16 + p17 + p18 + p19 + p358 + p21 + p22 + p23 + p24 + p357 + p26 + p27 + p28 + p29 + p356 + p31 + p32 + p33 + p34 + p354 + p353 + p352 + p351 + p349 + p348 + p41 + p42 + p43 + p44 + p347 + p46 + p47 + p48 + p49 + p346 + p51 + p52 + p53 + p54 + p344 + p56 + p57 + p58 + p59 + p343 + p61 + p62 + p63 + p64 + p342 + p341 + p334 + p333 + p332 + p331 + p71 + p72 + p73 + p74 + p329 + p76 + p77 + p78 + p79 + p328 + p81 + p82 + p83 + p84 + p327 + p86 + p87 + p88 + p89 + p326 + p91 + p92 + p93 + p94 + p324 + p323 + p322 + p321 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p304 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p294 + p293 + p292 + p291 + p289 + p288 + p287 + p286 + p284 + p283 + p282 + p281 + p274 + p273 + p272 + p271 + p269 + p268 + p267 + p266 + p264 + p263 + p262 + p261 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p234 + p233 + p232 + p231 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p204 + p203 + p202 + p201 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p174 + p173 + p172 + p171 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p144 + p143 + p142 + p141 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p114 + p113 + p112 + p111 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 + p4 + p3 + p2 + p1)
lola: after: (16 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: LP says that atomic proposition is always false: (16 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: place invariant simplifies atomic proposition
lola: before: (p1710 + p1711 + p1712 + p1713 + p1714 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: after: (0 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: place invariant simplifies atomic proposition
lola: before: (p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 <= p1823 + p1822 + p1821 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1813 + p1812 + p1811 + p1810 + p1809 + p1808 + p1807 + p1806 + p1805 + p1803 + p1802 + p1801 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1793 + p1792 + p1791 + p1790 + p1789 + p1788 + p1787 + p1786 + p1785 + p1783 + p1782 + p1781 + p1780 + p1779 + p1778 + p1777 + p1776 + p1775 + p1784 + p1794 + p1804 + p1814 + p1824)
lola: after: (8 <= 0)
lola: LP says that atomic proposition is always false: (1 <= p1825 + p1826 + p1827 + p1828 + p1829)
lola: place invariant simplifies atomic proposition
lola: before: (p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 + p574 + p573 + p581 + p582 + p583 + p584 + p572 + p586 + p587 + p588 + p589 + p571 + p591 + p592 + p593 + p594 + p569 + p596 + p597 + p598 + p599 + p568 + p601 + p602 + p603 + p604 + p567 + p566 + p564 + p563 + p562 + p561 + p611 + p612 + p613 + p614 + p559 + p616 + p617 + p618 + p619 + p558 + p621 + p622 + p623 + p624 + p557 + p626 + p627 + p628 + p629 + p556 + p631 + p632 + p633 + p634 + p554 + p553 + p552 + p551 + p544 + p543 + p641 + p642 + p643 + p644 + p542 + p646 + p647 + p648 + p649 + p541 + p651 + p652 + p653 + p654 + p539 + p656 + p657 + p658 + p659 + p538 + p661 + p662 + p663 + p664 + p537 + p536 + p534 + p533 + p532 + p531 + p671 + p672 + p673 + p674 + p529 + p676 + p677 + p678 + p679 + p528 + p681 + p682 + p683 + p684 + p527 + p686 + p687 + p688 + p689 + p526 + p691 + p692 + p693 + p694 + p524 + p523 + p522 + p521 + p514 + p513 + p701 + p702 + p703 + p704 + p512 + p706 + p707 + p708 + p709 + p511 + p711 + p712 + p713 + p714 + p509 + p716 + p717 + p718 + p719 + p508 + p721 + p722 + p723 + p724 + p507 + p506 + p504 + p503 + p502 + p501 + p731 + p732 + p733 + p734 + p499 + p736 + p737 + p738 + p739 + p498 + p741 + p742 + p743 + p744 + p497 + p746 + p747 + p748 + p749 + p496 + p494 + p493 + p492 + p491 + p484 + p483 + p482 + p481 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p469 + p468 + p467 + p466 + p464 + p463 + p462 + p461 + p454 + p453 + p452 + p451 + p449 + p448 + p447 + p446 + p444 + p443 + p442 + p441 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p414 + p413 + p412 + p411 + p409 + p408 + p407 + p406 + p404 + p403 + p402 + p401 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p384 + p383 + p382 + p381 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p364 + p363 + p362 + p361 + p11 + p12 + p13 + p14 + p359 + p16 + p17 + p18 + p19 + p358 + p21 + p22 + p23 + p24 + p357 + p26 + p27 + p28 + p29 + p356 + p31 + p32 + p33 + p34 + p354 + p353 + p352 + p351 + p349 + p348 + p41 + p42 + p43 + p44 + p347 + p46 + p47 + p48 + p49 + p346 + p51 + p52 + p53 + p54 + p344 + p56 + p57 + p58 + p59 + p343 + p61 + p62 + p63 + p64 + p342 + p341 + p334 + p333 + p332 + p331 + p71 + p72 + p73 + p74 + p329 + p76 + p77 + p78 + p79 + p328 + p81 + p82 + p83 + p84 + p327 + p86 + p87 + p88 + p89 + p326 + p91 + p92 + p93 + p94 + p324 + p323 + p322 + p321 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p304 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p294 + p293 + p292 + p291 + p289 + p288 + p287 + p286 + p284 + p283 + p282 + p281 + p274 + p273 + p272 + p271 + p269 + p268 + p267 + p266 + p264 + p263 + p262 + p261 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p234 + p233 + p232 + p231 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p204 + p203 + p202 + p201 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p174 + p173 + p172 + p171 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p144 + p143 + p142 + p141 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p114 + p113 + p112 + p111 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 + p4 + p3 + p2 + p1 <= p823 + p820 + p819 + p817 + p816 + p814 + p813 + p811 + p808 + p807 + p805 + p802 + p801 + p799 + p798 + p796 + p793 + p792 + p790 + p789 + p787 + p784 + p783 + p781 + p778 + p777 + p775 + p774 + p772 + p771 + p769 + p766 + p763 + p760 + p757 + p754 + p751 + p750 + p752 + p753 + p755 + p756 + p758 + p759 + p761 + p762 + p764 + p765 + p767 + p768 + p770 + p773 + p776 + p779 + p780 + p782 + p785 + p786 + p788 + p791 + p794 + p795 + p797 + p800 + p803 + p804 + p806 + p809 + p810 + p812 + p815 + p818 + p821 + p822 + p824)
lola: after: (p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 <= 16)
lola: LP says that atomic proposition is always true: (p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 <= 16)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1770 + p1771 + p1772 + p1773 + p1774)
lola: after: (3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p1770 + p1771 + p1772 + p1773 + p1774 <= p823 + p820 + p819 + p817 + p816 + p814 + p813 + p811 + p808 + p807 + p805 + p802 + p801 + p799 + p798 + p796 + p793 + p792 + p790 + p789 + p787 + p784 + p783 + p781 + p778 + p777 + p775 + p774 + p772 + p771 + p769 + p766 + p763 + p760 + p757 + p754 + p751 + p750 + p752 + p753 + p755 + p756 + p758 + p759 + p761 + p762 + p764 + p765 + p767 + p768 + p770 + p773 + p776 + p779 + p780 + p782 + p785 + p786 + p788 + p791 + p794 + p795 + p797 + p800 + p803 + p804 + p806 + p809 + p810 + p812 + p815 + p818 + p821 + p822 + p824)
lola: after: (0 <= 16)
lola: place invariant simplifies atomic proposition
lola: before: (p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 + p850 + p851 + p852 + p853 + p854 + p855 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 + p574 + p573 + p581 + p582 + p583 + p584 + p572 + p586 + p587 + p588 + p589 + p571 + p591 + p592 + p593 + p594 + p569 + p596 + p597 + p598 + p599 + p568 + p601 + p602 + p603 + p604 + p567 + p566 + p564 + p563 + p562 + p561 + p611 + p612 + p613 + p614 + p559 + p616 + p617 + p618 + p619 + p558 + p621 + p622 + p623 + p624 + p557 + p626 + p627 + p628 + p629 + p556 + p631 + p632 + p633 + p634 + p554 + p553 + p552 + p551 + p544 + p543 + p641 + p642 + p643 + p644 + p542 + p646 + p647 + p648 + p649 + p541 + p651 + p652 + p653 + p654 + p539 + p656 + p657 + p658 + p659 + p538 + p661 + p662 + p663 + p664 + p537 + p536 + p534 + p533 + p532 + p531 + p671 + p672 + p673 + p674 + p529 + p676 + p677 + p678 + p679 + p528 + p681 + p682 + p683 + p684 + p527 + p686 + p687 + p688 + p689 + p526 + p691 + p692 + p693 + p694 + p524 + p523 + p522 + p521 + p514 + p513 + p701 + p702 + p703 + p704 + p512 + p706 + p707 + p708 + p709 + p511 + p711 + p712 + p713 + p714 + p509 + p716 + p717 + p718 + p719 + p508 + p721 + p722 + p723 + p724 + p507 + p506 + p504 + p503 + p502 + p501 + p731 + p732 + p733 + p734 + p499 + p736 + p737 + p738 + p739 + p498 + p741 + p742 + p743 + p744 + p497 + p746 + p747 + p748 + p749 + p496 + p494 + p493 + p492 + p491 + p484 + p483 + p482 + p481 + p479 + p478 + p477 + p476 + p474 + p473 + p472 + p471 + p469 + p468 + p467 + p466 + p464 + p463 + p462 + p461 + p454 + p453 + p452 + p451 + p449 + p448 + p447 + p446 + p444 + p443 + p442 + p441 + p439 + p438 + p437 + p436 + p434 + p433 + p432 + p431 + p424 + p423 + p422 + p421 + p419 + p418 + p417 + p416 + p414 + p413 + p412 + p411 + p409 + p408 + p407 + p406 + p404 + p403 + p402 + p401 + p394 + p393 + p392 + p391 + p389 + p388 + p387 + p386 + p384 + p383 + p382 + p381 + p379 + p378 + p377 + p376 + p374 + p373 + p372 + p371 + p364 + p363 + p362 + p361 + p11 + p12 + p13 + p14 + p359 + p16 + p17 + p18 + p19 + p358 + p21 + p22 + p23 + p24 + p357 + p26 + p27 + p28 + p29 + p356 + p31 + p32 + p33 + p34 + p354 + p353 + p352 + p351 + p349 + p348 + p41 + p42 + p43 + p44 + p347 + p46 + p47 + p48 + p49 + p346 + p51 + p52 + p53 + p54 + p344 + p56 + p57 + p58 + p59 + p343 + p61 + p62 + p63 + p64 + p342 + p341 + p334 + p333 + p332 + p331 + p71 + p72 + p73 + p74 + p329 + p76 + p77 + p78 + p79 + p328 + p81 + p82 + p83 + p84 + p327 + p86 + p87 + p88 + p89 + p326 + p91 + p92 + p93 + p94 + p324 + p323 + p322 + p321 + p319 + p318 + p317 + p316 + p314 + p313 + p312 + p311 + p304 + p303 + p302 + p301 + p299 + p298 + p297 + p296 + p294 + p293 + p292 + p291 + p289 + p288 + p287 + p286 + p284 + p283 + p282 + p281 + p274 + p273 + p272 + p271 + p269 + p268 + p267 + p266 + p264 + p263 + p262 + p261 + p259 + p258 + p257 + p256 + p254 + p253 + p252 + p251 + p244 + p243 + p242 + p241 + p239 + p238 + p237 + p236 + p234 + p233 + p232 + p231 + p229 + p228 + p227 + p226 + p224 + p223 + p222 + p221 + p214 + p213 + p212 + p211 + p209 + p208 + p207 + p206 + p204 + p203 + p202 + p201 + p199 + p198 + p197 + p196 + p194 + p193 + p192 + p191 + p184 + p183 + p182 + p181 + p179 + p178 + p177 + p176 + p174 + p173 + p172 + p171 + p169 + p168 + p167 + p166 + p164 + p163 + p162 + p161 + p154 + p153 + p152 + p151 + p149 + p148 + p147 + p146 + p144 + p143 + p142 + p141 + p139 + p138 + p137 + p136 + p134 + p133 + p132 + p131 + p124 + p123 + p122 + p121 + p119 + p118 + p117 + p116 + p114 + p113 + p112 + p111 + p109 + p108 + p107 + p106 + p104 + p103 + p102 + p101 + p4 + p3 + p2 + p1)
lola: after: (p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: LP says that atomic proposition is always true: (p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578)
lola: place invariant simplifies atomic proposition
lola: before: (p1823 + p1822 + p1821 + p1820 + p1819 + p1818 + p1817 + p1816 + p1815 + p1813 + p1812 + p1811 + p1810 + p1809 + p1808 + p1807 + p1806 + p1805 + p1803 + p1802 + p1801 + p1800 + p1799 + p1798 + p1797 + p1796 + p1795 + p1793 + p1792 + p1791 + p1790 + p1789 + p1788 + p1787 + p1786 + p1785 + p1783 + p1782 + p1781 + p1780 + p1779 + p1778 + p1777 + p1776 + p1775 + p1784 + p1794 + p1804 + p1814 + p1824 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: after: (4 <= p1739 + p1738 + p1737 + p1736 + p1735)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1770 + p1771 + p1772 + p1773 + p1774)
lola: after: (2 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 + p850 + p851 + p852 + p853 + p854 + p855 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1575 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599)
lola: after: (p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856)
lola: A ((1 <= 0)) : A (F (F (G (X ((0 <= 11)))))) : A (F (X (((2 <= p1604 + p1603 + p1602 + p1601 + p1600) U (2 <= p834 + p833 + p832 + p831 + p830))))) : A ((((3 <= p1764 + p1763 + p1762 + p1761 + p1760) U (1 <= p1604 + p1603 + p1602 + p1601 + p1600)) U G ((p1739 + p1738 + p1737 + p1736 + p1735 <= 4)))) : A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760))) : A (G (X (G ((0 <= 9))))) : A ((2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)) : A (G (F (G (G ((4 <= p829 + p828 + p827 + p826 + p825)))))) : A (X (X (((16 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578) U (0 <= p1739 + p1738 + p1737 + p1736 + p1735))))) : A (F (((8 <= 0) U (1 <= p1825 + p1826 + p1827 + p1828 + p1829)))) : A (F (F (G (G ((p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578 <= 16)))))) : A (G (G (F (X ((3 <= p1739 + p1738 + p1737 + p1736 + p1735)))))) : A (X (F (X (X ((3 <= 0)))))) : A ((0 <= 16)) : A (((p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856 <= p0 + p5 + p6 + p7 + p8 + p9 + p100 + p105 + p110 + p115 + p120 + p125 + p126 + p127 + p128 + p129 + p130 + p135 + p140 + p145 + p150 + p155 + p156 + p157 + p158 + p159 + p160 + p165 + p170 + p175 + p180 + p185 + p186 + p187 + p188 + p189 + p190 + p195 + p200 + p205 + p210 + p215 + p216 + p217 + p218 + p219 + p220 + p225 + p230 + p235 + p240 + p245 + p246 + p247 + p248 + p249 + p250 + p255 + p260 + p265 + p270 + p275 + p276 + p277 + p278 + p279 + p280 + p285 + p290 + p295 + p300 + p305 + p306 + p307 + p308 + p309 + p310 + p315 + p99 + p320 + p98 + p97 + p96 + p95 + p325 + p90 + p85 + p80 + p75 + p330 + p70 + p69 + p68 + p67 + p335 + p336 + p337 + p338 + p339 + p340 + p66 + p65 + p60 + p55 + p345 + p50 + p45 + p40 + p39 + p350 + p38 + p37 + p36 + p35 + p355 + p30 + p25 + p20 + p15 + p360 + p10 + p365 + p366 + p367 + p368 + p369 + p370 + p375 + p380 + p385 + p390 + p395 + p396 + p397 + p398 + p399 + p400 + p405 + p410 + p415 + p420 + p425 + p426 + p427 + p428 + p429 + p430 + p435 + p440 + p445 + p450 + p455 + p456 + p457 + p458 + p459 + p460 + p465 + p470 + p475 + p480 + p485 + p486 + p487 + p488 + p489 + p490 + p495 + p745 + p740 + p735 + p500 + p730 + p729 + p728 + p727 + p505 + p726 + p725 + p720 + p715 + p510 + p710 + p705 + p700 + p699 + p515 + p516 + p517 + p518 + p519 + p520 + p698 + p697 + p696 + p695 + p525 + p690 + p685 + p680 + p675 + p530 + p670 + p669 + p668 + p667 + p535 + p666 + p665 + p660 + p655 + p540 + p650 + p645 + p640 + p639 + p545 + p546 + p547 + p548 + p549 + p550 + p638 + p637 + p636 + p635 + p555 + p630 + p625 + p620 + p615 + p560 + p610 + p609 + p608 + p607 + p565 + p606 + p605 + p600 + p595 + p570 + p590 + p585 + p580 + p579 + p575 + p576 + p577 + p578) U G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735)))) : A (F ((F ((2 <= 0)) U X ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1249 + p1248 + p1247 + p1246 + p1219 + p1218 + p1217 + p1216 + p1189 + p1188 + p1187 + p1186 + p1159 + p1158 + p1157 + p1156 + p1129 + p1128 + p1127 + p1126 + p979 + p978 + p977 + p976 + p949 + p948 + p947 + p946 + p919 + p918 + p917 + p916 + p1099 + p1098 + p1097 + p1096 + p1069 + p1068 + p1067 + p1066 + p1039 + p1038 + p1037 + p1036 + p1009 + p1008 + p1007 + p1006 + p889 + p888 + p887 + p886 + p859 + p858 + p857 + p856)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:374
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= p1759 + p1755 + p1751 + p1747 + p1743 + p1740 + p1758 + p1757 + p1744 + p1745 + p1746 + p1748 + p1749 + p1750 + p1752 + p1753 + p1754 + p1756)
lola: processed formula length: 148
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 5 will run for 323 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 395 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((1 <= p1764 + p1763 + p1762 + p1761 + p1760)))
lola: processed formula length: 52
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 169 markings, 169 edges
lola: ========================================
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 10 will run for 593 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 11 will run for 712 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 12 will run for 890 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((p829 + p828 + p827 + p826 + p825 <= p1579 + p1578 + p1577 + p1576 + p1549 + p1548 + p1547 + p1546 + p1519 + p1518 + p1517 + p1516 + p1489 + p1488 + p1487 + p1486 + p1459 + p1458 + p1457 + p1456 + p1429 + p1428 + p1427 + p1426 + p1399 + p1398 + p1397 + p1396 + p1369 + p1368 + p1367 + p1366 + p1339 + p1338 + p1337 + p1336 + p1309 + p1308 + p1307 + p1306 + p1279 + p1278 + p1277 + p1276 + p1... (shortened)
lola: processed formula length: 827
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
lola: subprocess 13 will run for 1187 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((3 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((3 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: processed formula length: 56
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 279 markings, 279 edges
lola: ========================================
lola: subprocess 14 will run for 1781 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p1739 + p1738 + p1737 + p1736 + p1735))))
lola: processed formula length: 56
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 170 markings, 171 edges
lola: ========================================
lola: subprocess 15 will run for 3563 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: processed formula length: 51
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: 190533 markings, 1670055 edges, 38107 markings/sec, 0 secs
lola: 371285 markings, 3309805 edges, 36150 markings/sec, 5 secs
lola: 551088 markings, 4959935 edges, 35961 markings/sec, 10 secs
lola: 728139 markings, 6619747 edges, 35410 markings/sec, 15 secs
lola: 905697 markings, 8250759 edges, 35512 markings/sec, 20 secs
lola: 1078029 markings, 9910663 edges, 34466 markings/sec, 25 secs
lola: 1247825 markings, 11577904 edges, 33959 markings/sec, 30 secs
lola: 1405734 markings, 13247548 edges, 31582 markings/sec, 35 secs
lola: 1563894 markings, 14904406 edges, 31632 markings/sec, 40 secs
lola: 1734447 markings, 16570930 edges, 34111 markings/sec, 45 secs
lola: 1905801 markings, 18228350 edges, 34271 markings/sec, 50 secs
lola: 2075400 markings, 19888350 edges, 33920 markings/sec, 55 secs
lola: 2246835 markings, 21536427 edges, 34287 markings/sec, 60 secs
lola: 2416158 markings, 23150266 edges, 33865 markings/sec, 65 secs
lola: 2568429 markings, 24808438 edges, 30454 markings/sec, 70 secs
lola: 2742738 markings, 26438445 edges, 34862 markings/sec, 75 secs
lola: 2905656 markings, 28077155 edges, 32584 markings/sec, 80 secs
lola: 3069196 markings, 29697925 edges, 32708 markings/sec, 85 secs
lola: 3245119 markings, 31345774 edges, 35185 markings/sec, 90 secs
lola: 3413787 markings, 32999099 edges, 33734 markings/sec, 95 secs
lola: 3581576 markings, 34633111 edges, 33558 markings/sec, 100 secs
lola: 3758517 markings, 36279845 edges, 35388 markings/sec, 105 secs
lola: 3937646 markings, 37908355 edges, 35826 markings/sec, 110 secs
lola: 4113482 markings, 39525154 edges, 35167 markings/sec, 115 secs
lola: 4282634 markings, 41144287 edges, 33830 markings/sec, 120 secs
lola: 4456471 markings, 42764307 edges, 34767 markings/sec, 125 secs
lola: 4622422 markings, 44406934 edges, 33190 markings/sec, 130 secs
lola: 4780951 markings, 46041406 edges, 31706 markings/sec, 135 secs
lola: 4935104 markings, 47675111 edges, 30831 markings/sec, 140 secs
lola: 5097420 markings, 49302094 edges, 32463 markings/sec, 145 secs
lola: 5262727 markings, 50931169 edges, 33061 markings/sec, 150 secs
lola: 5427650 markings, 52555790 edges, 32985 markings/sec, 155 secs
lola: 5596621 markings, 54162363 edges, 33794 markings/sec, 160 secs
lola: 5750156 markings, 55793513 edges, 30707 markings/sec, 165 secs
lola: 5914612 markings, 57405629 edges, 32891 markings/sec, 170 secs
lola: 6073985 markings, 59015064 edges, 31875 markings/sec, 175 secs
lola: 6234490 markings, 60621349 edges, 32101 markings/sec, 180 secs
lola: 6405381 markings, 62255301 edges, 34178 markings/sec, 185 secs
lola: 6569965 markings, 63891890 edges, 32917 markings/sec, 190 secs
lola: 6742665 markings, 65534182 edges, 34540 markings/sec, 195 secs
lola: 6910856 markings, 67212389 edges, 33638 markings/sec, 200 secs
lola: 7074155 markings, 68887393 edges, 32660 markings/sec, 205 secs
lola: 7239349 markings, 70545217 edges, 33039 markings/sec, 210 secs
lola: 7392593 markings, 72208335 edges, 30649 markings/sec, 215 secs
lola: 7555938 markings, 73866955 edges, 32669 markings/sec, 220 secs
lola: 7714714 markings, 75517882 edges, 31755 markings/sec, 225 secs
lola: 7875433 markings, 77161328 edges, 32144 markings/sec, 230 secs
lola: 8024293 markings, 78829820 edges, 29772 markings/sec, 235 secs
lola: 8177455 markings, 80489387 edges, 30632 markings/sec, 240 secs
lola: 8317584 markings, 82145607 edges, 28026 markings/sec, 245 secs
lola: 8464423 markings, 83808710 edges, 29368 markings/sec, 250 secs
lola: 8606092 markings, 85454296 edges, 28334 markings/sec, 255 secs
lola: 8760373 markings, 87123623 edges, 30856 markings/sec, 260 secs
lola: 8919192 markings, 88782878 edges, 31764 markings/sec, 265 secs
lola: 9070124 markings, 90456738 edges, 30186 markings/sec, 270 secs
lola: 9221835 markings, 92107255 edges, 30342 markings/sec, 275 secs
lola: 9376874 markings, 93773779 edges, 31008 markings/sec, 280 secs
lola: 9535404 markings, 95449370 edges, 31706 markings/sec, 285 secs
lola: 9680456 markings, 97103181 edges, 29010 markings/sec, 290 secs
lola: 9824218 markings, 98773632 edges, 28752 markings/sec, 295 secs
lola: 9978431 markings, 100393780 edges, 30843 markings/sec, 300 secs
lola: 10122743 markings, 102012027 edges, 28862 markings/sec, 305 secs
lola: 10269176 markings, 103639469 edges, 29287 markings/sec, 310 secs
lola: 10417708 markings, 105249765 edges, 29706 markings/sec, 315 secs
lola: 10576094 markings, 106904339 edges, 31677 markings/sec, 320 secs
lola: 10730985 markings, 108561048 edges, 30978 markings/sec, 325 secs
lola: 10883426 markings, 110228580 edges, 30488 markings/sec, 330 secs
lola: 11033287 markings, 111864860 edges, 29972 markings/sec, 335 secs
lola: 11192450 markings, 113513237 edges, 31833 markings/sec, 340 secs
lola: 11358787 markings, 115102985 edges, 33267 markings/sec, 345 secs
lola: 11517944 markings, 116694400 edges, 31831 markings/sec, 350 secs
lola: 11667463 markings, 118307620 edges, 29904 markings/sec, 355 secs
lola: 11818823 markings, 119956474 edges, 30272 markings/sec, 360 secs
lola: 11967787 markings, 121599957 edges, 29793 markings/sec, 365 secs
lola: 12104000 markings, 123245052 edges, 27243 markings/sec, 370 secs
lola: 12271526 markings, 124875465 edges, 33505 markings/sec, 375 secs
lola: 12437012 markings, 126507035 edges, 33097 markings/sec, 380 secs
lola: 12604316 markings, 128122420 edges, 33461 markings/sec, 385 secs
lola: 12768200 markings, 129730007 edges, 32777 markings/sec, 390 secs
lola: 12924987 markings, 131372250 edges, 31357 markings/sec, 395 secs
lola: 13090151 markings, 132986978 edges, 33033 markings/sec, 400 secs
lola: 13254822 markings, 134592406 edges, 32934 markings/sec, 405 secs
lola: 13412548 markings, 136209746 edges, 31545 markings/sec, 410 secs
lola: 13565849 markings, 137850659 edges, 30660 markings/sec, 415 secs
lola: 13714752 markings, 139476759 edges, 29781 markings/sec, 420 secs
lola: 13860626 markings, 141111552 edges, 29175 markings/sec, 425 secs
lola: 14007173 markings, 142724885 edges, 29309 markings/sec, 430 secs
lola: 14155835 markings, 144357597 edges, 29732 markings/sec, 435 secs
lola: 14321643 markings, 145979463 edges, 33162 markings/sec, 440 secs
lola: 14474581 markings, 147616083 edges, 30588 markings/sec, 445 secs
lola: 14633137 markings, 149242562 edges, 31711 markings/sec, 450 secs
lola: 14787523 markings, 150863073 edges, 30877 markings/sec, 455 secs
lola: 14946031 markings, 152447019 edges, 31702 markings/sec, 460 secs
lola: 15095472 markings, 154056136 edges, 29888 markings/sec, 465 secs
lola: 15235524 markings, 155701144 edges, 28010 markings/sec, 470 secs
lola: 15395748 markings, 157293199 edges, 32045 markings/sec, 475 secs
lola: 15543379 markings, 158888204 edges, 29526 markings/sec, 480 secs
lola: 15696539 markings, 160485444 edges, 30632 markings/sec, 485 secs
lola: 15845482 markings, 162065503 edges, 29789 markings/sec, 490 secs
lola: 16006982 markings, 163682717 edges, 32300 markings/sec, 495 secs
lola: 16166075 markings, 165309898 edges, 31819 markings/sec, 500 secs
lola: 16320529 markings, 166947978 edges, 30891 markings/sec, 505 secs
lola: 16476945 markings, 168562673 edges, 31283 markings/sec, 510 secs
lola: 16638324 markings, 170190523 edges, 32276 markings/sec, 515 secs
lola: 16801535 markings, 171768208 edges, 32642 markings/sec, 520 secs
lola: 16983469 markings, 173439114 edges, 36387 markings/sec, 525 secs
lola: 17153087 markings, 175106463 edges, 33924 markings/sec, 530 secs
lola: 17322025 markings, 176756463 edges, 33788 markings/sec, 535 secs
lola: 17485384 markings, 178407712 edges, 32672 markings/sec, 540 secs
lola: 17652344 markings, 180069279 edges, 33392 markings/sec, 545 secs
lola: 17817623 markings, 181717634 edges, 33056 markings/sec, 550 secs
lola: 17985650 markings, 183355450 edges, 33605 markings/sec, 555 secs
lola: 18141132 markings, 185017955 edges, 31096 markings/sec, 560 secs
lola: 18299192 markings, 186673228 edges, 31612 markings/sec, 565 secs
lola: 18445160 markings, 188329611 edges, 29194 markings/sec, 570 secs
lola: 18594231 markings, 189990156 edges, 29814 markings/sec, 575 secs
lola: 18742875 markings, 191628476 edges, 29729 markings/sec, 580 secs
lola: 18906394 markings, 193286444 edges, 32704 markings/sec, 585 secs
lola: 19065947 markings, 194931228 edges, 31911 markings/sec, 590 secs
lola: 19223589 markings, 196583258 edges, 31528 markings/sec, 595 secs
lola: 19378618 markings, 198213696 edges, 31006 markings/sec, 600 secs
lola: 19542176 markings, 199863599 edges, 32712 markings/sec, 605 secs
lola: 19698446 markings, 201481152 edges, 31254 markings/sec, 610 secs
lola: 19844785 markings, 203140835 edges, 29268 markings/sec, 615 secs
lola: 20000443 markings, 204786969 edges, 31132 markings/sec, 620 secs
lola: 20154986 markings, 206401849 edges, 30909 markings/sec, 625 secs
lola: 20308612 markings, 208028813 edges, 30725 markings/sec, 630 secs
lola: 20459412 markings, 209636134 edges, 30160 markings/sec, 635 secs
lola: 20620245 markings, 211270954 edges, 32167 markings/sec, 640 secs
lola: 20784917 markings, 212909675 edges, 32934 markings/sec, 645 secs
lola: 20938780 markings, 214545409 edges, 30773 markings/sec, 650 secs
lola: 21095665 markings, 216191510 edges, 31377 markings/sec, 655 secs
lola: 21256318 markings, 217844501 edges, 32131 markings/sec, 660 secs
lola: 21416541 markings, 219482275 edges, 32045 markings/sec, 665 secs
lola: 21582766 markings, 221102625 edges, 33245 markings/sec, 670 secs
lola: 21749612 markings, 222726510 edges, 33369 markings/sec, 675 secs
lola: 21917600 markings, 224335916 edges, 33598 markings/sec, 680 secs
lola: 22082816 markings, 225950471 edges, 33043 markings/sec, 685 secs
lola: 22234981 markings, 227569351 edges, 30433 markings/sec, 690 secs
lola: 22398643 markings, 229177735 edges, 32732 markings/sec, 695 secs
lola: 22560728 markings, 230782373 edges, 32417 markings/sec, 700 secs
lola: 22723652 markings, 232382187 edges, 32585 markings/sec, 705 secs
lola: 22874621 markings, 233993757 edges, 30194 markings/sec, 710 secs
lola: 23020782 markings, 235623076 edges, 29232 markings/sec, 715 secs
lola: 23172791 markings, 237228405 edges, 30402 markings/sec, 720 secs
lola: 23314828 markings, 238855009 edges, 28407 markings/sec, 725 secs
lola: 23463528 markings, 240473794 edges, 29740 markings/sec, 730 secs
lola: 23608631 markings, 242090638 edges, 29021 markings/sec, 735 secs
lola: 23762806 markings, 243726098 edges, 30835 markings/sec, 740 secs
lola: 23925776 markings, 245344274 edges, 32594 markings/sec, 745 secs
lola: 24076924 markings, 246972452 edges, 30230 markings/sec, 750 secs
lola: 24234073 markings, 248588465 edges, 31430 markings/sec, 755 secs
lola: 24389566 markings, 250208585 edges, 31099 markings/sec, 760 secs
lola: 24546876 markings, 251801241 edges, 31462 markings/sec, 765 secs
lola: 24694910 markings, 253421493 edges, 29607 markings/sec, 770 secs
lola: 24837358 markings, 255097184 edges, 28490 markings/sec, 775 secs
lola: 24993151 markings, 256712428 edges, 31159 markings/sec, 780 secs
lola: 25145736 markings, 258306241 edges, 30517 markings/sec, 785 secs
lola: 25296009 markings, 259913913 edges, 30055 markings/sec, 790 secs
lola: 25447659 markings, 261503562 edges, 30330 markings/sec, 795 secs
lola: 25603806 markings, 263113512 edges, 31229 markings/sec, 800 secs
lola: 25768662 markings, 264736198 edges, 32971 markings/sec, 805 secs
lola: 25920581 markings, 266370857 edges, 30384 markings/sec, 810 secs
lola: 26077695 markings, 267999925 edges, 31423 markings/sec, 815 secs
lola: 26231313 markings, 269620648 edges, 30724 markings/sec, 820 secs
lola: 26402669 markings, 271251619 edges, 34271 markings/sec, 825 secs
lola: 26579760 markings, 272875161 edges, 35418 markings/sec, 830 secs
lola: 26756278 markings, 274483013 edges, 35304 markings/sec, 835 secs
lola: 26926350 markings, 276109585 edges, 34014 markings/sec, 840 secs
lola: 27101931 markings, 277716153 edges, 35116 markings/sec, 845 secs
lola: 27265455 markings, 279345114 edges, 32705 markings/sec, 850 secs
lola: 27421761 markings, 280974760 edges, 31261 markings/sec, 855 secs
lola: 27577220 markings, 282602015 edges, 31092 markings/sec, 860 secs
lola: 27746108 markings, 284255364 edges, 33778 markings/sec, 865 secs
lola: 27915295 markings, 285912111 edges, 33837 markings/sec, 870 secs
lola: 28084224 markings, 287564617 edges, 33786 markings/sec, 875 secs
lola: 28254985 markings, 289197013 edges, 34152 markings/sec, 880 secs
lola: 28411184 markings, 290861951 edges, 31240 markings/sec, 885 secs
lola: 28577273 markings, 292479954 edges, 33218 markings/sec, 890 secs
lola: 28740603 markings, 294113005 edges, 32666 markings/sec, 895 secs
lola: 28913273 markings, 295756493 edges, 34534 markings/sec, 900 secs
lola: 29082250 markings, 297413674 edges, 33795 markings/sec, 905 secs
lola: 29250473 markings, 299066613 edges, 33645 markings/sec, 910 secs
lola: 29429551 markings, 300705779 edges, 35816 markings/sec, 915 secs
lola: 29606880 markings, 302330729 edges, 35466 markings/sec, 920 secs
lola: 29774045 markings, 303947350 edges, 33433 markings/sec, 925 secs
lola: 29944220 markings, 305537887 edges, 34035 markings/sec, 930 secs
lola: 30103344 markings, 307150847 edges, 31825 markings/sec, 935 secs
lola: 30253865 markings, 308763136 edges, 30104 markings/sec, 940 secs
lola: 30413357 markings, 310390073 edges, 31898 markings/sec, 945 secs
lola: 30578853 markings, 312021706 edges, 33099 markings/sec, 950 secs
lola: 30744446 markings, 313657717 edges, 33119 markings/sec, 955 secs
lola: 30905591 markings, 315278317 edges, 32229 markings/sec, 960 secs
lola: 31066184 markings, 316909223 edges, 32119 markings/sec, 965 secs
lola: 31224274 markings, 318524925 edges, 31618 markings/sec, 970 secs
lola: 31392728 markings, 320148210 edges, 33691 markings/sec, 975 secs
lola: 31557962 markings, 321790219 edges, 33047 markings/sec, 980 secs
lola: 31727696 markings, 323436560 edges, 33947 markings/sec, 985 secs
lola: 31889272 markings, 325071652 edges, 32315 markings/sec, 990 secs
lola: 32048681 markings, 326709742 edges, 31882 markings/sec, 995 secs
lola: 32207637 markings, 328339686 edges, 31791 markings/sec, 1000 secs
lola: 32362019 markings, 329984699 edges, 30876 markings/sec, 1005 secs
lola: 32519085 markings, 331622726 edges, 31413 markings/sec, 1010 secs
lola: 32676850 markings, 333256343 edges, 31553 markings/sec, 1015 secs
lola: 32824995 markings, 334925708 edges, 29629 markings/sec, 1020 secs
lola: 32968717 markings, 336582230 edges, 28744 markings/sec, 1025 secs
lola: 33110329 markings, 338217891 edges, 28322 markings/sec, 1030 secs
lola: 33250762 markings, 339835555 edges, 28087 markings/sec, 1035 secs
lola: 33401228 markings, 341433281 edges, 30093 markings/sec, 1040 secs
lola: 33544387 markings, 343012555 edges, 28632 markings/sec, 1045 secs
lola: 33693924 markings, 344636455 edges, 29907 markings/sec, 1050 secs
lola: 33843578 markings, 346264107 edges, 29931 markings/sec, 1055 secs
lola: 33992865 markings, 347854958 edges, 29857 markings/sec, 1060 secs
lola: 34130387 markings, 349491887 edges, 27504 markings/sec, 1065 secs
lola: 34277393 markings, 351080596 edges, 29401 markings/sec, 1070 secs
lola: 34420755 markings, 352674932 edges, 28672 markings/sec, 1075 secs
lola: 34565730 markings, 354285260 edges, 28995 markings/sec, 1080 secs
lola: 34714653 markings, 355913732 edges, 29785 markings/sec, 1085 secs
lola: 34872681 markings, 357555209 edges, 31606 markings/sec, 1090 secs
lola: 35020268 markings, 359184220 edges, 29517 markings/sec, 1095 secs
lola: 35166461 markings, 360798875 edges, 29239 markings/sec, 1100 secs
lola: 35325425 markings, 362412472 edges, 31793 markings/sec, 1105 secs
lola: 35484971 markings, 363959260 edges, 31909 markings/sec, 1110 secs
lola: 35630876 markings, 365510661 edges, 29181 markings/sec, 1115 secs
lola: 35778950 markings, 367125101 edges, 29615 markings/sec, 1120 secs
lola: 35919617 markings, 368706153 edges, 28133 markings/sec, 1125 secs
lola: 36055773 markings, 370324754 edges, 27231 markings/sec, 1130 secs
lola: 36222081 markings, 371915577 edges, 33262 markings/sec, 1135 secs
lola: 36384831 markings, 373502917 edges, 32550 markings/sec, 1140 secs
lola: 36546878 markings, 375096952 edges, 32409 markings/sec, 1145 secs
lola: 36704128 markings, 376720277 edges, 31450 markings/sec, 1150 secs
lola: 36867593 markings, 378338804 edges, 32693 markings/sec, 1155 secs
lola: 37029994 markings, 379953304 edges, 32480 markings/sec, 1160 secs
lola: 37180434 markings, 381591370 edges, 30088 markings/sec, 1165 secs
lola: 37324858 markings, 383193378 edges, 28885 markings/sec, 1170 secs
lola: 37470046 markings, 384799380 edges, 29038 markings/sec, 1175 secs
lola: 37613341 markings, 386396246 edges, 28659 markings/sec, 1180 secs
lola: 37772404 markings, 388001903 edges, 31813 markings/sec, 1185 secs
lola: 37923627 markings, 389611107 edges, 30245 markings/sec, 1190 secs
lola: 38077735 markings, 391211029 edges, 30822 markings/sec, 1195 secs
lola: 38233643 markings, 392812130 edges, 31182 markings/sec, 1200 secs
lola: 38384663 markings, 394392116 edges, 30204 markings/sec, 1205 secs
lola: 38523654 markings, 396016457 edges, 27798 markings/sec, 1210 secs
lola: 38679633 markings, 397586817 edges, 31196 markings/sec, 1215 secs
lola: 38825035 markings, 399170045 edges, 29080 markings/sec, 1220 secs
lola: 38972550 markings, 400733421 edges, 29503 markings/sec, 1225 secs
lola: 39129283 markings, 402327785 edges, 31347 markings/sec, 1230 secs
lola: 39283837 markings, 403935082 edges, 30911 markings/sec, 1235 secs
lola: 39438672 markings, 405548380 edges, 30967 markings/sec, 1240 secs
lola: 39592089 markings, 407152379 edges, 30683 markings/sec, 1245 secs
lola: 39753565 markings, 408714737 edges, 32295 markings/sec, 1250 secs
lola: 39925617 markings, 410325700 edges, 34410 markings/sec, 1255 secs
lola: 40089183 markings, 411942513 edges, 32713 markings/sec, 1260 secs
lola: 40253645 markings, 413550432 edges, 32892 markings/sec, 1265 secs
lola: 40409197 markings, 415172618 edges, 31110 markings/sec, 1270 secs
lola: 40571831 markings, 416775045 edges, 32527 markings/sec, 1275 secs
lola: 40733170 markings, 418368872 edges, 32268 markings/sec, 1280 secs
lola: 40883614 markings, 419986036 edges, 30089 markings/sec, 1285 secs
lola: 41031303 markings, 421602648 edges, 29538 markings/sec, 1290 secs
lola: 41177543 markings, 423228282 edges, 29248 markings/sec, 1295 secs
lola: 41320631 markings, 424836847 edges, 28618 markings/sec, 1300 secs
lola: 41480023 markings, 426465890 edges, 31878 markings/sec, 1305 secs
lola: 41633792 markings, 428087991 edges, 30754 markings/sec, 1310 secs
lola: 41788505 markings, 429708597 edges, 30943 markings/sec, 1315 secs
lola: 41946829 markings, 431330100 edges, 31665 markings/sec, 1320 secs
lola: 42100642 markings, 432922508 edges, 30763 markings/sec, 1325 secs
lola: 42240171 markings, 434562822 edges, 27906 markings/sec, 1330 secs
lola: 42398413 markings, 436155249 edges, 31648 markings/sec, 1335 secs
lola: 42546333 markings, 437754250 edges, 29584 markings/sec, 1340 secs
lola: 42694727 markings, 439339776 edges, 29679 markings/sec, 1345 secs
lola: 42853718 markings, 440952830 edges, 31798 markings/sec, 1350 secs
lola: 43009865 markings, 442574384 edges, 31229 markings/sec, 1355 secs
lola: 43165015 markings, 444206000 edges, 31030 markings/sec, 1360 secs
lola: 43320580 markings, 445826438 edges, 31113 markings/sec, 1365 secs
lola: 43474600 markings, 447409053 edges, 30804 markings/sec, 1370 secs
lola: 43640254 markings, 449002971 edges, 33131 markings/sec, 1375 secs
lola: 43802691 markings, 450603141 edges, 32487 markings/sec, 1380 secs
lola: 43965455 markings, 452194970 edges, 32553 markings/sec, 1385 secs
lola: 44116841 markings, 453792516 edges, 30277 markings/sec, 1390 secs
lola: 44276916 markings, 455382877 edges, 32015 markings/sec, 1395 secs
lola: 44436453 markings, 456964799 edges, 31907 markings/sec, 1400 secs
lola: 44591854 markings, 458547575 edges, 31080 markings/sec, 1405 secs
lola: 44733600 markings, 460160189 edges, 28349 markings/sec, 1410 secs
lola: 44882106 markings, 461751994 edges, 29701 markings/sec, 1415 secs
lola: 45024521 markings, 463366054 edges, 28483 markings/sec, 1420 secs
lola: 45167866 markings, 464948846 edges, 28669 markings/sec, 1425 secs
lola: 45315478 markings, 466564088 edges, 29522 markings/sec, 1430 secs
lola: 45474640 markings, 468162585 edges, 31832 markings/sec, 1435 secs
lola: 45626561 markings, 469773791 edges, 30384 markings/sec, 1440 secs
lola: 45777956 markings, 471367892 edges, 30279 markings/sec, 1445 secs
lola: 45934240 markings, 472950209 edges, 31257 markings/sec, 1450 secs
lola: 46080237 markings, 474539216 edges, 29199 markings/sec, 1455 secs
lola: 46216287 markings, 476151236 edges, 27210 markings/sec, 1460 secs
lola: 46371396 markings, 477728007 edges, 31022 markings/sec, 1465 secs
lola: 46517321 markings, 479307800 edges, 29185 markings/sec, 1470 secs
lola: 46663603 markings, 480853035 edges, 29256 markings/sec, 1475 secs
lola: 46809918 markings, 482374211 edges, 29263 markings/sec, 1480 secs
lola: 46966522 markings, 483954544 edges, 31321 markings/sec, 1485 secs
lola: 47116344 markings, 485540360 edges, 29964 markings/sec, 1490 secs
lola: 47262360 markings, 487085941 edges, 29203 markings/sec, 1495 secs
lola: 47420498 markings, 488696521 edges, 31628 markings/sec, 1500 secs
lola: 47592816 markings, 490349093 edges, 34464 markings/sec, 1505 secs
lola: 47751160 markings, 491972789 edges, 31669 markings/sec, 1510 secs
lola: 47911378 markings, 493600125 edges, 32044 markings/sec, 1515 secs
lola: 48072115 markings, 495246187 edges, 32147 markings/sec, 1520 secs
lola: 48226465 markings, 496916442 edges, 30870 markings/sec, 1525 secs
lola: 48387862 markings, 498558681 edges, 32279 markings/sec, 1530 secs
lola: 48547409 markings, 500193691 edges, 31909 markings/sec, 1535 secs
lola: 48701442 markings, 501837661 edges, 30807 markings/sec, 1540 secs
lola: 48851243 markings, 503501995 edges, 29960 markings/sec, 1545 secs
lola: 48996679 markings, 505151427 edges, 29087 markings/sec, 1550 secs
lola: 49140380 markings, 506812709 edges, 28740 markings/sec, 1555 secs
lola: 49281632 markings, 508458502 edges, 28250 markings/sec, 1560 secs
lola: 49427424 markings, 510114440 edges, 29158 markings/sec, 1565 secs
lola: 49590123 markings, 511771577 edges, 32540 markings/sec, 1570 secs
lola: 49738901 markings, 513428421 edges, 29756 markings/sec, 1575 secs
lola: 49893622 markings, 515086461 edges, 30944 markings/sec, 1580 secs
lola: 50043603 markings, 516724794 edges, 29996 markings/sec, 1585 secs
lola: 50201452 markings, 518359228 edges, 31570 markings/sec, 1590 secs
lola: 50350366 markings, 519987079 edges, 29783 markings/sec, 1595 secs
lola: 50488529 markings, 521653236 edges, 27633 markings/sec, 1600 secs
lola: 50641128 markings, 523286441 edges, 30520 markings/sec, 1605 secs
lola: 50788040 markings, 524901594 edges, 29382 markings/sec, 1610 secs
lola: 50937593 markings, 526530952 edges, 29911 markings/sec, 1615 secs
lola: 51081905 markings, 528143873 edges, 28862 markings/sec, 1620 secs
lola: 51237209 markings, 529780531 edges, 31061 markings/sec, 1625 secs
lola: 51396885 markings, 531434678 edges, 31935 markings/sec, 1630 secs
lola: 51546501 markings, 533092355 edges, 29923 markings/sec, 1635 secs
lola: 51697902 markings, 534745616 edges, 30280 markings/sec, 1640 secs
lola: 51850571 markings, 536388693 edges, 30534 markings/sec, 1645 secs
lola: 52018121 markings, 538035812 edges, 33510 markings/sec, 1650 secs
lola: 52177433 markings, 539688051 edges, 31862 markings/sec, 1655 secs
lola: 52336686 markings, 541313250 edges, 31851 markings/sec, 1660 secs
lola: 52482360 markings, 542945063 edges, 29135 markings/sec, 1665 secs
lola: 52640570 markings, 544553472 edges, 31642 markings/sec, 1670 secs
lola: 52796338 markings, 546152972 edges, 31154 markings/sec, 1675 secs
lola: 52941391 markings, 547771717 edges, 29011 markings/sec, 1680 secs
lola: 53088282 markings, 549385442 edges, 29378 markings/sec, 1685 secs
lola: 53227268 markings, 551044515 edges, 27797 markings/sec, 1690 secs
lola: 53366377 markings, 552664440 edges, 27822 markings/sec, 1695 secs
lola: 53509875 markings, 554287798 edges, 28700 markings/sec, 1700 secs
lola: 53663864 markings, 555909617 edges, 30798 markings/sec, 1705 secs
lola: 53811511 markings, 557544653 edges, 29529 markings/sec, 1710 secs
lola: 53957564 markings, 559158920 edges, 29211 markings/sec, 1715 secs
lola: 54110485 markings, 560771197 edges, 30584 markings/sec, 1720 secs
lola: 54254711 markings, 562382104 edges, 28845 markings/sec, 1725 secs
lola: 54392409 markings, 564022067 edges, 27540 markings/sec, 1730 secs
lola: 54540255 markings, 565613019 edges, 29569 markings/sec, 1735 secs
lola: 54680844 markings, 567187568 edges, 28118 markings/sec, 1740 secs
lola: 54822382 markings, 568774488 edges, 28308 markings/sec, 1745 secs
lola: 54972652 markings, 570360633 edges, 30054 markings/sec, 1750 secs
lola: 55118570 markings, 571955778 edges, 29184 markings/sec, 1755 secs
lola: 55265129 markings, 573545434 edges, 29312 markings/sec, 1760 secs
lola: 55407734 markings, 575133700 edges, 28521 markings/sec, 1765 secs
lola: 55562362 markings, 576747771 edges, 30926 markings/sec, 1770 secs
lola: 55708232 markings, 578362231 edges, 29174 markings/sec, 1775 secs
lola: 55850642 markings, 579980805 edges, 28482 markings/sec, 1780 secs
lola: 55991851 markings, 581578748 edges, 28242 markings/sec, 1785 secs
lola: 56138421 markings, 583197244 edges, 29314 markings/sec, 1790 secs
lola: 56272356 markings, 584787825 edges, 26787 markings/sec, 1795 secs
lola: 56411356 markings, 586433141 edges, 27800 markings/sec, 1800 secs
lola: 56551518 markings, 588031395 edges, 28032 markings/sec, 1805 secs
lola: 56694997 markings, 589643658 edges, 28696 markings/sec, 1810 secs
lola: 56837618 markings, 591242773 edges, 28524 markings/sec, 1815 secs
lola: 56973126 markings, 592844048 edges, 27102 markings/sec, 1820 secs
lola: 57106588 markings, 594487496 edges, 26692 markings/sec, 1825 secs
lola: 57240063 markings, 596104386 edges, 26695 markings/sec, 1830 secs
lola: 57366999 markings, 597720250 edges, 25387 markings/sec, 1835 secs
lola: 57493634 markings, 599326756 edges, 25327 markings/sec, 1840 secs
lola: 57619140 markings, 600942542 edges, 25101 markings/sec, 1845 secs
lola: 57745387 markings, 602527429 edges, 25249 markings/sec, 1850 secs
lola: 57877475 markings, 604156497 edges, 26418 markings/sec, 1855 secs
lola: 58021724 markings, 605780675 edges, 28850 markings/sec, 1860 secs
lola: 58159201 markings, 607402479 edges, 27495 markings/sec, 1865 secs
lola: 58292243 markings, 609025525 edges, 26608 markings/sec, 1870 secs
lola: 58428440 markings, 610640655 edges, 27239 markings/sec, 1875 secs
lola: 58559721 markings, 612226923 edges, 26256 markings/sec, 1880 secs
lola: 58698789 markings, 613855987 edges, 27814 markings/sec, 1885 secs
lola: 58836373 markings, 615424090 edges, 27517 markings/sec, 1890 secs
lola: 58966579 markings, 617017904 edges, 26041 markings/sec, 1895 secs
lola: 59090980 markings, 618629037 edges, 24880 markings/sec, 1900 secs
lola: 59217618 markings, 620235501 edges, 25328 markings/sec, 1905 secs
lola: 59354439 markings, 621813273 edges, 27364 markings/sec, 1910 secs
lola: 59487682 markings, 623434353 edges, 26649 markings/sec, 1915 secs
lola: 59623331 markings, 625084160 edges, 27130 markings/sec, 1920 secs
lola: 59756684 markings, 626718837 edges, 26671 markings/sec, 1925 secs
lola: 59890844 markings, 628323511 edges, 26832 markings/sec, 1930 secs
lola: 60032673 markings, 629987332 edges, 28366 markings/sec, 1935 secs
lola: 60179861 markings, 631652828 edges, 29438 markings/sec, 1940 secs
lola: 60316593 markings, 633309353 edges, 27346 markings/sec, 1945 secs
lola: 60457171 markings, 634996255 edges, 28116 markings/sec, 1950 secs
lola: 60597696 markings, 636674922 edges, 28105 markings/sec, 1955 secs
lola: 60736856 markings, 638348669 edges, 27832 markings/sec, 1960 secs
lola: 60887728 markings, 640008663 edges, 30174 markings/sec, 1965 secs
lola: 61036738 markings, 641610012 edges, 29802 markings/sec, 1970 secs
lola: 61182466 markings, 643192355 edges, 29146 markings/sec, 1975 secs
lola: 61319748 markings, 644807163 edges, 27456 markings/sec, 1980 secs
lola: 61460451 markings, 646457501 edges, 28141 markings/sec, 1985 secs
lola: 61598349 markings, 648131805 edges, 27580 markings/sec, 1990 secs
lola: 61735902 markings, 649796482 edges, 27511 markings/sec, 1995 secs
lola: 61866492 markings, 651471972 edges, 26118 markings/sec, 2000 secs
lola: 61993389 markings, 653141924 edges, 25379 markings/sec, 2005 secs
lola: 62152751 markings, 654785395 edges, 31872 markings/sec, 2010 secs
lola: 62303063 markings, 656443979 edges, 30062 markings/sec, 2015 secs
lola: 62458060 markings, 658099230 edges, 30999 markings/sec, 2020 secs
lola: 62610368 markings, 659745977 edges, 30462 markings/sec, 2025 secs
lola: 62760311 markings, 661387840 edges, 29989 markings/sec, 2030 secs
lola: 62899641 markings, 663065294 edges, 27866 markings/sec, 2035 secs
lola: 63054487 markings, 664701569 edges, 30969 markings/sec, 2040 secs
lola: 63204446 markings, 666341899 edges, 29992 markings/sec, 2045 secs
lola: 63354302 markings, 667970303 edges, 29971 markings/sec, 2050 secs
lola: 63499449 markings, 669602743 edges, 29029 markings/sec, 2055 secs
lola: 63637877 markings, 671274054 edges, 27686 markings/sec, 2060 secs
lola: 63779798 markings, 672921449 edges, 28384 markings/sec, 2065 secs
lola: 63913575 markings, 674572704 edges, 26755 markings/sec, 2070 secs
lola: 64047436 markings, 676226748 edges, 26772 markings/sec, 2075 secs
lola: 64185115 markings, 677869987 edges, 27536 markings/sec, 2080 secs
lola: 64316951 markings, 679486459 edges, 26367 markings/sec, 2085 secs
lola: 64458903 markings, 681134180 edges, 28390 markings/sec, 2090 secs
lola: 64609573 markings, 682787053 edges, 30134 markings/sec, 2095 secs
lola: 64747571 markings, 684416550 edges, 27600 markings/sec, 2100 secs
lola: 64890448 markings, 686058006 edges, 28575 markings/sec, 2105 secs
lola: 65032106 markings, 687675093 edges, 28332 markings/sec, 2110 secs
lola: 65173327 markings, 689299982 edges, 28244 markings/sec, 2115 secs
lola: 65319940 markings, 690922659 edges, 29323 markings/sec, 2120 secs
lola: 65459227 markings, 692524861 edges, 27857 markings/sec, 2125 secs
lola: 65593573 markings, 694180825 edges, 26869 markings/sec, 2130 secs
lola: 65722960 markings, 695835412 edges, 25877 markings/sec, 2135 secs
lola: 65867701 markings, 697435042 edges, 28948 markings/sec, 2140 secs
lola: 66008031 markings, 699057184 edges, 28066 markings/sec, 2145 secs
lola: 66144965 markings, 700691617 edges, 27387 markings/sec, 2150 secs
lola: 66286422 markings, 702315478 edges, 28291 markings/sec, 2155 secs
lola: 66423627 markings, 703920034 edges, 27441 markings/sec, 2160 secs
lola: 66565563 markings, 705542331 edges, 28387 markings/sec, 2165 secs
lola: 66715322 markings, 707170113 edges, 29952 markings/sec, 2170 secs
lola: 66855254 markings, 708798100 edges, 27986 markings/sec, 2175 secs
lola: 66994789 markings, 710436608 edges, 27907 markings/sec, 2180 secs
lola: 67138754 markings, 712059146 edges, 28793 markings/sec, 2185 secs
lola: 67278443 markings, 713680316 edges, 27938 markings/sec, 2190 secs
lola: 67427981 markings, 715288430 edges, 29908 markings/sec, 2195 secs
lola: 67572991 markings, 716864411 edges, 29002 markings/sec, 2200 secs
lola: 67733873 markings, 718511205 edges, 32176 markings/sec, 2205 secs
lola: 67885781 markings, 720184371 edges, 30382 markings/sec, 2210 secs
lola: 68042323 markings, 721869284 edges, 31308 markings/sec, 2215 secs
lola: 68197703 markings, 723535233 edges, 31076 markings/sec, 2220 secs
lola: 68350689 markings, 725203080 edges, 30597 markings/sec, 2225 secs
lola: 68492481 markings, 726904299 edges, 28358 markings/sec, 2230 secs
lola: 68649935 markings, 728569051 edges, 31491 markings/sec, 2235 secs
lola: 68801629 markings, 730238196 edges, 30339 markings/sec, 2240 secs
lola: 68955542 markings, 731895886 edges, 30783 markings/sec, 2245 secs
lola: 69102955 markings, 733557191 edges, 29483 markings/sec, 2250 secs
lola: 69244270 markings, 735247803 edges, 28263 markings/sec, 2255 secs
lola: 69387732 markings, 736913177 edges, 28692 markings/sec, 2260 secs
lola: 69519850 markings, 738564679 edges, 26424 markings/sec, 2265 secs
lola: 69656622 markings, 740221786 edges, 27354 markings/sec, 2270 secs
lola: 69790150 markings, 741863711 edges, 26706 markings/sec, 2275 secs
lola: 69924358 markings, 743500018 edges, 26842 markings/sec, 2280 secs
lola: 70070554 markings, 745159221 edges, 29239 markings/sec, 2285 secs
lola: 70221595 markings, 746806391 edges, 30208 markings/sec, 2290 secs
lola: 70359337 markings, 748454331 edges, 27548 markings/sec, 2295 secs
lola: 70506985 markings, 750124726 edges, 29530 markings/sec, 2300 secs
lola: 70649011 markings, 751786661 edges, 28405 markings/sec, 2305 secs
lola: 70795456 markings, 753459702 edges, 29289 markings/sec, 2310 secs
lola: 70944127 markings, 755091821 edges, 29734 markings/sec, 2315 secs
lola: 71086289 markings, 756737190 edges, 28432 markings/sec, 2320 secs
lola: 71218453 markings, 758387187 edges, 26433 markings/sec, 2325 secs
lola: 71353422 markings, 760047989 edges, 26994 markings/sec, 2330 secs
lola: 71499255 markings, 761662782 edges, 29167 markings/sec, 2335 secs
lola: 71634958 markings, 763274994 edges, 27141 markings/sec, 2340 secs
lola: 71773951 markings, 764899543 edges, 27799 markings/sec, 2345 secs
lola: 71911727 markings, 766513511 edges, 27555 markings/sec, 2350 secs
lola: 72047499 markings, 768102911 edges, 27154 markings/sec, 2355 secs
lola: 72196746 markings, 769740138 edges, 29849 markings/sec, 2360 secs
lola: 72347351 markings, 771390059 edges, 30121 markings/sec, 2365 secs
lola: 72485387 markings, 773044837 edges, 27607 markings/sec, 2370 secs
lola: 72632402 markings, 774704169 edges, 29403 markings/sec, 2375 secs
lola: 72772021 markings, 776339890 edges, 27924 markings/sec, 2380 secs
lola: 72916366 markings, 777987948 edges, 28869 markings/sec, 2385 secs
lola: 73060562 markings, 779601541 edges, 28839 markings/sec, 2390 secs
lola: 73201406 markings, 781205641 edges, 28169 markings/sec, 2395 secs
lola: 73353959 markings, 782823706 edges, 30511 markings/sec, 2400 secs
lola: 73504070 markings, 784439581 edges, 30022 markings/sec, 2405 secs
lola: 73654943 markings, 786059530 edges, 30175 markings/sec, 2410 secs
lola: 73805420 markings, 787694918 edges, 30095 markings/sec, 2415 secs
lola: 73955835 markings, 789336251 edges, 30083 markings/sec, 2420 secs
lola: 74097757 markings, 790994503 edges, 28384 markings/sec, 2425 secs
lola: 74241024 markings, 792643059 edges, 28653 markings/sec, 2430 secs
lola: 74391600 markings, 794272689 edges, 30115 markings/sec, 2435 secs
lola: 74540139 markings, 795882329 edges, 29708 markings/sec, 2440 secs
lola: 74686379 markings, 797473599 edges, 29248 markings/sec, 2445 secs
lola: 74827192 markings, 799076908 edges, 28163 markings/sec, 2450 secs
lola: 74957336 markings, 800715499 edges, 26029 markings/sec, 2455 secs
lola: 75094739 markings, 802345984 edges, 27481 markings/sec, 2460 secs
lola: 75232785 markings, 803958889 edges, 27609 markings/sec, 2465 secs
lola: 75360007 markings, 805582747 edges, 25444 markings/sec, 2470 secs
lola: 75496021 markings, 807211611 edges, 27203 markings/sec, 2475 secs
lola: 75627721 markings, 808819649 edges, 26340 markings/sec, 2480 secs
lola: 75760612 markings, 810440253 edges, 26578 markings/sec, 2485 secs
lola: 75896121 markings, 812069097 edges, 27102 markings/sec, 2490 secs
lola: 76045096 markings, 813697049 edges, 29795 markings/sec, 2495 secs
lola: 76187327 markings, 815316296 edges, 28446 markings/sec, 2500 secs
lola: 76324316 markings, 816935569 edges, 27398 markings/sec, 2505 secs
lola: 76467624 markings, 818554021 edges, 28662 markings/sec, 2510 secs
lola: 76606234 markings, 820161277 edges, 27722 markings/sec, 2515 secs
lola: 76751757 markings, 821788293 edges, 29105 markings/sec, 2520 secs
lola: 76891799 markings, 823378261 edges, 28008 markings/sec, 2525 secs
lola: 77026905 markings, 824987850 edges, 27021 markings/sec, 2530 secs
lola: 77155923 markings, 826623052 edges, 25804 markings/sec, 2535 secs
lola: 77282717 markings, 828257501 edges, 25359 markings/sec, 2540 secs
lola: 77426498 markings, 829864192 edges, 28756 markings/sec, 2545 secs
lola: 77567048 markings, 831453173 edges, 28110 markings/sec, 2550 secs
lola: 77698488 markings, 833045261 edges, 26288 markings/sec, 2555 secs
lola: 77838771 markings, 834641916 edges, 28057 markings/sec, 2560 secs
lola: 77972359 markings, 836220779 edges, 26718 markings/sec, 2565 secs
lola: 78110326 markings, 837824177 edges, 27593 markings/sec, 2570 secs
lola: 78260112 markings, 839451511 edges, 29957 markings/sec, 2575 secs
lola: 78403068 markings, 841073283 edges, 28591 markings/sec, 2580 secs
lola: 78541128 markings, 842707094 edges, 27612 markings/sec, 2585 secs
lola: 78684974 markings, 844329134 edges, 28769 markings/sec, 2590 secs
lola: 78821551 markings, 845934096 edges, 27315 markings/sec, 2595 secs
lola: 78960862 markings, 847562727 edges, 27862 markings/sec, 2600 secs
lola: 79119013 markings, 849146696 edges, 31630 markings/sec, 2605 secs
lola: 79280866 markings, 850690194 edges, 32371 markings/sec, 2610 secs
lola: 79436370 markings, 852228126 edges, 31101 markings/sec, 2615 secs
lola: 79580562 markings, 853790392 edges, 28838 markings/sec, 2620 secs
lola: 79727904 markings, 855376977 edges, 29468 markings/sec, 2625 secs
lola: 79874145 markings, 856968645 edges, 29248 markings/sec, 2630 secs
lola: 80015548 markings, 858546629 edges, 28281 markings/sec, 2635 secs
lola: 80147682 markings, 860146752 edges, 26427 markings/sec, 2640 secs
lola: 80302649 markings, 861759235 edges, 30993 markings/sec, 2645 secs
lola: 80468102 markings, 863371422 edges, 33091 markings/sec, 2650 secs
lola: 80633643 markings, 864976644 edges, 33108 markings/sec, 2655 secs
lola: 80797686 markings, 866581346 edges, 32809 markings/sec, 2660 secs
lola: 80947956 markings, 868206609 edges, 30054 markings/sec, 2665 secs
lola: 81115089 markings, 869808877 edges, 33427 markings/sec, 2670 secs
lola: 81277235 markings, 871404715 edges, 32429 markings/sec, 2675 secs
lola: 81438971 markings, 873002220 edges, 32347 markings/sec, 2680 secs
lola: 81588722 markings, 874633894 edges, 29950 markings/sec, 2685 secs
lola: 81741580 markings, 876248660 edges, 30572 markings/sec, 2690 secs
lola: 81883057 markings, 877875768 edges, 28295 markings/sec, 2695 secs
lola: 82030204 markings, 879491032 edges, 29429 markings/sec, 2700 secs
lola: 82174349 markings, 881104269 edges, 28829 markings/sec, 2705 secs
lola: 82334153 markings, 882729811 edges, 31961 markings/sec, 2710 secs
lola: 82489525 markings, 884342905 edges, 31074 markings/sec, 2715 secs
lola: 82643873 markings, 885960533 edges, 30870 markings/sec, 2720 secs
lola: 82796838 markings, 887566024 edges, 30593 markings/sec, 2725 secs
lola: 82954870 markings, 889177142 edges, 31606 markings/sec, 2730 secs
lola: 83108500 markings, 890773875 edges, 30726 markings/sec, 2735 secs
lola: 83254265 markings, 892434825 edges, 29153 markings/sec, 2740 secs
lola: 83409976 markings, 894086896 edges, 31142 markings/sec, 2745 secs
lola: 83562037 markings, 895679887 edges, 30412 markings/sec, 2750 secs
lola: 83711071 markings, 897284333 edges, 29807 markings/sec, 2755 secs
lola: 83861527 markings, 898864909 edges, 30091 markings/sec, 2760 secs
lola: 84014870 markings, 900466155 edges, 30669 markings/sec, 2765 secs
lola: 84179446 markings, 902080442 edges, 32915 markings/sec, 2770 secs
lola: 84330789 markings, 903717604 edges, 30269 markings/sec, 2775 secs
lola: 84488758 markings, 905346122 edges, 31594 markings/sec, 2780 secs
lola: 84642636 markings, 906967773 edges, 30776 markings/sec, 2785 secs
lola: 84812947 markings, 908581810 edges, 34062 markings/sec, 2790 secs
lola: 84973252 markings, 910184678 edges, 32061 markings/sec, 2795 secs
lola: 85134499 markings, 911774542 edges, 32249 markings/sec, 2800 secs
lola: 85284236 markings, 913383631 edges, 29947 markings/sec, 2805 secs
lola: 85447510 markings, 914990970 edges, 32655 markings/sec, 2810 secs
lola: 85609681 markings, 916598066 edges, 32434 markings/sec, 2815 secs
lola: 85759960 markings, 918231581 edges, 30056 markings/sec, 2820 secs
lola: 85909601 markings, 919840952 edges, 29928 markings/sec, 2825 secs
lola: 86050091 markings, 921448839 edges, 28098 markings/sec, 2830 secs
lola: 86191152 markings, 923036935 edges, 28212 markings/sec, 2835 secs
lola: 86341857 markings, 924645712 edges, 30141 markings/sec, 2840 secs
lola: 86495273 markings, 926246800 edges, 30683 markings/sec, 2845 secs
lola: 86648388 markings, 927853119 edges, 30623 markings/sec, 2850 secs
lola: 86797619 markings, 929451306 edges, 29846 markings/sec, 2855 secs
lola: 86952060 markings, 931031417 edges, 30888 markings/sec, 2860 secs
lola: 87094280 markings, 932633998 edges, 28444 markings/sec, 2865 secs
lola: 87242065 markings, 934237781 edges, 29557 markings/sec, 2870 secs
lola: 87387860 markings, 935814894 edges, 29159 markings/sec, 2875 secs
lola: 87536704 markings, 937394412 edges, 29769 markings/sec, 2880 secs
lola: 87683250 markings, 938968893 edges, 29309 markings/sec, 2885 secs
lola: 87843737 markings, 940569637 edges, 32097 markings/sec, 2890 secs
lola: 87991669 markings, 942185761 edges, 29586 markings/sec, 2895 secs
lola: 88144232 markings, 943783670 edges, 30513 markings/sec, 2900 secs
lola: 88301256 markings, 945399072 edges, 31405 markings/sec, 2905 secs
lola: 88456987 markings, 947006833 edges, 31146 markings/sec, 2910 secs
lola: 88601964 markings, 948629950 edges, 28995 markings/sec, 2915 secs
lola: 88751736 markings, 950237350 edges, 29954 markings/sec, 2920 secs
lola: 88901975 markings, 951878958 edges, 30048 markings/sec, 2925 secs
lola: 89046805 markings, 953509840 edges, 28966 markings/sec, 2930 secs
lola: 89189370 markings, 955174877 edges, 28513 markings/sec, 2935 secs
lola: 89339456 markings, 956805392 edges, 30017 markings/sec, 2940 secs
lola: 89489010 markings, 958421617 edges, 29911 markings/sec, 2945 secs
lola: 89635708 markings, 960024608 edges, 29340 markings/sec, 2950 secs
lola: 89774546 markings, 961626750 edges, 27768 markings/sec, 2955 secs
lola: 89911034 markings, 963259477 edges, 27298 markings/sec, 2960 secs
lola: 90049300 markings, 964875123 edges, 27653 markings/sec, 2965 secs
lola: 90178813 markings, 966493473 edges, 25903 markings/sec, 2970 secs
lola: 90311121 markings, 968120365 edges, 26462 markings/sec, 2975 secs
lola: 90445697 markings, 969726539 edges, 26915 markings/sec, 2980 secs
lola: 90575928 markings, 971334411 edges, 26046 markings/sec, 2985 secs
lola: 90714978 markings, 972960187 edges, 27810 markings/sec, 2990 secs
lola: 90861654 markings, 974579833 edges, 29335 markings/sec, 2995 secs
lola: 90999363 markings, 976198951 edges, 27542 markings/sec, 3000 secs
lola: 91139847 markings, 977831592 edges, 28097 markings/sec, 3005 secs
lola: 91279925 markings, 979430835 edges, 28016 markings/sec, 3010 secs
lola: 91420206 markings, 981044399 edges, 28056 markings/sec, 3015 secs
lola: 91561269 markings, 982650501 edges, 28213 markings/sec, 3020 secs
lola: 91699952 markings, 984244124 edges, 27737 markings/sec, 3025 secs
lola: 91832547 markings, 985866428 edges, 26519 markings/sec, 3030 secs
lola: 91958700 markings, 987511875 edges, 25231 markings/sec, 3035 secs
lola: 92103262 markings, 989108685 edges, 28912 markings/sec, 3040 secs
lola: 92243262 markings, 990689519 edges, 28000 markings/sec, 3045 secs
lola: 92374334 markings, 992285204 edges, 26214 markings/sec, 3050 secs
lola: 92512295 markings, 993883366 edges, 27592 markings/sec, 3055 secs
lola: 92645662 markings, 995460866 edges, 26673 markings/sec, 3060 secs
