fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
LoLA compared to other tools («Known» models, UpperBounds)
Last Updated
June 26, 2018

Introduction

This page presents how LoLA do cope efficiently with the UpperBounds examination face to the other participating tools. In this page, we consider «Known» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents LoLA' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

LoLA versus LTSMin

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for LTSMin, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA LTSMin Both tools   LoLA LTSMin
All computed OK 140 27 238   Smallest Memory Footprint
LoLA = LTSMin 3 Times tool wins 691 77
LoLA > LTSMin 302   Shortest Execution Time
LoLA < LTSMin 58 Times tool wins 661 107
Do not compete 0 180 0
Error detected 0 0 0  
Cannot Compute + Time-out 67 0 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than LTSMin, denote cases where LoLA computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

LoLA versus Tapaal

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for Tapaal, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to Tapaal are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA Tapaal Both tools   LoLA Tapaal
All computed OK 181 15 288   Smallest Memory Footprint
LoLA = Tapaal 10 Times tool wins 630 126
LoLA > Tapaal 187   Shortest Execution Time
LoLA < Tapaal 75 Times tool wins 621 135
Do not compete 0 0 0
Error detected 0 2 0  
Cannot Compute + Time-out 15 179 52


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than Tapaal, denote cases where LoLA computed less values than Tapaal, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, Tapaal wins when points are above the diagonal.

memory chart time chart

LoLA versus M4M.full

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for M4M.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to M4M.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA M4M.full Both tools   LoLA M4M.full
All computed OK 362 37 191   Smallest Memory Footprint
LoLA = M4M.full 5 Times tool wins 687 91
LoLA > M4M.full 147   Shortest Execution Time
LoLA < M4M.full 36 Times tool wins 578 200
Do not compete 0 0 0
Error detected 0 1 0  
Cannot Compute + Time-out 37 361 30


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than M4M.full, denote cases where LoLA computed less values than M4M.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, M4M.full wins when points are above the diagonal.

memory chart time chart

LoLA versus M4M.struct

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for M4M.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA M4M.struct Both tools   LoLA M4M.struct
All computed OK 490 10 185   Smallest Memory Footprint
LoLA = M4M.struct 2 Times tool wins 710 41
LoLA > M4M.struct 20   Shortest Execution Time
LoLA < M4M.struct 44 Times tool wins 666 85
Do not compete 0 0 0
Error detected 0 1 0  
Cannot Compute + Time-out 10 489 57


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than M4M.struct, denote cases where LoLA computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

LoLA versus ITS-Tools

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for ITS-Tools, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA ITS-Tools Both tools   LoLA ITS-Tools
All computed OK 306 20 338   Smallest Memory Footprint
LoLA = ITS-Tools 2 Times tool wins 717 44
LoLA > ITS-Tools 1   Shortest Execution Time
LoLA < ITS-Tools 94 Times tool wins 574 187
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 20 306 47


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than ITS-Tools, denote cases where LoLA computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

LoLA versus ITS-Tools.L

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for ITS-Tools.L, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA ITS-Tools.L Both tools   LoLA ITS-Tools.L
All computed OK 330 16 318   Smallest Memory Footprint
LoLA = ITS-Tools.L 2 Times tool wins 720 37
LoLA > ITS-Tools.L 11   Shortest Execution Time
LoLA < ITS-Tools.L 80 Times tool wins 581 176
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 16 330 51


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than ITS-Tools.L, denote cases where LoLA computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

LoLA versus GreatSPN

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for GreatSPN, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to GreatSPN are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA GreatSPN Both tools   LoLA GreatSPN
All computed OK 243 4 365   Smallest Memory Footprint
LoLA = GreatSPN 8 Times tool wins 617 128
LoLA > GreatSPN 0   Shortest Execution Time
LoLA < GreatSPN 125 Times tool wins 543 202
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 4 243 63


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than GreatSPN, denote cases where LoLA computed less values than GreatSPN, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, GreatSPN wins when points are above the diagonal.

memory chart time chart

LoLA versus smart

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for smart, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to smart are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA smart Both tools   LoLA smart
All computed OK 463 2 211   Smallest Memory Footprint
LoLA = smart 1 Times tool wins 687 56
LoLA > smart 1   Shortest Execution Time
LoLA < smart 65 Times tool wins 651 92
Do not compete 0 180 0
Error detected 0 0 0  
Cannot Compute + Time-out 42 323 25


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than smart, denote cases where LoLA computed less values than smart, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, smart wins when points are above the diagonal.

memory chart time chart

LoLA versus Irma.full

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for Irma.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA Irma.full Both tools   LoLA Irma.full
All computed OK 229 40 222   Smallest Memory Footprint
LoLA = Irma.full 4 Times tool wins 662 119
LoLA > Irma.full 215   Shortest Execution Time
LoLA < Irma.full 71 Times tool wins 530 251
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 40 229 27


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than Irma.full, denote cases where LoLA computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart

LoLA versus Irma.struct

Some statistics are displayed below, based on 1616 runs (808 for LoLA and 808 for Irma.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to Irma.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA Irma.struct Both tools   LoLA Irma.struct
All computed OK 229 40 220   Smallest Memory Footprint
LoLA = Irma.struct 4 Times tool wins 663 118
LoLA > Irma.struct 218   Shortest Execution Time
LoLA < Irma.struct 70 Times tool wins 526 255
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 40 229 27


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than Irma.struct, denote cases where LoLA computed less values than Irma.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, Irma.struct wins when points are above the diagonal.

memory chart time chart