About the Execution of ITS-Tools for NQueens-PT-12
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15755.200 | 289145.00 | 897075.00 | 154.90 | FTFFFTFFTFFTTFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.................
/home/mcc/execution
total 284K
-rw-r--r-- 1 mcc users 3.3K May 30 21:46 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K May 30 21:46 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.8K May 29 15:50 CTLFireability.txt
-rw-r--r-- 1 mcc users 17K May 29 15:50 CTLFireability.xml
-rw-r--r-- 1 mcc users 2.5K May 28 09:53 LTLCardinality.txt
-rw-r--r-- 1 mcc users 12K May 28 09:53 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K May 28 08:09 LTLFireability.txt
-rw-r--r-- 1 mcc users 12K May 28 08:09 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 May 24 11:17 NewModel
-rw-r--r-- 1 mcc users 3.2K May 28 06:39 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 16K May 28 06:39 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 104 May 26 06:29 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 342 May 26 06:29 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.0K May 27 04:08 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 17K May 27 04:08 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K May 28 07:31 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K May 28 07:31 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 24 11:17 equiv_col
-rw-r--r-- 1 mcc users 3 May 24 11:17 instance
-rw-r--r-- 1 mcc users 6 May 24 11:17 iscolored
-rw-r--r-- 1 mcc users 127K May 24 11:17 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstools
Input is NQueens-PT-12, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r284-csrt-152749174900340
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-00
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-01
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-02
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-03
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-04
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-05
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-06
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-07
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-08
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-09
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-10
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-11
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-12
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-13
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-14
FORMULA_NAME NQueens-PT-12-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1527927522765
FORMULA NQueens-PT-12-ReachabilityCardinality-07 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805151631/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805151631/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Loading property file ReachabilityCardinality.prop.
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-00 with value :(P_1_0>=2)
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-01 with value :(!((R_7<=L_19)||(P_8_9<=cX_4)))
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-02 with value :(P_7_9>=2)
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-03 with value :((!((P_1_11<=1)||(P_4_3>=2)))&&(((P_8_2>=3)&&(P_6_9<=cX_9))&&(!(L_20>=1))))
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-04 with value :(P_2_2>=2)
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-05 with value :(!((P_8_2<=cX_7)||((P_3_3<=R_10)||(R_22>=2))))
Read [invariant] property : NQueens-PT-12-ReachabilityCardinality-06 with value :(((!(P_3_6>=1))||(P_0_8<=cY_8))||(!((P_3_9>=1)||(P_2_1<=P_10_9))))
Read [invariant] property : NQueens-PT-12-ReachabilityCardinality-08 with value :(!(cY_0>=2))
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-09 with value :(!((!(P_10_0>=2))||(cX_4>=1)))
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-10 with value :(P_4_9>=2)
Read [invariant] property : NQueens-PT-12-ReachabilityCardinality-11 with value :((P_9_9>=2)||((!(P_2_3>=2))||(L_4>=1)))
Read [invariant] property : NQueens-PT-12-ReachabilityCardinality-12 with value :((((R_6>=2)&&(R_19>=1))&&((P_5_10<=P_2_3)&&(P_4_10>=1)))||(!((P_5_6>=2)&&(P_0_2>=1))))
Read [invariant] property : NQueens-PT-12-ReachabilityCardinality-13 with value :((((P_4_10>=1)&&(L_18<=L_5))&&(R_9>=3))||((!(R_12>=2))&&(P_7_7<=R_20)))
Read [reachable] property : NQueens-PT-12-ReachabilityCardinality-14 with value :(!(((P_5_5<=cY_9)||(P_2_2>=1))||((P_10_2<=P_7_2)||(P_1_1<=R_22))))
Read [invariant] property : NQueens-PT-12-ReachabilityCardinality-15 with value :(!(cX_10>=3))
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
// Phase 1: matrix 144 rows 214 cols
invariant :P_1_2 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_2 + P_4_3 + 2'P_4_4 + 3'P_4_5 + 3'P_4_6 + 3'P_4_7 + 3'P_4_8 + 3'P_4_9 + 2'P_4_10 + P_5_2 + 2'P_5_3 + 3'P_5_4 + 4'P_5_5 + 5'P_5_6 + 5'P_5_7 + 5'P_5_8 + 4'P_5_9 + 2'P_5_10 + P_6_2 + 2'P_6_3 + 4'P_6_4 + 5'P_6_5 + 6'P_6_6 + 7'P_6_7 + 6'P_6_8 + 4'P_6_9 + 2'P_6_10 + P_7_2 + 2'P_7_3 + 4'P_7_4 + 6'P_7_5 + 7'P_7_6 + 7'P_7_7 + 6'P_7_8 + 4'P_7_9 + 2'P_7_10 + P_8_2 + 2'P_8_3 + 4'P_8_4 + 6'P_8_5 + 7'P_8_6 + 6'P_8_7 + 5'P_8_8 + 4'P_8_9 + 2'P_8_10 + P_9_2 + 2'P_9_3 + 4'P_9_4 + 5'P_9_5 + 5'P_9_6 + 5'P_9_7 + 4'P_9_8 + 3'P_9_9 + 2'P_9_10 + P_10_2 + 2'P_10_3 + 3'P_10_4 + 3'P_10_5 + 3'P_10_6 + 3'P_10_7 + 3'P_10_8 + 2'P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + cX_3 + 3'cX_4 + 5'cX_5 + 7'cX_6 + 9'cX_7 + 11'cX_8 + 13'cX_9 + 15'cX_10 + 17'cX_11 + cY_2 + 2'cY_3 + 4'cY_4 + 6'cY_5 + 8'cY_6 + 10'cY_7 + 12'cY_8 + 14'cY_9 + 16'cY_10 + 18'cY_11 + -10'L_0 + -9'L_1 + -8'L_2 + -7'L_3 + -6'L_4 + -5'L_5 + -4'L_6 + -3'L_7 + -2'L_8 + -1'L_9 + -1'L_14 + -2'L_15 + -3'L_16 + -4'L_17 + -5'L_18 + -6'L_19 + -7'L_20 + -8'L_21 + -9'L_22 + -1'R_5 + -2'R_6 + -3'R_7 + -4'R_8 + -5'R_9 + -6'R_10 + -7'R_11 + -8'R_12 + -9'R_13 + -10'R_14 + -12'R_15 + -15'R_16 + -18'R_17 + -21'R_18 + -24'R_19 + -27'R_20 + -30'R_21 + -33'R_22 + -35'R_23 = -198
invariant :cX_0 + cX_3 + 3'cX_4 + 6'cX_5 + 10'cX_6 + 15'cX_7 + 21'cX_8 + 28'cX_9 + 36'cX_10 + 45'cX_11 + cY_2 + 3'cY_3 + 6'cY_4 + 10'cY_5 + 15'cY_6 + 21'cY_7 + 28'cY_8 + 36'cY_9 + 45'cY_10 + 55'cY_11 + -35'L_0 + -30'L_1 + -24'L_2 + -20'L_3 + -15'L_4 + -12'L_5 + -8'L_6 + -6'L_7 + -3'L_8 + -2'L_9 + L_12 + -2'L_15 + -3'L_16 + -6'L_17 + -8'L_18 + -12'L_19 + -15'L_20 + -20'L_21 + -24'L_22 + -1'R_1 + -1'R_2 + -1'R_4 + -1'R_5 + -3'R_6 + -4'R_7 + -7'R_8 + -9'R_9 + -13'R_10 + -16'R_11 + -21'R_12 + -25'R_13 + -31'R_14 + -36'R_15 + -43'R_16 + -49'R_17 + -57'R_18 + -64'R_19 + -73'R_20 + -81'R_21 + -91'R_22 + -100'R_23 = -585
invariant :P_0_9 + P_3_9 + P_4_8 + P_4_9 + P_4_10 + P_5_7 + P_5_8 + 2'P_5_9 + P_5_10 + P_6_6 + P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_5 + P_7_6 + 2'P_7_7 + 2'P_7_8 + 2'P_7_9 + P_7_10 + P_8_4 + P_8_5 + 2'P_8_6 + 2'P_8_7 + 2'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + 2'P_9_9 + P_9_10 + P_10_2 + P_10_3 + 2'P_10_4 + 2'P_10_5 + 2'P_10_6 + 2'P_10_7 + 2'P_10_8 + 2'P_10_9 + P_10_10 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + -1'cX_11 + -1'cY_10 + -2'cY_11 + 2'L_0 + L_1 + L_2 + L_22 + R_13 + R_14 + 2'R_15 + 2'R_16 + 2'R_17 + 2'R_18 + 2'R_19 + 2'R_20 + 2'R_21 + 2'R_22 + 3'R_23 = 22
invariant :P_10_0 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'P_11_10 + -1'cX_11 + L_21 + L_22 + R_23 = 2
invariant :P_0_0 + R_1 = 1
invariant :P_11_1 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + P_11_10 + cX_11 + -1'L_22 + -1'R_23 = -1
invariant :P_8_11 + P_9_10 + P_10_9 + P_11_8 + R_20 = 1
invariant :P_7_0 + -1'P_8_2 + -1'P_8_3 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_3 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_18 + L_19 + L_20 + L_21 + L_22 + R_20 + R_21 + R_22 + R_23 = 5
invariant :P_6_1 + P_6_2 + P_6_3 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_6_8 + P_6_9 + P_6_10 + P_7_2 + P_7_3 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_8_3 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_10_5 + P_10_6 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -6
invariant :P_0_4 + P_3_4 + P_4_3 + P_4_4 + P_4_5 + P_5_2 + P_5_3 + 2'P_5_4 + P_5_5 + P_5_6 + P_6_3 + P_6_4 + P_6_5 + -1'P_6_8 + -1'P_6_9 + -1'P_6_10 + P_7_4 + -1'P_7_7 + -1'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_6 + -1'P_8_7 + -2'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_5 + -1'P_9_6 + -2'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_10_5 + -2'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'cX_6 + -2'cX_7 + -3'cX_8 + -4'cX_9 + -5'cX_10 + -6'cX_11 + -1'cY_5 + -2'cY_6 + -3'cY_7 + -4'cY_8 + -5'cY_9 + -6'cY_10 + -7'cY_11 + 4'L_0 + 4'L_1 + 3'L_2 + 3'L_3 + 2'L_4 + 2'L_5 + L_6 + L_7 + L_17 + L_18 + 2'L_19 + 2'L_20 + 3'L_21 + 3'L_22 + R_8 + R_9 + 2'R_10 + 2'R_11 + 3'R_12 + 3'R_13 + 4'R_14 + 4'R_15 + 5'R_16 + 5'R_17 + 7'R_18 + 8'R_19 + 10'R_20 + 11'R_21 + 12'R_22 + 13'R_23 = 74
invariant :P_1_8 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_5 + -2'P_5_6 + -3'P_5_7 + -3'P_5_8 + -3'P_5_9 + -2'P_5_10 + -1'P_6_4 + -2'P_6_5 + -3'P_6_6 + -4'P_6_7 + -4'P_6_8 + -4'P_6_9 + -2'P_6_10 + -1'P_7_3 + -2'P_7_4 + -3'P_7_5 + -4'P_7_6 + -5'P_7_7 + -5'P_7_8 + -4'P_7_9 + -2'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -5'P_8_6 + -6'P_8_7 + -5'P_8_8 + -4'P_8_9 + -2'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -4'P_9_5 + -5'P_9_6 + -5'P_9_7 + -4'P_9_8 + -3'P_9_9 + -1'P_9_10 + -1'P_10_3 + -2'P_10_4 + -3'P_10_5 + -3'P_10_6 + -3'P_10_7 + -2'P_10_8 + -1'P_10_9 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + cX_9 + 3'cX_10 + 5'cX_11 + cY_8 + 2'cY_9 + 4'cY_10 + 6'cY_11 + -4'L_0 + -3'L_1 + -2'L_2 + -1'L_3 + -1'L_20 + -2'L_21 + -3'L_22 + -1'R_11 + -2'R_12 + -3'R_13 + -4'R_14 + -5'R_15 + -6'R_16 + -6'R_17 + -6'R_18 + -6'R_19 + -6'R_20 + -7'R_21 + -9'R_22 + -11'R_23 = -66
invariant :P_5_1 + P_5_2 + P_5_3 + P_5_4 + P_5_5 + P_5_6 + P_5_7 + P_5_8 + P_5_9 + P_5_10 + P_6_2 + P_6_3 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_6_8 + P_6_9 + P_7_3 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_9_5 + P_9_6 + -1'P_11_5 + -1'P_11_6 + cX_5 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_16 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -7
invariant :P_1_7 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -1'P_4_9 + -1'P_5_4 + -2'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_3 + -2'P_6_4 + -3'P_6_5 + -4'P_6_6 + -4'P_6_7 + -4'P_6_8 + -3'P_6_9 + -2'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -5'P_7_6 + -5'P_7_7 + -5'P_7_8 + -4'P_7_9 + -2'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -5'P_8_6 + -5'P_8_7 + -5'P_8_8 + -3'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -3'P_9_5 + -4'P_9_6 + -4'P_9_7 + -3'P_9_8 + -1'P_9_9 + -1'P_10_4 + -2'P_10_5 + -3'P_10_6 + -2'P_10_7 + -1'P_10_8 + -1'P_11_5 + -1'P_11_6 + cX_8 + 3'cX_9 + 5'cX_10 + 7'cX_11 + cY_7 + 2'cY_8 + 4'cY_9 + 6'cY_10 + 8'cY_11 + -5'L_0 + -4'L_1 + -3'L_2 + -2'L_3 + -1'L_4 + -1'L_19 + -2'L_20 + -3'L_21 + -4'L_22 + -1'R_10 + -2'R_11 + -3'R_12 + -4'R_13 + -5'R_14 + -6'R_15 + -7'R_16 + -8'R_17 + -8'R_18 + -8'R_19 + -9'R_20 + -11'R_21 + -13'R_22 + -15'R_23 = -88
invariant :P_1_9 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_7 + -2'P_4_8 + -2'P_4_9 + -2'P_4_10 + -1'P_5_6 + -2'P_5_7 + -3'P_5_8 + -3'P_5_9 + -2'P_5_10 + -1'P_6_5 + -2'P_6_6 + -3'P_6_7 + -4'P_6_8 + -3'P_6_9 + -2'P_6_10 + -1'P_7_4 + -2'P_7_5 + -3'P_7_6 + -4'P_7_7 + -4'P_7_8 + -3'P_7_9 + -2'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -4'P_8_6 + -4'P_8_7 + -4'P_8_8 + -3'P_8_9 + -2'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -4'P_9_5 + -4'P_9_6 + -4'P_9_7 + -4'P_9_8 + -3'P_9_9 + -2'P_9_10 + -1'P_10_2 + -2'P_10_3 + -3'P_10_4 + -3'P_10_5 + -3'P_10_6 + -3'P_10_7 + -3'P_10_8 + -2'P_10_9 + -1'P_10_10 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + cX_10 + 3'cX_11 + cY_9 + 2'cY_10 + 4'cY_11 + -3'L_0 + -2'L_1 + -1'L_2 + -1'L_21 + -2'L_22 + -1'R_12 + -2'R_13 + -3'R_14 + -4'R_15 + -4'R_16 + -4'R_17 + -4'R_18 + -4'R_19 + -4'R_20 + -4'R_21 + -5'R_22 + -7'R_23 = -44
invariant :P_2_2 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_3 + -1'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_3 + -2'P_5_4 + -2'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_3 + -2'P_6_4 + -3'P_6_5 + -3'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_3 + -2'P_7_4 + -3'P_7_5 + -4'P_7_6 + -3'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -3'P_8_6 + -3'P_8_7 + -2'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -2'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'cX_3 + -2'cX_4 + -3'cX_5 + -4'cX_6 + -5'cX_7 + -6'cX_8 + -7'cX_9 + -8'cX_10 + -9'cX_11 + -1'cY_3 + -2'cY_4 + -3'cY_5 + -4'cY_6 + -5'cY_7 + -6'cY_8 + -7'cY_9 + -8'cY_10 + -9'cY_11 + 5'L_0 + 4'L_1 + 4'L_2 + 3'L_3 + 3'L_4 + 2'L_5 + 2'L_6 + L_7 + L_8 + L_14 + L_15 + 2'L_16 + 2'L_17 + 3'L_18 + 3'L_19 + 4'L_20 + 4'L_21 + 5'L_22 + R_5 + R_6 + 2'R_7 + 2'R_8 + 3'R_9 + 3'R_10 + 4'R_11 + 4'R_12 + 5'R_13 + 5'R_14 + 7'R_15 + 8'R_16 + 10'R_17 + 11'R_18 + 13'R_19 + 14'R_20 + 16'R_21 + 17'R_22 + 18'R_23 = 104
invariant :P_10_1 + P_10_2 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + cX_10 + cX_11 + -1'L_21 + -1'L_22 + -1'R_22 + -1'R_23 = -2
invariant :cY_1 + 2'cY_2 + 3'cY_3 + 4'cY_4 + 5'cY_5 + 6'cY_6 + 7'cY_7 + 8'cY_8 + 9'cY_9 + 10'cY_10 + 11'cY_11 + -5'L_0 + -5'L_1 + -4'L_2 + -4'L_3 + -3'L_4 + -3'L_5 + -2'L_6 + -2'L_7 + -1'L_8 + -1'L_9 + L_12 + L_13 + 2'L_14 + 2'L_15 + 3'L_16 + 3'L_17 + 4'L_18 + 4'L_19 + 5'L_20 + 5'L_21 + 6'L_22 + -1'R_2 + -1'R_3 + -2'R_4 + -2'R_5 + -3'R_6 + -3'R_7 + -4'R_8 + -4'R_9 + -5'R_10 + -5'R_11 + -6'R_12 + -6'R_13 + -7'R_14 + -7'R_15 + -8'R_16 + -8'R_17 + -9'R_18 + -9'R_19 + -10'R_20 + -10'R_21 + -11'R_22 + -11'R_23 = -60
invariant :P_1_5 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_4_3 + -2'P_4_4 + -2'P_4_5 + -2'P_4_6 + -1'P_4_7 + -1'P_5_2 + -2'P_5_3 + -3'P_5_4 + -3'P_5_5 + -3'P_5_6 + -2'P_5_7 + -1'P_5_8 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -3'P_6_5 + -3'P_6_6 + -2'P_6_7 + -1'P_6_8 + P_6_10 + -1'P_7_3 + -2'P_7_4 + -2'P_7_5 + -2'P_7_6 + -1'P_7_7 + P_7_9 + P_7_10 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + P_8_8 + P_8_9 + P_9_7 + P_9_8 + P_10_5 + P_10_6 + P_10_7 + P_11_5 + P_11_6 + cX_6 + 3'cX_7 + 5'cX_8 + 7'cX_9 + 9'cX_10 + 11'cX_11 + cY_5 + 2'cY_6 + 4'cY_7 + 6'cY_8 + 8'cY_9 + 10'cY_10 + 12'cY_11 + -7'L_0 + -6'L_1 + -5'L_2 + -4'L_3 + -3'L_4 + -2'L_5 + -1'L_6 + -1'L_17 + -2'L_18 + -3'L_19 + -4'L_20 + -5'L_21 + -6'L_22 + -1'R_8 + -2'R_9 + -3'R_10 + -4'R_11 + -5'R_12 + -6'R_13 + -7'R_14 + -8'R_15 + -9'R_16 + -10'R_17 + -12'R_18 + -15'R_19 + -17'R_20 + -19'R_21 + -21'R_22 + -23'R_23 = -132
invariant :P_9_0 + -1'P_10_2 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'cX_10 + -1'cX_11 + L_20 + L_21 + L_22 + R_22 + R_23 = 3
invariant :P_4_1 + P_4_2 + P_4_3 + P_4_4 + P_4_5 + P_4_6 + P_4_7 + P_4_8 + P_4_9 + P_4_10 + P_5_2 + P_5_3 + P_5_4 + P_5_5 + P_5_6 + P_5_7 + P_5_8 + P_5_9 + P_6_3 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_6_8 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_8_5 + P_8_6 + -1'P_10_5 + -1'P_10_6 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + cX_4 + cX_5 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_15 + -1'L_16 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_16 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -8
invariant :P_2_4 + P_3_3 + P_3_4 + P_3_5 + P_4_2 + P_4_3 + 2'P_4_4 + P_4_5 + P_4_6 + P_5_3 + P_5_4 + P_5_5 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + P_6_4 + -1'P_6_7 + -1'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_6 + -1'P_7_7 + -2'P_7_8 + -1'P_7_9 + -1'P_7_10 + -1'P_8_5 + -1'P_8_6 + -2'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_9_5 + -2'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'cX_5 + -2'cX_6 + -3'cX_7 + -4'cX_8 + -5'cX_9 + -6'cX_10 + -7'cX_11 + -1'cY_5 + -2'cY_6 + -3'cY_7 + -4'cY_8 + -5'cY_9 + -6'cY_10 + -7'cY_11 + 4'L_0 + 3'L_1 + 3'L_2 + 2'L_3 + 2'L_4 + L_5 + L_6 + L_16 + L_17 + 2'L_18 + 2'L_19 + 3'L_20 + 3'L_21 + 4'L_22 + R_7 + R_8 + 2'R_9 + 2'R_10 + 3'R_11 + 3'R_12 + 4'R_13 + 4'R_14 + 5'R_15 + 5'R_16 + 7'R_17 + 8'R_18 + 10'R_19 + 11'R_20 + 12'R_21 + 13'R_22 + 14'R_23 = 81
invariant :P_2_7 + P_3_6 + P_3_7 + P_3_8 + P_4_5 + P_4_6 + 2'P_4_7 + P_4_8 + P_4_9 + P_5_4 + P_5_5 + 2'P_5_6 + 2'P_5_7 + 2'P_5_8 + P_5_9 + P_5_10 + P_6_3 + P_6_4 + 2'P_6_5 + 2'P_6_6 + 3'P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_2 + P_7_3 + 2'P_7_4 + 2'P_7_5 + 3'P_7_6 + 3'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 3'P_8_7 + 2'P_8_8 + P_8_9 + P_9_4 + P_9_5 + 2'P_9_6 + 2'P_9_7 + P_9_8 + P_10_5 + P_10_6 + P_10_7 + -1'cX_8 + -2'cX_9 + -3'cX_10 + -4'cX_11 + -1'cY_8 + -2'cY_9 + -3'cY_10 + -4'cY_11 + 2'L_0 + 2'L_1 + L_2 + L_3 + L_19 + L_20 + 2'L_21 + 2'L_22 + R_10 + R_11 + 2'R_12 + 2'R_13 + 3'R_14 + 3'R_15 + 4'R_16 + 4'R_17 + 4'R_18 + 4'R_19 + 5'R_20 + 6'R_21 + 7'R_22 + 8'R_23 = 46
invariant :P_6_11 + P_7_10 + P_8_9 + P_9_8 + P_10_7 + P_11_6 + R_18 = 1
invariant :P_2_6 + P_3_5 + P_3_6 + P_3_7 + P_4_4 + P_4_5 + 2'P_4_6 + P_4_7 + P_4_8 + P_5_3 + P_5_4 + 2'P_5_5 + 2'P_5_6 + 2'P_5_7 + P_5_8 + P_5_9 + P_6_2 + P_6_3 + 2'P_6_4 + 2'P_6_5 + 3'P_6_6 + 2'P_6_7 + 2'P_6_8 + P_6_9 + P_6_10 + P_7_3 + P_7_4 + 2'P_7_5 + 2'P_7_6 + 2'P_7_7 + P_7_8 + P_7_9 + P_8_4 + P_8_5 + 2'P_8_6 + P_8_7 + P_8_8 + P_9_5 + P_9_6 + P_9_7 + P_10_6 + -1'cX_7 + -2'cX_8 + -3'cX_9 + -4'cX_10 + -5'cX_11 + -1'cY_7 + -2'cY_8 + -3'cY_9 + -4'cY_10 + -5'cY_11 + 3'L_0 + 2'L_1 + 2'L_2 + L_3 + L_4 + L_18 + L_19 + 2'L_20 + 2'L_21 + 3'L_22 + R_9 + R_10 + 2'R_11 + 2'R_12 + 3'R_13 + 3'R_14 + 4'R_15 + 4'R_16 + 5'R_17 + 5'R_18 + 6'R_19 + 7'R_20 + 8'R_21 + 9'R_22 + 10'R_23 = 58
invariant :P_1_10 + -1'P_3_9 + -1'P_3_10 + -1'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_7 + -2'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_6 + -2'P_6_7 + -2'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_5 + -2'P_7_6 + -2'P_7_7 + -2'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_4 + -2'P_8_5 + -2'P_8_6 + -2'P_8_7 + -2'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -2'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_2 + -2'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -2'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + cX_11 + cY_10 + 2'cY_11 + -2'L_0 + -1'L_1 + -1'L_22 + -1'R_13 + -2'R_14 + -2'R_15 + -2'R_16 + -2'R_17 + -2'R_18 + -2'R_19 + -2'R_20 + -2'R_21 + -2'R_22 + -3'R_23 = -22
invariant :L_0 + L_2 + L_4 + L_6 + L_8 + L_10 + L_12 + L_14 + L_16 + L_18 + L_20 + L_22 + -1'R_2 + -1'R_4 + -1'R_6 + -1'R_8 + -1'R_10 + -1'R_12 + -1'R_14 + -1'R_16 + -1'R_18 + -1'R_20 + -1'R_22 = 1
invariant :P_2_5 + P_3_4 + P_3_5 + P_3_6 + P_4_3 + P_4_4 + 2'P_4_5 + P_4_6 + P_4_7 + P_5_2 + P_5_3 + 2'P_5_4 + 2'P_5_5 + 2'P_5_6 + P_5_7 + P_5_8 + P_6_3 + P_6_4 + 2'P_6_5 + P_6_6 + P_6_7 + -1'P_6_10 + P_7_4 + P_7_5 + P_7_6 + -1'P_7_9 + P_8_5 + -1'P_8_8 + -1'P_9_7 + -1'P_10_6 + -1'cX_6 + -2'cX_7 + -3'cX_8 + -4'cX_9 + -5'cX_10 + -6'cX_11 + -1'cY_6 + -2'cY_7 + -3'cY_8 + -4'cY_9 + -5'cY_10 + -6'cY_11 + 3'L_0 + 3'L_1 + 2'L_2 + 2'L_3 + L_4 + L_5 + L_17 + L_18 + 2'L_19 + 2'L_20 + 3'L_21 + 3'L_22 + R_8 + R_9 + 2'R_10 + 2'R_11 + 3'R_12 + 3'R_13 + 4'R_14 + 4'R_15 + 5'R_16 + 5'R_17 + 7'R_18 + 8'R_19 + 9'R_20 + 10'R_21 + 11'R_22 + 12'R_23 = 69
invariant :P_2_8 + P_3_7 + P_3_8 + P_3_9 + P_4_6 + P_4_7 + 2'P_4_8 + P_4_9 + P_4_10 + P_5_5 + P_5_6 + 2'P_5_7 + 2'P_5_8 + 2'P_5_9 + P_5_10 + P_6_4 + P_6_5 + 2'P_6_6 + 2'P_6_7 + 3'P_6_8 + 2'P_6_9 + P_6_10 + P_7_3 + P_7_4 + 2'P_7_5 + 2'P_7_6 + 3'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_2 + P_8_3 + 2'P_8_4 + 2'P_8_5 + 3'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + P_9_9 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + -1'cX_9 + -2'cX_10 + -3'cX_11 + -1'cY_9 + -2'cY_10 + -3'cY_11 + 2'L_0 + L_1 + L_2 + L_20 + L_21 + 2'L_22 + R_11 + R_12 + 2'R_13 + 2'R_14 + 3'R_15 + 3'R_16 + 3'R_17 + 3'R_18 + 3'R_19 + 3'R_20 + 4'R_21 + 5'R_22 + 6'R_23 = 35
invariant :P_2_0 + -1'P_3_2 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_3 + -1'P_4_4 + -1'P_4_5 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_5_4 + -1'P_5_5 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_7_6 + P_8_6 + P_9_5 + P_9_6 + P_9_7 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + -1'cX_3 + -1'cX_4 + -1'cX_5 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_13 + L_14 + L_15 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_15 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 10
invariant :P_0_7 + P_3_7 + P_4_6 + P_4_7 + P_4_8 + P_5_5 + P_5_6 + 2'P_5_7 + P_5_8 + P_5_9 + P_6_4 + P_6_5 + 2'P_6_6 + 2'P_6_7 + 2'P_6_8 + P_6_9 + P_6_10 + P_7_3 + P_7_4 + 2'P_7_5 + 2'P_7_6 + 3'P_7_7 + 2'P_7_8 + 2'P_7_9 + P_7_10 + P_8_2 + P_8_3 + 2'P_8_4 + 2'P_8_5 + 3'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + P_9_4 + 2'P_9_5 + 2'P_9_6 + 3'P_9_7 + 2'P_9_8 + P_9_9 + P_10_4 + P_10_5 + 2'P_10_6 + 2'P_10_7 + P_10_8 + P_11_5 + P_11_6 + P_11_7 + -1'cX_9 + -2'cX_10 + -3'cX_11 + -1'cY_8 + -2'cY_9 + -3'cY_10 + -4'cY_11 + 3'L_0 + 2'L_1 + 2'L_2 + L_3 + L_4 + L_20 + L_21 + 2'L_22 + R_11 + R_12 + 2'R_13 + 2'R_14 + 3'R_15 + 3'R_16 + 4'R_17 + 4'R_18 + 4'R_19 + 4'R_20 + 5'R_21 + 6'R_22 + 7'R_23 = 43
invariant :P_2_11 + P_3_10 + P_4_9 + P_5_8 + P_6_7 + P_7_6 + P_8_5 + P_9_4 + P_10_3 + P_11_2 + R_14 = 1
invariant :P_0_8 + P_3_8 + P_4_7 + P_4_8 + P_4_9 + P_5_6 + P_5_7 + 2'P_5_8 + P_5_9 + P_5_10 + P_6_5 + P_6_6 + 2'P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_4 + P_7_5 + 2'P_7_6 + 2'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_2 + P_9_3 + 2'P_9_4 + 2'P_9_5 + 3'P_9_6 + 3'P_9_7 + 3'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + P_10_4 + 2'P_10_5 + 2'P_10_6 + 2'P_10_7 + 2'P_10_8 + P_10_9 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + -1'cX_10 + -2'cX_11 + -1'cY_9 + -2'cY_10 + -3'cY_11 + 2'L_0 + 2'L_1 + L_2 + L_3 + L_21 + L_22 + R_12 + R_13 + 2'R_14 + 2'R_15 + 3'R_16 + 3'R_17 + 3'R_18 + 3'R_19 + 3'R_20 + 3'R_21 + 4'R_22 + 5'R_23 = 32
invariant :P_0_10 + P_3_10 + P_4_9 + P_4_10 + P_5_8 + P_5_9 + P_5_10 + P_6_7 + P_6_8 + P_6_9 + P_6_10 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_7_10 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_8_10 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_9_10 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + P_11_10 + -1'cY_11 + L_0 + L_1 + R_14 + R_15 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 11
invariant :P_3_1 + P_3_2 + P_3_3 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_2 + P_4_3 + P_4_4 + P_4_5 + P_4_6 + P_4_7 + P_4_8 + P_4_9 + P_5_3 + P_5_4 + P_5_5 + P_5_6 + P_5_7 + P_5_8 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_7_5 + P_7_6 + -1'P_9_5 + -1'P_9_6 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + cX_3 + cX_4 + cX_5 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_14 + -1'L_15 + -1'L_16 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_15 + -1'R_16 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -9
invariant :P_2_10 + P_3_9 + P_3_10 + P_4_8 + P_4_9 + P_4_10 + P_5_7 + P_5_8 + P_5_9 + P_5_10 + P_6_6 + P_6_7 + P_6_8 + P_6_9 + P_6_10 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_7_10 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_8_10 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_9_10 + P_10_2 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + -1'cX_11 + -1'cY_11 + L_0 + L_22 + R_13 + R_14 + R_15 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + 2'R_23 = 12
invariant :P_11_0 + L_22 = 1
invariant :P_11_11 + R_23 = 1
invariant :P_1_11 + -1'P_3_10 + -1'P_4_9 + -1'P_4_10 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + -1'P_6_7 + -1'P_6_8 + -1'P_6_9 + -1'P_6_10 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_7_9 + -1'P_7_10 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'P_11_10 + cY_11 + -1'L_0 + -1'R_14 + -1'R_15 + -1'R_16 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -10
invariant :P_0_6 + P_3_6 + P_4_5 + P_4_6 + P_4_7 + P_5_4 + P_5_5 + 2'P_5_6 + P_5_7 + P_5_8 + P_6_3 + P_6_4 + 2'P_6_5 + 2'P_6_6 + 2'P_6_7 + P_6_8 + P_6_9 + P_7_2 + P_7_3 + 2'P_7_4 + 2'P_7_5 + 3'P_7_6 + 2'P_7_7 + 2'P_7_8 + P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 2'P_8_7 + P_8_8 + P_8_9 + P_9_4 + P_9_5 + 2'P_9_6 + P_9_7 + P_9_8 + P_10_5 + P_10_6 + P_10_7 + P_11_6 + -1'cX_8 + -2'cX_9 + -3'cX_10 + -4'cX_11 + -1'cY_7 + -2'cY_8 + -3'cY_9 + -4'cY_10 + -5'cY_11 + 3'L_0 + 3'L_1 + 2'L_2 + 2'L_3 + L_4 + L_5 + L_19 + L_20 + 2'L_21 + 2'L_22 + R_10 + R_11 + 2'R_12 + 2'R_13 + 3'R_14 + 3'R_15 + 4'R_16 + 4'R_17 + 5'R_18 + 5'R_19 + 6'R_20 + 7'R_21 + 8'R_22 + 9'R_23 = 53
invariant :P_4_0 + -1'P_5_2 + -1'P_5_3 + -1'P_5_4 + -1'P_5_5 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + -1'P_6_3 + -1'P_6_4 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_6_8 + -1'P_6_9 + -1'P_7_4 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_9_6 + P_10_6 + P_11_5 + P_11_6 + P_11_7 + -1'cX_5 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_15 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 8
invariant :P_3_11 + P_4_10 + P_5_9 + P_6_8 + P_7_7 + P_8_6 + P_9_5 + P_10_4 + P_11_3 + R_15 = 1
invariant :cX_2 + 3'cX_3 + 6'cX_4 + 10'cX_5 + 15'cX_6 + 21'cX_7 + 28'cX_8 + 36'cX_9 + 45'cX_10 + 55'cX_11 + cY_2 + 3'cY_3 + 6'cY_4 + 10'cY_5 + 15'cY_6 + 21'cY_7 + 28'cY_8 + 36'cY_9 + 45'cY_10 + 55'cY_11 + -30'L_0 + -25'L_1 + -20'L_2 + -16'L_3 + -12'L_4 + -9'L_5 + -6'L_6 + -4'L_7 + -2'L_8 + -1'L_9 + -1'L_13 + -2'L_14 + -4'L_15 + -6'L_16 + -9'L_17 + -12'L_18 + -16'L_19 + -20'L_20 + -25'L_21 + -30'L_22 + -1'R_4 + -2'R_5 + -4'R_6 + -6'R_7 + -9'R_8 + -12'R_9 + -16'R_10 + -20'R_11 + -25'R_12 + -30'R_13 + -36'R_14 + -42'R_15 + -49'R_16 + -56'R_17 + -64'R_18 + -72'R_19 + -81'R_20 + -90'R_21 + -100'R_22 + -110'R_23 = -635
invariant :P_7_1 + P_7_2 + P_7_3 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_7_10 + P_8_2 + P_8_3 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_11_5 + P_11_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -5
invariant :P_8_0 + -1'P_9_2 + -1'P_9_3 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_19 + L_20 + L_21 + L_22 + R_21 + R_22 + R_23 = 4
invariant :P_10_11 + P_11_10 + R_22 = 1
invariant :P_2_9 + P_3_8 + P_3_9 + P_3_10 + P_4_7 + P_4_8 + 2'P_4_9 + P_4_10 + P_5_6 + P_5_7 + 2'P_5_8 + 2'P_5_9 + P_5_10 + P_6_5 + P_6_6 + 2'P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_4 + P_7_5 + 2'P_7_6 + 2'P_7_7 + 2'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 2'P_8_7 + 2'P_8_8 + 2'P_8_9 + P_8_10 + P_9_2 + P_9_3 + 2'P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + -1'cX_10 + -2'cX_11 + -1'cY_10 + -2'cY_11 + L_0 + L_1 + L_21 + L_22 + R_12 + R_13 + 2'R_14 + 2'R_15 + 2'R_16 + 2'R_17 + 2'R_18 + 2'R_19 + 2'R_20 + 2'R_21 + 3'R_22 + 4'R_23 = 23
invariant :cX_1 + -3'cX_3 + -8'cX_4 + -15'cX_5 + -24'cX_6 + -35'cX_7 + -48'cX_8 + -63'cX_9 + -80'cX_10 + -99'cX_11 + -2'cY_2 + -6'cY_3 + -12'cY_4 + -20'cY_5 + -30'cY_6 + -42'cY_7 + -56'cY_8 + -72'cY_9 + -90'cY_10 + -110'cY_11 + 65'L_0 + 55'L_1 + 44'L_2 + 36'L_3 + 27'L_4 + 21'L_5 + 14'L_6 + 10'L_7 + 5'L_8 + 3'L_9 + -1'L_12 + L_13 + 2'L_14 + 6'L_15 + 9'L_16 + 15'L_17 + 20'L_18 + 28'L_19 + 35'L_20 + 45'L_21 + 54'L_22 + -1'R_3 + R_4 + 2'R_5 + 6'R_6 + 9'R_7 + 15'R_8 + 20'R_9 + 28'R_10 + 35'R_11 + 45'R_12 + 54'R_13 + 66'R_14 + 77'R_15 + 91'R_16 + 104'R_17 + 120'R_18 + 135'R_19 + 153'R_20 + 170'R_21 + 190'R_22 + 209'R_23 = 1209
invariant :P_0_1 + -1'P_3_2 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_2 + -2'P_4_3 + -2'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_2 + -2'P_5_3 + -3'P_5_4 + -3'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -4'P_6_5 + -4'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -5'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -4'P_8_6 + -4'P_8_7 + -3'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -3'P_9_5 + -3'P_9_6 + -3'P_9_7 + -3'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_2 + -2'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -2'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'P_11_10 + -1'cX_3 + -2'cX_4 + -3'cX_5 + -4'cX_6 + -5'cX_7 + -6'cX_8 + -7'cX_9 + -8'cX_10 + -9'cX_11 + -1'cY_2 + -2'cY_3 + -3'cY_4 + -4'cY_5 + -5'cY_6 + -6'cY_7 + -7'cY_8 + -8'cY_9 + -9'cY_10 + -10'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + -1'L_12 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_2 + R_4 + R_5 + 2'R_6 + 2'R_7 + 3'R_8 + 3'R_9 + 4'R_10 + 4'R_11 + 5'R_12 + 5'R_13 + 6'R_14 + 7'R_15 + 9'R_16 + 10'R_17 + 12'R_18 + 13'R_19 + 15'R_20 + 16'R_21 + 18'R_22 + 19'R_23 = 105
invariant :P_6_0 + -1'P_7_2 + -1'P_7_3 + -1'P_7_4 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_7_9 + -1'P_7_10 + -1'P_8_3 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_11_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_19 + R_20 + R_21 + R_22 + R_23 = 6
invariant :P_1_0 + P_3_2 + P_3_3 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_2 + 2'P_4_3 + 2'P_4_4 + 2'P_4_5 + 2'P_4_6 + 2'P_4_7 + 2'P_4_8 + 2'P_4_9 + P_4_10 + P_5_2 + 2'P_5_3 + 3'P_5_4 + 3'P_5_5 + 3'P_5_6 + 3'P_5_7 + 3'P_5_8 + 2'P_5_9 + P_5_10 + P_6_2 + 2'P_6_3 + 3'P_6_4 + 4'P_6_5 + 4'P_6_6 + 4'P_6_7 + 3'P_6_8 + 2'P_6_9 + P_6_10 + P_7_2 + 2'P_7_3 + 3'P_7_4 + 4'P_7_5 + 5'P_7_6 + 4'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_2 + 2'P_8_3 + 3'P_8_4 + 4'P_8_5 + 4'P_8_6 + 4'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_2 + 2'P_9_3 + 3'P_9_4 + 3'P_9_5 + 3'P_9_6 + 3'P_9_7 + 3'P_9_8 + 2'P_9_9 + P_9_10 + P_10_2 + 2'P_10_3 + 2'P_10_4 + 2'P_10_5 + 2'P_10_6 + 2'P_10_7 + 2'P_10_8 + 2'P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + P_11_10 + cX_3 + 2'cX_4 + 3'cX_5 + 4'cX_6 + 5'cX_7 + 6'cX_8 + 7'cX_9 + 8'cX_10 + 9'cX_11 + cY_2 + 2'cY_3 + 3'cY_4 + 4'cY_5 + 5'cY_6 + 6'cY_7 + 7'cY_8 + 8'cY_9 + 9'cY_10 + 10'cY_11 + -5'L_0 + -5'L_1 + -4'L_2 + -4'L_3 + -3'L_4 + -3'L_5 + -2'L_6 + -2'L_7 + -1'L_8 + -1'L_9 + L_12 + -1'L_15 + -1'L_16 + -2'L_17 + -2'L_18 + -3'L_19 + -3'L_20 + -4'L_21 + -4'L_22 + -1'R_4 + -1'R_5 + -2'R_6 + -2'R_7 + -3'R_8 + -3'R_9 + -4'R_10 + -4'R_11 + -5'R_12 + -5'R_13 + -6'R_14 + -7'R_15 + -9'R_16 + -10'R_17 + -12'R_18 + -13'R_19 + -15'R_20 + -16'R_21 + -18'R_22 + -19'R_23 = -104
invariant :P_7_11 + P_8_10 + P_9_9 + P_10_8 + P_11_7 + R_19 = 1
invariant :P_4_11 + P_5_10 + P_6_9 + P_7_8 + P_8_7 + P_9_6 + P_10_5 + P_11_4 + R_16 = 1
invariant :P_0_2 + P_3_2 + -1'P_4_4 + -1'P_4_5 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_4_10 + -1'P_5_3 + -1'P_5_4 + -2'P_5_5 + -2'P_5_6 + -2'P_5_7 + -2'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_3 + -2'P_6_4 + -2'P_6_5 + -3'P_6_6 + -3'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_3 + -2'P_7_4 + -3'P_7_5 + -3'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -4'P_8_6 + -3'P_8_7 + -3'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -3'P_9_5 + -3'P_9_6 + -3'P_9_7 + -2'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'cX_4 + -2'cX_5 + -3'cX_6 + -4'cX_7 + -5'cX_8 + -6'cX_9 + -7'cX_10 + -8'cX_11 + -1'cY_3 + -2'cY_4 + -3'cY_5 + -4'cY_6 + -5'cY_7 + -6'cY_8 + -7'cY_9 + -8'cY_10 + -9'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_6 + R_7 + 2'R_8 + 2'R_9 + 3'R_10 + 3'R_11 + 4'R_12 + 4'R_13 + 5'R_14 + 5'R_15 + 7'R_16 + 8'R_17 + 10'R_18 + 11'R_19 + 13'R_20 + 14'R_21 + 16'R_22 + 17'R_23 = 95
invariant :P_5_0 + -1'P_6_2 + -1'P_6_3 + -1'P_6_4 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_6_8 + -1'P_6_9 + -1'P_6_10 + -1'P_7_3 + -1'P_7_4 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_7_9 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_10_6 + P_11_6 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 7
invariant :P_0_5 + P_3_5 + P_4_4 + P_4_5 + P_4_6 + P_5_3 + P_5_4 + 2'P_5_5 + P_5_6 + P_5_7 + P_6_2 + P_6_3 + 2'P_6_4 + 2'P_6_5 + 2'P_6_6 + P_6_7 + P_6_8 + P_7_3 + P_7_4 + 2'P_7_5 + P_7_6 + P_7_7 + -1'P_7_10 + P_8_4 + P_8_5 + P_8_6 + -1'P_8_9 + P_9_5 + -1'P_9_8 + -1'P_10_7 + -1'P_11_6 + -1'cX_7 + -2'cX_8 + -3'cX_9 + -4'cX_10 + -5'cX_11 + -1'cY_6 + -2'cY_7 + -3'cY_8 + -4'cY_9 + -5'cY_10 + -6'cY_11 + 4'L_0 + 3'L_1 + 3'L_2 + 2'L_3 + 2'L_4 + L_5 + L_6 + L_18 + L_19 + 2'L_20 + 2'L_21 + 3'L_22 + R_9 + R_10 + 2'R_11 + 2'R_12 + 3'R_13 + 3'R_14 + 4'R_15 + 4'R_16 + 5'R_17 + 5'R_18 + 7'R_19 + 8'R_20 + 9'R_21 + 10'R_22 + 11'R_23 = 64
invariant :P_0_11 + L_0 = 1
invariant :P_2_1 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_2 + -1'P_4_3 + -2'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_2 + -2'P_5_3 + -2'P_5_4 + -3'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -3'P_6_5 + -4'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -4'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -4'P_8_6 + -3'P_8_7 + -3'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -3'P_9_5 + -3'P_9_6 + -3'P_9_7 + -2'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_2 + -2'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'cX_3 + -2'cX_4 + -3'cX_5 + -4'cX_6 + -5'cX_7 + -6'cX_8 + -7'cX_9 + -8'cX_10 + -9'cX_11 + -1'cY_2 + -2'cY_3 + -3'cY_4 + -4'cY_5 + -5'cY_6 + -6'cY_7 + -7'cY_8 + -8'cY_9 + -9'cY_10 + -10'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_4 + R_5 + 2'R_6 + 2'R_7 + 3'R_8 + 3'R_9 + 4'R_10 + 4'R_11 + 5'R_12 + 5'R_13 + 6'R_14 + 7'R_15 + 9'R_16 + 10'R_17 + 12'R_18 + 13'R_19 + 15'R_20 + 16'R_21 + 18'R_22 + 19'R_23 = 105
invariant :cY_0 + -1'cY_2 + -2'cY_3 + -3'cY_4 + -4'cY_5 + -5'cY_6 + -6'cY_7 + -7'cY_8 + -8'cY_9 + -9'cY_10 + -10'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + -1'L_12 + -1'L_13 + -2'L_14 + -2'L_15 + -3'L_16 + -3'L_17 + -4'L_18 + -4'L_19 + -5'L_20 + -5'L_21 + -6'L_22 + -1'R_1 + R_4 + R_5 + 2'R_6 + 2'R_7 + 3'R_8 + 3'R_9 + 4'R_10 + 4'R_11 + 5'R_12 + 5'R_13 + 6'R_14 + 6'R_15 + 7'R_16 + 7'R_17 + 8'R_18 + 8'R_19 + 9'R_20 + 9'R_21 + 10'R_22 + 10'R_23 = 49
invariant :P_1_3 + -1'P_3_2 + -1'P_3_3 + -1'P_3_4 + -1'P_4_2 + -1'P_4_3 + -1'P_4_4 + P_4_6 + P_4_7 + P_4_8 + P_4_9 + P_4_10 + P_5_5 + 2'P_5_6 + 3'P_5_7 + 3'P_5_8 + 3'P_5_9 + 2'P_5_10 + P_6_3 + P_6_4 + 2'P_6_5 + 3'P_6_6 + 4'P_6_7 + 5'P_6_8 + 4'P_6_9 + 2'P_6_10 + P_7_3 + 2'P_7_4 + 3'P_7_5 + 4'P_7_6 + 5'P_7_7 + 5'P_7_8 + 4'P_7_9 + 2'P_7_10 + P_8_3 + 2'P_8_4 + 4'P_8_5 + 5'P_8_6 + 5'P_8_7 + 4'P_8_8 + 3'P_8_9 + 2'P_8_10 + P_9_3 + 2'P_9_4 + 4'P_9_5 + 5'P_9_6 + 4'P_9_7 + 3'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + 2'P_10_4 + 3'P_10_5 + 3'P_10_6 + 3'P_10_7 + 2'P_10_8 + P_10_9 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + cX_4 + 3'cX_5 + 5'cX_6 + 7'cX_7 + 9'cX_8 + 11'cX_9 + 13'cX_10 + 15'cX_11 + cY_3 + 2'cY_4 + 4'cY_5 + 6'cY_6 + 8'cY_7 + 10'cY_8 + 12'cY_9 + 14'cY_10 + 16'cY_11 + -9'L_0 + -8'L_1 + -7'L_2 + -6'L_3 + -5'L_4 + -4'L_5 + -3'L_6 + -2'L_7 + -1'L_8 + -1'L_15 + -2'L_16 + -3'L_17 + -4'L_18 + -5'L_19 + -6'L_20 + -7'L_21 + -8'L_22 + -1'R_6 + -2'R_7 + -3'R_8 + -4'R_9 + -5'R_10 + -6'R_11 + -7'R_12 + -8'R_13 + -9'R_14 + -10'R_15 + -12'R_16 + -15'R_17 + -18'R_18 + -21'R_19 + -24'R_20 + -27'R_21 + -29'R_22 + -31'R_23 = -176
invariant :P_9_11 + P_10_10 + P_11_9 + R_21 = 1
invariant :P_3_0 + -1'P_4_2 + -1'P_4_3 + -1'P_4_4 + -1'P_4_5 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_4_10 + -1'P_5_3 + -1'P_5_4 + -1'P_5_5 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_5_9 + -1'P_6_4 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_6_8 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_8_6 + P_9_6 + P_10_5 + P_10_6 + P_10_7 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + -1'cX_4 + -1'cX_5 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_14 + L_15 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 9
