
${
m MCC}^{
m since}_{
m f 2017}$

This form is a summary description of the model entitled "Referendum" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This simple Petri net models a referendum system where a population is asked to accept a given proposal by votin "yes" or "no". It was introduced in [1] as an example of combinatorial explosion that could be contained by using Symmetric Nets with Bags (SNB).

Graphical representation of the Referendum model for V=15.

References

1 S. Haddad, F. Kordon, L. Petrucci, J-F. Pradat-Peyre, and N. Trèves. Efficient State-Based Analysis by Introducing Bags in Petri Net Color Domains. 28th American Control Conference (ACC), pages 5018-5025, Omnipress IEEE Catalog, June 2009

Scaling parameter

Parameter name	Parameter description	Chosen parameter values				
V	the maximum number of voters (in the color	10, 15, 20, 50, 100, 200, 500, 1000				
	domain)					

Size of the colored net model

number of places:	4
number of transitions:	3
number of arcs:	6

Size of the derived P/T model instances

Parameter	Number of places	Number of transitions	Number of arcs
V = 10	31	21	51
V = 15	46	31	76
V = 20	61	41	101
V = 50	151	101	251
V = 100	301	201	501
V = 200	601	401	1001
V = 500	1501	1001	2051
V = 1000	3001	2001	5001

Structural properties

simple free choice — all transitions sharing a common input place have no other input place
state machine — every transition has exactly one input place and exactly one output place
marked graph — every place has exactly one input transition and exactly one output transition
connected — there is an undirected path between every two nodes (places or transitions)
(F (F
\checkmark (c)
strongly connected — there is a directed path between every two nodes (places or transitions)
source place(s) — one or more places have no input transitions
sink place(s) — one or more places have no output transitions
source transition(s) — one or more transitions have no input places
sink transitions(s) — one or more transitions have no output places
loop-free — no transition has an input place that is also an output place
conservative — for each transition, the number of input arcs equals the number of output arcs
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs
nested units — places are structured into hierarchically nested sequential units (n)

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place \cdots
deadlock — there exists a reachable marking from which no transition can be fired
reversible — from every reachable marking, there is a transition path going back to the initial marking

⁽a) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

⁽b) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

 $^{^{(}c)}$ transition "start_0" is not of a state machine.

⁽d) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

⁽e) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

⁽f) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

⁽g) place "ready" is a source place.

⁽h) place "vote_yes" is a sink place.

⁽i) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

⁽j) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

⁽k) stated by CÆSAR.BDD version 2.7 on all 8 instances (see all aforementioned parameter values).

⁽¹⁾ transition "start_0" is not conservative.

 $^{^{\}rm (m)}$ transition "start _0" is not subconservative.

⁽n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

⁽o) there is only one token of a given color at most in each colored place; stated by CÆSAR.BDD version 2.7 to be true on 5 instance(s) out of 8, and unknown on the remaining 3 instance(s).

⁽p) tokens accumulate in "vote_yes" or in "voted_no"; stated by CÆSAR.BDD version 2.7 to be true on 5 instance(s) out of 8, and unknown on the remaining 3 instance(s).

⁽q) the marking graph has deadlocks and contains more than one reachable marking; stated by CÆSAR.BDD version 2.7 to be false on 5 instance(s) out of 8, and unknown on the remaining 3 instance(s).

quasi-l	ive	— for	every t	ransi	ition t,	there	exists a	reachable	marking	in whi	ch t can	fire				 !	/((r)
live —	for	everu	transition	on t .	from	everu 1	reachable	e marking,	one can	reach	a markin	a in	which t	can	fire	 	X ((\mathbf{s})

Size of the marking graphs

D	Number of reachable	Number of tran-	Max. number of	Max. number of		
Parameter	markings	sition firings	tokens per place	tokens per marking		
V = 10	59 050 ^(t)	393 661 ^(u)	1	$\in [10, 31]^{(v)}$		
V = 15	14 348 908 ^(w)	143 489 071 ^(x)	1	$\in [15, 46]^{(y)}$		
V = 20	$3.48678e + 09^{(z)}$?	1	$\in [20, 61]^{\text{(aa)}}$		
V = 50	7.17898e + 23 (ab)	?	1	$\in [50, 151]^{\text{(ac)}}$		
V = 100	$5.15378e + 47^{\text{(ad)}}$?	1	$\in [100, 301]^{\text{(ae)}}$		
V = 200	?	?	?	$\geq 200^{({\rm af})}$		
V = 500	?	?	?	$\geq 500^{({\rm ag})}$		
V = 1000	?	?	?	$\geq 1000^{({\rm ah})}$		

 $^{^{(}r)}$ each transition is reachable from the initial state; stated by CÆSAR.BDD version 2.7 to be true on 5 instance(s) out of 8, and unknown on the remaining 3 instance(s).

⁽s) the net has at least one transition and its marking graph has deadlocks; stated by CÆSAR.BDD version 2.7 to be false on 5 instance(s) out of 8, and unknown on the remaining 3 instance(s).

⁽t) computed by Prod in March 2017; confirmed by CÆSAR.BDD version 2.7.

⁽u) computed by Prod in March 2017.

⁽v) lower and upper bounds given by the number of initial tokens and the number of places.

⁽w) computed by Prod in March 2017; confirmed by CÆSAR.BDD version 2.7.

⁽x) computed by Prod in March 2017.

⁽y) lower and upper bounds given by the number of initial tokens and the number of places.

⁽z) stated by CÆSAR.BDD version 2.7.

⁽aa) lower and upper bounds given by the number of initial tokens and the number of places.

⁽ab) stated by CÆSAR.BDD version 2.7.

⁽ac) lower and upper bounds given by the number of initial tokens and the number of places.

⁽ad) stated by CÆSAR.BDD version 2.7.

⁽ae) lower and upper bounds given by the number of initial tokens and the number of places.

⁽af) lower bound given by the number of initial tokens.

⁽ag) lower bound given by the number of initial tokens.

⁽ah) lower bound given by the number of initial tokens.