lola: 92782899 markings, 997066208 edges, 27447 markings/sec, 3065 secs
lola: 92933503 markings, 998691708 edges, 30121 markings/sec, 3070 secs
lola: 93075829 markings, 1000313869 edges, 28465 markings/sec, 3075 secs
lola: 93214466 markings, 1001948663 edges, 27727 markings/sec, 3080 secs
lola: 93355608 markings, 1003574480 edges, 28228 markings/sec, 3085 secs
lola: 93494767 markings, 1005183965 edges, 27832 markings/sec, 3090 secs
lola: 93642333 markings, 1006808840 edges, 29513 markings/sec, 3095 secs
lola: 93802756 markings, 1008369749 edges, 32085 markings/sec, 3100 secs
lola: 93961923 markings, 1009922397 edges, 31833 markings/sec, 3105 secs
lola: 94110217 markings, 1011499548 edges, 29659 markings/sec, 3110 secs
lola: 94258764 markings, 1013085002 edges, 29709 markings/sec, 3115 secs
lola: 94404984 markings, 1014696129 edges, 29244 markings/sec, 3120 secs
lola: 94549457 markings, 1016289965 edges, 28895 markings/sec, 3125 secs
lola: 94684430 markings, 1017894306 edges, 26995 markings/sec, 3130 secs
lola: 94823764 markings, 1019497931 edges, 27867 markings/sec, 3135 secs
lola: 94986115 markings, 1021084738 edges, 32470 markings/sec, 3140 secs
lola: 95133706 markings, 1022693235 edges, 29518 markings/sec, 3145 secs
lola: 95289231 markings, 1024276133 edges, 31105 markings/sec, 3150 secs
lola: 95440786 markings, 1025872129 edges, 30311 markings/sec, 3155 secs
lola: 95585994 markings, 1027453782 edges, 29042 markings/sec, 3160 secs
lola: 95730240 markings, 1029068447 edges, 28849 markings/sec, 3165 secs
lola: 95881880 markings, 1030654960 edges, 30328 markings/sec, 3170 secs
lola: 96034913 markings, 1032237162 edges, 30607 markings/sec, 3175 secs
lola: 96184331 markings, 1033816007 edges, 29884 markings/sec, 3180 secs
lola: 96325939 markings, 1035411023 edges, 28322 markings/sec, 3185 secs
lola: 96465208 markings, 1037025814 edges, 27854 markings/sec, 3190 secs
lola: 96609115 markings, 1038617231 edges, 28781 markings/sec, 3195 secs
lola: 96737920 markings, 1040221453 edges, 25761 markings/sec, 3200 secs
lola: 96874309 markings, 1041828940 edges, 27278 markings/sec, 3205 secs
lola: 97013004 markings, 1043411887 edges, 27739 markings/sec, 3210 secs
lola: 97146303 markings, 1045007749 edges, 26660 markings/sec, 3215 secs
lola: 97291670 markings, 1046616466 edges, 29073 markings/sec, 3220 secs
lola: 97445151 markings, 1048209565 edges, 30696 markings/sec, 3225 secs
lola: 97582489 markings, 1049821951 edges, 27468 markings/sec, 3230 secs
lola: 97730540 markings, 1051422971 edges, 29610 markings/sec, 3235 secs
lola: 97872339 markings, 1053010785 edges, 28360 markings/sec, 3240 secs
lola: 98016240 markings, 1054622128 edges, 28780 markings/sec, 3245 secs
lola: 98163335 markings, 1056190785 edges, 29419 markings/sec, 3250 secs
lola: 98302043 markings, 1057775611 edges, 27742 markings/sec, 3255 secs
lola: 98434778 markings, 1059407811 edges, 26547 markings/sec, 3260 secs
lola: 98574285 markings, 1061039396 edges, 27901 markings/sec, 3265 secs
lola: 98722815 markings, 1062602775 edges, 29706 markings/sec, 3270 secs
lola: 98855775 markings, 1064179672 edges, 26592 markings/sec, 3275 secs
lola: 98995543 markings, 1065763321 edges, 27954 markings/sec, 3280 secs
lola: 99138287 markings, 1067322802 edges, 28549 markings/sec, 3285 secs
lola: 99276594 markings, 1068897520 edges, 27661 markings/sec, 3290 secs
lola: 99425300 markings, 1070497981 edges, 29741 markings/sec, 3295 secs
lola: 99577008 markings, 1072094966 edges, 30342 markings/sec, 3300 secs
lola: 99714917 markings, 1073709745 edges, 27582 markings/sec, 3305 secs
lola: 99863739 markings, 1075312308 edges, 29764 markings/sec, 3310 secs
lola: 100004734 markings, 1076903889 edges, 28199 markings/sec, 3315 secs
lola: 100150457 markings, 1078521513 edges, 29145 markings/sec, 3320 secs
lola: 100310681 markings, 1080069829 edges, 32045 markings/sec, 3325 secs
lola: 100473428 markings, 1081642760 edges, 32549 markings/sec, 3330 secs
lola: 100630560 markings, 1083251756 edges, 31426 markings/sec, 3335 secs
lola: 100784249 markings, 1084871493 edges, 30738 markings/sec, 3340 secs
lola: 100937794 markings, 1086468666 edges, 30709 markings/sec, 3345 secs
lola: 101092355 markings, 1088081608 edges, 30912 markings/sec, 3350 secs
lola: 101234673 markings, 1089702907 edges, 28464 markings/sec, 3355 secs
lola: 101389585 markings, 1091309755 edges, 30982 markings/sec, 3360 secs
lola: 101539984 markings, 1092920150 edges, 30080 markings/sec, 3365 secs
lola: 101692052 markings, 1094511369 edges, 30414 markings/sec, 3370 secs
lola: 101842966 markings, 1096106098 edges, 30183 markings/sec, 3375 secs
lola: 101981830 markings, 1097737774 edges, 27773 markings/sec, 3380 secs
lola: 102127832 markings, 1099354717 edges, 29200 markings/sec, 3385 secs
lola: 102265799 markings, 1100964025 edges, 27593 markings/sec, 3390 secs
lola: 102399868 markings, 1102586041 edges, 26814 markings/sec, 3395 secs
lola: 102538154 markings, 1104201101 edges, 27657 markings/sec, 3400 secs
lola: 102673026 markings, 1105795143 edges, 26974 markings/sec, 3405 secs
lola: 102814703 markings, 1107429480 edges, 28335 markings/sec, 3410 secs
lola: 102971324 markings, 1109078639 edges, 31324 markings/sec, 3415 secs
lola: 103118151 markings, 1110724249 edges, 29365 markings/sec, 3420 secs
lola: 103265457 markings, 1112382372 edges, 29461 markings/sec, 3425 secs
lola: 103414224 markings, 1114019584 edges, 29753 markings/sec, 3430 secs
lola: 103560338 markings, 1115641928 edges, 29223 markings/sec, 3435 secs
lola: 103709067 markings, 1117247749 edges, 29746 markings/sec, 3440 secs
lola: 103854322 markings, 1118867456 edges, 29051 markings/sec, 3445 secs
lola: 103992885 markings, 1120516990 edges, 27713 markings/sec, 3450 secs
lola: 104129793 markings, 1122175700 edges, 27382 markings/sec, 3455 secs
lola: 104280702 markings, 1123789011 edges, 30182 markings/sec, 3460 secs
lola: 104422086 markings, 1125399138 edges, 28277 markings/sec, 3465 secs
lola: 104564244 markings, 1127021423 edges, 28432 markings/sec, 3470 secs
lola: 104709125 markings, 1128627559 edges, 28976 markings/sec, 3475 secs
lola: 104850857 markings, 1130233896 edges, 28346 markings/sec, 3480 secs
lola: 105002818 markings, 1131875139 edges, 30392 markings/sec, 3485 secs
lola: 105157942 markings, 1133512462 edges, 31025 markings/sec, 3490 secs
lola: 105300377 markings, 1135167218 edges, 28487 markings/sec, 3495 secs
lola: 105452119 markings, 1136816399 edges, 30348 markings/sec, 3500 secs
lola: 105596819 markings, 1138444816 edges, 28940 markings/sec, 3505 secs
lola: 105745793 markings, 1140095673 edges, 29795 markings/sec, 3510 secs
lola: 105900814 markings, 1141682154 edges, 31004 markings/sec, 3515 secs
lola: 106056740 markings, 1143288846 edges, 31185 markings/sec, 3520 secs
lola: 106221285 markings, 1144901161 edges, 32909 markings/sec, 3525 secs
lola: 106371408 markings, 1146530616 edges, 30025 markings/sec, 3530 secs
lola: 106529746 markings, 1148140145 edges, 31668 markings/sec, 3535 secs
lola: 106682440 markings, 1149755482 edges, 30539 markings/sec, 3540 secs
lola: 106831221 markings, 1151350434 edges, 29756 markings/sec, 3545 secs
lola: 106971020 markings, 1152987847 edges, 27960 markings/sec, 3550 secs
lola: 107131760 markings, 1154592435 edges, 32148 markings/sec, 3555 secs
lola: time limit reached - aborting
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola: memory consumption: 90364 KB
lola: time consumption: 3570 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((4 <= p829 + p828 + p827 + p826 + p825))))
lola: processed formula length: 51
lola: 61 rewrites
lola: closed formula file LTLCardinality.xml
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method with deletion algorithm (--stubborn=deletion)
lola: using ltl preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: SEARCH
lola: RUNNING
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola:
preliminary result: no yes no yes no yes no unknown yes no yes no no yes no yes
lola: memory consumption: 90708 KB
lola: time consumption: 3573 seconds
lola: print data as JSON (--json)
lola: writing JSON to LTLCardinality.json
lola: closed JSON file LTLCardinality.json
rslt: finished

BK_STOP 1552780132000

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-4"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3954"
echo " Executing tool lola"
echo " Input is NeoElection-COL-4, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r104-oct2-155272225500141"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-4.tgz
mv NeoElection-COL-4 execution
cd execution
if [ "LTLCardinality" = "GlobalProperties" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
if [ "LTLCardinality" = "UpperBounds" ] ; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;