invariant :P_1_1 + P_3_3 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_3 + 2'P_4_4 + 2'P_4_5 + 2'P_4_6 + 2'P_4_7 + 2'P_4_8 + 2'P_4_9 + P_4_10 + P_5_3 + 2'P_5_4 + 3'P_5_5 + 3'P_5_6 + 3'P_5_7 + 3'P_5_8 + 2'P_5_9 + P_5_10 + P_6_3 + 2'P_6_4 + 3'P_6_5 + 4'P_6_6 + 4'P_6_7 + 3'P_6_8 + 2'P_6_9 + P_6_10 + P_7_3 + 2'P_7_4 + 3'P_7_5 + 4'P_7_6 + 4'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + 2'P_8_4 + 3'P_8_5 + 3'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + 2'P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + cX_3 + 2'cX_4 + 3'cX_5 + 4'cX_6 + 5'cX_7 + 6'cX_8 + 7'cX_9 + 8'cX_10 + 9'cX_11 + cY_3 + 2'cY_4 + 3'cY_5 + 4'cY_6 + 5'cY_7 + 6'cY_8 + 7'cY_9 + 8'cY_10 + 9'cY_11 + -5'L_0 + -5'L_1 + -4'L_2 + -4'L_3 + -3'L_4 + -3'L_5 + -2'L_6 + -2'L_7 + -1'L_8 + -1'L_9 + -1'L_13 + -1'L_14 + -2'L_15 + -2'L_16 + -3'L_17 + -3'L_18 + -4'L_19 + -4'L_20 + -5'L_21 + -5'L_22 + R_3 + -1'R_6 + -1'R_7 + -2'R_8 + -2'R_9 + -3'R_10 + -3'R_11 + -4'R_12 + -4'R_13 + -5'R_14 + -6'R_15 + -8'R_16 + -9'R_17 + -11'R_18 + -12'R_19 + -14'R_20 + -15'R_21 + -17'R_22 + -18'R_23 = -104
invariant :P_0_3 + P_3_3 + P_4_2 + P_4_3 + P_4_4 + P_5_3 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + -1'P_6_5 + -1'P_6_6 + -2'P_6_7 + -2'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_4 + -1'P_7_5 + -2'P_7_6 + -2'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_4 + -2'P_8_5 + -2'P_8_6 + -3'P_8_7 + -2'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_4 + -2'P_9_5 + -3'P_9_6 + -2'P_9_7 + -2'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'cX_5 + -2'cX_6 + -3'cX_7 + -4'cX_8 + -5'cX_9 + -6'cX_10 + -7'cX_11 + -1'cY_4 + -2'cY_5 + -3'cY_6 + -4'cY_7 + -5'cY_8 + -6'cY_9 + -7'cY_10 + -8'cY_11 + 5'L_0 + 4'L_1 + 4'L_2 + 3'L_3 + 3'L_4 + 2'L_5 + 2'L_6 + L_7 + L_8 + L_16 + L_17 + 2'L_18 + 2'L_19 + 3'L_20 + 3'L_21 + 4'L_22 + R_7 + R_8 + 2'R_9 + 2'R_10 + 3'R_11 + 3'R_12 + 4'R_13 + 4'R_14 + 5'R_15 + 5'R_16 + 7'R_17 + 8'R_18 + 10'R_19 + 11'R_20 + 13'R_21 + 14'R_22 + 15'R_23 = 85
invariant :L_1 + L_3 + L_5 + L_7 + L_9 + L_11 + L_13 + L_15 + L_17 + L_19 + L_21 + -1'R_1 + -1'R_3 + -1'R_5 + -1'R_7 + -1'R_9 + -1'R_11 + -1'R_13 + -1'R_15 + -1'R_17 + -1'R_19 + -1'R_21 + -1'R_23 = -1
invariant :P_9_1 + P_9_2 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_9_10 + P_10_2 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + cX_9 + cX_10 + cX_11 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_21 + -1'R_22 + -1'R_23 = -3
invariant :P_1_4 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_4_2 + -2'P_4_3 + -2'P_4_4 + -2'P_4_5 + -1'P_4_6 + -1'P_5_2 + -2'P_5_3 + -2'P_5_4 + -2'P_5_5 + -1'P_5_6 + P_5_8 + P_5_9 + P_5_10 + -1'P_6_3 + -1'P_6_4 + -1'P_6_5 + P_6_7 + 2'P_6_8 + 3'P_6_9 + 2'P_6_10 + P_7_6 + 2'P_7_7 + 3'P_7_8 + 3'P_7_9 + 2'P_7_10 + P_8_4 + P_8_5 + 2'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_4 + 2'P_9_5 + 3'P_9_6 + 3'P_9_7 + 2'P_9_8 + P_9_9 + P_10_4 + 2'P_10_5 + 3'P_10_6 + 2'P_10_7 + P_10_8 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + cX_5 + 3'cX_6 + 5'cX_7 + 7'cX_8 + 9'cX_9 + 11'cX_10 + 13'cX_11 + cY_4 + 2'cY_5 + 4'cY_6 + 6'cY_7 + 8'cY_8 + 10'cY_9 + 12'cY_10 + 14'cY_11 + -8'L_0 + -7'L_1 + -6'L_2 + -5'L_3 + -4'L_4 + -3'L_5 + -2'L_6 + -1'L_7 + -1'L_16 + -2'L_17 + -3'L_18 + -4'L_19 + -5'L_20 + -6'L_21 + -7'L_22 + -1'R_7 + -2'R_8 + -3'R_9 + -4'R_10 + -5'R_11 + -6'R_12 + -7'R_13 + -8'R_14 + -9'R_15 + -10'R_16 + -12'R_17 + -15'R_18 + -18'R_19 + -21'R_20 + -23'R_21 + -25'R_22 + -27'R_23 = -154
invariant :P_1_6 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -1'P_4_8 + -1'P_5_3 + -2'P_5_4 + -3'P_5_5 + -3'P_5_6 + -3'P_5_7 + -2'P_5_8 + -1'P_5_9 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -4'P_6_5 + -4'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -4'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -3'P_8_6 + -3'P_8_7 + -2'P_8_8 + -1'P_8_9 + -1'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -1'P_9_8 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + cX_7 + 3'cX_8 + 5'cX_9 + 7'cX_10 + 9'cX_11 + cY_6 + 2'cY_7 + 4'cY_8 + 6'cY_9 + 8'cY_10 + 10'cY_11 + -6'L_0 + -5'L_1 + -4'L_2 + -3'L_3 + -2'L_4 + -1'L_5 + -1'L_18 + -2'L_19 + -3'L_20 + -4'L_21 + -5'L_22 + -1'R_9 + -2'R_10 + -3'R_11 + -4'R_12 + -5'R_13 + -6'R_14 + -7'R_15 + -8'R_16 + -9'R_17 + -10'R_18 + -11'R_19 + -13'R_20 + -15'R_21 + -17'R_22 + -19'R_23 = -110
invariant :P_2_3 + P_3_2 + P_3_3 + P_3_4 + P_4_3 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_4_10 + -1'P_5_5 + -1'P_5_6 + -2'P_5_7 + -2'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_4 + -1'P_6_5 + -2'P_6_6 + -2'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_4 + -2'P_7_5 + -2'P_7_6 + -3'P_7_7 + -2'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_4 + -2'P_8_5 + -3'P_8_6 + -2'P_8_7 + -2'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'cX_4 + -2'cX_5 + -3'cX_6 + -4'cX_7 + -5'cX_8 + -6'cX_9 + -7'cX_10 + -8'cX_11 + -1'cY_4 + -2'cY_5 + -3'cY_6 + -4'cY_7 + -5'cY_8 + -6'cY_9 + -7'cY_10 + -8'cY_11 + 4'L_0 + 4'L_1 + 3'L_2 + 3'L_3 + 2'L_4 + 2'L_5 + L_6 + L_7 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_6 + R_7 + 2'R_8 + 2'R_9 + 3'R_10 + 3'R_11 + 4'R_12 + 4'R_13 + 5'R_14 + 5'R_15 + 7'R_16 + 8'R_17 + 10'R_18 + 11'R_19 + 13'R_20 + 14'R_21 + 15'R_22 + 16'R_23 = 92
invariant :P_8_1 + P_8_2 + P_8_3 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_8_10 + P_9_2 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -4
invariant :P_5_11 + P_6_10 + P_7_9 + P_8_8 + P_9_7 + P_10_6 + P_11_5 + R_17 = 1
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
// Phase 1: matrix 144 rows 214 cols
invariant :P_1_2 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_2 + P_4_3 + 2'P_4_4 + 3'P_4_5 + 3'P_4_6 + 3'P_4_7 + 3'P_4_8 + 3'P_4_9 + 2'P_4_10 + P_5_2 + 2'P_5_3 + 3'P_5_4 + 4'P_5_5 + 5'P_5_6 + 5'P_5_7 + 5'P_5_8 + 4'P_5_9 + 2'P_5_10 + P_6_2 + 2'P_6_3 + 4'P_6_4 + 5'P_6_5 + 6'P_6_6 + 7'P_6_7 + 6'P_6_8 + 4'P_6_9 + 2'P_6_10 + P_7_2 + 2'P_7_3 + 4'P_7_4 + 6'P_7_5 + 7'P_7_6 + 7'P_7_7 + 6'P_7_8 + 4'P_7_9 + 2'P_7_10 + P_8_2 + 2'P_8_3 + 4'P_8_4 + 6'P_8_5 + 7'P_8_6 + 6'P_8_7 + 5'P_8_8 + 4'P_8_9 + 2'P_8_10 + P_9_2 + 2'P_9_3 + 4'P_9_4 + 5'P_9_5 + 5'P_9_6 + 5'P_9_7 + 4'P_9_8 + 3'P_9_9 + 2'P_9_10 + P_10_2 + 2'P_10_3 + 3'P_10_4 + 3'P_10_5 + 3'P_10_6 + 3'P_10_7 + 3'P_10_8 + 2'P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + cX_3 + 3'cX_4 + 5'cX_5 + 7'cX_6 + 9'cX_7 + 11'cX_8 + 13'cX_9 + 15'cX_10 + 17'cX_11 + cY_2 + 2'cY_3 + 4'cY_4 + 6'cY_5 + 8'cY_6 + 10'cY_7 + 12'cY_8 + 14'cY_9 + 16'cY_10 + 18'cY_11 + -10'L_0 + -9'L_1 + -8'L_2 + -7'L_3 + -6'L_4 + -5'L_5 + -4'L_6 + -3'L_7 + -2'L_8 + -1'L_9 + -1'L_14 + -2'L_15 + -3'L_16 + -4'L_17 + -5'L_18 + -6'L_19 + -7'L_20 + -8'L_21 + -9'L_22 + -1'R_5 + -2'R_6 + -3'R_7 + -4'R_8 + -5'R_9 + -6'R_10 + -7'R_11 + -8'R_12 + -9'R_13 + -10'R_14 + -12'R_15 + -15'R_16 + -18'R_17 + -21'R_18 + -24'R_19 + -27'R_20 + -30'R_21 + -33'R_22 + -35'R_23 = -198
invariant :cX_0 + cX_3 + 3'cX_4 + 6'cX_5 + 10'cX_6 + 15'cX_7 + 21'cX_8 + 28'cX_9 + 36'cX_10 + 45'cX_11 + cY_2 + 3'cY_3 + 6'cY_4 + 10'cY_5 + 15'cY_6 + 21'cY_7 + 28'cY_8 + 36'cY_9 + 45'cY_10 + 55'cY_11 + -35'L_0 + -30'L_1 + -24'L_2 + -20'L_3 + -15'L_4 + -12'L_5 + -8'L_6 + -6'L_7 + -3'L_8 + -2'L_9 + L_12 + -2'L_15 + -3'L_16 + -6'L_17 + -8'L_18 + -12'L_19 + -15'L_20 + -20'L_21 + -24'L_22 + -1'R_1 + -1'R_2 + -1'R_4 + -1'R_5 + -3'R_6 + -4'R_7 + -7'R_8 + -9'R_9 + -13'R_10 + -16'R_11 + -21'R_12 + -25'R_13 + -31'R_14 + -36'R_15 + -43'R_16 + -49'R_17 + -57'R_18 + -64'R_19 + -73'R_20 + -81'R_21 + -91'R_22 + -100'R_23 = -585
invariant :P_0_9 + P_3_9 + P_4_8 + P_4_9 + P_4_10 + P_5_7 + P_5_8 + 2'P_5_9 + P_5_10 + P_6_6 + P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_5 + P_7_6 + 2'P_7_7 + 2'P_7_8 + 2'P_7_9 + P_7_10 + P_8_4 + P_8_5 + 2'P_8_6 + 2'P_8_7 + 2'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + 2'P_9_9 + P_9_10 + P_10_2 + P_10_3 + 2'P_10_4 + 2'P_10_5 + 2'P_10_6 + 2'P_10_7 + 2'P_10_8 + 2'P_10_9 + P_10_10 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + -1'cX_11 + -1'cY_10 + -2'cY_11 + 2'L_0 + L_1 + L_2 + L_22 + R_13 + R_14 + 2'R_15 + 2'R_16 + 2'R_17 + 2'R_18 + 2'R_19 + 2'R_20 + 2'R_21 + 2'R_22 + 3'R_23 = 22
invariant :P_10_0 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'P_11_10 + -1'cX_11 + L_21 + L_22 + R_23 = 2
invariant :P_0_0 + R_1 = 1
invariant :P_11_1 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + P_11_10 + cX_11 + -1'L_22 + -1'R_23 = -1
invariant :P_8_11 + P_9_10 + P_10_9 + P_11_8 + R_20 = 1
invariant :P_7_0 + -1'P_8_2 + -1'P_8_3 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_3 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_18 + L_19 + L_20 + L_21 + L_22 + R_20 + R_21 + R_22 + R_23 = 5
invariant :P_6_1 + P_6_2 + P_6_3 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_6_8 + P_6_9 + P_6_10 + P_7_2 + P_7_3 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_8_3 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_10_5 + P_10_6 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -6
invariant :P_0_4 + P_3_4 + P_4_3 + P_4_4 + P_4_5 + P_5_2 + P_5_3 + 2'P_5_4 + P_5_5 + P_5_6 + P_6_3 + P_6_4 + P_6_5 + -1'P_6_8 + -1'P_6_9 + -1'P_6_10 + P_7_4 + -1'P_7_7 + -1'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_6 + -1'P_8_7 + -2'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_5 + -1'P_9_6 + -2'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_10_5 + -2'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'cX_6 + -2'cX_7 + -3'cX_8 + -4'cX_9 + -5'cX_10 + -6'cX_11 + -1'cY_5 + -2'cY_6 + -3'cY_7 + -4'cY_8 + -5'cY_9 + -6'cY_10 + -7'cY_11 + 4'L_0 + 4'L_1 + 3'L_2 + 3'L_3 + 2'L_4 + 2'L_5 + L_6 + L_7 + L_17 + L_18 + 2'L_19 + 2'L_20 + 3'L_21 + 3'L_22 + R_8 + R_9 + 2'R_10 + 2'R_11 + 3'R_12 + 3'R_13 + 4'R_14 + 4'R_15 + 5'R_16 + 5'R_17 + 7'R_18 + 8'R_19 + 10'R_20 + 11'R_21 + 12'R_22 + 13'R_23 = 74
invariant :P_1_8 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_5 + -2'P_5_6 + -3'P_5_7 + -3'P_5_8 + -3'P_5_9 + -2'P_5_10 + -1'P_6_4 + -2'P_6_5 + -3'P_6_6 + -4'P_6_7 + -4'P_6_8 + -4'P_6_9 + -2'P_6_10 + -1'P_7_3 + -2'P_7_4 + -3'P_7_5 + -4'P_7_6 + -5'P_7_7 + -5'P_7_8 + -4'P_7_9 + -2'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -5'P_8_6 + -6'P_8_7 + -5'P_8_8 + -4'P_8_9 + -2'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -4'P_9_5 + -5'P_9_6 + -5'P_9_7 + -4'P_9_8 + -3'P_9_9 + -1'P_9_10 + -1'P_10_3 + -2'P_10_4 + -3'P_10_5 + -3'P_10_6 + -3'P_10_7 + -2'P_10_8 + -1'P_10_9 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + cX_9 + 3'cX_10 + 5'cX_11 + cY_8 + 2'cY_9 + 4'cY_10 + 6'cY_11 + -4'L_0 + -3'L_1 + -2'L_2 + -1'L_3 + -1'L_20 + -2'L_21 + -3'L_22 + -1'R_11 + -2'R_12 + -3'R_13 + -4'R_14 + -5'R_15 + -6'R_16 + -6'R_17 + -6'R_18 + -6'R_19 + -6'R_20 + -7'R_21 + -9'R_22 + -11'R_23 = -66
invariant :P_5_1 + P_5_2 + P_5_3 + P_5_4 + P_5_5 + P_5_6 + P_5_7 + P_5_8 + P_5_9 + P_5_10 + P_6_2 + P_6_3 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_6_8 + P_6_9 + P_7_3 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_9_5 + P_9_6 + -1'P_11_5 + -1'P_11_6 + cX_5 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_16 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -7
invariant :P_1_7 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -1'P_4_9 + -1'P_5_4 + -2'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_3 + -2'P_6_4 + -3'P_6_5 + -4'P_6_6 + -4'P_6_7 + -4'P_6_8 + -3'P_6_9 + -2'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -5'P_7_6 + -5'P_7_7 + -5'P_7_8 + -4'P_7_9 + -2'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -5'P_8_6 + -5'P_8_7 + -5'P_8_8 + -3'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -3'P_9_5 + -4'P_9_6 + -4'P_9_7 + -3'P_9_8 + -1'P_9_9 + -1'P_10_4 + -2'P_10_5 + -3'P_10_6 + -2'P_10_7 + -1'P_10_8 + -1'P_11_5 + -1'P_11_6 + cX_8 + 3'cX_9 + 5'cX_10 + 7'cX_11 + cY_7 + 2'cY_8 + 4'cY_9 + 6'cY_10 + 8'cY_11 + -5'L_0 + -4'L_1 + -3'L_2 + -2'L_3 + -1'L_4 + -1'L_19 + -2'L_20 + -3'L_21 + -4'L_22 + -1'R_10 + -2'R_11 + -3'R_12 + -4'R_13 + -5'R_14 + -6'R_15 + -7'R_16 + -8'R_17 + -8'R_18 + -8'R_19 + -9'R_20 + -11'R_21 + -13'R_22 + -15'R_23 = -88
invariant :P_1_9 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_7 + -2'P_4_8 + -2'P_4_9 + -2'P_4_10 + -1'P_5_6 + -2'P_5_7 + -3'P_5_8 + -3'P_5_9 + -2'P_5_10 + -1'P_6_5 + -2'P_6_6 + -3'P_6_7 + -4'P_6_8 + -3'P_6_9 + -2'P_6_10 + -1'P_7_4 + -2'P_7_5 + -3'P_7_6 + -4'P_7_7 + -4'P_7_8 + -3'P_7_9 + -2'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -4'P_8_6 + -4'P_8_7 + -4'P_8_8 + -3'P_8_9 + -2'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -4'P_9_5 + -4'P_9_6 + -4'P_9_7 + -4'P_9_8 + -3'P_9_9 + -2'P_9_10 + -1'P_10_2 + -2'P_10_3 + -3'P_10_4 + -3'P_10_5 + -3'P_10_6 + -3'P_10_7 + -3'P_10_8 + -2'P_10_9 + -1'P_10_10 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + cX_10 + 3'cX_11 + cY_9 + 2'cY_10 + 4'cY_11 + -3'L_0 + -2'L_1 + -1'L_2 + -1'L_21 + -2'L_22 + -1'R_12 + -2'R_13 + -3'R_14 + -4'R_15 + -4'R_16 + -4'R_17 + -4'R_18 + -4'R_19 + -4'R_20 + -4'R_21 + -5'R_22 + -7'R_23 = -44
invariant :P_2_2 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_3 + -1'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_3 + -2'P_5_4 + -2'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_3 + -2'P_6_4 + -3'P_6_5 + -3'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_3 + -2'P_7_4 + -3'P_7_5 + -4'P_7_6 + -3'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -3'P_8_6 + -3'P_8_7 + -2'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -2'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'cX_3 + -2'cX_4 + -3'cX_5 + -4'cX_6 + -5'cX_7 + -6'cX_8 + -7'cX_9 + -8'cX_10 + -9'cX_11 + -1'cY_3 + -2'cY_4 + -3'cY_5 + -4'cY_6 + -5'cY_7 + -6'cY_8 + -7'cY_9 + -8'cY_10 + -9'cY_11 + 5'L_0 + 4'L_1 + 4'L_2 + 3'L_3 + 3'L_4 + 2'L_5 + 2'L_6 + L_7 + L_8 + L_14 + L_15 + 2'L_16 + 2'L_17 + 3'L_18 + 3'L_19 + 4'L_20 + 4'L_21 + 5'L_22 + R_5 + R_6 + 2'R_7 + 2'R_8 + 3'R_9 + 3'R_10 + 4'R_11 + 4'R_12 + 5'R_13 + 5'R_14 + 7'R_15 + 8'R_16 + 10'R_17 + 11'R_18 + 13'R_19 + 14'R_20 + 16'R_21 + 17'R_22 + 18'R_23 = 104
invariant :P_10_1 + P_10_2 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + cX_10 + cX_11 + -1'L_21 + -1'L_22 + -1'R_22 + -1'R_23 = -2
invariant :cY_1 + 2'cY_2 + 3'cY_3 + 4'cY_4 + 5'cY_5 + 6'cY_6 + 7'cY_7 + 8'cY_8 + 9'cY_9 + 10'cY_10 + 11'cY_11 + -5'L_0 + -5'L_1 + -4'L_2 + -4'L_3 + -3'L_4 + -3'L_5 + -2'L_6 + -2'L_7 + -1'L_8 + -1'L_9 + L_12 + L_13 + 2'L_14 + 2'L_15 + 3'L_16 + 3'L_17 + 4'L_18 + 4'L_19 + 5'L_20 + 5'L_21 + 6'L_22 + -1'R_2 + -1'R_3 + -2'R_4 + -2'R_5 + -3'R_6 + -3'R_7 + -4'R_8 + -4'R_9 + -5'R_10 + -5'R_11 + -6'R_12 + -6'R_13 + -7'R_14 + -7'R_15 + -8'R_16 + -8'R_17 + -9'R_18 + -9'R_19 + -10'R_20 + -10'R_21 + -11'R_22 + -11'R_23 = -60
invariant :P_1_5 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_4_3 + -2'P_4_4 + -2'P_4_5 + -2'P_4_6 + -1'P_4_7 + -1'P_5_2 + -2'P_5_3 + -3'P_5_4 + -3'P_5_5 + -3'P_5_6 + -2'P_5_7 + -1'P_5_8 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -3'P_6_5 + -3'P_6_6 + -2'P_6_7 + -1'P_6_8 + P_6_10 + -1'P_7_3 + -2'P_7_4 + -2'P_7_5 + -2'P_7_6 + -1'P_7_7 + P_7_9 + P_7_10 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + P_8_8 + P_8_9 + P_9_7 + P_9_8 + P_10_5 + P_10_6 + P_10_7 + P_11_5 + P_11_6 + cX_6 + 3'cX_7 + 5'cX_8 + 7'cX_9 + 9'cX_10 + 11'cX_11 + cY_5 + 2'cY_6 + 4'cY_7 + 6'cY_8 + 8'cY_9 + 10'cY_10 + 12'cY_11 + -7'L_0 + -6'L_1 + -5'L_2 + -4'L_3 + -3'L_4 + -2'L_5 + -1'L_6 + -1'L_17 + -2'L_18 + -3'L_19 + -4'L_20 + -5'L_21 + -6'L_22 + -1'R_8 + -2'R_9 + -3'R_10 + -4'R_11 + -5'R_12 + -6'R_13 + -7'R_14 + -8'R_15 + -9'R_16 + -10'R_17 + -12'R_18 + -15'R_19 + -17'R_20 + -19'R_21 + -21'R_22 + -23'R_23 = -132
invariant :P_9_0 + -1'P_10_2 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'cX_10 + -1'cX_11 + L_20 + L_21 + L_22 + R_22 + R_23 = 3
invariant :P_4_1 + P_4_2 + P_4_3 + P_4_4 + P_4_5 + P_4_6 + P_4_7 + P_4_8 + P_4_9 + P_4_10 + P_5_2 + P_5_3 + P_5_4 + P_5_5 + P_5_6 + P_5_7 + P_5_8 + P_5_9 + P_6_3 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_6_8 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_8_5 + P_8_6 + -1'P_10_5 + -1'P_10_6 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + cX_4 + cX_5 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_15 + -1'L_16 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_16 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -8
invariant :P_2_4 + P_3_3 + P_3_4 + P_3_5 + P_4_2 + P_4_3 + 2'P_4_4 + P_4_5 + P_4_6 + P_5_3 + P_5_4 + P_5_5 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + P_6_4 + -1'P_6_7 + -1'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_6 + -1'P_7_7 + -2'P_7_8 + -1'P_7_9 + -1'P_7_10 + -1'P_8_5 + -1'P_8_6 + -2'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_9_5 + -2'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'cX_5 + -2'cX_6 + -3'cX_7 + -4'cX_8 + -5'cX_9 + -6'cX_10 + -7'cX_11 + -1'cY_5 + -2'cY_6 + -3'cY_7 + -4'cY_8 + -5'cY_9 + -6'cY_10 + -7'cY_11 + 4'L_0 + 3'L_1 + 3'L_2 + 2'L_3 + 2'L_4 + L_5 + L_6 + L_16 + L_17 + 2'L_18 + 2'L_19 + 3'L_20 + 3'L_21 + 4'L_22 + R_7 + R_8 + 2'R_9 + 2'R_10 + 3'R_11 + 3'R_12 + 4'R_13 + 4'R_14 + 5'R_15 + 5'R_16 + 7'R_17 + 8'R_18 + 10'R_19 + 11'R_20 + 12'R_21 + 13'R_22 + 14'R_23 = 81
invariant :P_2_7 + P_3_6 + P_3_7 + P_3_8 + P_4_5 + P_4_6 + 2'P_4_7 + P_4_8 + P_4_9 + P_5_4 + P_5_5 + 2'P_5_6 + 2'P_5_7 + 2'P_5_8 + P_5_9 + P_5_10 + P_6_3 + P_6_4 + 2'P_6_5 + 2'P_6_6 + 3'P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_2 + P_7_3 + 2'P_7_4 + 2'P_7_5 + 3'P_7_6 + 3'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 3'P_8_7 + 2'P_8_8 + P_8_9 + P_9_4 + P_9_5 + 2'P_9_6 + 2'P_9_7 + P_9_8 + P_10_5 + P_10_6 + P_10_7 + -1'cX_8 + -2'cX_9 + -3'cX_10 + -4'cX_11 + -1'cY_8 + -2'cY_9 + -3'cY_10 + -4'cY_11 + 2'L_0 + 2'L_1 + L_2 + L_3 + L_19 + L_20 + 2'L_21 + 2'L_22 + R_10 + R_11 + 2'R_12 + 2'R_13 + 3'R_14 + 3'R_15 + 4'R_16 + 4'R_17 + 4'R_18 + 4'R_19 + 5'R_20 + 6'R_21 + 7'R_22 + 8'R_23 = 46
invariant :P_6_11 + P_7_10 + P_8_9 + P_9_8 + P_10_7 + P_11_6 + R_18 = 1
invariant :P_2_6 + P_3_5 + P_3_6 + P_3_7 + P_4_4 + P_4_5 + 2'P_4_6 + P_4_7 + P_4_8 + P_5_3 + P_5_4 + 2'P_5_5 + 2'P_5_6 + 2'P_5_7 + P_5_8 + P_5_9 + P_6_2 + P_6_3 + 2'P_6_4 + 2'P_6_5 + 3'P_6_6 + 2'P_6_7 + 2'P_6_8 + P_6_9 + P_6_10 + P_7_3 + P_7_4 + 2'P_7_5 + 2'P_7_6 + 2'P_7_7 + P_7_8 + P_7_9 + P_8_4 + P_8_5 + 2'P_8_6 + P_8_7 + P_8_8 + P_9_5 + P_9_6 + P_9_7 + P_10_6 + -1'cX_7 + -2'cX_8 + -3'cX_9 + -4'cX_10 + -5'cX_11 + -1'cY_7 + -2'cY_8 + -3'cY_9 + -4'cY_10 + -5'cY_11 + 3'L_0 + 2'L_1 + 2'L_2 + L_3 + L_4 + L_18 + L_19 + 2'L_20 + 2'L_21 + 3'L_22 + R_9 + R_10 + 2'R_11 + 2'R_12 + 3'R_13 + 3'R_14 + 4'R_15 + 4'R_16 + 5'R_17 + 5'R_18 + 6'R_19 + 7'R_20 + 8'R_21 + 9'R_22 + 10'R_23 = 58
invariant :P_1_10 + -1'P_3_9 + -1'P_3_10 + -1'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_7 + -2'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_6 + -2'P_6_7 + -2'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_5 + -2'P_7_6 + -2'P_7_7 + -2'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_4 + -2'P_8_5 + -2'P_8_6 + -2'P_8_7 + -2'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -2'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_2 + -2'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -2'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + cX_11 + cY_10 + 2'cY_11 + -2'L_0 + -1'L_1 + -1'L_22 + -1'R_13 + -2'R_14 + -2'R_15 + -2'R_16 + -2'R_17 + -2'R_18 + -2'R_19 + -2'R_20 + -2'R_21 + -2'R_22 + -3'R_23 = -22
invariant :L_0 + L_2 + L_4 + L_6 + L_8 + L_10 + L_12 + L_14 + L_16 + L_18 + L_20 + L_22 + -1'R_2 + -1'R_4 + -1'R_6 + -1'R_8 + -1'R_10 + -1'R_12 + -1'R_14 + -1'R_16 + -1'R_18 + -1'R_20 + -1'R_22 = 1
invariant :P_2_5 + P_3_4 + P_3_5 + P_3_6 + P_4_3 + P_4_4 + 2'P_4_5 + P_4_6 + P_4_7 + P_5_2 + P_5_3 + 2'P_5_4 + 2'P_5_5 + 2'P_5_6 + P_5_7 + P_5_8 + P_6_3 + P_6_4 + 2'P_6_5 + P_6_6 + P_6_7 + -1'P_6_10 + P_7_4 + P_7_5 + P_7_6 + -1'P_7_9 + P_8_5 + -1'P_8_8 + -1'P_9_7 + -1'P_10_6 + -1'cX_6 + -2'cX_7 + -3'cX_8 + -4'cX_9 + -5'cX_10 + -6'cX_11 + -1'cY_6 + -2'cY_7 + -3'cY_8 + -4'cY_9 + -5'cY_10 + -6'cY_11 + 3'L_0 + 3'L_1 + 2'L_2 + 2'L_3 + L_4 + L_5 + L_17 + L_18 + 2'L_19 + 2'L_20 + 3'L_21 + 3'L_22 + R_8 + R_9 + 2'R_10 + 2'R_11 + 3'R_12 + 3'R_13 + 4'R_14 + 4'R_15 + 5'R_16 + 5'R_17 + 7'R_18 + 8'R_19 + 9'R_20 + 10'R_21 + 11'R_22 + 12'R_23 = 69
invariant :P_2_8 + P_3_7 + P_3_8 + P_3_9 + P_4_6 + P_4_7 + 2'P_4_8 + P_4_9 + P_4_10 + P_5_5 + P_5_6 + 2'P_5_7 + 2'P_5_8 + 2'P_5_9 + P_5_10 + P_6_4 + P_6_5 + 2'P_6_6 + 2'P_6_7 + 3'P_6_8 + 2'P_6_9 + P_6_10 + P_7_3 + P_7_4 + 2'P_7_5 + 2'P_7_6 + 3'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_2 + P_8_3 + 2'P_8_4 + 2'P_8_5 + 3'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + P_9_9 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + -1'cX_9 + -2'cX_10 + -3'cX_11 + -1'cY_9 + -2'cY_10 + -3'cY_11 + 2'L_0 + L_1 + L_2 + L_20 + L_21 + 2'L_22 + R_11 + R_12 + 2'R_13 + 2'R_14 + 3'R_15 + 3'R_16 + 3'R_17 + 3'R_18 + 3'R_19 + 3'R_20 + 4'R_21 + 5'R_22 + 6'R_23 = 35
invariant :P_2_0 + -1'P_3_2 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_3 + -1'P_4_4 + -1'P_4_5 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_5_4 + -1'P_5_5 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_7_6 + P_8_6 + P_9_5 + P_9_6 + P_9_7 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + -1'cX_3 + -1'cX_4 + -1'cX_5 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_13 + L_14 + L_15 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_15 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 10
invariant :P_0_7 + P_3_7 + P_4_6 + P_4_7 + P_4_8 + P_5_5 + P_5_6 + 2'P_5_7 + P_5_8 + P_5_9 + P_6_4 + P_6_5 + 2'P_6_6 + 2'P_6_7 + 2'P_6_8 + P_6_9 + P_6_10 + P_7_3 + P_7_4 + 2'P_7_5 + 2'P_7_6 + 3'P_7_7 + 2'P_7_8 + 2'P_7_9 + P_7_10 + P_8_2 + P_8_3 + 2'P_8_4 + 2'P_8_5 + 3'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + P_9_4 + 2'P_9_5 + 2'P_9_6 + 3'P_9_7 + 2'P_9_8 + P_9_9 + P_10_4 + P_10_5 + 2'P_10_6 + 2'P_10_7 + P_10_8 + P_11_5 + P_11_6 + P_11_7 + -1'cX_9 + -2'cX_10 + -3'cX_11 + -1'cY_8 + -2'cY_9 + -3'cY_10 + -4'cY_11 + 3'L_0 + 2'L_1 + 2'L_2 + L_3 + L_4 + L_20 + L_21 + 2'L_22 + R_11 + R_12 + 2'R_13 + 2'R_14 + 3'R_15 + 3'R_16 + 4'R_17 + 4'R_18 + 4'R_19 + 4'R_20 + 5'R_21 + 6'R_22 + 7'R_23 = 43
invariant :P_2_11 + P_3_10 + P_4_9 + P_5_8 + P_6_7 + P_7_6 + P_8_5 + P_9_4 + P_10_3 + P_11_2 + R_14 = 1
invariant :P_0_8 + P_3_8 + P_4_7 + P_4_8 + P_4_9 + P_5_6 + P_5_7 + 2'P_5_8 + P_5_9 + P_5_10 + P_6_5 + P_6_6 + 2'P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_4 + P_7_5 + 2'P_7_6 + 2'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_2 + P_9_3 + 2'P_9_4 + 2'P_9_5 + 3'P_9_6 + 3'P_9_7 + 3'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + P_10_4 + 2'P_10_5 + 2'P_10_6 + 2'P_10_7 + 2'P_10_8 + P_10_9 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + -1'cX_10 + -2'cX_11 + -1'cY_9 + -2'cY_10 + -3'cY_11 + 2'L_0 + 2'L_1 + L_2 + L_3 + L_21 + L_22 + R_12 + R_13 + 2'R_14 + 2'R_15 + 3'R_16 + 3'R_17 + 3'R_18 + 3'R_19 + 3'R_20 + 3'R_21 + 4'R_22 + 5'R_23 = 32
invariant :P_0_10 + P_3_10 + P_4_9 + P_4_10 + P_5_8 + P_5_9 + P_5_10 + P_6_7 + P_6_8 + P_6_9 + P_6_10 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_7_10 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_8_10 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_9_10 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + P_11_10 + -1'cY_11 + L_0 + L_1 + R_14 + R_15 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 11
invariant :P_3_1 + P_3_2 + P_3_3 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_2 + P_4_3 + P_4_4 + P_4_5 + P_4_6 + P_4_7 + P_4_8 + P_4_9 + P_5_3 + P_5_4 + P_5_5 + P_5_6 + P_5_7 + P_5_8 + P_6_4 + P_6_5 + P_6_6 + P_6_7 + P_7_5 + P_7_6 + -1'P_9_5 + -1'P_9_6 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + cX_3 + cX_4 + cX_5 + cX_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_14 + -1'L_15 + -1'L_16 + -1'L_17 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_15 + -1'R_16 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -9
invariant :P_2_10 + P_3_9 + P_3_10 + P_4_8 + P_4_9 + P_4_10 + P_5_7 + P_5_8 + P_5_9 + P_5_10 + P_6_6 + P_6_7 + P_6_8 + P_6_9 + P_6_10 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_7_10 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_8_10 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_9_10 + P_10_2 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + -1'cX_11 + -1'cY_11 + L_0 + L_22 + R_13 + R_14 + R_15 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + 2'R_23 = 12
invariant :P_11_0 + L_22 = 1
invariant :P_11_11 + R_23 = 1
invariant :P_1_11 + -1'P_3_10 + -1'P_4_9 + -1'P_4_10 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + -1'P_6_7 + -1'P_6_8 + -1'P_6_9 + -1'P_6_10 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_7_9 + -1'P_7_10 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'P_11_10 + cY_11 + -1'L_0 + -1'R_14 + -1'R_15 + -1'R_16 + -1'R_17 + -1'R_18 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -10
invariant :P_0_6 + P_3_6 + P_4_5 + P_4_6 + P_4_7 + P_5_4 + P_5_5 + 2'P_5_6 + P_5_7 + P_5_8 + P_6_3 + P_6_4 + 2'P_6_5 + 2'P_6_6 + 2'P_6_7 + P_6_8 + P_6_9 + P_7_2 + P_7_3 + 2'P_7_4 + 2'P_7_5 + 3'P_7_6 + 2'P_7_7 + 2'P_7_8 + P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 2'P_8_7 + P_8_8 + P_8_9 + P_9_4 + P_9_5 + 2'P_9_6 + P_9_7 + P_9_8 + P_10_5 + P_10_6 + P_10_7 + P_11_6 + -1'cX_8 + -2'cX_9 + -3'cX_10 + -4'cX_11 + -1'cY_7 + -2'cY_8 + -3'cY_9 + -4'cY_10 + -5'cY_11 + 3'L_0 + 3'L_1 + 2'L_2 + 2'L_3 + L_4 + L_5 + L_19 + L_20 + 2'L_21 + 2'L_22 + R_10 + R_11 + 2'R_12 + 2'R_13 + 3'R_14 + 3'R_15 + 4'R_16 + 4'R_17 + 5'R_18 + 5'R_19 + 6'R_20 + 7'R_21 + 8'R_22 + 9'R_23 = 53
invariant :P_4_0 + -1'P_5_2 + -1'P_5_3 + -1'P_5_4 + -1'P_5_5 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + -1'P_6_3 + -1'P_6_4 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_6_8 + -1'P_6_9 + -1'P_7_4 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_9_6 + P_10_6 + P_11_5 + P_11_6 + P_11_7 + -1'cX_5 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_15 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 8
invariant :P_3_11 + P_4_10 + P_5_9 + P_6_8 + P_7_7 + P_8_6 + P_9_5 + P_10_4 + P_11_3 + R_15 = 1
invariant :cX_2 + 3'cX_3 + 6'cX_4 + 10'cX_5 + 15'cX_6 + 21'cX_7 + 28'cX_8 + 36'cX_9 + 45'cX_10 + 55'cX_11 + cY_2 + 3'cY_3 + 6'cY_4 + 10'cY_5 + 15'cY_6 + 21'cY_7 + 28'cY_8 + 36'cY_9 + 45'cY_10 + 55'cY_11 + -30'L_0 + -25'L_1 + -20'L_2 + -16'L_3 + -12'L_4 + -9'L_5 + -6'L_6 + -4'L_7 + -2'L_8 + -1'L_9 + -1'L_13 + -2'L_14 + -4'L_15 + -6'L_16 + -9'L_17 + -12'L_18 + -16'L_19 + -20'L_20 + -25'L_21 + -30'L_22 + -1'R_4 + -2'R_5 + -4'R_6 + -6'R_7 + -9'R_8 + -12'R_9 + -16'R_10 + -20'R_11 + -25'R_12 + -30'R_13 + -36'R_14 + -42'R_15 + -49'R_16 + -56'R_17 + -64'R_18 + -72'R_19 + -81'R_20 + -90'R_21 + -100'R_22 + -110'R_23 = -635
invariant :P_7_1 + P_7_2 + P_7_3 + P_7_4 + P_7_5 + P_7_6 + P_7_7 + P_7_8 + P_7_9 + P_7_10 + P_8_2 + P_8_3 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_11_5 + P_11_6 + cX_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_18 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_19 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -5
invariant :P_8_0 + -1'P_9_2 + -1'P_9_3 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_3 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_19 + L_20 + L_21 + L_22 + R_21 + R_22 + R_23 = 4
invariant :P_10_11 + P_11_10 + R_22 = 1
invariant :P_2_9 + P_3_8 + P_3_9 + P_3_10 + P_4_7 + P_4_8 + 2'P_4_9 + P_4_10 + P_5_6 + P_5_7 + 2'P_5_8 + 2'P_5_9 + P_5_10 + P_6_5 + P_6_6 + 2'P_6_7 + 2'P_6_8 + 2'P_6_9 + P_6_10 + P_7_4 + P_7_5 + 2'P_7_6 + 2'P_7_7 + 2'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + P_8_4 + 2'P_8_5 + 2'P_8_6 + 2'P_8_7 + 2'P_8_8 + 2'P_8_9 + P_8_10 + P_9_2 + P_9_3 + 2'P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + -1'cX_10 + -2'cX_11 + -1'cY_10 + -2'cY_11 + L_0 + L_1 + L_21 + L_22 + R_12 + R_13 + 2'R_14 + 2'R_15 + 2'R_16 + 2'R_17 + 2'R_18 + 2'R_19 + 2'R_20 + 2'R_21 + 3'R_22 + 4'R_23 = 23
invariant :cX_1 + -3'cX_3 + -8'cX_4 + -15'cX_5 + -24'cX_6 + -35'cX_7 + -48'cX_8 + -63'cX_9 + -80'cX_10 + -99'cX_11 + -2'cY_2 + -6'cY_3 + -12'cY_4 + -20'cY_5 + -30'cY_6 + -42'cY_7 + -56'cY_8 + -72'cY_9 + -90'cY_10 + -110'cY_11 + 65'L_0 + 55'L_1 + 44'L_2 + 36'L_3 + 27'L_4 + 21'L_5 + 14'L_6 + 10'L_7 + 5'L_8 + 3'L_9 + -1'L_12 + L_13 + 2'L_14 + 6'L_15 + 9'L_16 + 15'L_17 + 20'L_18 + 28'L_19 + 35'L_20 + 45'L_21 + 54'L_22 + -1'R_3 + R_4 + 2'R_5 + 6'R_6 + 9'R_7 + 15'R_8 + 20'R_9 + 28'R_10 + 35'R_11 + 45'R_12 + 54'R_13 + 66'R_14 + 77'R_15 + 91'R_16 + 104'R_17 + 120'R_18 + 135'R_19 + 153'R_20 + 170'R_21 + 190'R_22 + 209'R_23 = 1209
invariant :P_0_1 + -1'P_3_2 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_2 + -2'P_4_3 + -2'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_2 + -2'P_5_3 + -3'P_5_4 + -3'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -4'P_6_5 + -4'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -5'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -4'P_8_6 + -4'P_8_7 + -3'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -3'P_9_5 + -3'P_9_6 + -3'P_9_7 + -3'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_2 + -2'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -2'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'P_11_10 + -1'cX_3 + -2'cX_4 + -3'cX_5 + -4'cX_6 + -5'cX_7 + -6'cX_8 + -7'cX_9 + -8'cX_10 + -9'cX_11 + -1'cY_2 + -2'cY_3 + -3'cY_4 + -4'cY_5 + -5'cY_6 + -6'cY_7 + -7'cY_8 + -8'cY_9 + -9'cY_10 + -10'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + -1'L_12 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_2 + R_4 + R_5 + 2'R_6 + 2'R_7 + 3'R_8 + 3'R_9 + 4'R_10 + 4'R_11 + 5'R_12 + 5'R_13 + 6'R_14 + 7'R_15 + 9'R_16 + 10'R_17 + 12'R_18 + 13'R_19 + 15'R_20 + 16'R_21 + 18'R_22 + 19'R_23 = 105
invariant :P_6_0 + -1'P_7_2 + -1'P_7_3 + -1'P_7_4 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_7_9 + -1'P_7_10 + -1'P_8_3 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_8_9 + -1'P_9_4 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_9_8 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_11_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_19 + R_20 + R_21 + R_22 + R_23 = 6
invariant :P_1_0 + P_3_2 + P_3_3 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_2 + 2'P_4_3 + 2'P_4_4 + 2'P_4_5 + 2'P_4_6 + 2'P_4_7 + 2'P_4_8 + 2'P_4_9 + P_4_10 + P_5_2 + 2'P_5_3 + 3'P_5_4 + 3'P_5_5 + 3'P_5_6 + 3'P_5_7 + 3'P_5_8 + 2'P_5_9 + P_5_10 + P_6_2 + 2'P_6_3 + 3'P_6_4 + 4'P_6_5 + 4'P_6_6 + 4'P_6_7 + 3'P_6_8 + 2'P_6_9 + P_6_10 + P_7_2 + 2'P_7_3 + 3'P_7_4 + 4'P_7_5 + 5'P_7_6 + 4'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_2 + 2'P_8_3 + 3'P_8_4 + 4'P_8_5 + 4'P_8_6 + 4'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_2 + 2'P_9_3 + 3'P_9_4 + 3'P_9_5 + 3'P_9_6 + 3'P_9_7 + 3'P_9_8 + 2'P_9_9 + P_9_10 + P_10_2 + 2'P_10_3 + 2'P_10_4 + 2'P_10_5 + 2'P_10_6 + 2'P_10_7 + 2'P_10_8 + 2'P_10_9 + P_10_10 + P_11_2 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + P_11_9 + P_11_10 + cX_3 + 2'cX_4 + 3'cX_5 + 4'cX_6 + 5'cX_7 + 6'cX_8 + 7'cX_9 + 8'cX_10 + 9'cX_11 + cY_2 + 2'cY_3 + 3'cY_4 + 4'cY_5 + 5'cY_6 + 6'cY_7 + 7'cY_8 + 8'cY_9 + 9'cY_10 + 10'cY_11 + -5'L_0 + -5'L_1 + -4'L_2 + -4'L_3 + -3'L_4 + -3'L_5 + -2'L_6 + -2'L_7 + -1'L_8 + -1'L_9 + L_12 + -1'L_15 + -1'L_16 + -2'L_17 + -2'L_18 + -3'L_19 + -3'L_20 + -4'L_21 + -4'L_22 + -1'R_4 + -1'R_5 + -2'R_6 + -2'R_7 + -3'R_8 + -3'R_9 + -4'R_10 + -4'R_11 + -5'R_12 + -5'R_13 + -6'R_14 + -7'R_15 + -9'R_16 + -10'R_17 + -12'R_18 + -13'R_19 + -15'R_20 + -16'R_21 + -18'R_22 + -19'R_23 = -104
invariant :P_7_11 + P_8_10 + P_9_9 + P_10_8 + P_11_7 + R_19 = 1
invariant :P_4_11 + P_5_10 + P_6_9 + P_7_8 + P_8_7 + P_9_6 + P_10_5 + P_11_4 + R_16 = 1
invariant :P_0_2 + P_3_2 + -1'P_4_4 + -1'P_4_5 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_4_10 + -1'P_5_3 + -1'P_5_4 + -2'P_5_5 + -2'P_5_6 + -2'P_5_7 + -2'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_3 + -2'P_6_4 + -2'P_6_5 + -3'P_6_6 + -3'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_3 + -2'P_7_4 + -3'P_7_5 + -3'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -4'P_8_6 + -3'P_8_7 + -3'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_3 + -2'P_9_4 + -3'P_9_5 + -3'P_9_6 + -3'P_9_7 + -2'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'cX_4 + -2'cX_5 + -3'cX_6 + -4'cX_7 + -5'cX_8 + -6'cX_9 + -7'cX_10 + -8'cX_11 + -1'cY_3 + -2'cY_4 + -3'cY_5 + -4'cY_6 + -5'cY_7 + -6'cY_8 + -7'cY_9 + -8'cY_10 + -9'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_6 + R_7 + 2'R_8 + 2'R_9 + 3'R_10 + 3'R_11 + 4'R_12 + 4'R_13 + 5'R_14 + 5'R_15 + 7'R_16 + 8'R_17 + 10'R_18 + 11'R_19 + 13'R_20 + 14'R_21 + 16'R_22 + 17'R_23 = 95
invariant :P_5_0 + -1'P_6_2 + -1'P_6_3 + -1'P_6_4 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_6_8 + -1'P_6_9 + -1'P_6_10 + -1'P_7_3 + -1'P_7_4 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_7_8 + -1'P_7_9 + -1'P_8_4 + -1'P_8_5 + -1'P_8_6 + -1'P_8_7 + -1'P_8_8 + -1'P_9_5 + -1'P_9_6 + -1'P_9_7 + -1'P_10_6 + P_11_6 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 7
invariant :P_0_5 + P_3_5 + P_4_4 + P_4_5 + P_4_6 + P_5_3 + P_5_4 + 2'P_5_5 + P_5_6 + P_5_7 + P_6_2 + P_6_3 + 2'P_6_4 + 2'P_6_5 + 2'P_6_6 + P_6_7 + P_6_8 + P_7_3 + P_7_4 + 2'P_7_5 + P_7_6 + P_7_7 + -1'P_7_10 + P_8_4 + P_8_5 + P_8_6 + -1'P_8_9 + P_9_5 + -1'P_9_8 + -1'P_10_7 + -1'P_11_6 + -1'cX_7 + -2'cX_8 + -3'cX_9 + -4'cX_10 + -5'cX_11 + -1'cY_6 + -2'cY_7 + -3'cY_8 + -4'cY_9 + -5'cY_10 + -6'cY_11 + 4'L_0 + 3'L_1 + 3'L_2 + 2'L_3 + 2'L_4 + L_5 + L_6 + L_18 + L_19 + 2'L_20 + 2'L_21 + 3'L_22 + R_9 + R_10 + 2'R_11 + 2'R_12 + 3'R_13 + 3'R_14 + 4'R_15 + 4'R_16 + 5'R_17 + 5'R_18 + 7'R_19 + 8'R_20 + 9'R_21 + 10'R_22 + 11'R_23 = 64
invariant :P_0_11 + L_0 = 1
invariant :P_2_1 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_3_8 + -1'P_3_9 + -1'P_3_10 + -1'P_4_2 + -1'P_4_3 + -2'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -2'P_4_8 + -2'P_4_9 + -1'P_4_10 + -1'P_5_2 + -2'P_5_3 + -2'P_5_4 + -3'P_5_5 + -3'P_5_6 + -3'P_5_7 + -3'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -3'P_6_5 + -4'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -4'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_2 + -2'P_8_3 + -3'P_8_4 + -4'P_8_5 + -4'P_8_6 + -3'P_8_7 + -3'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_2 + -2'P_9_3 + -3'P_9_4 + -3'P_9_5 + -3'P_9_6 + -3'P_9_7 + -2'P_9_8 + -2'P_9_9 + -1'P_9_10 + -1'P_10_2 + -2'P_10_3 + -2'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -2'P_10_8 + -1'P_10_9 + -1'P_10_10 + -1'P_11_2 + -1'P_11_3 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'P_11_9 + -1'cX_3 + -2'cX_4 + -3'cX_5 + -4'cX_6 + -5'cX_7 + -6'cX_8 + -7'cX_9 + -8'cX_10 + -9'cX_11 + -1'cY_2 + -2'cY_3 + -3'cY_4 + -4'cY_5 + -5'cY_6 + -6'cY_7 + -7'cY_8 + -8'cY_9 + -9'cY_10 + -10'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_4 + R_5 + 2'R_6 + 2'R_7 + 3'R_8 + 3'R_9 + 4'R_10 + 4'R_11 + 5'R_12 + 5'R_13 + 6'R_14 + 7'R_15 + 9'R_16 + 10'R_17 + 12'R_18 + 13'R_19 + 15'R_20 + 16'R_21 + 18'R_22 + 19'R_23 = 105
invariant :cY_0 + -1'cY_2 + -2'cY_3 + -3'cY_4 + -4'cY_5 + -5'cY_6 + -6'cY_7 + -7'cY_8 + -8'cY_9 + -9'cY_10 + -10'cY_11 + 5'L_0 + 5'L_1 + 4'L_2 + 4'L_3 + 3'L_4 + 3'L_5 + 2'L_6 + 2'L_7 + L_8 + L_9 + -1'L_12 + -1'L_13 + -2'L_14 + -2'L_15 + -3'L_16 + -3'L_17 + -4'L_18 + -4'L_19 + -5'L_20 + -5'L_21 + -6'L_22 + -1'R_1 + R_4 + R_5 + 2'R_6 + 2'R_7 + 3'R_8 + 3'R_9 + 4'R_10 + 4'R_11 + 5'R_12 + 5'R_13 + 6'R_14 + 6'R_15 + 7'R_16 + 7'R_17 + 8'R_18 + 8'R_19 + 9'R_20 + 9'R_21 + 10'R_22 + 10'R_23 = 49
invariant :P_1_3 + -1'P_3_2 + -1'P_3_3 + -1'P_3_4 + -1'P_4_2 + -1'P_4_3 + -1'P_4_4 + P_4_6 + P_4_7 + P_4_8 + P_4_9 + P_4_10 + P_5_5 + 2'P_5_6 + 3'P_5_7 + 3'P_5_8 + 3'P_5_9 + 2'P_5_10 + P_6_3 + P_6_4 + 2'P_6_5 + 3'P_6_6 + 4'P_6_7 + 5'P_6_8 + 4'P_6_9 + 2'P_6_10 + P_7_3 + 2'P_7_4 + 3'P_7_5 + 4'P_7_6 + 5'P_7_7 + 5'P_7_8 + 4'P_7_9 + 2'P_7_10 + P_8_3 + 2'P_8_4 + 4'P_8_5 + 5'P_8_6 + 5'P_8_7 + 4'P_8_8 + 3'P_8_9 + 2'P_8_10 + P_9_3 + 2'P_9_4 + 4'P_9_5 + 5'P_9_6 + 4'P_9_7 + 3'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + 2'P_10_4 + 3'P_10_5 + 3'P_10_6 + 3'P_10_7 + 2'P_10_8 + P_10_9 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + cX_4 + 3'cX_5 + 5'cX_6 + 7'cX_7 + 9'cX_8 + 11'cX_9 + 13'cX_10 + 15'cX_11 + cY_3 + 2'cY_4 + 4'cY_5 + 6'cY_6 + 8'cY_7 + 10'cY_8 + 12'cY_9 + 14'cY_10 + 16'cY_11 + -9'L_0 + -8'L_1 + -7'L_2 + -6'L_3 + -5'L_4 + -4'L_5 + -3'L_6 + -2'L_7 + -1'L_8 + -1'L_15 + -2'L_16 + -3'L_17 + -4'L_18 + -5'L_19 + -6'L_20 + -7'L_21 + -8'L_22 + -1'R_6 + -2'R_7 + -3'R_8 + -4'R_9 + -5'R_10 + -6'R_11 + -7'R_12 + -8'R_13 + -9'R_14 + -10'R_15 + -12'R_16 + -15'R_17 + -18'R_18 + -21'R_19 + -24'R_20 + -27'R_21 + -29'R_22 + -31'R_23 = -176
invariant :P_9_11 + P_10_10 + P_11_9 + R_21 = 1
invariant :P_3_0 + -1'P_4_2 + -1'P_4_3 + -1'P_4_4 + -1'P_4_5 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_4_10 + -1'P_5_3 + -1'P_5_4 + -1'P_5_5 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_5_9 + -1'P_6_4 + -1'P_6_5 + -1'P_6_6 + -1'P_6_7 + -1'P_6_8 + -1'P_7_5 + -1'P_7_6 + -1'P_7_7 + -1'P_8_6 + P_9_6 + P_10_5 + P_10_6 + P_10_7 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + -1'cX_4 + -1'cX_5 + -1'cX_6 + -1'cX_7 + -1'cX_8 + -1'cX_9 + -1'cX_10 + -1'cX_11 + L_14 + L_15 + L_16 + L_17 + L_18 + L_19 + L_20 + L_21 + L_22 + R_16 + R_17 + R_18 + R_19 + R_20 + R_21 + R_22 + R_23 = 9
invariant :P_1_1 + P_3_3 + P_3_4 + P_3_5 + P_3_6 + P_3_7 + P_3_8 + P_3_9 + P_3_10 + P_4_3 + 2'P_4_4 + 2'P_4_5 + 2'P_4_6 + 2'P_4_7 + 2'P_4_8 + 2'P_4_9 + P_4_10 + P_5_3 + 2'P_5_4 + 3'P_5_5 + 3'P_5_6 + 3'P_5_7 + 3'P_5_8 + 2'P_5_9 + P_5_10 + P_6_3 + 2'P_6_4 + 3'P_6_5 + 4'P_6_6 + 4'P_6_7 + 3'P_6_8 + 2'P_6_9 + P_6_10 + P_7_3 + 2'P_7_4 + 3'P_7_5 + 4'P_7_6 + 4'P_7_7 + 3'P_7_8 + 2'P_7_9 + P_7_10 + P_8_3 + 2'P_8_4 + 3'P_8_5 + 3'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_3 + 2'P_9_4 + 2'P_9_5 + 2'P_9_6 + 2'P_9_7 + 2'P_9_8 + 2'P_9_9 + P_9_10 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_10_10 + cX_3 + 2'cX_4 + 3'cX_5 + 4'cX_6 + 5'cX_7 + 6'cX_8 + 7'cX_9 + 8'cX_10 + 9'cX_11 + cY_3 + 2'cY_4 + 3'cY_5 + 4'cY_6 + 5'cY_7 + 6'cY_8 + 7'cY_9 + 8'cY_10 + 9'cY_11 + -5'L_0 + -5'L_1 + -4'L_2 + -4'L_3 + -3'L_4 + -3'L_5 + -2'L_6 + -2'L_7 + -1'L_8 + -1'L_9 + -1'L_13 + -1'L_14 + -2'L_15 + -2'L_16 + -3'L_17 + -3'L_18 + -4'L_19 + -4'L_20 + -5'L_21 + -5'L_22 + R_3 + -1'R_6 + -1'R_7 + -2'R_8 + -2'R_9 + -3'R_10 + -3'R_11 + -4'R_12 + -4'R_13 + -5'R_14 + -6'R_15 + -8'R_16 + -9'R_17 + -11'R_18 + -12'R_19 + -14'R_20 + -15'R_21 + -17'R_22 + -18'R_23 = -104
invariant :P_0_3 + P_3_3 + P_4_2 + P_4_3 + P_4_4 + P_5_3 + -1'P_5_6 + -1'P_5_7 + -1'P_5_8 + -1'P_5_9 + -1'P_5_10 + -1'P_6_5 + -1'P_6_6 + -2'P_6_7 + -2'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_4 + -1'P_7_5 + -2'P_7_6 + -2'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_4 + -2'P_8_5 + -2'P_8_6 + -3'P_8_7 + -2'P_8_8 + -2'P_8_9 + -1'P_8_10 + -1'P_9_4 + -2'P_9_5 + -3'P_9_6 + -2'P_9_7 + -2'P_9_8 + -1'P_9_9 + -1'P_9_10 + -1'P_10_4 + -2'P_10_5 + -2'P_10_6 + -2'P_10_7 + -1'P_10_8 + -1'P_10_9 + -1'P_11_4 + -1'P_11_5 + -1'P_11_6 + -1'P_11_7 + -1'P_11_8 + -1'cX_5 + -2'cX_6 + -3'cX_7 + -4'cX_8 + -5'cX_9 + -6'cX_10 + -7'cX_11 + -1'cY_4 + -2'cY_5 + -3'cY_6 + -4'cY_7 + -5'cY_8 + -6'cY_9 + -7'cY_10 + -8'cY_11 + 5'L_0 + 4'L_1 + 4'L_2 + 3'L_3 + 3'L_4 + 2'L_5 + 2'L_6 + L_7 + L_8 + L_16 + L_17 + 2'L_18 + 2'L_19 + 3'L_20 + 3'L_21 + 4'L_22 + R_7 + R_8 + 2'R_9 + 2'R_10 + 3'R_11 + 3'R_12 + 4'R_13 + 4'R_14 + 5'R_15 + 5'R_16 + 7'R_17 + 8'R_18 + 10'R_19 + 11'R_20 + 13'R_21 + 14'R_22 + 15'R_23 = 85
invariant :L_1 + L_3 + L_5 + L_7 + L_9 + L_11 + L_13 + L_15 + L_17 + L_19 + L_21 + -1'R_1 + -1'R_3 + -1'R_5 + -1'R_7 + -1'R_9 + -1'R_11 + -1'R_13 + -1'R_15 + -1'R_17 + -1'R_19 + -1'R_21 + -1'R_23 = -1
invariant :P_9_1 + P_9_2 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_9_10 + P_10_2 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_10_9 + P_11_3 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + P_11_8 + cX_9 + cX_10 + cX_11 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_21 + -1'R_22 + -1'R_23 = -3
invariant :P_1_4 + -1'P_3_3 + -1'P_3_4 + -1'P_3_5 + -1'P_4_2 + -2'P_4_3 + -2'P_4_4 + -2'P_4_5 + -1'P_4_6 + -1'P_5_2 + -2'P_5_3 + -2'P_5_4 + -2'P_5_5 + -1'P_5_6 + P_5_8 + P_5_9 + P_5_10 + -1'P_6_3 + -1'P_6_4 + -1'P_6_5 + P_6_7 + 2'P_6_8 + 3'P_6_9 + 2'P_6_10 + P_7_6 + 2'P_7_7 + 3'P_7_8 + 3'P_7_9 + 2'P_7_10 + P_8_4 + P_8_5 + 2'P_8_6 + 3'P_8_7 + 3'P_8_8 + 2'P_8_9 + P_8_10 + P_9_4 + 2'P_9_5 + 3'P_9_6 + 3'P_9_7 + 2'P_9_8 + P_9_9 + P_10_4 + 2'P_10_5 + 3'P_10_6 + 2'P_10_7 + P_10_8 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + cX_5 + 3'cX_6 + 5'cX_7 + 7'cX_8 + 9'cX_9 + 11'cX_10 + 13'cX_11 + cY_4 + 2'cY_5 + 4'cY_6 + 6'cY_7 + 8'cY_8 + 10'cY_9 + 12'cY_10 + 14'cY_11 + -8'L_0 + -7'L_1 + -6'L_2 + -5'L_3 + -4'L_4 + -3'L_5 + -2'L_6 + -1'L_7 + -1'L_16 + -2'L_17 + -3'L_18 + -4'L_19 + -5'L_20 + -6'L_21 + -7'L_22 + -1'R_7 + -2'R_8 + -3'R_9 + -4'R_10 + -5'R_11 + -6'R_12 + -7'R_13 + -8'R_14 + -9'R_15 + -10'R_16 + -12'R_17 + -15'R_18 + -18'R_19 + -21'R_20 + -23'R_21 + -25'R_22 + -27'R_23 = -154
invariant :P_1_6 + -1'P_3_5 + -1'P_3_6 + -1'P_3_7 + -1'P_4_4 + -2'P_4_5 + -2'P_4_6 + -2'P_4_7 + -1'P_4_8 + -1'P_5_3 + -2'P_5_4 + -3'P_5_5 + -3'P_5_6 + -3'P_5_7 + -2'P_5_8 + -1'P_5_9 + -1'P_6_2 + -2'P_6_3 + -3'P_6_4 + -4'P_6_5 + -4'P_6_6 + -4'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_2 + -2'P_7_3 + -3'P_7_4 + -4'P_7_5 + -4'P_7_6 + -4'P_7_7 + -3'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_3 + -2'P_8_4 + -3'P_8_5 + -3'P_8_6 + -3'P_8_7 + -2'P_8_8 + -1'P_8_9 + -1'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -1'P_9_8 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + cX_7 + 3'cX_8 + 5'cX_9 + 7'cX_10 + 9'cX_11 + cY_6 + 2'cY_7 + 4'cY_8 + 6'cY_9 + 8'cY_10 + 10'cY_11 + -6'L_0 + -5'L_1 + -4'L_2 + -3'L_3 + -2'L_4 + -1'L_5 + -1'L_18 + -2'L_19 + -3'L_20 + -4'L_21 + -5'L_22 + -1'R_9 + -2'R_10 + -3'R_11 + -4'R_12 + -5'R_13 + -6'R_14 + -7'R_15 + -8'R_16 + -9'R_17 + -10'R_18 + -11'R_19 + -13'R_20 + -15'R_21 + -17'R_22 + -19'R_23 = -110
invariant :P_2_3 + P_3_2 + P_3_3 + P_3_4 + P_4_3 + -1'P_4_6 + -1'P_4_7 + -1'P_4_8 + -1'P_4_9 + -1'P_4_10 + -1'P_5_5 + -1'P_5_6 + -2'P_5_7 + -2'P_5_8 + -2'P_5_9 + -1'P_5_10 + -1'P_6_4 + -1'P_6_5 + -2'P_6_6 + -2'P_6_7 + -3'P_6_8 + -2'P_6_9 + -1'P_6_10 + -1'P_7_4 + -2'P_7_5 + -2'P_7_6 + -3'P_7_7 + -2'P_7_8 + -2'P_7_9 + -1'P_7_10 + -1'P_8_4 + -2'P_8_5 + -3'P_8_6 + -2'P_8_7 + -2'P_8_8 + -1'P_8_9 + -1'P_8_10 + -1'P_9_4 + -2'P_9_5 + -2'P_9_6 + -2'P_9_7 + -1'P_9_8 + -1'P_9_9 + -1'P_10_4 + -1'P_10_5 + -1'P_10_6 + -1'P_10_7 + -1'P_10_8 + -1'cX_4 + -2'cX_5 + -3'cX_6 + -4'cX_7 + -5'cX_8 + -6'cX_9 + -7'cX_10 + -8'cX_11 + -1'cY_4 + -2'cY_5 + -3'cY_6 + -4'cY_7 + -5'cY_8 + -6'cY_9 + -7'cY_10 + -8'cY_11 + 4'L_0 + 4'L_1 + 3'L_2 + 3'L_3 + 2'L_4 + 2'L_5 + L_6 + L_7 + L_15 + L_16 + 2'L_17 + 2'L_18 + 3'L_19 + 3'L_20 + 4'L_21 + 4'L_22 + R_6 + R_7 + 2'R_8 + 2'R_9 + 3'R_10 + 3'R_11 + 4'R_12 + 4'R_13 + 5'R_14 + 5'R_15 + 7'R_16 + 8'R_17 + 10'R_18 + 11'R_19 + 13'R_20 + 14'R_21 + 15'R_22 + 16'R_23 = 92
invariant :P_8_1 + P_8_2 + P_8_3 + P_8_4 + P_8_5 + P_8_6 + P_8_7 + P_8_8 + P_8_9 + P_8_10 + P_9_2 + P_9_3 + P_9_4 + P_9_5 + P_9_6 + P_9_7 + P_9_8 + P_9_9 + P_10_3 + P_10_4 + P_10_5 + P_10_6 + P_10_7 + P_10_8 + P_11_4 + P_11_5 + P_11_6 + P_11_7 + cX_8 + cX_9 + cX_10 + cX_11 + -1'L_19 + -1'L_20 + -1'L_21 + -1'L_22 + -1'R_20 + -1'R_21 + -1'R_22 + -1'R_23 = -4
invariant :P_5_11 + P_6_10 + P_7_9 + P_8_8 + P_9_7 + P_10_6 + P_11_5 + R_17 = 1
FORMULA NQueens-PT-12-ReachabilityCardinality-00 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-02 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-03 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-04 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-08 TRUE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-09 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-10 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-11 TRUE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-12 TRUE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-14 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA NQueens-PT-12-ReachabilityCardinality-15 TRUE TECHNIQUES SAT_SMT K_INDUCTION(0)
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution]
Compilation finished in 2568 ms.
Running link step : CommandLine [args=[gcc, -shared, -o, gal.so, model.o], workingDir=/home/mcc/execution]
Link finished in 47 ms.
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, NQueensPT12ReachabilityCardinality01==true], workingDir=/home/mcc/execution]
FORMULA NQueens-PT-12-ReachabilityCardinality-06 FALSE TECHNIQUES SAT_SMT BMC(2)
LTSmin run took 34275 ms.
Found Violation
FORMULA NQueens-PT-12-ReachabilityCardinality-01 TRUE TECHNIQUES PARTIAL_ORDER EXPLICIT LTSMIN SAT_SMT
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, NQueensPT12ReachabilityCardinality05==true], workingDir=/home/mcc/execution]
FORMULA NQueens-PT-12-ReachabilityCardinality-13 FALSE TECHNIQUES SAT_SMT BMC(2)
FORMULA NQueens-PT-12-ReachabilityCardinality-05 TRUE TECHNIQUES SAT_SMT BMC(4)
WARNING : LTSmin timed out (>240 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, NQueensPT12ReachabilityCardinality05==true], workingDir=/home/mcc/execution]
ITS tools runner thread asked to quit. Dying gracefully.
BK_STOP 1527927811910
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityCardinality -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityCardinality -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
Jun 02, 2018 8:18:44 AM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -smt]
Jun 02, 2018 8:18:44 AM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 72 ms
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 216 places.
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 144 transitions.
Jun 02, 2018 8:18:45 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/model.pnml.img.gal : 16 ms
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 2 fixed domain variables (out of 216 variables) in GAL type NQueens_PT_12
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 2 constant array cells/variables (out of 216 variables) in type NQueens_PT_12
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: R_0,L_23,
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 2 fixed domain variables (out of 216 variables) in GAL type NQueens_PT_12
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 2 constant array cells/variables (out of 216 variables) in type NQueens_PT_12
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: R_0,L_23,
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Removed 2 constant variables :R_0=1, L_23=1
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Simplified 2 expressions due to constant valuations.
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 118 ms
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 46 ms
Jun 02, 2018 8:18:45 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 4 ms
Jun 02, 2018 8:18:45 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 0 ms
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 93 ms
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 144 transitions.
Jun 02, 2018 8:18:45 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 144 transitions.
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 70 place invariants in 124 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 15 in 600 ms.
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-00(UNSAT) depth K=0 took 13 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-01(UNSAT) depth K=0 took 0 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-02(UNSAT) depth K=0 took 11 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-03(UNSAT) depth K=0 took 0 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-04(UNSAT) depth K=0 took 1 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-05(UNSAT) depth K=0 took 0 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-06(UNSAT) depth K=0 took 1 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-08(UNSAT) depth K=0 took 12 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-09(UNSAT) depth K=0 took 6 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 144 transitions.
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-10(UNSAT) depth K=0 took 10 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-11(UNSAT) depth K=0 took 10 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-12(UNSAT) depth K=0 took 8 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-13(UNSAT) depth K=0 took 12 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-14(UNSAT) depth K=0 took 2 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-15(UNSAT) depth K=0 took 14 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 70 place invariants in 67 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-00(UNSAT) depth K=1 took 142 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-01(UNSAT) depth K=1 took 80 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-02(UNSAT) depth K=1 took 52 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-03(UNSAT) depth K=1 took 68 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-04(UNSAT) depth K=1 took 56 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-05(UNSAT) depth K=1 took 83 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-06(UNSAT) depth K=1 took 54 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-08(UNSAT) depth K=1 took 54 ms
Jun 02, 2018 8:18:46 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-09(UNSAT) depth K=1 took 57 ms
Jun 02, 2018 8:18:47 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-10(UNSAT) depth K=1 took 53 ms
Jun 02, 2018 8:18:47 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-11(UNSAT) depth K=1 took 60 ms
Jun 02, 2018 8:18:47 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-12(UNSAT) depth K=1 took 60 ms
Jun 02, 2018 8:18:47 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-13(UNSAT) depth K=1 took 171 ms
Jun 02, 2018 8:18:47 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-14(UNSAT) depth K=1 took 98 ms
Jun 02, 2018 8:18:47 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-15(UNSAT) depth K=1 took 48 ms
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 214 variables to be positive in 2047 ms
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver computeAblingMatrix
INFO: Computing symmetric may disable matrix : 144 transitions.
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of disable matrix completed :0/144 took 1 ms. Total solver calls (SAT/UNSAT): 0(0/0)
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of Complete disable matrix. took 15 ms. Total solver calls (SAT/UNSAT): 0(0/0)
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver computeAblingMatrix
INFO: Computing symmetric may enable matrix : 144 transitions.
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of Complete enable matrix. took 10 ms. Total solver calls (SAT/UNSAT): 0(0/0)
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 214 variables to be positive in 2017 ms
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate NQueens-PT-12-ReachabilityCardinality-00
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-00
Jun 02, 2018 8:18:48 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-00(FALSE) depth K=0 took 122 ms
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-01
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-01(SAT) depth K=0 took 512 ms
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate NQueens-PT-12-ReachabilityCardinality-02
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-02
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-02(FALSE) depth K=0 took 62 ms
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate NQueens-PT-12-ReachabilityCardinality-03
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-03
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-03(FALSE) depth K=0 took 90 ms
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate NQueens-PT-12-ReachabilityCardinality-04
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-04
Jun 02, 2018 8:18:49 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-04(FALSE) depth K=0 took 60 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-05
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-05(SAT) depth K=0 took 1013 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-00(UNSAT) depth K=2 took 3150 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-06
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-06(SAT) depth K=0 took 360 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved invariant NQueens-PT-12-ReachabilityCardinality-08
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-08
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-08(TRUE) depth K=0 took 63 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate NQueens-PT-12-ReachabilityCardinality-09
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-09
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-09(FALSE) depth K=0 took 72 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate NQueens-PT-12-ReachabilityCardinality-10
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-10
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-10(FALSE) depth K=0 took 78 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved invariant NQueens-PT-12-ReachabilityCardinality-11
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-11
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-11(TRUE) depth K=0 took 69 ms
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved invariant NQueens-PT-12-ReachabilityCardinality-12
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-12
Jun 02, 2018 8:18:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-12(TRUE) depth K=0 took 77 ms
Jun 02, 2018 8:18:51 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-13
Jun 02, 2018 8:18:51 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-13(SAT) depth K=0 took 740 ms
Jun 02, 2018 8:18:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate NQueens-PT-12-ReachabilityCardinality-14
Jun 02, 2018 8:18:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-14
Jun 02, 2018 8:18:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-14(FALSE) depth K=0 took 329 ms
Jun 02, 2018 8:18:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved invariant NQueens-PT-12-ReachabilityCardinality-15
Jun 02, 2018 8:18:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for NQueens-PT-12-ReachabilityCardinality-15
Jun 02, 2018 8:18:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-15(TRUE) depth K=0 took 63 ms
Jun 02, 2018 8:18:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver computeCoEnablingMatrix
INFO: Computing symmetric co enabling matrix : 144 transitions.
SMT solver raised 'unknown', retrying with same input.
SMT solver raised 'unknown', retrying with same input.
SMT solver raised 'unknown' twice, overapproximating result to 1.
Jun 02, 2018 8:18:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(0/144) took 2129 ms. Total solver calls (SAT/UNSAT): 5(5/0)
Jun 02, 2018 8:18:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of Finished co-enabling matrix. took 2131 ms. Total solver calls (SAT/UNSAT): 5(5/0)
Jun 02, 2018 8:18:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver computeDoNotAccord
INFO: Computing Do-Not-Accords matrix : 144 transitions.
Jun 02, 2018 8:18:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of Completed DNA matrix. took 16 ms. Total solver calls (SAT/UNSAT): 0(0/0)
Jun 02, 2018 8:18:54 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 8769ms conformant to PINS in folder :/home/mcc/execution
Jun 02, 2018 8:18:54 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-01(UNSAT) depth K=2 took 4364 ms
Jun 02, 2018 8:18:58 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-01
Jun 02, 2018 8:18:58 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-01(SAT) depth K=1 took 6322 ms
Jun 02, 2018 8:18:59 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-02(UNSAT) depth K=2 took 4208 ms
Jun 02, 2018 8:19:01 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-03(UNSAT) depth K=2 took 2325 ms
Jun 02, 2018 8:19:06 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-05
Jun 02, 2018 8:19:06 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-05(SAT) depth K=1 took 8033 ms
Jun 02, 2018 8:19:07 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-04(UNSAT) depth K=2 took 5602 ms
Jun 02, 2018 8:19:12 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-05(UNSAT) depth K=2 took 5376 ms
Jun 02, 2018 8:19:12 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-06
Jun 02, 2018 8:19:12 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-06(SAT) depth K=1 took 6361 ms
Jun 02, 2018 8:19:13 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: Result is SAT, found a counter-example trace to a state that contradicts invariant/never predicate NQueens-PT-12-ReachabilityCardinality-06
Jun 02, 2018 8:19:13 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-06(FALSE) depth K=2 took 1280 ms
Jun 02, 2018 8:19:16 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-08(UNSAT) depth K=2 took 2435 ms
Jun 02, 2018 8:19:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-13
Jun 02, 2018 8:19:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-13(SAT) depth K=1 took 5178 ms
Jun 02, 2018 8:19:24 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-01
Jun 02, 2018 8:19:24 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-01(SAT) depth K=2 took 6620 ms
Jun 02, 2018 8:19:24 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-09(UNSAT) depth K=2 took 8639 ms
Jun 02, 2018 8:19:31 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-10(UNSAT) depth K=2 took 6365 ms
Jun 02, 2018 8:19:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-11(UNSAT) depth K=2 took 6985 ms
Jun 02, 2018 8:19:45 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-12(UNSAT) depth K=2 took 6868 ms
Jun 02, 2018 8:19:51 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: Result is SAT, found a counter-example trace to a state that contradicts invariant/never predicate NQueens-PT-12-ReachabilityCardinality-13
Jun 02, 2018 8:19:51 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-13(FALSE) depth K=2 took 6148 ms
Jun 02, 2018 8:19:54 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-05
Jun 02, 2018 8:19:54 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-05(SAT) depth K=2 took 30337 ms
Jun 02, 2018 8:20:09 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-14(UNSAT) depth K=2 took 18656 ms
Jun 02, 2018 8:20:15 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-15(UNSAT) depth K=2 took 5372 ms
Jun 02, 2018 8:20:43 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-05(UNSAT) depth K=3 took 28100 ms
Jun 02, 2018 8:21:15 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: Result is SAT, found a trace to state matching reachability predicate NQueens-PT-12-ReachabilityCardinality-05
Jun 02, 2018 8:21:15 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NQueens-PT-12-ReachabilityCardinality-05(TRUE) depth K=4 took 32429 ms
Jun 02, 2018 8:21:31 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNQueens-PT-12-ReachabilityCardinality-05
Jun 02, 2018 8:21:31 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NQueens-PT-12-ReachabilityCardinality-05(SAT) depth K=3 took 96853 ms
Jun 02, 2018 8:21:31 AM fr.lip6.move.gal.application.SMTRunner$2 run
INFO: SMT solved 14/ 15 properties. Interrupting other analysis methods.
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NQueens-PT-12"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NQueens-PT-12.tgz
mv NQueens-PT-12 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstools"
echo " Input is NQueens-PT-12, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r284-csrt-152749174900340"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;