fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
M4M.full compared to other tools («Known» models, ReachabilityFireability)
Last Updated
June 26, 2018

Introduction

This page presents how M4M.full do cope efficiently with the ReachabilityFireability examination face to the other participating tools. In this page, we consider «Known» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents M4M.full' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

M4M.full versus LTSMin

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for LTSMin, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full LTSMin Both tools   M4M.full LTSMin
All computed OK 113 194 129   Smallest Memory Footprint
M4M.full = LTSMin 38 Times tool wins 462 271
M4M.full > LTSMin 206   Shortest Execution Time
M4M.full < LTSMin 53 Times tool wins 386 347
Do not compete 0 180 0
Error detected 0 8 0  
Cannot Compute + Time-out 269 0 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than LTSMin, denote cases where M4M.full computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

M4M.full versus Tapaal

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for Tapaal, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to Tapaal are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full Tapaal Both tools   M4M.full Tapaal
All computed OK 13 252 300   Smallest Memory Footprint
M4M.full = Tapaal 13 Times tool wins 93 698
M4M.full > Tapaal 25   Shortest Execution Time
M4M.full < Tapaal 188 Times tool wins 199 592
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 252 13 17


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than Tapaal, denote cases where M4M.full computed less values than Tapaal, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, Tapaal wins when points are above the diagonal.

memory chart time chart

M4M.full versus LoLA

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for LoLA, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to LoLA are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full LoLA Both tools   M4M.full LoLA
All computed OK 25 249 277   Smallest Memory Footprint
M4M.full = LoLA 50 Times tool wins 108 680
M4M.full > LoLA 49   Shortest Execution Time
M4M.full < LoLA 138 Times tool wins 258 530
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 249 25 20


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than LoLA, denote cases where M4M.full computed less values than LoLA, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, LoLA wins when points are above the diagonal.

memory chart time chart

M4M.full versus M4M.struct

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for M4M.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full M4M.struct Both tools   M4M.full M4M.struct
All computed OK 77 12 285   Smallest Memory Footprint
M4M.full = M4M.struct 109 Times tool wins 330 221
M4M.full > M4M.struct 20   Shortest Execution Time
M4M.full < M4M.struct 48 Times tool wins 284 267
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 12 77 257


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than M4M.struct, denote cases where M4M.full computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

M4M.full versus ITS-Tools

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for ITS-Tools, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full ITS-Tools Both tools   M4M.full ITS-Tools
All computed OK 103 231 195   Smallest Memory Footprint
M4M.full = ITS-Tools 44 Times tool wins 488 282
M4M.full > ITS-Tools 105   Shortest Execution Time
M4M.full < ITS-Tools 92 Times tool wins 297 473
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 231 103 38


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than ITS-Tools, denote cases where M4M.full computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

M4M.full versus ITS-Tools.L

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for ITS-Tools.L, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full ITS-Tools.L Both tools   M4M.full ITS-Tools.L
All computed OK 108 221 181   Smallest Memory Footprint
M4M.full = ITS-Tools.L 35 Times tool wins 488 272
M4M.full > ITS-Tools.L 112   Shortest Execution Time
M4M.full < ITS-Tools.L 103 Times tool wins 283 477
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 221 108 48


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than ITS-Tools.L, denote cases where M4M.full computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

M4M.full versus GreatSPN

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for GreatSPN, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to GreatSPN are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full GreatSPN Both tools   M4M.full GreatSPN
All computed OK 371 135 128   Smallest Memory Footprint
M4M.full = GreatSPN 2 Times tool wins 424 250
M4M.full > GreatSPN 8   Shortest Execution Time
M4M.full < GreatSPN 30 Times tool wins 410 264
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 135 371 134


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than GreatSPN, denote cases where M4M.full computed less values than GreatSPN, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, GreatSPN wins when points are above the diagonal.

memory chart time chart

M4M.full versus Irma.full

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for Irma.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full Irma.full Both tools   M4M.full Irma.full
All computed OK 2 24 309   Smallest Memory Footprint
M4M.full = Irma.full 118 Times tool wins 223 340
M4M.full > Irma.full 53   Shortest Execution Time
M4M.full < Irma.full 57 Times tool wins 225 338
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 24 2 245


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than Irma.full, denote cases where M4M.full computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart

M4M.full versus Irma.struct

Some statistics are displayed below, based on 1616 runs (808 for M4M.full and 808 for Irma.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to Irma.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full Irma.struct Both tools   M4M.full Irma.struct
All computed OK 4 24 306   Smallest Memory Footprint
M4M.full = Irma.struct 120 Times tool wins 236 327
M4M.full > Irma.struct 54   Shortest Execution Time
M4M.full < Irma.struct 55 Times tool wins 207 356
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 24 4 245


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than Irma.struct, denote cases where M4M.full computed less values than Irma.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, Irma.struct wins when points are above the diagonal.

memory chart time chart