fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Irma.full compared to other tools («Known» models, UpperBounds)
Last Updated
June 26, 2018

Introduction

This page presents how Irma.full do cope efficiently with the UpperBounds examination face to the other participating tools. In this page, we consider «Known» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents Irma.full' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

Irma.full versus LTSMin

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for LTSMin, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full LTSMin Both tools   Irma.full LTSMin
All computed OK 116 192 159   Smallest Memory Footprint
Irma.full = LTSMin 167 Times tool wins 516 228
Irma.full > LTSMin 103   Shortest Execution Time
Irma.full < LTSMin 7 Times tool wins 470 274
Do not compete 0 180 0
Error detected 0 0 0  
Cannot Compute + Time-out 256 0 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than LTSMin, denote cases where Irma.full computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

Irma.full versus Tapaal

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for Tapaal, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to Tapaal are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full Tapaal Both tools   Irma.full Tapaal
All computed OK 160 183 195   Smallest Memory Footprint
Irma.full = Tapaal 11 Times tool wins 294 441
Irma.full > Tapaal 80   Shortest Execution Time
Irma.full < Tapaal 106 Times tool wins 400 335
Do not compete 0 0 0
Error detected 0 2 0  
Cannot Compute + Time-out 184 159 72


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than Tapaal, denote cases where Irma.full computed less values than Tapaal, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, Tapaal wins when points are above the diagonal.

memory chart time chart

Irma.full versus LoLA

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for LoLA, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to LoLA are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full LoLA Both tools   Irma.full LoLA
All computed OK 40 229 222   Smallest Memory Footprint
Irma.full = LoLA 4 Times tool wins 119 662
Irma.full > LoLA 71   Shortest Execution Time
Irma.full < LoLA 215 Times tool wins 251 530
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 229 40 27


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than LoLA, denote cases where Irma.full computed less values than LoLA, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, LoLA wins when points are above the diagonal.

memory chart time chart

Irma.full versus M4M.full

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for M4M.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to M4M.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full M4M.full Both tools   Irma.full M4M.full
All computed OK 145 9 220   Smallest Memory Footprint
Irma.full = M4M.full 130 Times tool wins 344 217
Irma.full > M4M.full 49   Shortest Execution Time
Irma.full < M4M.full 8 Times tool wins 363 198
Do not compete 0 0 0
Error detected 0 1 0  
Cannot Compute + Time-out 9 144 247


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than M4M.full, denote cases where Irma.full computed less values than M4M.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, M4M.full wins when points are above the diagonal.

memory chart time chart

Irma.full versus M4M.struct

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for M4M.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full M4M.struct Both tools   Irma.full M4M.struct
All computed OK 291 0 223   Smallest Memory Footprint
Irma.full = M4M.struct 5 Times tool wins 491 61
Irma.full > M4M.struct 16   Shortest Execution Time
Irma.full < M4M.struct 17 Times tool wins 459 93
Do not compete 0 0 0
Error detected 0 1 0  
Cannot Compute + Time-out 0 290 256


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than M4M.struct, denote cases where Irma.full computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

Irma.full versus ITS-Tools

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for ITS-Tools, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full ITS-Tools Both tools   Irma.full ITS-Tools
All computed OK 297 200 235   Smallest Memory Footprint
Irma.full = ITS-Tools 1 Times tool wins 544 208
Irma.full > ITS-Tools 1   Shortest Execution Time
Irma.full < ITS-Tools 18 Times tool wins 361 391
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 200 297 56


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than ITS-Tools, denote cases where Irma.full computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

Irma.full versus ITS-Tools.L

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for ITS-Tools.L, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full ITS-Tools.L Both tools   Irma.full ITS-Tools.L
All computed OK 303 178 220   Smallest Memory Footprint
Irma.full = ITS-Tools.L 1 Times tool wins 544 186
Irma.full > ITS-Tools.L 3   Shortest Execution Time
Irma.full < ITS-Tools.L 25 Times tool wins 370 360
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 178 303 78


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than ITS-Tools.L, denote cases where Irma.full computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

Irma.full versus GreatSPN

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for GreatSPN, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to GreatSPN are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full GreatSPN Both tools   Irma.full GreatSPN
All computed OK 251 201 273   Smallest Memory Footprint
Irma.full = GreatSPN 1 Times tool wins 313 440
Irma.full > GreatSPN 0   Shortest Execution Time
Irma.full < GreatSPN 27 Times tool wins 323 430
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 201 251 55


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than GreatSPN, denote cases where Irma.full computed less values than GreatSPN, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, GreatSPN wins when points are above the diagonal.

memory chart time chart

Irma.full versus smart

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for smart, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to smart are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full smart Both tools   Irma.full smart
All computed OK 407 135 138   Smallest Memory Footprint
Irma.full = smart 1 Times tool wins 426 261
Irma.full > smart 0   Shortest Execution Time
Irma.full < smart 6 Times tool wins 458 229
Do not compete 0 180 0
Error detected 0 0 0  
Cannot Compute + Time-out 199 291 57


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than smart, denote cases where Irma.full computed less values than smart, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, smart wins when points are above the diagonal.

memory chart time chart

Irma.full versus Irma.struct

Some statistics are displayed below, based on 1616 runs (808 for Irma.full and 808 for Irma.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.full to Irma.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.full Irma.struct Both tools   Irma.full Irma.struct
All computed OK 1 1 297   Smallest Memory Footprint
Irma.full = Irma.struct 250 Times tool wins 407 146
Irma.full > Irma.struct 2   Shortest Execution Time
Irma.full < Irma.struct 2 Times tool wins 281 272
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 1 1 255


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.full computed more values than Irma.struct, denote cases where Irma.full computed less values than Irma.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.full wins when points are below the diagonal, Irma.struct wins when points are above the diagonal.

memory chart time chart