fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Irma.struct compared to other tools («Known» models, CTLFireability)
Last Updated
June 26, 2018

Introduction

This page presents how Irma.struct do cope efficiently with the CTLFireability examination face to the other participating tools. In this page, we consider «Known» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents Irma.struct' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

Irma.struct versus LTSMin

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for LTSMin, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct LTSMin Both tools   Irma.struct LTSMin
All computed OK 115 192 107   Smallest Memory Footprint
Irma.struct = LTSMin 216 Times tool wins 470 272
Irma.struct > LTSMin 81   Shortest Execution Time
Irma.struct < LTSMin 31 Times tool wins 472 270
Do not compete 0 180 0
Error detected 0 1 0  
Cannot Compute + Time-out 258 0 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than LTSMin, denote cases where Irma.struct computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

Irma.struct versus Tapaal

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for Tapaal, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to Tapaal are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct Tapaal Both tools   Irma.struct Tapaal
All computed OK 11 255 77   Smallest Memory Footprint
Irma.struct = Tapaal 14 Times tool wins 433 372
Irma.struct > Tapaal 97   Shortest Execution Time
Irma.struct < Tapaal 351 Times tool wins 476 329
Do not compete 0 0 0
Error detected 0 1 0  
Cannot Compute + Time-out 255 10 3


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than Tapaal, denote cases where Irma.struct computed less values than Tapaal, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, Tapaal wins when points are above the diagonal.

memory chart time chart

Irma.struct versus LoLA

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for LoLA, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to LoLA are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct LoLA Both tools   Irma.struct LoLA
All computed OK 36 230 64   Smallest Memory Footprint
Irma.struct = LoLA 17 Times tool wins 300 480
Irma.struct > LoLA 103   Shortest Execution Time
Irma.struct < LoLA 330 Times tool wins 497 283
Do not compete 0 0 0
Error detected 0 1 0  
Cannot Compute + Time-out 230 35 28


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than LoLA, denote cases where Irma.struct computed less values than LoLA, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, LoLA wins when points are above the diagonal.

memory chart time chart

Irma.struct versus M4M.full

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for M4M.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to M4M.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct M4M.full Both tools   Irma.struct M4M.full
All computed OK 30 12 71   Smallest Memory Footprint
Irma.struct = M4M.full 359 Times tool wins 361 201
Irma.struct > M4M.full 90   Shortest Execution Time
Irma.struct < M4M.full 0 Times tool wins 355 207
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 12 30 246


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than M4M.full, denote cases where Irma.struct computed less values than M4M.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, M4M.full wins when points are above the diagonal.

memory chart time chart

Irma.struct versus M4M.struct

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for M4M.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct M4M.struct Both tools   Irma.struct M4M.struct
All computed OK 175 8 120   Smallest Memory Footprint
Irma.struct = M4M.struct 191 Times tool wins 383 175
Irma.struct > M4M.struct 35   Shortest Execution Time
Irma.struct < M4M.struct 29 Times tool wins 407 151
Do not compete 0 0 0
Error detected 0 2 0  
Cannot Compute + Time-out 8 173 250


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than M4M.struct, denote cases where Irma.struct computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

Irma.struct versus ITS-Tools

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for ITS-Tools, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct ITS-Tools Both tools   Irma.struct ITS-Tools
All computed OK 346 167 141   Smallest Memory Footprint
Irma.struct = ITS-Tools 1 Times tool wins 543 174
Irma.struct > ITS-Tools 12   Shortest Execution Time
Irma.struct < ITS-Tools 50 Times tool wins 430 287
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 167 346 91


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than ITS-Tools, denote cases where Irma.struct computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

Irma.struct versus ITS-Tools.L

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for ITS-Tools.L, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct ITS-Tools.L Both tools   Irma.struct ITS-Tools.L
All computed OK 346 147 138   Smallest Memory Footprint
Irma.struct = ITS-Tools.L 0 Times tool wins 546 151
Irma.struct > ITS-Tools.L 18   Shortest Execution Time
Irma.struct < ITS-Tools.L 48 Times tool wins 427 270
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 147 346 111


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than ITS-Tools.L, denote cases where Irma.struct computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

Irma.struct versus GreatSPN

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for GreatSPN, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to GreatSPN are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct GreatSPN Both tools   Irma.struct GreatSPN
All computed OK 385 137 119   Smallest Memory Footprint
Irma.struct = GreatSPN 1 Times tool wins 415 272
Irma.struct > GreatSPN 1   Shortest Execution Time
Irma.struct < GreatSPN 44 Times tool wins 421 266
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 137 385 121


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than GreatSPN, denote cases where Irma.struct computed less values than GreatSPN, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, GreatSPN wins when points are above the diagonal.

memory chart time chart

Irma.struct versus Irma.full

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for Irma.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct Irma.full Both tools   Irma.struct Irma.full
All computed OK 1 4 162   Smallest Memory Footprint
Irma.struct = Irma.full 383 Times tool wins 385 169
Irma.struct > Irma.full 2   Shortest Execution Time
Irma.struct < Irma.full 2 Times tool wins 275 279
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 4 1 254


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than Irma.full, denote cases where Irma.struct computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart