This form is a summary description of the model entitled "NeighborGrid" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

There is a d-dimensional grid of size n indexed with d-tuples having components' range from 0 to n-1. A grid cell model is represented with a single Petri net place denoted as "p". Neighboring cells are connected via pairs of dedicated transitions; transitions are denoted as input "ti" and output "to" with respect to a cell with lesser index. A hypertorus is obtained from a hypercube via closing (connecting) opposite facets in each dimension. Indices are printed with '.' separator on dimensions; character 'v' separates two indices in a couple. More complicated cell models can be inserted but the canvas of connections does not change.

In a generalized neighborhood [1], neighbors are situated at Chebyshev distance equal to 1 restricted by a given interval of Manhattan distance r, $1 \le r_1 \le r \le r_2 \le d$. Neighbors are connected via facets which are hypercubes having dimensions from $d-r_1$ to $d-r_2$. Thus, $r_1=1$, $r_2=1$ gives von-Neumann's neighborhood and $r_1=1$, $r_2=d$ gives Moore's neighborhood.

A program hmn [2] that generates models has the following command line: $hmn\ d\ n\ [m]\ [e]\ [r_1]\ [r_2]\ >\ hmn_model.net$ where d is the number of dimensions $(d\geq 1)$; n is the size of hypertorus or hypercube $(n\geq 1;$ for hypertorus $n\geq 3)$, actually the size is $n\times n\times n\times ...\times n\ (d\ \text{times})$; m is the number of tokens in each node $(m\geq 0, \text{default }1)$; e is an edge condition: 't' – hypertorus, 'c' – hypercube (default 't'); r_1 is a lower bound of Manhattan distance (default $r_1=1$); r_2 is an upper bound of Manhattan distance (default $r_2=d$), $1\leq r_1\leq r_2\leq d$.

Graphical representation for d = 2, n = 3, m = 1, e = t', $r_1 = 1$, $r_2 = 2$

References

- [1] Zaitsev D.A. A generalized neighborhood for cellular automata, Theoretical Computer Science. Online 22 November 2016, http://dx.doi.org/10.1016/j.tcs.2016.11.002
- [2] Zaitsev D.A. Generators of canvas for Petri net models of hypertorus (hypercube) grid with Moore's, von-Neumann's, and generalized neighborhoods, https://github.com/dazeorgacm/hmn

Model: NeighborGrid Type: P/T Net Origin: Academic

Scaling parameter

Parameter name	Parameter description	Chosen parameter values		
d, n, m, e, r_1, r_2	d – dimension; n – size; m – initial mark-	(2,3,1,'t',1,2), (2,3,1,'c',1,2), (3,3,1,'t',1,1),		
	ing of each place; e – edge condition: 't'	(4,3,2,'c',2,3), (5,4,1,'t',3,5)		
	– hypertorus, 'c' – hypercube; r_1 – lower			
	Manhattan distance; r_2 – upper Manhattan			
	distance			

Size of the model

Parameter	Number of places	Number of transitions	Number of arcs
$N = (d, n, m, e, r_1, r_2)$	$P = n^d$	for a hypertorus (e='t'):	A = 2T
		$T = n^d \cdot \sum_{j=r_1}^{r_2} 2^j C_d^j$; for a	
		hypercube – sum on all the	
		places (cells) the number of	
		a cell neighbors (depending	
		on the dimension of the cor-	
		responding edge)	
(2,3,3,c,1,2)	9	40	80
(2,3,3,t,1,2)	9	72	144
(3,3,3,t,1,1)	27	162	324
(4,3,3,c,2,3)	81	1632	3264
(5,4,4,t,3,5)	1024	196608	393216

Structural properties

ordinary — all arcs have multiplicity one simple free choice — all transitions sharing a common input place have no other input place ✓ (a) extended free choice — all transitions sharing a common input place have the same input places ✓ (b) strongly connected — there is a directed path between every two nodes (places or transitions) ✓ (f) conservative — for each transition, the number of input arcs equals the number of output arcs ✓ (1) subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs ✓ (m) nested units — places are structured into hierarchically nested sequential units (n)

⁽a) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽b) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽c) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽d) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽e) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽f) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽g) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽h) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽i) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽j) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽k) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽¹⁾ confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽m) confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values). (n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place	X	(o)
deadlock — there exists a reachable marking from which no transition can be fired		X
reversible — from every reachable marking, there is a transition path going back to the initial marking	1	(p)
quasi-live — for every transition t, there exists a reachable marking in which t can fire		
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire		

Size of the marking graphs

Parameter	Number of reach- able markings	Number of transition firings	Max. number of tokens per place	Max. number of tokens per marking
d, n, m, e, r_1, r_2	$C_{(m+1)n^d-1}^{n^d-1}$	Sum on all markings, for all places (cells) with nonzero marking, the number of the corresponding cell neighbors	$m \cdot n^d$	$m\cdot n^d$
(2,3,1,c,1,2)	24310	514800	9	9 (s)
(2,3,1,t,1,2)	24310	926640	9	9 (t)
(3,3,1,t,1,1)	973469712824056	?	27	27 ^(u)
(4,3,2,c,2,3)	C_{242}^{80}	?	162	162 ^(v)
(5,4,1,t,3,5)	C^{1023}_{2047}	?	1024	1024 ^(w)

 $^{^{(}o)}$ confirmed by CÆSAR.BDD version 2.7 on all 5 instances (see all aforementioned parameter values).

⁽p) stated by CÆSAR.BDD version 2.7 to be true on 4 instances out of 5, and unknown on the remaining instance.

⁽q) stated by CÆSAR.BDD version 2.7 to be true on 4 instances out of 5, and unknown on the remaining instance.

⁽r) stated by CÆSAR.BDD version 2.7 to be true on 4 instances out of 5, and unknown on the remaining instance.

⁽s) number of initial tokens, because the net is conservative.

⁽t) number of initial tokens, because the net is conservative.

 $^{^{\}rm (u)}$ number of initial tokens, because the net is conservative.

⁽v) number of initial tokens, because the net is conservative.

⁽w) number of initial tokens, because the net is conservative.