fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Irma.struct compared to other tools («Known» models, CTLCardinality)
Last Updated
June 26, 2018

Introduction

This page presents how Irma.struct do cope efficiently with the CTLCardinality examination face to the other participating tools. In this page, we consider «Known» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents Irma.struct' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

Irma.struct versus LTSMin

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for LTSMin, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct LTSMin Both tools   Irma.struct LTSMin
All computed OK 115 192 104   Smallest Memory Footprint
Irma.struct = LTSMin 186 Times tool wins 447 295
Irma.struct > LTSMin 110   Shortest Execution Time
Irma.struct < LTSMin 35 Times tool wins 466 276
Do not compete 0 181 0
Error detected 0 0 0  
Cannot Compute + Time-out 258 0 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than LTSMin, denote cases where Irma.struct computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

Irma.struct versus Tapaal

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for Tapaal, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to Tapaal are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct Tapaal Both tools   Irma.struct Tapaal
All computed OK 4 249 102   Smallest Memory Footprint
Irma.struct = Tapaal 17 Times tool wins 339 460
Irma.struct > Tapaal 68   Shortest Execution Time
Irma.struct < Tapaal 359 Times tool wins 356 443
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 249 4 9


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than Tapaal, denote cases where Irma.struct computed less values than Tapaal, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, Tapaal wins when points are above the diagonal.

memory chart time chart

Irma.struct versus LoLA

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for LoLA, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to LoLA are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct LoLA Both tools   Irma.struct LoLA
All computed OK 25 235 76   Smallest Memory Footprint
Irma.struct = LoLA 27 Times tool wins 224 561
Irma.struct > LoLA 93   Shortest Execution Time
Irma.struct < LoLA 329 Times tool wins 430 355
Do not compete 0 0 0
Error detected 0 5 0  
Cannot Compute + Time-out 236 21 22


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than LoLA, denote cases where Irma.struct computed less values than LoLA, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, LoLA wins when points are above the diagonal.

memory chart time chart

Irma.struct versus M4M.full

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for M4M.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to M4M.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct M4M.full Both tools   Irma.struct M4M.full
All computed OK 34 12 63   Smallest Memory Footprint
Irma.struct = M4M.full 343 Times tool wins 320 242
Irma.struct > M4M.full 98   Shortest Execution Time
Irma.struct < M4M.full 12 Times tool wins 330 232
Do not compete 0 0 0
Error detected 0 4 0  
Cannot Compute + Time-out 12 30 246


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than M4M.full, denote cases where Irma.struct computed less values than M4M.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, M4M.full wins when points are above the diagonal.

memory chart time chart

Irma.struct versus M4M.struct

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for M4M.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct M4M.struct Both tools   Irma.struct M4M.struct
All computed OK 136 8 82   Smallest Memory Footprint
Irma.struct = M4M.struct 239 Times tool wins 366 192
Irma.struct > M4M.struct 69   Shortest Execution Time
Irma.struct < M4M.struct 24 Times tool wins 377 181
Do not compete 0 0 0
Error detected 0 3 0  
Cannot Compute + Time-out 8 133 250


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than M4M.struct, denote cases where Irma.struct computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

Irma.struct versus ITS-Tools

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for ITS-Tools, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct ITS-Tools Both tools   Irma.struct ITS-Tools
All computed OK 334 170 133   Smallest Memory Footprint
Irma.struct = ITS-Tools 13 Times tool wins 533 187
Irma.struct > ITS-Tools 17   Shortest Execution Time
Irma.struct < ITS-Tools 53 Times tool wins 418 302
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 170 334 88


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than ITS-Tools, denote cases where Irma.struct computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

Irma.struct versus ITS-Tools.L

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for ITS-Tools.L, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct ITS-Tools.L Both tools   Irma.struct ITS-Tools.L
All computed OK 343 165 133   Smallest Memory Footprint
Irma.struct = ITS-Tools.L 9 Times tool wins 533 182
Irma.struct > ITS-Tools.L 19   Shortest Execution Time
Irma.struct < ITS-Tools.L 46 Times tool wins 421 294
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 165 343 93


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than ITS-Tools.L, denote cases where Irma.struct computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

Irma.struct versus GreatSPN

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for GreatSPN, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to GreatSPN are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct GreatSPN Both tools   Irma.struct GreatSPN
All computed OK 392 135 117   Smallest Memory Footprint
Irma.struct = GreatSPN 1 Times tool wins 416 269
Irma.struct > GreatSPN 3   Shortest Execution Time
Irma.struct < GreatSPN 37 Times tool wins 427 258
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 135 392 123


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than GreatSPN, denote cases where Irma.struct computed less values than GreatSPN, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, GreatSPN wins when points are above the diagonal.

memory chart time chart

Irma.struct versus Irma.full

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for Irma.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct Irma.full Both tools   Irma.struct Irma.full
All computed OK 1 1 149   Smallest Memory Footprint
Irma.struct = Irma.full 388 Times tool wins 288 263
Irma.struct > Irma.full 6   Shortest Execution Time
Irma.struct < Irma.full 6 Times tool wins 280 271
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 1 1 257


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than Irma.full, denote cases where Irma.struct computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart