This form is a summary description of the model entitled "EGFr" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This model is extracted from a set presented in [1] and modeling biological systems, obtained from influence graphs provided by biologists. This particular Petri net describes an ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance [2] (EGFr).

References

- $1.\ \ Lo\"{ic}\ Pauleve, "Reduction of Qualitative\ Models\ of\ Biological\ Networks\ for\ Transient\ Dynamics\ Analysis", https://hal.archives-ouvertes.fr/hal-01580765$
- 2. O. Sahin, H. Frohlich, C. Lobke, U. Korf, S. Burmester, M. Majety, J. Mattern, I. Schupp, C. Chaouiya, D. Thieffry, A. Poustka, S. Wiemann, T. Beissbarth, and D. Arlt, "Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance", BMC Systems Biology, vol. 3, no. 1, pp. 120, 2009.

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
n1, n2, n3	setting parameters	(20,1,0),(104,2,0),(104,2,1)

Size of the model

Parameter	Number of places	Number of transitions	Number of arcs
(20,1,0)	34	68	338
(104, 2, 0)	208	378	3 198
(104, 2, 1	208	378	3 198

Structural properties

ordinary — all arcs have multiplicity one	/
simple free choice — all transitions sharing a common input place have no other input place	X
extended free choice — all transitions sharing a common input place have the same input places	
state machine — every transition has exactly one input place and exactly one output place	X
marked graph — every place has exactly one input transition and exactly one output transition	
connected — there is an undirected path between every two nodes (places or transitions)	. ?
strongly connected — there is a directed path between every two nodes (places or transitions)	. ?
source place(s) — one or more places have no input transitions	. ?
sink place(s) — one or more places have no output transitions	.?
source transition(s) — one or more transitions have no input places	.?
sink transitions(s) — one or more transitions have no output places	. ?
loop-free — no transition has an input place that is also an output place	X
conservative — for each transition, the number of input arcs equals the number of output arcs	
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs	4
nested units — places are structured into hierarchically nested sequential units (a)	. ?

⁽a) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

Model: EGFr Type: P/T Net Origin: Academic

$egin{array}{c} ext{since} \ ext{2018} \end{array}$

Thomas Chatain and Loïc Paulevé chatain@lsv.fr and loic.pauleve@lri.fr

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place	. 🗸
deadlock — there exists a reachable marking from which no transition can be fired	:
reversible — from every reachable marking, there is a transition path going back to the initial marking	:
quasi-live — for every transition t, there exists a reachable marking in which t can fire	
$\hat{\mathbf{live}}$ — for every transition t , from every reachable marking, one can reach a marking in which t can fire	